Particle Astrophysics with IceCube and HAWC

Tyce DeYoung Department of Physics and Institute for Gravitation and the Cosmos

Physics Department Colloquium Pennsylvania State University November 3, 2011

Cosmic Rays and Particle Astrophysics

- Radiation of cosmic origin first established in 1912
 - Hess carries electroscopes to 5000 m altitude (!) in a balloon
- Where do they come from?
 - Charged particles, so they don't point back to their sources
 - Clues from spectrum, composition
 - How are they accelerated?
 - Can we learn new physics by understanding their sources?
- What can we learn about the fundamental properties of the particles themselves?

Outline

- Particle Astrophysics 101
- Probing Astrophysical Sources: Gamma Ray Bursts
 - Recent Observations
 - Prospects for HAWC
- Studying Astrophysical Particles: Atmospheric Neutrinos
 - Observation of Electron Neutrinos with IceCube DeepCore
 - Prospects for Measuring Tau Neutrino Appearance
 - Future Prospects: PINGU and MICA

The IceCube Collaboration

lceCube

Ruhr-Universität Bochum Universität Bonn DESY, Zeuthen Universität Dortmund MPIfK Heidelberg Humboldt Universität, Berlin Universität Mainz BUGH Wuppertal

Stockholms Universitet Uppsala Universitet

Vrije Universiteit Brussel Université Libre de Bruxelles Universiteit Gent Université de Mons

University of Alberta

Chiba University

University of Canterbury

University of Adelaide

EPF Lausanne Université de Genève

Oxford University

University of the West Indies, Barbados

The HAWC Collaboration

University of Maryland Los Alamos National Laboratory University of Alabama University of California, Irvine University of California, Santa Cruz Colorado State University George Mason University Georgia Institute of Technology Goddard Space Flight Center Harvey Mudd College Michigan State University Michigan Technological University University of New Hampshire University of New Mexico Pennsylvania State University University of Utah University of Wisconsin, Madison

Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE)

Universidad Nacional Autónoma de México (UNAM)

Universidad Autónoma de Chiapas

Universidad de Guadalajara

Universidad de Guanajuato

Universidad Michoacana de San Nicolás de Hidalgo

Centro de Investigación y Estúdios Avanzados (CINVESTAV)

Benemérita Universidad de Puebla

Penn State Folks

Faculty: Doug Cowen

Postdocs

Dawn Williams (U. of Alabama), Darren Grant (U. of Alberta), Pat Toale (U. of Alabama), Seon-Hee Seo (Stockholm U.), Carsten Rott (Ohio State), Wolfgang Wagner (LogicaCMG), Brendan Fox (U. of Hawaii), Sven Lafèbre (Radboud U.), Karen Caballero Mora (U. of Santiago de Compostela), Jason Koskinen, *Dmitry Zaborov*

Graduate Students

Chang Hyon Ha (UC Berkeley), Doug Rutledge (Susquehanna U.), Steve Movit (Inst. for Defense Analysis), Matt Dunkman, Michael Bell, Michaela Allen, *Kathryne Sparks*

Undergraduates

Lena Bradley (Cornell), Alan Slipak (Temple med. school), Mike Prikockis (Ohio State), Mark Foerster (U. of Tennessee), Mike Larson (U. of Alabama), Ryan Wasserman, Ryan Eagan, Zack Pierpoint (U. of Wisconsin), David Garand (Purdue), Landon Chambers (Texas A&M), Phil Condreay

Penn State Physics Department Colloquium

Multimessenger Astrophysics

e±

cosmic rays +

cosmic rays+ gamma-rays

Gamma rays produced by accelerated hadrons *or* electrons

> Neutrinos guarantee hadronic acceleration

Tyce DeYoung

Penn State Physics Department Colloquium

Large Millimeter Telescope -

Pico de Orizaba, altitude 4100 m, latitude 18° 59' N Two hours drive from Puebla, four from Mexico City Site of Large Millimeter Telescope (existing infrastructure)

The HAWC Gamma Ray Observatory

- Gamma ray interacts in the atmosphere, forms a particle cascade
 - Particles produce Cherenkov light in water at ground level
- Reconstruct direction from timing of PMT hits across the detector
- Views the entire overhead sky, day and night, in all weather
 - Field of view ~2 sr, typical duty factor >95%
- Most triggers come from cosmic rays, gamma rays a small minority

300 Water Cherenkov Detectors 7.2 m diameter x 4.3 m tall, containing 4 PMTs 20,000 m² area, 60% active Cherenkov volume

VAMOS engineering array

Future site of HAWC

300 Water Cherenkov Detectors 7.2 m diameter x 4.3 m tall, containing 4 PMTs 20,000 m² area, 60% active Cherenkov volume

300 Water Cherenkov Detectors 7.2 m diameter x 4.3 m tall, containing 4 PMTs 20,000 m² area, 60% active Cherenkov volume

HAWC Sensitivity to GRBs

D. Zaborov, K. Sparks

• HAWC will probe GRB emission above Fermi LAT energies

- Effective area a rising function of gamma ray energy
- Extragalactic background light absorbs high energy γ rays, depending on source redshift
- Detection depends on GRB spectrum, cutoff energy (intrinsic or due to EBL)
- Brightest GRBs likely observable, based on high energy LAT photons
 - A 4th PMT added to each tank, will further increase sensitivity

Simulated HAWC GRB Light Curve

- GRB 090510 (z = 0.9) observed by Fermi in GBM and LAT
- Simulated HAWC response assuming extension of spectrum with LAT index
 - EBL absorption and cosmic ray background included
- Expect ~200 events above 30 GeV if spectrum extends to EBL
- Around 10 events observed by HAWC even if cut off at energy of highest photon observed by Fermi

HAWC Construction Schedule

- Construction began February 2011
- Fall 2012: 30 Tanks
 - Sensitivity comparable to Milagro
- Summer 2013: 100 Tanks
 - Begin continuous operations in Fall 2013
- Fall 2014: 300 Tanks (construction complete)

Multimessenger Astrophysics

e±

cosmic rays +

cosmic rays+ gamma-rays

Gamma rays produced by accelerated hadrons *or* electrons

> Neutrinos guarantee hadronic acceleration

High Energy Neutrino Telescopes

- Need a big piece of transparent material (cubic kilometers)
- Neutrinos interact in or near the detector

- Cherenkov radiation detected by 3D array of optical sensors (OMs)
- $\mathcal{O}(km)$ muon tracks from v_{μ} CC
- $\mathcal{O}(\text{few m})$ cascades from v_e CC, low energy v_τ CC, and v_x NC

Neutrino Telescopes

IceCube Search for Neutrinos from GRBs

- IceCube has searched for neutrinos in coincidence with 300 GRBs recorded 2008 – 2010
 - 40 and 59 string configurations
- No neutrinos observed in coincidence with these GRBs
 - Upper limits at approximately 20% the predicted flux, if GRBs are the (sole) sources of the observed UHE cosmic rays
- Somewhat dependent on modeling of GRBs, but limits are already constraining – and will improve over the next few years

Astrophysical Accelerators

M87, HST

AGN

Neutrino Telescopes

IceCube DeepCore

- A more densely instrumented region at the bottom center of IceCube
 - Eight special strings plus 12 nearest standard strings
 - High Q.E. PMTs
 - ~5x higher effective photocathode density
- In the clearest ice, below 2100 m
 - $\lambda_{\text{atten}} \approx 50 \text{ m}$
- IceCube provides an active veto against cosmic ray muon background (around 10⁶ times atmospheric neutrino rate)

Vetoing Atmospheric Muons

D. Grant, L. Bradley

- Look for hits in veto region consistent with speed-of-light travel time to hits in DeepCore
 - Achieves 8 x 10⁻³ rejection of cosmic ray muon background with 99% efficiency for neutrinos interacting within DeepCore
 - More sophisticated versions used offline

- First detection of neutrino cascades $(v_e + v_\mu NC)$ in a neutrino telescope
 - Previous searches have turned up a half-dozen candidates, consistent with cosmic ray muon background
- Use DeepCore with IceCube veto to reduce background
 - Reduced fiducial volume OK given high atmospheric flux
 - Use machine learning tools, maximum likelihood fits to identify cascades
 - Dominant background to cascades is atmospheric v_{μ} CC with short μ tracks

Observation of Atmospheric Cascades

C. H. Ha

• Data set of 1029 events from 2010, ~60% real cascades

- Atmospheric muon background being assessed, but contribution small
- Potential to discriminate between leading atmospheric neutrino models
- Mean energy ~180 GeV, not sensitive to oscillations with this sample

Atmospheric Neutrinos in DeepCore

- DeepCore greatly expands IceCube's sensitivity to low energy neutrinos (<100 GeV)
 J. Koskir
 - The atmospheric neutrino spectrum follows $dN/dE \sim E_v^{-3.7}$
- 30 MTon detector with ~10 GeV threshold
 - The lower threshold leads to much higher neutrino event rates than in IceCube
- *O*(10⁵) atmospheric neutrinos triggered / year

Neutrino Oscillations with DeepCore

C. H. Ha, J. Koskinen

- Energy threshold of first analysis high due to final particle ID cuts
- Alternate sample trades higher background for reduced threshold
 - Measurement of tau neutrino appearance appears possible (a first!)
 - Requires detailed understanding of systematics work in progress

Measuring Tau Neutrino Appearance

C. H. Ha, J. Koskinen

• First step: measure neutrino rates, infer tau neutrino contribution

- Approximately 15σ statistical observation in 2010 data set (plus syst.)
- Then work toward observing distortion of the cascade spectrum
 - Improve precision and reduce background by adding reconstruction info

Toward Precision Physics in Ice

J. Koskinen, D. Grant

• First stage: PINGU

- Add ~20 further infill strings to DeepCore, extend energy reach to ~1 GeV
- Improved sensitivity to DeepCore physics, and test bed for next stage
- Use mostly standard IceCube technology, include some R&D toward new types of photodetectors
- Include additional calibration devices with an eye toward few-% systematics

• Thinking big: MICA

- Using new photon detection technology, can we build a detector that can reconstruct Cherenkov rings for events well below 1 GeV?
- PINGU physics topics, plus proton decay, extragalactic supernova neutrinos
- At least comparable in scope to IceCube, but in a much smaller volume

PINGU Performance

J. Koskinen, R. Wasserman

- Increased effective volume for energies below ~15 GeV
- Several megatons effective volume at a few GeV
- Does not include analysis efficiencies, reconstruction precision
 - Absolute scale lower, but larger relative improvement over DeepCore

PINGU Neutrino Physics

- Sensitivity to 2nd oscillation peak/trough, and lower?
 - Measuring full minimum and 2^{nd} peak would improve extraction of Δm_{23}^2 and $\sin^2(2\theta_{23})$ in a very large data set
- Limited by systematic uncertainties, not statistics
 - Will include a robust calibration program to refine understanding of systematics

Probing the Neutrino Mass Hierarchy?

- Possible sensitivity to neutrino mass hierarchy via matter effects if θ₁₃ is large
 - Exploit asymmetries in v / v cross section, kinematics
 - Effect is largest at energies of a few GeV (for neutrinos crossing the Earth's core)
 - Control of systematics crucial
- Recent results from T2K suggest that nature may have been kind to us by giving us a large θ_{13}

Beyond PINGU: A Megaton Ice Cherenkov Array

- Underground detectors such as Super-K, SNO, et al. have made tremendous contributions to particle physics, but are approaching the limits of feasible detector size
 - Physics reach determined by photocathode coverage, radiopurity, optical quality of the medium
 - Costs driven primarily by photocathode coverage, purification, and civil engineering – and the latter is coming to dominate
- Ice offers one great advantage: the medium is the support structure
 - Installation costs low (on the scale of a next-generation detector)
 - Deep ice has reasonably good optical quality, very high radiopurity
 - But the maximum density of instrumentation is determined by installation procedure, and the optical properties must be assessed *in situ*

R&D: Multi-PMT Digital Optical Module

- Based on a KM3NeT design
- Glass cylinder containing 64 3" PMTs and associated electronics
 - About 5x the photocathode area of a standard IceCube 10" PMT
 - Module diameter similar to IceCube DOMs, single connector
- Might enable Cherenkov ring imaging in the ice
 - Feasible to build a multi-MTon detector in ice with an energy threshold of 10's of MeV?
- R&D beginning now

					175mm 250mm	Possible design for future array: 64 x 3" PMTs
						250mm

MICA Physics Goals

• Proton decay

- Studying sensitivity to $p \rightarrow \pi^0 + e^+$ channel
- Requires energy threshold of ~100's of MeV
- Background limited depends on energy resolution, particle (ring) ID

• Supernova neutrinos

- Only 2±1 core collapse SNe per century in the Milky Way
- Need to reach well beyond our galaxy to get statistical sample of supernovae observed in neutrinos – requires multi-MTon effective volume
- Background levels may be too high for a ~10 MeV threshold for individual events, but still allow observations of a burst of neutrinos
- Plus improvements for dark matter, neutrino physics compared to PINGU and DeepCore

- An exciting time in particle astrophysics!
- IceCube now complete, HAWC under construction
 - DeepCore array in place, first results appearing
- We are learning a lot about gamma ray bursts
 - Interesting things going on at high energy (how high?)
 - But where are the neutrinos?
- IceCube with DeepCore has great potential as a laboratory for neutrino physics
 - Studies of neutrino oscillations with world's largest neutrino data sets
 - How far can we go with this idea?