

Neutrino Physics Prospects with PINGU

Tyce DeYoung Department of Physics and Astronomy Michigan State University

DPF 2015 Ann Arbor, Michigan August 7, 2015

PRECISION ICECUBE NEXT GENERATION UPGRADE

Oscillation Physics with Atmospheric Neutrinos

- Neutrinos available over a wide range of energies and baselines
 - Oscillations produce distinctive pattern in energy-angle space
 - Approach: control systematics using events in "side band" regions – trade statistics for constraints on systematics
- Neutrinos oscillating over one Earth diameter have a v_μ survival minimum at ~25 GeV
 - Hierarchy-dependent matter effects on v or \bar{v} (MSW etc.) below 10-20 GeV

Current IceCube Oscillation Results

PINGU

- Baseline 4 MTon detector: 40 additional strings at 22 m spacing, with Digital Optical Modules spaced 3 m vertically, deployed inside IceCube DeepCore
 - Compare to 72 m string spacing and 7 m DOM spacing for DeepCore
 - ~25x higher photocathode density
 - Additional in situ calibration devices will better control detector systematic (not included in projections)
- Achieve few GeV energy threshold
- Engineering and costs are well understood from IceCube

50

0

100

150

200

X (m)

-100

-50

PRECISION ICECUBE NEXT GENERATION UPGRADE

Signatures of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabilities for v or \bar{v} traversing the Earth exploit differences in cross section to distinguish
 - Effects vary with E_v and L (= zenith angle) due to Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected
 - Note: effect of detector resolution not shown here
- Distinct signatures observable in both track (v_µ CC) and cascade (v_e and v_τ CC, v_x NC) channels
 - At higher energies, v_{μ} CC events distinguishable by the presence of a muon track

Signatures of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabilities for v or \bar{v} traversing the Earth exploit differences in cross section to distinguish
 - Effects vary with E_v and L (= zenith angle) due to Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected
 - Note: effect of detector resolution not shown here
- Distinct signatures observable in both track (v_µ CC) and cascade (v_e and v_τ CC, v_x NC) channels
 - At higher energies, v_{μ} CC events distinguishable by the presence of a muon track

Signatures of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabilities for v or \bar{v} traversing the Earth exploit differences in cross section to distinguish
 - Effects vary with E_v and L (= zenith angle) due to Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected
 - Note: effect of detector
 resolution not shown here
- Distinct signatures observable in both track (v_µ CC) and cascade (v_e and v_τ CC, v_x NC) channels
 - At higher energies, v_{μ} CC events distinguishable by the presence of a muon track

AUT

Hierarchy Signature: Observables

arXiv:1401.2046

- Simple visualization of statistical signal, with full detector response included
- Distinctive (and quite different) hierarchy-dependent signatures visible in both the track and cascade channels
 - Parametrized rates, detector resolutions and efficiencies from full detector Monte Carlo used to eliminate statistical fluctuations – statistical distributions checked with MC

Effects of Systematics

- Oscillation physics produces distinctive patterns unlike those of other effects
- Uncertainties in oscillation parameters (mainly θ_{23}) dominate systematics
 - No prior placed on θ_{23} or Δm^2_{atm} fit jointly with NMH
 - θ_{13} fit with prior, solar parameters and δ_{CP} (=0) held fixed
- Flux: v_e/v_μ ratio (3%), v/\bar{v} ratio (10%), spectral index (5%), detailed flux uncertainties from Barr et al. 2006*

Туре	3y σ (NH)	3 y σ (IH)
stat only	4.84	4.82
flux only	4.55	4.56
det only	4.06	3.99
θ ₂₃ only	3.52	3.26
osc only	2.96	2.53
All	2.90	2.51

 Detector: rate/normalization (free), energy scale (10%), detailed cross-section systematics from GENIE*
 *only with Δχ² method

Significance vs. Time

- Measurement strongly affected by systematics, but continues to improve with time
- Systematics are constrained by same data set
 - Increased statistics means gradually better control of systematics

Dependence on Mixing Angle

- Most values of θ₂₃ would give higher significance for mass ordering
 - Drift toward maximal mixing since PINGU Lol has increased both matter effects and degeneracies
- Mass ordering measured at $\geq 3\sigma$ in 3-4 years over full $\pm 2\sigma$ range of global fit

Oscillation Parameters with PINGU

- Significantly improve IceCube measurements of θ_{23} and Δm^2_{atm}
- Comparable precision to NOvA, T2K
- Complementary to other measurements – interesting tests of standard oscillations
 - Higher energies, joint disappearancetau appearance measurement

IceCube-Gen2

- Planning underway for a multipurpose facility leveraging the experience and investment in IceCube
 - White paper at arXiv:1412.5106 – more details and PINGU update later this year
- PINGU will be one component of IceCube-Gen2

- PINGU has a unique place in the world-wide neutrino program
 - Measurements at a range of higher energies/longer baselines, with high statistics
- Opportunity to discover new physics is greatly enhanced by PINGU's complementarity with other experiments
- PINGU will be a natural part of the IceCube-Gen2 Observatory
 - Closely based on IceCube technology low technical and cost risk
 - PINGU will use the same hardware as high energy extensions of IceCube common design gives flexibility to optimize based on progress of the field
- Focused here on neutrino physics, but also interesting potential in searches for low mass dark matter and other exotica

