
Worksheet #10 - PHY102 (Spr. 2008)
The wave and diffusion equations

Due Friday March 28th, 6pm

In this worksheet we will study two partial differential equations that are
very important in physics.

Many wave motions can be described by the linear wave equation. We
shall do problems concerning waves on a string, but the equation we study
has many other applications. For example atomic vibrations in solids, light
waves, sound waves and water waves are all described by similar equations.
The linear wave equation for the waves on a string is the partial differential
equation,
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where y(x, t) is the distance by which the string is displaced at location x, at
time t. v = (T/µ)1/2 is the wave speed and is related to the tension T and
mass density µ of the string(see Halliday and Resnick for the derivation).

A second partial differential equation that is very important in physics is
the diffusion equation. Atoms in a gas diffuse around in a manner described
by this equation. Similarly pollutants in the ground often diffuse through
the soil. This motion is very different than wave motion. In general each
physical system has ranges of parameters where the motion is “diffusive”
or “wavelike”. In solids for example sound waves come from atom motion
through wavelike vibrations, which must be treated quantum mechanically
to be correct. However, if atoms jump out of their crystal locations, their
motion is usually diffusive (atomic hops) and can be treated using classical
diffusion. The diffusion equation is given by,
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Here c(x, t) is the concentration of diffusing atoms at position x at time t.
Here you can imagine putting a drop of ink in water and watching the color
spread. In that case, c(x, t) is the density of ink. D is the “diffusion constant”
which sets the rate at which the spreading occurs. Spreading can also occur
via hydrodynamics where the fluid flows, however if the drop of ink is really
small, the motion is predominantly diffusive.
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Problem 1 - Wave Phenomena

(i) Standing waves. Consider waves on a string of length L = 1. The trans-
verse displacement at each end of the string is fixed at zero. Check that the
two solutions: y1(x, t) = ymSin(kx − ωt) and y2(x, t) = ymSin(kx + ωt),
satisfy the wave equation. If we seek the “fundamental mode”, how are k
and ω related to v and the length of the string? Set k = k0 and ω = ω0 (ie.
the values for the fundamental) and show that y(x, t) = y1(x, t) + y2(x, t)
gives rise to standing waves. Animate the solution y1 and the solution y.
Show your animation to a TA (don’t try to print it out)

(ii) Beats. Now consider two solutions of the form y1(x, t) = ymCos(kx −
ω1t), and y2(x, t) = ymCos(kx− ω2t), where ω1 = ω + δω and ω2 = ω − δω
Check that the linear superposition of these two propagating waves produces
a beat pattern. How does the beat frequency depend on δω?

(iii) Superposition. Almost all functions can be written as a superposition of
sine and cosine waves. As an example, consider the linear superposition of
sine waves such that;

y(x, t) =
max∑
n=1

− 1

n
sin(nx) (3)

Check the evolving pattern as max is increased. Make plots of y(x, t) for
max = 3, 10, 100 terms. Can you identify the curve as max becomes large.

Problem 2 - Diffusion.
Check that c(x, t) = 1√

2Dt
exp(− x2

4Dt
) satisfies the diffusion equation. An-

imate the plots of c(x,t) for different values of t. Notice that the amplitude
of c(x, t) decays with time, this is the essence of “diffusion”. In contrast,
in the linear wave equation, the wave amplitude remains constant, it propa-
gates instead of spreading. In reality there is some “damping” of waves, and
this is modeled by adding a “diffusion term” to the wave equation (like the
“damping term” we sometimes add to Newton’s equation). Show a TA your
animation, but don’t try to print it out
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