Toward Precision Neutrino Physics with DeepCore and Beyond

Tyce DeYoung Department of Physics Pennsylvania State University

VLVvT '11 Erlangen, Germany October 14, 2011

The Neutrino Detector Spectrum

IceCube DeepCore

- IceCube collaboration decided to augment "low" energy response with a densely instrumented infill array: DeepCore
 - Significant improvement in capabilities from ~10 GeV to ~100 GeV (v_{μ})
- Primary scientific rationale was the indirect search for dark matter
- Particle physics using atmospheric neutrinos
 - Neutrino oscillations, including tau neutrino appearance
- Neutrino sources in Southern Hemisphere?
 - Galactic cosmic ray accelerators, dark matter in the Galactic center
- Neutrino astronomy at low energies (e.g. GRBs)?

IceCube DeepCore

- Eight special strings plus 12 nearest standard IceCube strings
 - 72 m interstring spacing
 - 7 m DOM spacing
 - High Q.E. PMTs
 - ~5x higher effective photocathode density
- In the clearest ice, below 2100 m
 - $\lambda_{atten} \approx 40-45 \text{ m}$
- 30 MTon detector with ~10 GeV threshold, $O(10^5)$ atm. v / year
- IceCube is an active veto against cosmic ray muon background

DeepCore Neutrino Effective Area

• DeepCore dominates total response for E_v below ~100 GeV

- Improved trigger efficiency overcomes much smaller volume
- Linear growth at high energy reflects neutrino cross section, not detector efficiency
- Analysis efficiencies <u>not</u> included! First analyses accepted low (<10%) efficiency, expected to improve considerably in the future

Neutrino Astronomy with DeepCore

• Atmospheric neutrino veto?

- May enhance observability of Galactic sources in the ~10 TeV band (Schönert et al. 2009)
- Still difficult at these energies due to loss of muon range factor, rising neutrino cross section
- Sensitivity to low energy neutrinos from transients?
 - E.g. choked or magnetically dominated GRBs (e.g., Ando & Beacom 2005; Razzaque, Meszaros & Waxman 2005; Meszaros & Rees 2011)

Tyce DeYoung

VLVvT '11, Erlangen, Germany

Search for Solar Dark Matter

M. Danninger, TAUP 2011

Neutrino Oscillations

- Atmospheric neutrinos from Northern Hemisphere oscillating over one earth diameter have v_{μ} oscillation minimum at ~25 GeV
 - Higher energy region than accelerator-based experiments
- Plot of v_µ disappearance shows only simulated signal (no BG), simple energy estimator
 - Analysis efficiencies not included yet – work ongoing
 - Magnitude of the signal may help overcome poorer control of systematics

Observation of Neutrino Cascades

- Disappearing v_{μ} should appear in IceCube as v_{τ} cascades
 - Effectively identical to neutral current or v_e CC events
 - Could observe v_τ appearance as a distortion of the energy spectrum, if cascades can be separated from muon background
- We believe we see neutrino cascade events for the first time
 - The dominant background now is CC v_µ events with short tracks

Candidate cascade event Run 116020, Event 20788565, 2010/06/06

Observation of Atmospheric Cascades C. H. Ha, TAUP 2011

• Substantial sample of cascades, final data set ~60% cascades

- Mean energy ~180 GeV, not sensitive to oscillations (with these cuts)
- Atmospheric muon background being assessed, but v_{μ} CC dominant
- Represents about 5x enrichment of cascades over v_{μ} CC, but better neutrino particle ID clearly desirable
- Potential to discriminate between Bartol, Honda atmospheric neutrino models – measuring air shower physics!

Beyond DeepCore

Toward Precision Particle Physics in Ice

• First stage ("PINGU")

- Add ~20 further infill strings to DeepCore, extend energy reach to ~1 GeV
- Improved sensitivity to DeepCore physics, and test bed for next stage
- Use mostly standard IceCube technology, include some R&D toward new types of photodetectors
- Include additional calibration devices with an eye toward few-% systematics

Ideas beyond PINGU

- Using new photon detection technology, can we build a detector that can reconstruct Cherenkov rings for events well below 1 GeV?
- PINGU topics, plus proton decay, supernova neutrinos
- At least comparable in scope to IceCube, but in a much smaller volume

Beyond DeepCore: PINGU

Price tag expected to be around \$25M – \$30M

PINGU Effective Volumes

- Increased effective volume for energies below ~15 GeV
- Nearly an order of magnitude increase at 1 GeV (100's of kton)
- Does not include analysis efficiencies, reconstruction precision
 - Absolute scale lower, but improvement over DeepCore likely >10x

PINGU Neutrino Physics

- Sensitivity to 2nd oscillation peak/trough, and lower?
 - Measuring full minimum and 2^{nd} peak would improve extraction of Δm_{23}^2 and $\sin^2(2\theta_{23})$ in a very large data set
 - Limited by systematic uncertainties, not statistics
- Plan for a robust calibration program to refine understanding of systematics

Probing the Neutrino Mass Hierarchy?

- Possible sensitivity to neutrino mass hierarchy via matter effects if θ₁₃ is large
 - Exploit asymmetries in v / v cross section, kinematics
 - Effect is largest at energies below 5 GeV (for Earth diameter baseline)
 - Control of systematics crucial
- Recent results suggest that nature may have been kind to us by giving us a large θ₁₃

PINGU Hierarchy Measurement?

- Simulations of 20-string PINGU for 5 years with $sin^2(2\theta_{13}) = 0.1$
- Assumes perfect background rejection, select events within 25° of vertical
 - 5 GeV muon energy bins ~25 m length resolution

- Up to 20% (=10 σ) effects in several energy/angle bins
 - Signal is potentially there, if systematics can be controlled

Beyond PINGU: A Megaton Ice Cherenkov Array

- Underground detectors such as Super-K have made tremendous contributions to particle physics, but are approaching the limits of feasible detector size
 - Physics reach determined by photocathode coverage, radiopurity, optical quality of the medium
 - Costs driven primarily by photocathode coverage, purification, and civil engineering – and the latter is coming to dominate
- Ice offers one great advantage: the medium is the support structure
 - Installation costs low (on the scale of a next-generation detector)
 - Deep ice has reasonably good optical quality, very high radiopurity
 - But the maximum density of instrumentation is determined by installation procedure, and the optical properties must be assessed *in situ*

Megaton Ice Cherenkov Array

- Few hundred strings of "linear" detectors to be deployed within DeepCore
 - String spacings ~5 m, sensors spaced by ~1 m on a string
- Goals: ~5 MTon fiducial volume
 - O(10 MeV) threshold for bursts
 - O(100 MeV) for single events
- Physics extraction from Cherenkov ring imaging in the ice
 - IceCube and DeepCore provide active veto

R&D: Multi-PMT Digital Optical Module

- Based on a KM3NeT design
- Glass cylinder containing 64
 3" PMTs and associated electronics
 - Effective photocathode area >6x that of a standard IceCube 10" PMT
 - Diameter similar to IceCube DOM, single connector
- Might enable Cherenkov ring imaging in the ice
 - Feasible to build a multi-MTon detector in ice with an energy threshold of 10's of MeV?
- R&D beginning (U. Katz/P. Kooijman)

Image: Non-State of the state of the stat

250mm

P. Kooijman & E. de Wolf

					175mm 250mm	Possible design for future array: 64 x 3" PMTs
						250mm

Physics Goals

• Proton decay

- Studying sensitivity to $p \rightarrow \pi^0 + e^+$ channel
- Requires energy threshold of ~100's of MeV
- Background limited depends on energy resolution, particle (ring) ID

• Supernova neutrinos

- Need to reach well beyond our galaxy to get statistical sample of SN neutrinos – requires multi-MTon effective volume
- Background levels may be too high for a ~10 MeV threshold for individual events, but still allow observations of a burst of neutrinos
- Plus improvements for dark matter, neutrino physics compared to PINGU and DeepCore

Proton Decay

- Studying use of ring imaging algorithms from underground detectors (e.g. Super-K) in a volume-instrumented detector
 - Need to understand energy resolution, e/µ ring identification, required photocathode coverage
 - Photocathode density equivalent to ~10-15% coverage is technically feasible based on deployment technology (but would be expensive)
 - What information do we gain from always having segmented photodetectors near the event vertex? How can we incorporate it?
- Proton lifetimes of 10³⁶ years are theoretically interesting, current limits are around several times 10³⁴ years
 - Need to assess detector performance before we understand our sensitivity

Supernovae

- Work in progress to assess the ability to detect SN neutrinos
- Background constraints more difficult but threshold may be lowered for bursts of events

Timeline

• Detailed Monte Carlo simulations underway

- Low energy reconstruction will follow work on DeepCore now underway
- Cherenkov ring reconstruction can modify existing algorithms from experiments like SuperK
- We aim for a PINGU proposal soon, deploy within next few years

