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Equilibrium statistical physics:
Algorithmic demands

Thermodynamic limit i.e. volume of the sample goes to infinity
Equilibrium = Ground states or lowest free energy states 
Phase transitions : Singular behavior in the thermodynamic limit
Complex energy landscapes, glassiness, frustration.  Many 
competing objectives.
Exact solutions play a key role. 
In hard problems it is relatively easy to find heuristics which get 
within a few percent of exact. The last few percent is really 
expensive due to the fact that metastable (local) minima are 
“far” from the true ground states – but are they statistically 
equivalent??
Differences between the effect of short range and long range  
edges on behavior (dimensionality).



“Simple” network algorithms 
important in statistical physics

Minimum spanning tree: In a network where each edge has a 
cost cij, a minimum spanning tree is a spanning tree which has 
minimum total cost. (Prim’s algorithm)
Shortest path between two points: In a network where each 
edge has a cost cij, a shortest path is a path on which the sum 
of the edge weights Is smallest. (Dijkstra’s algorithm – positive 
costs)
The maximum s-t flow in a network: In a network where each 
edge has flow capacity uij, the maximum s-t flow through the 
network is the maximum flow possible between the source s 
and the target t, given the capacities uij.  When a maximum 
flow occurs through the network, there is a cut on which the 
network capacities are saturated. This cut a minimum cut. 
(Augmenting paths, push-relabel)



Other algorithms widely used 
in statistical physics

Search (Breadth first, depth first)
Matching algorithms 
Convex optimization (also integer flows) 
Genetic algorithms 
Belief propagation (Survey propagation-Zecchina)
Branch and cut (Cologne spin glass server)
Tournaments (Liga)



Outline

Some History (Ising models) 
A. Percolation (Rigidity, Bootstrap…)
B. Applications of network optimization methods

Paths and chains
Surfaces and interfaces 
Domain structures 

C. Nanostructure determination
D. Hard core lattice gas problems



Ising Models - Definition

General spin half Ising model in a field. 
Defined on a lattice or graph where sites are 
indexed by i or j.  The energy is given by,

E = - Σij JijSiSj – Σi( hi + H )Si,
Where spins Si= +1 or -1 (ie a binary variable), Jij is 

the exchange coupling between spins, H is an 
applied field and hi is a local field.  



Brief Ising Algorithm History
The general Ising model partition function can be written 
as  a problem of counting dimer coverings or equivalently 
perfect matchings on a graph, ie it is number complete in 
general (Kasteleyen, Fisher, Temperley 1960’s, Zecchina). 

The square lattice Ising model partition function can be 
written as a finite sum of determinants, so it is polynomial 
for general couplings and analytically solvable for some 
special cases.
The ground state of the general Ising spin glass is NP-
complete (Barahona 1982, Istrail STOC 2000)

The ground state of the square lattice spin glass can be 
solved using a matching algorithm – solvable in polynomial 
time (Bieche et al. 1980).
The ground state of the random field Ising model maps to 
the min-cut/max-flow problem (Ogielski 1986).  This 
procedure can also be used to solve the diluted 
antiferromagnetic in an applied field which is a key 
experimental system.
Domain walls in Ising ferromagnets, at zero temperature, 
can be found using min-cut/max-flow (Middleton 1995, 
Alava and Duxbury 1996)



A. Three percolation problems

Connectivity percolation: Does a connected path 
exist between points separated by large distances?  
Does an extensive giant cluster exist?  Breadth first 
search, biconnected components (burning 
algorithm).
Rigidity percolation:  Can a truss network support an 
applied stress.  In 2-d maps to bipartite matching in 
(Hendrickson 1992).
Bootstrap percolation:  The same as k-core 
percolation. i.e. sites which have k neighbors are 
stable, all other sites are culled (recursively)



Rigidity percolation: How many edges 
are required to make a graph rigid?

Consider a graph consisting of nodes and edges 
where the edges are replaced by stiff Hookian
springs.  The Hookian springs yield stiff central 
force constraints, but they are freely rotatable.
The graph rigidity problem seeks to 
identify the combinatorial conditions for 
subgraphs to be overconstrained, 
isostatic or underconstrained.  i.e. use 
counting to find rigid clusters



Comparison of connectivity and 
rigidity percolation on triangular 
lattices

Left:  Connected to the 
substrate

Right:  Rigidly connected to
the substrate

Redundant edges (dashed)
Left:  Connectivity
Right: Rigidity



Combinatorial rigidity: e.g. counting 
constraints in a 2d bar-joint network

James Clerk Maxwell analyzed the rigidity of truss networks by 
comparing the number of degrees of freedom in the network 
with the number of constraints.  For example for a planar 
network each node has two degrees of freedom.  If there are 
B edges then, if all edges are independent, the number of 
internal floppy modes is F = 2N – 3 – B .  However some 
edges are redundant (dependent), so a more complete 
formula is 
F = 2N – 3 – B + R
If we have a fast algorithm to find R, then some important 
problems are solved.
Two books: Combinatorial Rigidity, Graver, Servatius, 
Servatius, AMS;  Rigidity theory and applications, Thorpe and 
Duxbury eds, Plenum.



Two theorems and a 
conjecture

Laman’s theorem (1970): A graph (V,E) is rigid for dimension 2 if 
And only if:
1.   |E| = 2 |V|-3
2.   There a no redundant bonds

Tay-Whiteley theorem (1980’s):  Generalized Laman’s theorem to 
body-bar networks in arbitrary dimensions (body-bar networks 
don’t have bananas! – see figure)

Molecular Framework conjecture(1980’s Tay-Whiteley) :  
Molecular networks with strong bonding bending forces but 
freely rotatable dihedral degrees of freedom are solved by an 
extension of Laman’s theorem:  Applications to molecular 
glasses and proteins (See Thorpe Talk)



Matching algorithm
Hendrickson (1992):  If matching fails, edge is 
redundant.  Number of redundant edges acts 
like a free energy for rigidity percolation

Connectivity: Each node has at most
one arrow (edge) pointing to it.

Rigidity: Each node has at most two 
arrows (edges) pointing to it.



Percolating geometries: 
Triangular lattices: 107 nodes on a pc

Connectivity Rigidity

Moukarzel and Duxbury Phys. Rev. Letts. 1995,
Jacobs and Thorpe Phys. Rev. Letts. 1995.



Phase transitions: Random graphs 
with fixed maximum co-ordination(z)

Connectivity:
Z=3, g=1

Rigidity
Z=6, g=2

Rigidity percolation is first order on random graphs;
g = number of degrees of freedom per node
Duxbury et al. Phys. Rev. E, 1997,  1999



m-Bootstrap percolation =k-core 
percolation:  e.g. Triangular lattice 

Nodes are stable provided they are k co-ordinated.  
Nodes which have co-ordination less than k are culled 
recursively

Elementary avalanches:
Start with a fully bonded 
triangular lattice then:
Remove a node randomly and 

recursively cull all unstable sites.  
The number of sites culled is an 
elementary avalanche

Farrow and Duxbury
Phys. Rev. E. 2006



Cumulative avalanche 
distributions: Triangular lattices

k=3 k=4

Farrow and Duxbury
Phys. Rev. E. 2006



Results for regular lattices and 
random graphs

On regular lattices of co-ordination z, bootstrap (k-core) 
percolation is second order for 2<k<z/2+1, with a finite 
threshold. k-core percolation is first order for k>z/2 and in 
this case the threshold, pc goes to one though for k=z/2 with 
slow finite size effects (metastability)
On random graphs k-core is first order for k>2 and has a 
finite threshold for all k<z.  
In second order cases elementary avalanches are small and 
the cumulative avalanche distribution is weaker than power 
law.
In first order cases the elementary avalanches are large and 
the cummulative avalanche distribution is a power law with an 
exponent close to 5/2, numerically.



B. Network optimization problems 
and their applications

Minimum spanning tree
Shortest path
Min-cut/Max-flow
Convex optimization 

continuous flows
integer flows



Minimum spanning tree: Square 
lattice with random edge weights

Paths on minimum 
spanning trees have 
the lowest barriers

Paths are fractal
N ~ Ry

y=1.22 (1) (square)
y= 1.41 (2) (Cubic)
Dobrin, Duxbury, Phys. 

Rev. Letts. 2001
Path exponent is independent of disorder distribution



Growth of paths, Prim and Dijkstra on 
a square lattice with random positive 
edge weights

PRIM is the same as invasion percolation, Dijkstra
paths for weak disorder have roughness; w~R2/3

Alava, Duxbury, Moukarzel, Rieger, Domb and Lebowitz Vol 18.



Voltage localization in 
Superconductor nets:
Random critical current on 
each edge
Donev, Musolff, Duxbury, J. Phys. A 
2001, Duxbury et al, Mechanics of 
Materials 2006.



Current localization in 
varistor networks: Random 
voltage onset  on each edge



Relations to shortest path and 
minimum cut.

In a net where each edge has a threshold current, the surface 
on which the sum of edge currents is smallest is the minimum 
cut and its capacity is the maximum flow = Critical current. ie
capacity uij= Iij

Iminimum cut = Σ(ij) on minimum cut  Iij

In a net where each edge has a threshold voltage vij for onset 
of current flow, the path on which current first flows is the 
shortest path on which the threshold for flow is: ie cost cij=vij

Vshortest path = Σ(ij) on shortest path   vij



Another interpretation of min-
cut and shortest path - Energy

Low energy paths are very important in pinning of 
linear structures, such as polymers, flux lines and 
dislocations.  Moreover many lines can be treated, 
with contact repulsion, using integer flows.
The capacity of links in a network can also be 
mapped to energy, for example in the case of 
domain walls in magnets, or if we want the lowest 
energy surface of separation in a graph.  In that case 
the capacity maps to the cohesive energy of the 
edge or bond (ij).



Decohesion surfaces in network 
models of polycrystals
Decohesion surface -> minimum cut
Edge capacity -> edge energy of grain boundary
Polycrystals grown using Potts models

E.S. McGarrity, P.M. Duxbury, E.A. Holm, Phys. Rev. E (2005)
E.S. McGarrity, K.S. McGarrity, P.M. Duxbury, B. Reed, E.A. Holm, 
MSMSE (2007) in press



Random field magnets (RFIM) and 
diluted antiferromagnets in a field

E = - Σij J SiSj – Σi hi Si          J>0, hi 
are random
E = Eexchange+  Efield + Ecut

E.g. see example for a square 
lattice.  Positive random fields are 
connected to s, while negative 
random fields are connected to t. 
The capacities of edges in the 
square are J, while the capacities of 
edges connected to s or t are | hi|. 
Ecut is the capacity of the minimum 
cut.  The cut defines a domain 
structure



Most Studied DAFF Materials:
FexZn1-xF2: Ising-like 

E =  Σij J eiejSiSj – Σi H Si

ei =1 with probability x
ei =0 with probability1- x



DAFF – Cubic Lattice ground 
state

Exact ground states can be found using network optimization methods (Ogielski 1986 
PRL, Alava et al, Domb and Lebowitz vol. 18 - 2001, Hartmann and Rieger book)

Blue: One AF phase; Grey: the other AF phase



Percolating Phases : Diluted Ising
Antiferromagnet in a Field

Site diluted, nearest neighbor, spin ½ Ising
antiferromagnet in a uniform Applied field (H).  
Constant exchange (J=J2).  Concentration of magnetic 
sites (c) – randomly placed. Body Centered Cubic 
Lattice.
Probability of being on the Largest Ferro Cluster (GFC)
Probability of being on the Largest AF cluster (GAC)
Probability of being on the second largest AF cluster 
(GAC2)



DAFF phase diagram (T=0)
Glaser, Jones, Duxbury PRB 2005



C.  Ab-initio determination of local atomic  
structure of non-crystalline materials

Nanoparticles e.g. ZnS.

Proteins

Locally distorted 
materials e.g InGaAs

Methods: 
1. Solution from Single Crystals 

(Not always possible or complete)
2.  TEM, Imaging
3. EXAFS, PDF, NMR 

(Is there enough information)



PDF Data gives a set of interatomic distances –
Can we find atomic structure from them???



How many inter-atomic distances 
do we need?

In the generic case all distances are unique, ie. 
Random structures. A molecule with N atoms has 3N 
degrees of freedom.  We need at least 3N-6 
constraints (distances).  If we have less than this 
number the problem is underconstrained and not 
solvable. Finding unique structures from > 3N-6 
distances seems combinatorially hard.
BUT.  Many nanostructures have special symmetries 
and have distances which have high multiplicity.  This 
is the non generic case – there are no general 
theorems. 
We have taken a practical approach.  
- Given a set of distances can we find structure?



Algorithms for reconstruction
N Atoms, N(N-1)/2 target interatomic distances, 
di

target. Given the distances find the atom positions Rk.
di = |Rj-Rk|.  Energy = Σ (di – di

target)2

Simulated annealing
• Slow, unsuccessful for larger clusters (N>20)

Genetic algorithm
• Based on [Deaven, D. M. and Ho, K. M. PRL 75, 288-291 (1995)]
• Starts with population of random clusters
• Cut and paste good structures to produce better ones, refine using 

gradient descent  e.g.

+



LIGA ALGORITHM 
Starts with an empty box
Gradual build-up and repair of partial clusters
- Uses distance list to choose atoms to add
- Best triangle/tetrahedron method
Selection of improved clusters using soccer league like 
competition
- Promotion and relegation based on performance
- Performance is measured through deviations of distances

from distance list
Best performance in speed and success rate for reconstruction 
of non-generic structures



Illustration of cluster buildup-Octahedron

octahedron has 15 lengths: 
de = [ 12×1, 3×√2 ]

a-c atoms are by constructing 
triangles or pyramids using available 
lengths

because tetrahedron c is not part of 
an octahedron, addition of more 
atoms induces errors d

e the worst atom is removed 
allowing convergence to the correct 
solution f

when should the atoms be added 
and when removed?

a b

c d

e f



Liga algorithm

relative cluster quality is obtained by comparison with peer clusters

promotion-relegation system inspired by soccer league

keeps arrays of different clusters at every possible size, n = 1,2,3,…,N

partial sub-clusters of the same size form a league “division”

“winners” and “losers” are selected using random weighted procedure

“winner” clusters grow and are promoted to higher divisions

“loser” clusters descend to lower levels by firing “bad” atoms

“losers” may copy the structure of winning opponents



Shape reconstruction from ideal distance 
lists – Ground state structures found from 
theory

Lennard-Jones clusters 

N = 88    N = 150

gllj88t3cbar-fps12.mpg



Uniqueness of shape reconstruction
tested on variety of clusters with up to 150 atoms
repeated runs using ideal distance lists
vast majority of simulations converged to the original cluster
few high-symmetric clusters (e.g., square or hexagon) have 
non-unique solution

example: hexagon distance-morphs

hexagon has 15 lengths:   de = [ 6×1, 6×√3, 3×2 ] 
these lengths are exactly reproduced in 3 different objects



C60gld-t1-wbg.mpg



Structure solution of C60 from 
experimental PDF Distance data

Distance list extracted from data:
“tight” with (60*59/2) = 1770 distances
Only 18 different ones ie. Lots of distance degeneracy
Note Ideal buckyball has 21 unique distances



Structure solution from “free” distance list
Clusters can be uniquely reconstructed even when distance 
multiplicities are infinite
Tetrahedron is the largest object with a single pair distance value
C60 is the largest object built from infinite pool of ideal Bucky ball 
distances



Structure solution of Ni from 
free distance list

Synchrotron XRD from Ni was 
measured at 6ID-D beamline, APS, 
Argonne lab 
Fitting of free distance list gives 
spherical cut-off from f.c.c. lattice
(no periodic boundary conditions)



Algorithm performance



Future developments
Increase efficiency – Structures with thousands of atoms?
Develop algorithm for multi-element compounds (Saurabh
Guraji – Some progress with divide and conquer)
Develop algorithm for drug molecules (problems with rings)
Add constraints, e.g. chemical constraints, co-ordination 
constraints.
Add information from other methods eg.  Both neutron and x-
ray PDF, EXAFS, NMR.  We need good distance lists.

Support

Department of Energy, account DE-FG02-97ER45651

Publication
P. Juhas, D. Cherba, P.M.D, W. Punch, SJB, Nature 440 (2006)



D. Maximum independent set 
(MIS) = Hard core lattice gas

MIS Definition:  Given a graph G consisting of a set of 
nodes and edges, find a largest cardinality subset of 

nodes with the property that no two nodes in this 
subset share an edge.

Physics interpretation:  Consider a lattice gas with hard 
core nearest neighbor repulsion.  Find the maximum 
packing density of this hard core gas.

H = Σij J ni nj – µ Σi ni    J,µ large, µ/J ->0

The first sum is over edges in the graph



Diluted graphs – leaf removal 
(Tarjan, 1970’s)
Fay, Liu Duxbury, Phys. Rev. E. 2006

Algorithm: Recursively
remove leaves, 
the nodes connected 
to both ends of the 
leaves and all edges 
connected to both of 
these nodes.

For initial bond concentrations less than a threshold 
value, the irreducible core is not extensive.  Below this 
core percolation threshold the problem is in P



Core percolation threshold c*
For c<c*, MIS is in P

a) Spanning probability for the core
b) Probability of a node being on the giant cluster
Random graphs: Core threshold is at c*=2.718…
Karp and Sipser, Bauer and Golinelli (2001)



Tranfer matrix:  Numerical 
method to find exact cardinality 
and degeneracy of lattices

Slabs of finite width and length 1000.



Local probability recursion algorithms: 
Belief propagation,survey propagation…
Pearl 1988, Mezard, Parisi, Zecchina

Science 2001
MIS vertex algorithm
Define Ii = probability that site i is part of MIS.
Then asynchronously carry out recursion of:
Ii = Π (j a neighbor of i) (1-Ij)

Fay, Liu, Duxbury, Phys. Rev.  E 2006



Vertex and Bond LoPR on a 
triangular lattice

Open circles: I->1
Solid circles: I->0
Hatched 0<I<1

i.e. degenerate.



Frequency distribution P(I): 
Non-trivial distribution 

I

Three values of c
C=1 (crosses)
C=2 (boxes)
C=4 (circles)



Averaged results: Cardinality of 
MIS is easy, structure is harder.

Comparison of two local probability recursion methods
Vertex LoPR: Red Triangles
Bond LoPR: Blue Boxes



Closing remarks

The overlap between statistical physics and combinatorial 
problems is very rich, both in terms of algorithms and concepts.

Some recent successes
1. Rigidity percolation, protein structure, matching
2. Paths in disordered media, MST, shortest path
3. Random field magnets, Maximum flow
4. Minimum energy surfaces, Maximum flow
5. Recursive methods for hard ground state problems

Many opportunities, but the dialogue is time consuming.  It is a
gamble, but the gains can  be very significant .
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