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R–2.1 The ground wire provides an alternate cur-
rent path that carries more current.
R–2.3 (a) 0 A, 0 W. (b) 2 A, rightward, 20 W.
(c) 1 A, rightward, 5 W. (d) 1 A, leftward, 5 W.
(e) 2 A, leftward, 20 W.
R–2.5 These precautions prevent current from flow-
ing through the torso of your body.
R–3.1 Computers, VCRs, microwave ovens, etc.
R–4.1 (a) 20 Ω. (b) 0.2 W. (c) 960 J. (d) 480 C.
R–5.1 (a) No. (b) The monitor can’t work without
power.
R–6.1 Her hair becomes charged and the strands
repel each other.
R–6.3 The source provides a voltage, not a current.
R–6.5 You develop a charge by rubbing against the
seat as you leave the car. Holding onto the outside
surface as you exit allows the charge to leave gradu-
ally. Touching the outside surface only after you are
outside forces the charge to leave all at once, shocking
you.
R–8.1 (a) 3. (b) 3. (c) 3. (d) In the first case there
is a collective effect; in the other cases there is an
individual effect.
R–8.3 For an insulator a minus indicates an excess
electron and a plus a deficit of an electron exactly at
that spot. For a conductor they represent an excess
or deficit in the average density of the conduction
electrons in one mole.
R–8.5 (a) Assume that the extra charge carrier is
a positive ion. The bulk of the liquid is neutral and
all excess charge is due to ions distributed over its
surface. (b) Assume that the extra charge carrier is
an electron. The bulk is neutral and all excess charge,
due to electrons, is distributed over its the surface.
R–8.7 (a) Yes. (b) In pure water electric current is
entirely due to H+ and OH− ion movement. In salt
water the current is dominated by the movement of
Na+ and Cl− ions. In metal wire the current is due to
the movement of electrons. In all cases a small aver-
age velocity is superimposed on the random motions
of charge-carriers.
R–9.1 Only (d) would receive full credit.
R–9.3 “Show that” problem.
R–9.5 (−2, 1, 0) and a 180◦ rotation about the y-
axis

R–10.1 (a) “Show that” problem. (b) Use ~a = î,
~b = î , and ~c = ĵ.
R–10.3 (a) “Show that” problem. (b) The left side
equals −2; the right side equals 0; the two sides are
unequal.
R–10.5 (a) “Show that” problem. (b) Show that
problem. (c) Show that problem.
R–10.7 “Show that” problem.
R–10.9 (a) Counterclockwise rotation of 53.1◦.
(b) (−3.60, 5.20,−1). (c) (−10.40,−2.20, 26).
(d) (−10.40,−2.20, 26). (e) they are the same. (f)
5.385, 6.403, 28.1. (g) 145.45◦ or 214.55◦. (h) Yes.
R–10.11 (10, 5,−3) N-m.
R–10.13 (4.8× 10−3, 9.6× 10−3, 0) N.
R–10.15 “Show that” problem.
R–10.17 “Show that” problem.
R–10.19 (0, 0,−d/c), (a/e, b/e, c/e), where
e =
√

a2 + b2 + c2.
R–10.21 (a). n̂ ≡ (0.254,−0.381, 0.889).

(b)
dΦE

dA
≡ ~E · n̂ = −23.0 volt/m.

(c) dΦE =
dΦE

dA
dA = −1.195× 10−5 volt/m.

1–2.1 See Fig.2.1 and the accompanying discussion
of the amber effect.
1–2.3 They will repel if the positive ends are
brought near each other but attract if the positive
end of one is brought near the neutral end of the
other.
1–3.1 The mechanical motion would be identical,
but the induced charge would be opposite the previ-
ous induced charge.
1–3.3 Either end would be attracted to an electri-
cally charged object due to electrostatic induction.
1–4.1 (a) In the 17th century, the most common
way to charge an object was to rub it or to touch
it to a previously charged object. Water and iron
cannot be charged in this manner. (b) Put object on
insulator, charge by induction and either grounding
or sparking or contact.
1–4.3 Conductors: your body, a penny. Insulators:
your clothing, plastic, your comb, a styrofoam cup
1–4.5 When the person stands on the ground he
is subject to the full voltage difference between the
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charge source and ground, which produces a large
enough current to cause the shock.
1–4.7 Watson’s view would predict identical shocks
in the two cases. Franklin’s view (the correct view)
would predict a greater shock in the first case.
1–4.9 A is a conductor and B is an insulator.
1–5.1 (a) “A Penny Saved Is a Penny Earned”
implies money conservation in a situation where there
is a flow of resource, both in and out. (b) Decreasing
their energy bill with thermal insulation has the same
effect as increasing their revenue by the same amount.
1–5.3 After the first connection, A has 4.8 units
and B has 3.2 units. After the second connection, A
has 0.96 units and B has 0.64 units.
1–5.5 (a) The jar cannot lose charge to the ground
and losing it through the air could take hours or days.
(b) As long as the top wire remains charged it will
attract charge to the bottom, and thus the Leyden
Jar remains charged. (c) As long as the bottom wire
remains charged it will attract charge to the top, and
thus very little charge can be drawn off the top wire.
(d) The bottom retains its charge, since it is insu-
lated. Once the top wire is connected to ground, the
bottom wire will attract charge to the top and the
Leyden Jar would regain its strength.
1–6.1 If the tube were left in place, electrostatic in-
duction would occur. Then the experiment would be
less reproducible, because the electrostatic induction
would depend on the placement of the tube.
1–6.3 Rapid discharge of a nearby source causes a
rapid decrease of the electrostatically induced charge
in the human body.
1–6.5 The induced charge on each leaf will be of
the same sign and hence the leaves will repel.
1–6.7 (a) Rubbing the balloons on clothing charges
them up by friction. They are attracted to the wall
by electrostatic induction and fall as they gradually
lose their charge. (b) No. (c) The moisture in the air
will draw off charge. The more moisture, the faster
the charge will be drawn off.
1–6.9 When the negatively charged rod is brought
near the grounded sphere, negative charge driven by
electrostatic induction flows away from the sphere,
leaving the sphere positively charged. When the
ground connection is removed, the sphere remains
positively charged, but also subject to electrostatic

induction from the rod. When the rod is removed,
the positive charge on the sphere redistributes.
1–7.1 +2e.
1–7.3 (a) Allowed. (b) Prohibited. (c) Allowed.
1–7.5 Electrons are transferred from the cloth to
the rod. Protons generally cannot be transferred.
1–7.7 (a) The styrofoam partially discharges, af-
ter a diffusion time T across the tube the oven bag
discharges, and after 2T the styrofoam completes its
discharge. (b) No. (c) The oven bag discharges, then
after T the styrofoam discharges.
1–8.1 People come in integer values; you are either
alive or you are dead. There is no such thing as peo-
ple conservation, as established by the phenomena of
birth and death.
1–8.3 6.25× 1019 electrons.
1–8.5 3.125× 109.
1–9.1 “Show that” problem. A has units of C/m3.
1–9.3 (a) The charge per unit length for rods 1 and 2
are q1/l1 and q2/l2, respectively. (b) (q1+q2)/(l1+l2).
(c) (q1 + q2)/l2. (d) (q1 + q2)/2l2.
1–9.5 (a) C has units of C/m3 and B has units of
C/m4. (b) (C + Br)(4πr2dr).
(c) (4πC)(a3/3) + (4πB)(a4/4). (d) C + (3/4)Ba.
1–9.7 (a) C has units of C/m3 and B has units of
C/m5. (b) (C + Bz2)πa2dz. (c) πa2(Cl + Bl3/3).
(d) C + Bl2/3.
1–9.9 Show that problem.
1–10.1 When the tapes are pulled apart they de-
velop a charge. Your finger is neutral. By electro-
static induction each will be attracted to your finger.
1–10.3 Use a versorium. It will respond at a greater
separation to the tape with more charge.
1–10.5 (a) See Fig.4.24. (b) Smaller. (c) The same.
1–11.1 Moist wool is a conductor, and more eas-
ily transfer electrons on contacting the (conducting)
sphere. The wool and the sphere then would have
charge of the same sign, and would thus repel.
1–11.3 Since silk can be “grounded” here, it is
acting like a conductor in this context. (In other
contexts, silk acts like an insulator; most likely silk
has a very low conductivity, so that for short times
it behaves like an insulator, and for long time it be-
haves like a conductor). (1) Unelectrified and insu-
lated silk is attracted to (charged) amber by electro-
static induction, or polarization, as in Figure 1.1. (2)
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Electrified and insulated silk will repel amber only
if it has charge of the same type as amber; the silk
must have been electrified by placing it in contact
with amber or something electrified like amber. (3)
If the silk is attracted to the amber only when the
silk is grounded, then again the silk is subject to elec-
trostatic induction, or polarization. Wheeler clearly
missed the possibility that silk could have “resinous”
electricity (opposite to that of amber).
1–11.5 (a) Approximating a conducting disk by
a uniform charge density and a line charge around
its perimeter puts greater charge on the perimeter,
thus causing greater electrical effects there. (b) For
a charged needle, approximate the charge density as
a uniform line density and one point charge at each
end. (c) With an extra charge at the ends, electrical
effects would be greater at the ends, thus providing
a qualitative explanation for the “power of points”.
1–11.7 It suggests there is no electricity on the
inner surface of the cup.
1–11.9 (a) The amber is charged and the crumbs
are uncharged. (b) Electrical attraction: one piece
is charged and the other is uncharged (the amber ef-
fect), or one piece is charged and the other is charged
oppositely. Magnetic atraction: one piece of silver
contains iron (giving it has a permanent magnetic
moment), and the other contains iron (without a per-
manent magnetic moment, but a large magnetic po-
larizability), so the magnetic analog of the amber
effect occurs. (c) A magnet can attract silver elec-
trically if the magnet is charged and the silver is un-
charged (the amber effect) or if the magnet is charged
and the silver is charged with electricity of the oppo-
site sign. A magnet can attract silver magnetically if
the silver is not pure, but rather contains iron within
it.
1–11.11 The third of Newton’s laws of motion is
that to every force on one object due to a second,
there is an equal and opposite force on the second
due to the first; this is consistent with Fabri’s ob-
servation that not only does electrified amber attract
other (unelectrified) objects, but other (unelectrified)
objects attract electrified amber.
1–11.13 (1) Levitation could have been due to re-
pulsion between like charges, the feather having been
charged by contact the already-charged globe. (2)

The charged feather would go to the edges of mate-
rials because that is where materials are most polar-
izable (by the “power of points”). (3) A linen thread
attached to the charged globe would be charged like
the globe (it also could be polarized, but other results
indicated that linen, relative to silk, is a conductor),
and thus could attract chaff at the other end by the
amber effect. (4) the crackle and glow can be due to
atmospheric ions or electrons being attracted to the
globe, and the associated electrons recombining and
providing light, in a manner similar to phosphores-
cence.
1–11.15 Dufay’s suspended, electrified people were
charged up, and would discharge when touching
someone on ground, releasing energy in the form of a
spark.
1–11.17 According to Le Roy, conical discharges
are associated with positive points. Thus, in Gray’s
1708 conical discharge we conclude that his finger was
charged positively relative to the globe.
1–11.19 (a) “Show that” problem. (b) “Show that”
problem.

2–2.1 (a) “Show that” problem. (b) It decreases
by a factor of 1/

√
2. Yes. (c) 4.07× 10−7 C.

(d) m1 → m1 + M/2.
2–3.1 4.77× 10−6 N, attractive
2–3.3 0.626 mC
2–3.5 “Show that” problem. The maximum force
will have magnitude kQ2/4r2.
2–3.7 48.5 µC.
2–3.9 (a) 3.33× 10−10 C. (b) 4.8× 10−10 sC.

2–4.1 θ = 60◦, qmax = 2l
√

mg tan θ
k ,

qmax = 4.76× 10−7 C.
2–4.3 θ.
2–4.5 (a) kqQ

4R2 sin2(θ/2)
. (b) kqQ cos(θ/2)

4R2 sin2(θ/2)
.

2–5.1 (a) 0 N. (b) 28.4 m. (c) 3.59× 10−6 C.
2–5.3 F = 9.53 N, θ = −19◦.
2–5.5 “Show that” problem. Fx = −1.102×10−6 N,
Fy = −0.995× 10−6 N, F = 1.484× 10−6 N,
θ′ = −137.9◦.
2–6.1 Rotating the rod about its perpendicular bi-
sector does not change the configuration so it should
not change Fy, but this rotation should reverse Fy.
We conclude Fy = 0. Yes.
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2–7.1 (a) Fx = kqQ
a(a+l) , Fy = Fz = 0. (b) Fx → kqQ

a2 .
2–7.3 The y component of the force due to an ar-
bitrary infinitesimal charge dQ between y and y + dy
is exactly cancelled by an equal charge dQ between
−y and −y − dy. Thus Fy = 0.

2–7.5 Fx = kqQ
L

[
1
a −

1√
L2+a2

]
, Fy = kqQ

a
√

L2+a2 .

2–7.7 Fx = Fz = 0, Fy = − 2kqQ
πa2 .

2–7.9 The force will point directly away from the
center of the arc, at an angle of α/2. The force will
have magnitude F = 2kqQ

αa2 sin(α
2 ) .

3–2.1 (a) Fe = 2.003× 10−17 N.
(b) Fg = 2.935 × 10−25 N. The force of gravity is
much smaller than the electrostatic force.
3–2.3 (a) 6.12× 1011 N/C. (b) 1.76× 1013 m/s2.

3–2.5 (a) θ = tan−1
(
|Q|E
mg

)
. (b) T = mg sec θ.

(c) θ = 4.75× 10−4 degrees, T = 0.412 N.
3–2.7 No.
3–2.9 (a) E = 2500 N/C. (b) |Q| = 0.11 nC.
3–2.11 Scalar fields: pressure, density, temperature.
Vector fields: flow velocity.
3–2.13 (a) Gravity is always attractive, so the field
due to m2 will point toward m2, pulling m1 toward
m2. (b) ~g = −Σi

Gmi

R2
i

R̂i.
3–3.1 (a) 85,000 N/C ŷ. (b) −85,000 N/C ŷ.
3–4.1 Drag-dominated.
3–4.3 (a) The advantage is that a ball of charge
creates field lines inside. (b) The disadvantage is that
there are too many arrowheads if you want to sketch
the field quickly. (c) The grass seed method has two
problems: the grass seeds can align with the field
in either direction and the density of the grass seeds
gives only a qualitative representation of magnitude.
3–5.1 (a) 175 N/C ↓. (b) 1100 N/C ↑.
(c) 425 N/C ↓.
3–5.3 (a) Up ↑. (b) kQ

a2 (1 + q
Q ) (1 + 2 cos θ) ↑.

3–5.5 (a) Ex = −47.0 N/C, Ey = −36.1 N/C.
(b) This calculation was relatively simple. Doing the
calculation from scratch would have involved 23 sepa-
rate calculations and than the addition of 23 vectors,
a very involved calculation.
3–5.7 (a) ~E = kQ

[
1

(x+a)2 + 1
(x−a)2 −

2
x2

]
x̂.

(b) ~E → 6kQa2

x4 x̂.

3–5.9 “Show that” problem.
3–6.1 (a) Q = λL. (b) ~E = kλL

x(x−L)→̂.

(c) ~E = kλ(2x−L)
x(L−x) →̂.

3–6.3 ~E = −kQ(3−
√

5)

2a2
√

10
ŷ.

3–6.5 (a) Down. (b) ~E = − 2kλ
a ŷ.

3–6.7 (a) 0. (b) ~p = π
2 αR2x̂. (c) ~E = −kπα

2R x̂.
3–6.9 ~E = −π

2 kσ (1− cos(2α)) ẑ.
3–6.11 (a) ~E = 4kλy

y2+a2 ŷ. (b) ~E = − 4kλa
y2+a2 x̂.

3–6.13 (a) Place q at (14.7, 0, 0) m. (b) Place λ in
the xy plane, parallel to the y-axis, and intersecting
the x-axis at x = −288 m. (c) Impossible.
3–6.15 (a) 20 N/C downward. (b) The upper sheet
has charge density 0.442 nC/m2 and the lower sheet
has charge density −0.0884 nC/m2.
3–7.1 Along.
3–7.3 ~E is zero 2/3 of the way from 2λ to λ.
3–7.5 Within an insulator we can arrange the charge
however we please, but within a conductor the like
charges would repel each other toward the surface
disrupting the uniform volume charge distribution.
3–8.1 (a) 3.6× 10−25 J. (b) 90◦, 1.8× 10−25 N-m.
3–8.3 (a) 2.5× 10−25 N-m. (b) 1.17× 10−25 N-m.
(c) −2.207× 10−25 J.
3–8.5 (a) ~F = q( 2kp

x3 )→̂. (b) ~F = −q( 2kp
x3 )→̂.

(c) p = 7.11× 10−25 C-m.
3–9.1 (a) ~F = pAx̂. (b) 2.37× 10−9 N x̂.
(c) 2.37× 10−9 N x̂.
3–10.1 (a) −2.59× 106 m/s. (b) 4.64× 10−8 s.
3–10.3 (a) −728 N/C (b) 6.44× 10−9 C/m2.
(c) 4.3× 106 m/s, 21.8◦.
3–10.5 2.01× 10−5 m.
3–10.7 (a) The velocity v does not depend on the
radius r. (b) T = 2πr

√
me

2ekλ .

4–2.1 (a) The flux will have the opposite sign.
(b) −34 N-m2/C. (c) ΦE = − 1

ε0
Qenc = −4πkQenc.

4–2.3 −7.68× 10−6 N-m2/C.
4–2.5 EπR2.

4–2.7 2πkQ

[
1− d√

R2 + d2

]
.

4–3.1 (a) 0. (b) 679 N-m2/C. (c) 0.
4–3.3 (a) 4πkQ. (b) (2/3)πkQ.
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4–3.5 (a) (0.8, 0.48,−0.36). (b) 8.06 N/C.
(c) 5.64 N/C. (d) ±45.6◦. (e) 1.128× 10−3 N-m2/C.
(f) 9.97× 10−15 C.
4–4.1 1.77 nC/m2.
4–4.3 −3.76× 10−9 C.
4–5.1 (a) −1.94× 10−12 C. (b) 2.59× 105 N/C.
4–5.3 (a) 1.30× 10−10 C/m2. (b) 2.66× 109 N/C.
4–5.5 (a) ρ = λ

π(b2−a2) . (b) 0, 2kλ(r2−a2)
(b2−a2)r , 2kλ

r .
4–5.7 (a) λ1 = −0.722 nC/m, λ2 = 0.856 nC/m.
(b) 20.1 N/C.

4–5.9 Take mass density ρ. (a) ~g =
~Fgrav

M ,
Φgr ≡

∮
~g · n̂dA = −4πGMenc. (b) ~g = −Gρr

3 r̂.

(c) T = 2π
√

3
4πGρ . (d) 5070 s.

4–6.1 No.
4–6.3 (a) 25 V. (b) The dipole moment on the
conductor will point away from the point charge. The
point charge will be attracted to the conductor.
4–6.5 (a) The inner surface has −Q and the outer
surface has +Q. (b) The inner surface has −Q and
the outer surface has zero charge.
4–6.7 Connecting the slats makes them behave al-
most like a solid conductor, which can screen out an
external field.
4–7.1 −0.212 nC/m2.
4–7.3 “Explain in your own words” problem.
4–7.5 (a) Starting to the left and proceeding to
the right, the electric fields are 10πkσ→̂, 18πkσ→̂,
2πkσ→̂, 10πkσ←̂. (b) Starting with the left side
of #1, going rightward the charge densities are
−(5/2)σ and (9/2)σ, −(9/2)σ and (1/2)σ, −(1/2)σ
and −(5/2)σ.
4–7.7 (a) −7.96 nC/m2. (b) −4.0× 10−11 C.
(c) ~E = ~0. (d) Er = −400 N/C (radially inward).
4–7.9 (a) 0, kQ/r2, −kQ/r2 (radial component of
field). (b) Qinner

a = 0, Qouter
a = Q. (c) Qinner

b = −Q,
Qouter

b = −Q.
4–7.11 (a) 0, 4kλ/r, −2kλ/r (radial component of
field). (b) λinner

a = 0, λouter
a = 2λ. (c) λinner

b = −2λ,
λouter

b = −λ.
4–8.1 (a) All of the charge resides on the cups outer
surface. (b) −3 µC. (c) 2 µC. (d) −0.4 µC.

4–9.1 2π

(
1− s√

s2 + d2/4

)
.

4–10.1 3× 103 C/m2.

4–11.1 (a) Ex = 0, Ey = − 4kλb
x2+b2 .

(b) σ = − λb
π(x2+b2) .

4–11.3 (a) kQ2

8πr4 . (b)
(

1
b −

1
a

)
kQ2

2 .

5–2.1 94.7 N.
5–3.1 (a) 2× 10−8 J. (b) −2× 10−8 J. In the first
case we raise the electrical potential energy; in the
second case we lower the electrical potential energy.
5–3.3 −2 V/cm, −2.2 V/cm, −2.4 V/cm.
5–3.5 2.7484 V.
5–4.1 5.69× 10−14 m.
5–4.3 (a) 35.3 V; the electron goes toward the
higher potential at the end point. (b) 883 N/C, along
−ŷ (downward).
5–4.5 (a) 4.8 × 10−5 J. (b) 20000 V, the starting
point is at a lower potential than the endpoint.
(c) 2500 V/cm.
5–4.7 (a) The 6 V plate, 1.78× 106 m/s.
(b) 1.44× 10−18 J. (c) −1.44× 10−18 J. (d) 9 V.
5–4.9 0.058%.
5–4.11 (a) 8.90× 104 V. (b) 0.629× 10−7 C.
(c) 3.93× 10−5 C/m2.
5–5.1 The field is largest near the two bottom cor-
ners and smallest on the line directly between the two
side plates.
5–5.3 The field is largest at the upper right and at
the lower left corners and smallest at the center.
5–5.5 (a) “Show that” problem. (b) −Q.
5–5.7 (a) Spheres centered at the charge. (b) Yes.
(c) Yes. (d) No.
5–5.9 The field must be zero at the crossing point.
5–6.1 −2.0 V.
5–6.3 (2kq2/a)(2 + 1/

√
2).

5–6.5 (a) 480 kV. (b) 1920 kV. (c) 0 J.
5–6.7 (a) Halfway between them. (b) Yes. Take
V∞ = − 4kq

a .
5–6.9 5.56× 10−10 C.
5–6.11 −442 nC/m2.
5–6.13 12.71 V.
5–7.1 (a) 0. (b) Yes. (c) −a

2x2 − bx.
5–7.3 (a) −b2. (b) +b2. (c) 2b2. (d) No.
5–8.1 (a) The potential at the center is the same
as on the surface. (b) The center.
5–8.3 2.02 nC/m.
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5–8.5 −(1/3)Ar3, the equipotential surfaces are
concentric cylinders centered on the z-axis.
5–8.7 2πkσ(

√
z2 + a2 − z).

5–9.1 (a) V (z) = kQ√
R2+z2 . (b) Ez = kQz

(R2+z2)3/2 .
(c) No. (d) Ex and Ey will in general change under
rearrangement.
5–9.3 Qualitatively similar to Figure 5.10(b), but
skewed with 2λ dominating λ.
5–9.5 (a) 0. (b) V (x) = ka

[
x ln(x+l/2

x−l/2 )− l
]
.

(c) “Show that” problem. (d) “Show that” problem.
5–9.7 (a) V = −kQ/b. (b) V (a) = −0.9kQ/b < 0.
(c) For q > 0.1Q.
5–10.1 (a) 24.85 V, 29.25 V. (b)Ex ≈ −22 V/m.
(c)Ex = −22 V/m.
5–10.3 (a) V (x) = kQ

l [ln |x + l| − ln |x|].
(b) Ex = kQ

l

[
1
x −

1
x+l

]
. (c) Ex = kQ

l

[
1
x −

1
x+l

]
.

5–10.5 “Show that problem”.
5–10.7 (a) 3.28 V, 7.32 V. (b) −20.2 V/m.
(c) −20r3 , −20 V/m.
5–10.9 (−2y + 8x)x̂ + (−2x + 10y)ŷ.
5–10.11 (a) Ex = − 4

3
Va

d (x
d )1/3. (b) In units of V/m:

0, −0.84× 104, −1.06× 104, −1.2× 104, −1.33× 104.
(c) − Va

9πk ( 1
xd2 )2/3. Total charge per unit area from 0

to d is Ex(d)/4πk = −1.18× 10−7 C/m2.
5–11.1 (a) 6300 V, −1125 V. (b) 3.15 × 105 N/C
outward, 2.81 × 104 N/C inward. (c) 3 × 10−9 C,
6 × 10−9 C, 1350 V, 1350 V. (d) 6.75 × 104 N/C
outward, 3.375× 104 N/C outward.
5–11.3 No.
5–11.5 Q10R = 10QR, σ10R = 1

10σR, VR = V10R,
E10R = 1

10ER.
5–11.7 (a) 9.09 V. (b) 100 V. (c) 100

[
1− ( 10

11

n] V.
5–12.1 1.114× 106 N/C.
5–12.3 1.323× 1010 N/C.

6–2.1 (a) 23.6 nF. (b) 2.12× 102m.
6–2.3 Excess charge affects the structure of the
solid sphere less than the structure of the shell.
6–2.5 4.50× 10−8 m.
6–3.1 (a) 0.143 nF. (b) 1.25 nC. Larger sphere has
larger charge.
6–3.3 (a) 5.79× 10−11 F. (b) 1.736× 10−12 C.
6–3.5 (a) By how close the plates can be kept with-
out touching each other. (b) B how large the plates

can be without making the capacitor unusable.
6–3.7 (a) 1250 V. (b) 0.0905 m2. (c) 6.25×105 N/C.
(d) 5.53× 10−6 C/m2.
6–3.9 This problem involves dielectrics, which are
discussed in section 5. (a) 4.73 cm. (b) 0.775 nF.
(c) 5.89× 10−6 C.
6–3.11 (a) 19.24 pF. (b) 4.62 nC. (c) 28.8×103 N/C.
6–4.1 (a) Make three parallel arms, each with three
2 µF capacitors in series. (b) Put two units from part
(a) in parallel.
6–4.3 A/4πk(d1+d2). C = Q/∆V has ∆V increase
by the factor (d1 + d2)/d.
6–4.5 (a) 3.428 µF, 14 µF. (b) 41.14 µC, 5.143 V,
6.857 V. (c) 12 V, 96 µC, 72 µC.
6–4.7 154 nF.
6–4.9 4 nF.
6–4.11 7 µF.
6–4.13 (a) 9 µC on each capacitor, ∆V ′

1 = 3 V,
∆V ′

2 = 1.5 V. (b) Yes. (c) No.
6–5.1 d = 2.67× 10−4 m, A = 242 m2.
6–5.3 3.91.
6–5.5 Above about one volt, electrolysis occurs at
the plates and an ion current would flow. The capac-
itor would not be able to hold charge in this circum-
stance.
6–5.7 (a) 4.24 cm2. (b) 120 pF, 3.5 kV.
6–5.9 “Show that” problem.
6–5.11 “Show that” problem.
6–5.13 (a) 2.22×10−17 F = 22.2 aF. (b) 0.00721 V.
6–5.15 Ctotal = 1+κ

2
ab

k(a−b) .
6–6.1 (a) 6.67× 10−8 F, 3.32× 10−6 m.
(b) 4.8× 10−4 J. (c) 3.61× 107 V/m. (d) 5761 J/m3.
6–6.3 4× 10−6 F.
6–6.5 (a) QA = QB = 160 nC, ∆VA = 4 V,
∆VB = 8 V, UA = 0.32 µJ, UB = 0.64 µJ.
(b) ∆VA = ∆VB = 5.333 V, QA = 213.3 nC,
QB = 106.7 nC, UA = 0.568 µJ, UB = 0.284 µJ.
(c) 0.108 µJ. (d) ∆VA = ∆VB = 1.777 V,
QA = 71.1 nC, QB = 35.6 nC, UA = 0.063 µJ,
UB = 0.032 µJ. (e) 0.757 µJ.

6–6.7 (a) U =
kQ2

2R
. (b) dU = −kQ2

2R2
dR, Pel =

E2

8πk
.

6–6.9 In left branch of Figure 6.33, set C1 = 6 µF,
C2=12 µF; in right branch set C3=12 µF, C4 = 6 µF.
(a) Q1 =Q2 =Q3 =Q4 =360µC,∆V1 =∆V4 =60V,
∆V2 =∆V3 =30V. (b)32.4 mJ. (c)Q1 =Q4 =240 µC,
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Q2 =Q3 =480 µC, ∆V1 =∆V2 =∆V3 =∆V4 =40 V.
(d) 28.8 mJ. (e) −240 µC.
6–6.11 1.128× 1012 J.
6–7.1 (a) | ~Ediel|/| ~E0| = 1/5. (b) Vdiel/V0 = 1/5,
Vdiel = 1.2 V. (c) Qdiel/Q0 = 1. (d) Cdiel/C0 = 5.
(e) Udiel/U0 = 1/5.
6–7.3 In the first case, U gives all of the energy.
In the second case the capacitor energy must be in-
cluded.
6–7.5 “Show that” problem.
6–7.7 Take C = 12 µF initially.
(a) Ucap = (1/2)CV 2, ∆Ubatt = −CV 2,
Uheat = (1/2)CV 2; U ′

cap = CV 2,
W ′

hand = (1/2)CV 2; U
′′

cap = (1/4)CV 2,
∆U

′′

batt = (1/2)CV 2, U
′′

heat = (1/4)CV 2.
(b) U ′

cap = (1/4)CV 2, ∆U
′

batt = (1/2)CV 2,
W ′

hand = (1/4)CV 2.
6–8.1 (a) 0.2233 µC. (b) 191.4 V.
(c) Qa = 0.0106 µC, Qb = 0.2127 µC.
6–8.3 “Show that” problem.
V1−V2 =Q1(p11−p21)+Q2(p12−p22)+Q3(p13−p23).
The term Q3(p13 − p23) is the effect of Q3.
6–8.5 (a) Charge will distribute over the surface
of a conductor, so that the material is is irrelevant
and only the shape of the surface is important. Po-
larization of an insulator depends on the dielectric
constant and thus the material. (b) The spheres in-
duced dipole moment, due to polarization, is rela-
tively small for r � a.
6–9.1 (a) Along the length of the molecule.
(b) α would need to change depending on the direc-
tion of ~E. In most cases ~E and ~p would not even
point in the same direction.
6–9.3 “Show that” problem.
6–10.1 “Show that” problem.

6–10.3
kλ2

a
.

7–1.1 (a) No current. (b) No current. (c) 5 mA.
7–2.1 10,800 C, 3.75× 1019 electrons/s.
7–2.3 (a) 35,840 C. (b) 2.39× 103 s, or about 66.4
hrs.
7–2.5 5.09× 10−11 A.
7–2.7 (a) 133.3 A. (b) 4.76× 105 A/m2.
(c) Jx = 4.47× 105 A/m2, Jy = −1.629× 105 A/m2,

Jz = 0. (d) 0.612 A.
7–2.9 No. Opposite directions.
7–2.11 Jr = −995 A/m2.
7–3.1 (a) 4 Ω, 5 Ω. (b) Non-ohmic.
7–3.3 (a) 2 A. (b) −2 A.
7–3.5 (a) 3.13× 10−5 Ω/m. (b) 0.125 Ω.
7–3.7 8.45 Ω-m.
7–3.9 0.086 mm.
7–3.11 (a) 7 mA. (b) 8.4 nV. (c) 20 nΩ.
7–3.13 (a) 240 Ω, 2.4 Ω. (b) Resistance of the bulb
for home use.
7–3.15 (a) 5 kV. (b) 250 Ω.
7–3.17 (a) 3.6× 104 J. (b) 0.833 A. (c) 6000 C.
7–3.19 (a) 28.8 Ω. (b) 28.8× 106/m.
7–3.21 (a) 23.9 horsepower. (b) 1000%. (c) No. It
cannot exceed 100%.
7–4.1 (a) 0.28 V/m rightward. (b) 0.532 V. Higher
voltage on left, lower voltage on right.
7–4.3 (a) 2.79× 10−8 Ω-m. (b) Aluminum.
7–4.5 (a) For d = 0.04 cm, RCu = 0.01547 Ω,
Rsteel = 8.27 × 10−6 Ω. (b) ∆VCu = 0.0309 V,
∆Vsteel = 16.54× 10−6 V.
7–4.7 Charge on the surface of the circuit, includ-
ing the wire, makes an electric field that drives the
current through the wire.
7–4.9 ~E points from regions of higher potential to
regions of lower potential. The local form of Ohm’s
Law, ~J = σ ~E, says that ~J is in the same direction as
~E. Therefore ~J points from regions of higher poten-
tial to regions of lower potential.
7–5.1 (a) 13 Ω. (b) ∆V2 = 27 V, ∆V1 = 12 V.
(c) 39 V. (d) 3 A. (e) 3 A.
7–5.3 (a) 6 Ω. (b) 3.5 A. (c) 35 V. (d) 3.5 A.
(e) 10 Ω.
7–5.5 (a) 1.5 Ω. (b) Both are 12 V. (c) 12 V.
(d) 11 A. (e) 1.09 Ω.
7–5.7 (a) R1 = 4 Ω, R2 = 2.67 Ω, R3 = 1.2 Ω.
(b) I3 = 10 A, I2 = 6 A. (c) 16 V. (d) 28 V. (e) 2.8 Ω.
7–5.9 One has a parallel combination of two resis-
tors in series with another parallel combination of two
resistors. The other has a series combination of two
resistors in parallel with another series combination
of two resistors.
7–5.11 96 Ω, 144 Ω, 100 W.
7–5.13 (a) IA = 3 A, PA = 0.9 W. (b) IA = IB =
3 A, PA = PB = 0.9 W. (c) IA = IB = 1.5 A,
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PA = PB = 0.225 W. (d) IB = 2 A, PB = 0.4 W,
IA = IC = 1 A, PA = PC = 0.1 W.
7–5.15 (a) Resistors in parallel add as inverses and
capacitors in parallel add directly. (b) Resistors in
series add directly and capacitors in series add as
inverses. (c) The formulas for total resistance and
capacitance take the same form if R↔ 1

C and I↔Q.
Then R = ∆V

I ↔
1
C = ∆V

Q .
7–5.17 If a person stands on only one foot, then
most current would pass through the foot touching
the ground. If the person were to stand on both feet,
there would be a path for current into the torso of
the body where current is most dangerous.
7–6.1 (a) 1 mV. (b) 20000 Ω/V.
7–6.3 (a) 1.98 kΩ. (b) 0.5526 Ω. (c) 83.99 mV.
7–6.5 (a) 6.505 V. (b) 0.0769%.
7–7.1 The ion density is high near the plates, but
low farther from the plates.
7–7.3 Starting a car four times a day consumes
0.667% of the chemical charge every day: about the
same amount as the non-current-producing sulfation
reaction does.
7–7.5 1662 s = 27.7 min.
7–8.1 1.36 V, 0.3 Ω.
7–8.3 (a) The filling, aluminum foil and saliva in
the mouth. (b) The chemical energy of the voltaic
cell (the foil and filling are the electrodes and the
saliva is the electrolyte).
7–9.1 (a) 432,000 C. (b) 60 hr. (c) 24 hr.
7–9.3 (a) 2880 C = 0.8 A-hr. (b) 0.1 A. (c) 8 hr.
7–10.1 (a) Voltage gains of 0.6 V and 1.2 V across
electrodes, voltage losses Ir = 0.3 V and IR = 1.5 V
across resistances. (b) 0.6 hr. (c) 7776 J.
7–10.3 (a) 2 A. (b) Voltage loss of 0.3 V and voltage
gain of 1.3 V across electrodes; and voltage losses
Ir = 0.4 V and IR = 0.6 V across resistances.
7–11.1 (a) ~F− = 1.59× 10−17 N ŷ,
~F+ = −1.61× 10−17 N ŷ.
(b) ~v− = 3.18× 10−6 m/s ŷ,
~v+ = −3.22× 10−6 m/s ŷ.
7–11.3 (a) “Show that” problem.
(b) 11.2× 106 s/m2. (c) 9.54× 10−7 m.
7–12.1 1.846× 106 s.
7–12.3 n = 3.84× 1013/m3, vd = 9000 m/s.
7–12.5 (a) dI = ωΣrdr. (b) I = ωΣa2/2.

7–12.7 2.415 µC/m2.
7–12.9 “Show that” problem.
7–13.1 Insulators, semiconductors, conductors.
7–13.3 J = nev. If the critical velocities vc are not
too different for semiconductors and metals, then the
densities n mostly determine the Jcs.

8–3.1 (a) E = 24 V; (b) r = 0.024 Ω;
(c) 105.0 A-hr.
8–3.3 (a) 30 days; (b) 22.2 days.
8–3.5 E = 10.72 V; r = 0.0245 Ω.
8–3.7 (a) I = 5.2 A charging the battery;
(b) 1.352 W heating;
(c) 10.72 W charging; (d) 88.98% efficiency.
8–3.9 (a) R = 0.75 Ω. (b) I = 3 A.
8–4.1 (a) 40 hr. (b) 12 cents.
8–5.1 E = 0.6 V, r = 600 Ω; (b) 4.02%; (c) 5.14%.
8–5.3 I = 2.25 A.
8–5.5 (a) R = 3.264 Ω; (b) ∆V = 261 V;
(c) M = 1.190× 104 kg; (d) 78.6%.
8–5.7 (a) R = 2.4 Ω; (b) 99.59%; (c) 96%.

8–6.1 (a) I1 = I + I2; (b) I1 = −∆V

R1
, I2 =

∆V

R2
,

I =
∆V − E

r
.

8–6.3 R = 788 Ω.
8–6.5 (a) 0.05 ≤ r/R ≤ 0.55;
(b) 0.033 ≤ r/R ≤ 0.367.
8–6.7 R = 15 Ω, E = 120 V.
8–7.1 (a) I = I1 = −I2 = 22.22 A;
(b) ∆V1 = −∆V2 = 11.778 V; (c) P1 = 266.7 W
discharge, P2 = −222.2 W charge. (d) I2

1r1 = 4.9 W,
I2
2r2 = 39.5 W. To our numerical accuracy, energy is

conserved.
8–7.3 (a) Reverse the direction of positive I2 rela-
tive to Figure 8.13(b). Then I1 = I + I2,
I1 = E1−∆V

r1
= 600− 100∆V ,

I2 = E2+∆V
r2

= 500− 50∆V , I = ∆V
R = 100∆V .

(b) ∆V = 0.4 V. (c) I = 40 A, I1 = 560 A,
I2 = 520 A. (d) PR = 16 W, Pr1 = 3136 W,
Pr2 = 5408 W, P1 = 3360 W discharge, P2 = 5200 W
discharge.
8–7.5 (a) B1 off, B2 off. (b) B1 dim, B2 dim.
(c) B1 bright, B2 off. (d) B1 bright, B2 off.
8–7.7 R = (−1 +

√
3)30 Ω = 21.96 Ω.

8–7.9 0.5R.
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8–7.11 R = 7.2 Ω.
8–7.13 “Show that” problem.
8–7.15 “Show that” problem.
8–7.17 (a) All positive currents and ∆V are as in

Fig.8.39, so that I1 =
E −∆V

r1
, etc. Also, I = ∆V/R

and I = I1 + I2 + I3. (b) ∆V = 4.963 Ω.
(c) I = 496.3 A, I1 = 103.7 A, I2 = 251.8 A,
I3 = 140.7 A. (d) current is conserved.
8–8.1 (a) Q2 = 0, I1 = 0, I = 6 A. (b) I2 = 0,
I = I1 = 1.5 A, Q2 = 40.5 µC.
8–8.3 (a) Q = 0, I1 = 4/3 A, I2 = 2/3 A,
I3 = 2/3 A, I4 = 4/3 A. I = I1 − I2 = 2/3 A goes to
the capacitor. (b) I1 = I3 = 0.8 A, I2 = I4 = 1.0 A,
I = 0, Q = 14.4 µC.
8–8.5 (a) IR = 0. (b) IR = I0.
8–9.1 (a) τRC = 12 s. (b) I0 = 0.84 µA, I∞ = 0.
(c) Q0 = 0, Q∞ = 10.08 µC. (d) Uheat = 15.88 µJ.
(e) Uheat = 21.17 µJ.
8–9.3 (a) “Show that” problem. (b) 96 µJ.
(c) “Show that” problem.
8–9.5 (a) R = 5.09×1015 Ω. (b) τRC = 2.04×107 s.
(c) C = 1.965× 10−13 F.
8–10.1 More turns through small angles require less
surface charge but are more expensive to make. Two
45◦ might be adequate.
8–10.3 (a) r/R → ∞. (b) Let R−1

eq = r−1 + R−1.
Then QCp

= (E/R)(r + R)Cp[1− e−t/ReqC ],
IR = QCp

/RCp.
8–10.5 (a) 2Σs. (b) Charge will actually flow
from one part of the surface through the bulk to
another part of the surface. (c) A combination of
bulk and surface current would provide the least resis-
tance, but in practice the resistance to surface current
is very large because of the associated small cross-
sectional area.
8–10.7 (a) If σ1 < σ2, then the electric field is
larger in material 1 than in material 2, so a larger
field enters than leaves the surface.
(b) ΣS = J(σ1 − σ2)/4πkσ1σ2.
8–11.1 Many choices are possible. For
R1 = R3 = 0, (9.65′) gives I1 = I3 = 0, whereas
(9.65) gives nonzero I1 and I3.
8–12.1 n = 0.862× 1024/m3.

9–2.1 qm1 = 22.56 A-m, qm2 = 15.95 A-m.

9–2.3 µ = 1.64 A-m2.
9–2.5 B = 0.0259 T.
9–2.7 ~F = qm

~B, qm due to one pole of a long
magnet and ~B = km[−~µ + 3(~µ · R̂)R̂]/R3 due to a
short magnet. The force on the distant pole of the
long magnet is neglected.
9–2.9 (a) The magnet is strongly attracted to the
soft iron rod when the soft iron is brought up to the
magnet’s poles, but only weakly attracted when the
rod brought up to the magnet’s center. (b) The soft
iron is strongly attracted to the magnet when the
magnet is brought to any part of the soft magnet.
9–2.11 “Show that” problem.
9–3.1 (a) qm = 5.12 A-m, σm = 3.2× 105 A/m,
µ = 0.256 A-m2. (b) 0.201 T, 1.28× 10−3 T,
2.84× 10−9 T.
9–3.3 M = 3.99× 105 A/m.
9–3.5 (a) r � a, no r-dependence. (b) a� r � l,
| ~B| ∼ r−2. (c) l� r, | ~B| ∼ r−4.
9–4.1 Discontinuity in ~C is µ0(α− 1) ~M .
9–5.1 Put a rod of soft magnet in a line between
a pole of a permanent magnet and the region where
the field is to be intensified.
9–5.3 When field lines are expelled (concentrated),
the object that is their source is repelled (attracted).
9–5.5 (a) H = 1481 A/m, χ = 1.688.
(b) Memu = 2.50 mmu/cm3,
Bemu = 50 G, Hemu = 18.6 Oe, χemu = 0.1344.
9–6.1 Mr and Ms are too far in value; the magnet
would not retain its magnetization.
9–7.1 (a) | ~H| = 485 A/m, | ~B| = 0.98 T. (b) small,
except perhaps near the poles.
9–7.3 By keeping in the field lines, the keeper mag-
net lets the magnetization of one pole of the magnet
magnetize the other end, and vice-versa.
9–8.1 In Figure 9.19a there are no poles because
~M is normal to n̂; hence ~H ≈ ~0. In Figure 9.19b the
poles produce a demagnetization field ~H ≈ − ~M that
makes ~B = µ0( ~H + ~M) ≈ ~0.
9–9.1 | ~B| = 6.63× 10−6 T.
9–9.3 72.8◦ dip angle.
9–9.5 “Show that” problem.
9–10.1 If the Fe and Nd interaction were ferromag-
netic, the net magnetic moment would be larger than
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when they are antiferromagnetic: 7µFe + µNd rather
than 7µFe − µNd.

10–1.1 (a) ~B = −0.056x̂ T. (b) ~B = 0.056x̂ T.
10–1.3 (a) B1x = −0.0371 T. B1y = 0.01486 T.
(b) B2x = −0.0743 T. B2y = −0.0297 T.
(c) Bx = 0.1114 T. By = −0.01486 T.
10–2.1 (a) South pole up. (b) Uptward force on
loop. (c) Downward force on magnet. (d) No torque
on magnet.
10–2.3 (a) Left magnet has moment into page, right
has moment out of page. (b) Attracted to loop on
left.
10–2.5 The wire moves leftward, along −x.
10–2.7 (a) ~µ = [−3.157̂i − 0.476ĵ + 6.156k̂] A-m2.
(b) ~τ = (0.209 ĵ + 0.0162 k̂) N-m.
10–2.9 (a) Attractive. (b) Repulsive. (c) Wires
carrying parallel currents will attract.
10–3.1 (a) ~µ = −4.52× 10−4ẑ A-m2.
(b) ~τ = −1.810× 10−6ŷ N-m.
(c) ~τ = −1.666× 10−6ŷ N-m.
10–3.3 (a) µ = 1.024× 10−4 A-m2.
qm = 8.53× 10−4 A-m, (b) | ~B| = 94.8 nT.
(c) 0.521 nT. (d) | ~B| = 10.24 nT.
10–3.5 (a) M = 9.27 × 106 A/m. (b) For a good
magnet, M ≈ 105-106 A/m.
10–4.1 (a) |~F | = 81.6 µN. (b) Reversing the current
or field reverses the force, pumping the blood the
opposite way. (c) Reversing both current and field
does not change the direction of the force.
10–4.3 Compress.
10–4.5 ~F = −2Ia| ~B|ŷ.
10–4.7 (a) ~F = −2πNa2AIẑ. (b) ~F = −0.253ẑ N.
10–4.9 (a) “Show that” problem. (b) ~F = 0.049ŷ N.
10–4.11 No current was specified. For I = 1 A,
we have (a) ~Fbot = 0.010ŷ N. ~Ftop = −0.005ŷ N. (b)
~Fleft = 0.0045x̂ N. ~Fright = −0.0045x̂ N.
(c) ~Fnet = 0.005ŷ N, compress.
10–4.13 (a) a = 107 m/s2. (b) |~F | = 1.4 × 105 N.
(c) I = 2.8× 106 A.
10–4.15 ~F = [2πkmqmIa2/(r2 + a2)3/2]ŷ.
10–5.1 (a) Force is out of the page.
(b) |~F | = 2.206×10−17 N. (c) a = 2.47×1012g, where
g = 9.8 m/s2.

10–5.3 | ~B| = 6.65× 10−17 T.
10–5.5 ~F = (−0.399x̂−0.908ŷ−1.167ẑ)×10−14 N,
|~F | = 1.532× 10−14 N.
10–5.7 ~B = (0.0286ĵ − 0.0755k̂) T.
10–5.9 “Show that” problem.
10–6.1 (a) Electron moves on a semicircle that
bends left, and comes back out of the field region.
(b) Proton moves on a semicircle that bends right,
and comes back out of the field region.
10–6.3 (a) It initially deflects along −ŷ.
(b) v = 1.655× 104 m/s.
10–6.5 The period and radius are independent. The
mechanics student is wrong.
10–6.7 (a) T = 1.725 × 10−8 s. (b) | ~B| = 7.62 T.
(c) 4.17× 104 V.
10–6.9 Deuteron, 2.55 cm; Triton, 3.12 cm; 3He
nucleus, 1.56 cm; 4He nucleus, 1.80 cm.
10–6.11 (a) 26.1 T. (b) 30.1 T.
10–6.13 (a) ~F is perpendicular to ~B.
(b) v2

⊥ = v2−v2
‖ =
√

2mE−v2
‖, and both E and v‖ do

not change. (c), (d), (e) are “show that” problems.
10–6.15 (a) θ = 107.6◦. (b) R = 1.768 cm.
(c) p = 3.53 cm.
10–6.17 (a) circle centered at x = z = mv0/qB,
y = 0, with radius R =

√
2mv0/qB. (b) penetration

is (
√

2−1)mv0/qB. (c) time in field is (π/2)(m/qB).
(d) Exits at x0 = 2mv0/qB.
10–6.19 (a) “Show that” problem. (b) “Show that”
problem. (c) The two formulae coincide.
10–6.21 (a) “Show that” problem. (b) “Show that”
problem.
10–7.1 Because the charge carriers move to the side
of the wire, the force does act on the charge carriers
themselves (i.e. the current). Thus Maxwell was in
error here – “to err is human.”
10–7.3 (a) Positive. (b) vd = 0.882 mm/s.
10–7.5 (a) RH = 7.35× 10−11 m3/C.
(b) Rt = −10.5× 10−9 Ω. (c) l = 1.22 µm.
10–7.7 (a) Top is negative. (b) ~Emot = −vBŷ,
~Ees = vBŷ. (c) ∆V = vBl. (d) ∆V = vBlcosθ.
10–8.1 dWemf = −dWpmf = −0.084 J.

11–2.1 d ~B = 2.72× 10−10(2̂i + k̂) T.
11–3.1 “Show that” problem.
11–4.1 (a) 5.29 m. (b) 281 turns.
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11–4.3 2.81 mm.
11–4.5 (a) d ~B = (kmIds/a2)⊗̂.
(b) ~B = (πkmI/a)⊗̂.
11–4.7 3.67 mA.
11–4.9 Bx = 6× 10−5 T.
11–5.1 (a) ~B = ~0, ~B = 4πkmKî, ~B = 12πkmKî.
(b) | ~B| = 0.00314 T.
11–5.3 (a) Two close coils behave like a single coil,
with a single maximum at their midpoint. (b) Two
distant coils behave like two independent coils, with
a local minimum at their midpoint.
(c) By = 2πkmIR2[ 1

[(y+ s
2 )2+R2]3/2 + 1

[(y− s
2 )2+R2]3/2 ].

(d) s = R.
11–5.5 “Show that” problem.
11–5.7 “Show that” problem.
11–5.9 (a) | ~B| = 168.4ẑ µT, into page. (b) | ~B| =
49.1ẑ µT, out of page. (c) | ~B| = 0.678ẑ µT, into
page.

11–5.11 ~B = −2kmKln(
x + w/2
x− w/2

)ŷ.

11–5.13 (a) I = Kd, K = M , counterclockwise.
(b) ~B = kmMd ab√

z2+(a2+b2)/4

[
1

z2+a2/4 + 1
z2+b2/4

]
ẑ.

11–5.15(a)Bx=2πkmNI
L

[ x+ L
2√

(x+ L
2 )2+a2

− x−L
2√

(x−L
2 )2+a2

]
.

(b) For L/a→ 0, Bx →
2πkmNIa2

(x2 + a2)3/2
. For L/a→∞,

Bx → 4πkmNI/L.
11–5.17 (a) dI/dr = σωr. (b) I = σω(a2/2).

(c) Bx = 2πkmσω[
√

x2 + a2 − 2x +
x2

√
x2 + a2

].

11–6.1 (a) ~F = 3.04× 10−21ŷ N.
(b) ~F = −3.04× 10−21x̂ N. (c) ~F = ~0.

11–6.3 ~F =
2evkmI

r
î.

11–6.5 (a) |~F | = 2kmI2ln(a/r), to the left, and
expansive. (b) |~F | = 9.15× 10−5 N.
11–6.7 Take solenoid current clockwise as viewed
from above. (a) ~Bof loop =

2πkmI2

b
↑̂.

(b) ~Fon solenoid =
2π2kmI1I2na2

b
↑̂.

(c) ~B = 2.51× 10−4↑̂ T, ~F = 1.18× 10−5↑̂ N.
11–6.9 F/l = kmI2/a.
11–7.1 (a) ΓB = 1.721× 10−5 T-m. (b) ΓB = 0.

11–7.3 (a) Ienc = 19,900 A. (b) ΓB = 0.05 T-m.
(c) ΓB = 0 T-m.
11–7.5 (a) Field circulates counterclockwise.
(b) ΓB/s = 0.04 T. (c) Ienc = 636.6 A. (d) Current
flows out of the page.
11–8.1 “Show that” problem. Deformation doesn’t
affect circulation if no current passes through the de-
forming circuit.
11–8.3 (a) and (b) For both a physical circuit and
an Ampèrian circuit, d~s is defined, but only for a
physical circuit does it point along the local current
direction.
11–9.1 Take d~s to be clockwise, so Ienc > 0 is into the
page. (a) ΓB = −120 T-m. (b) Ienc = −9.55× 107 A
(out of page). (c) ~J · n̂ = 7.96× 106 A/m2.
11–9.3 (a) ΓB = 10ydydx.
(b) Ienc = 5ydydx/2πkm. (c) I/A = 5y/2πkm.
11–9.5 (a) ΓB = 5.6× 10−6 T-m.
(b) B = 3.56× 10−5 T. (c) Ienc = 4.45 A,
Ienc/A = 2266 A/m2. (d) Into the page.
11–10.1 (a) | ~B| = 9.60 mT. (b) | ~B| = 15 mT.
(c) counterclockwise.
11–10.3 (a) r < a and a < r < b counterclockwise,
c < r clockwise. (b) concentric circle of radius r > c.
(c) ΓB = 2πr| ~B|. (d) ΓB = 12πkmI.
(e) | ~B| = 6kmI/r.
11–10.5 Take Iinner to be out of the page, and φ̂
to indicate the counterclockwise tangent.

(a) Jcore =
I

πa2
, Jsheath =

I

π(c2 − b2)
. (b) For r < a,

~B =
2kmI

a2
rφ̂; for a < r < b, ~B =

2kmI

r
φ̂; for

b < r < c, ~B =
2kmI

r
(1− r2 − b2

c2 − b2
)φ̂; for c < r, ~B = ~0.

11–10.7 (a) d ~B′ = −km(nIz)(d~s× ~ρ)/R3.

(b) d ~B =
∫

d ~B′ =
−2km (nI) (d~s× ~ρ)

ρ2
.

(c) “Show that” problem.

11–11.1 Use qM =
µ

l
. (a) |~F | = kmq2

m

4h2
, repelled.

(b) h =
qm

2

√
km

Mg
.

11–11.3 (a) “Show that” problem.

(b) By =
kmqm

(−y + h)2
for y < 0.
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(c) F = qmB =
kmq2

m

4h2
.

11–12.1 (a) Induced surface current K circulates
clockwise as seen from above.

(b) K =
qm

2π

ρ

(ρ2 + h2)3/2
. (c) ~F =

kmq2
m

(2h)2
(−ẑ).

11–13.1 See Section 11.13.
11–14.1 (a) Bgap = 17.2 mT,
Bin = Bgap = 17.2 mT. (b) Agap/A = 45.5.
11–14.3 (a) Bin = 1.29 T. (b) Bgap = 1.29 T.

For Chapter 12 Food for Thought questions
on pp.512-513, 515, and 517, see last page.
12–3.1 (a) Calico is an insulator. (b) The greater
the current, the greater the deflection. (c) Counter-
clockwise.
12–3.3 (a) Counterclockwise. (b) To increase the
response.
12–3.5 (a) Smaller. (b) Clockwise.
12–3.7 (a) Ssource of magnetic field. (b) Counter-
clockwise.
12–4.1 (a) Increases out of the page. (b) Into the
page. (c) Clockwise. (d) Clockwise. (e) Up.
(f) Compress. (g) No tendency to rotate.
12–4.3 No current.
12–4.5 If R increases, (a) decrease. (b) to observer.
(c) same direction as primary. (d) same direction
as primary. (e) loops attract and expand. (f) If R
decreases, all answers reverse.
12–4.7 (a) Increase out of the page. (b) Into the
page. (c) Clockwise. (d) Clockwise. (e) Leftward,
compressive. (f) If the field is reversed, then the re-
sponses in parts (a-d) reverse, but are the same for
part (e). (g) If the field is tilted, the effects decrease.
12–4.9 (a) Counterclockwise. (b) Move foil away
and compress the foil.
12–4.11 See last page of Answers.
12–4.13 See last page of Answers.
12–5.1 (a) ~E and ~B are vectors; E , ΦB , and dΦB/dt

are scalars. (b) ~E, E , and dΦB/dt do not change; ~B
and ΦB reverse. (c) E and dΦB/dt.
12–5.3 (a) ΦB = −(16t + 32 × 103t2) × 10−4 Wb.
(b) dΦB/dt = −(16 + 64× 103t)× 10−4 Wb/s.
(c) E = (16 + 64× 103t)× 10−4 V, counterclockwise
as seen from above.

(d) |~F | = 2.56(t + 6 × 103t2 + 8 × 106t3) × 10−8 N.
(e) 3.03 s.
12–5.5 (a) −2.39 mV. (b) −2.47 mV, a 3.57%
change. (c) −0.646 mA.
12–5.7 (a) 0.008 V counterclockwise. (b) 0.32 mA
counterclockwise. (c) 4.43×10−5 N pushing the loop
into the field region. (d) 1.536 × 10−6 N-m, tending
to decrease the angle below 60 degrees.
12–5.9 (a) 0.096 T into the page. (b) 0.00144 Wb/s.
(c) 0.036 mA clockwise. (d) 6.912× 10−8 N drawing
the circuit into the solenoid.
12–5.11 (a) 2NBA. (b) 2NBA/R.
12–5.13 (a) E = −(2πr)(dr/dt)B, I = E/R.
(b) dF/ds = (2πr)(dr/dt)B2/R. (c) 144 N/m.
12–6.1 (a) 0.2 H. (b) 27 A/s.
12–6.3 −(32.4 + 32.4t) mV.

12–6.5 (a)
2kmN1N2ha

ρ
. (b)

2kmN1N2ha

ρ
.

12–6.7 (a)
2π2kma2b2

R3
. (b) 1.599× 10−10 H.

12–6.9 (a) 4π2kmNcNsIsa
2/l. (b) counterclock-

wise. (c) |E| = dΦB/dt = 4π2kmNcNs(dIs/dt)a2/l.
(d) 0.1263 mH.
12–7.1 (a) −0.08ŷ V/m. (b) bottom is higher, by
18.35 mV.
12–7.3 (a) ∆Vright = 0. (b) ∆Vleft = 0.
(c) ∆Vtop = 0.
12–7.5 East wing is higher by 0.135 V.
12–7.7 1.42 µV, clockwise viewed from above.
12–7.9 (a) ωrBb, radially out. (b) b/σcd. (c) Force
rωB2bcdσ opposing motion, torque r2ωB2bcdσ op-
posing motion. (d) “Show that” problem.
12–8.1 (a) Middle arm. (b) Before, IJ = 0.048 A,
Iw = 1.2 A, both right to left, (c) After, Iw is
unchanged and IJ = 1.2 A, left to right. (d)
∆Vw = 24 V, ∆VJ = 600 V, both clockwise, and
∆VL = 624 V counterclockwise. (e) See Fig.12.24.
12–9.1 2.703 mH.
12–9.3 −61,300 A/s, the sign meaning that I2 and
I1 are changing in opposite senses.
12–9.5 (a) On average, the equivalent ring and
solenoid magnets are opposed. (b) On average, the
ring and solenoid currents are opposed. (c) An in-
crease in Isol is accompanied by a decrease in Iring.
This corresponds to out-of-phase magnets, which re-
pel.
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12–10.1 (a) 72 turns. (b) −1.55 mV.
12–10.3 (a) N2L. (b) 0.1382 mH.
12–10.5 L = 2kmN2a ln[(a + b)/b].
12–11.1 (a) dI/dt = 2.21×105 A/s, VR = 0.966 V,
VL = 1.434 V. (b) I = 6.52 A, dI/dt = 1.38×105 A/s,
VR = 1.5 V.
12–11.3 (a) dI/dt = 5.78× 105 A/s, 4.8 V.
(b) 37.25 ns.
12–11.5 (a) 6.73 mH. (b) 0.410 ms. (c) 19.8 mA.
12–11.7 Let VL = LdI/dt + IRL. (a) At t = 0+,
VL = LdI/dt = 12 V across the inductance part of
the inductor. At t = 25 µs, VL = IRL = 0.293 V
across the resistance part of the inductor. (b) At
t = 0+, a sketch would show voltage changes of 12 V
across the emf and VL = LdI/dt = 12 V across the in-
ductance part of the inductor. At t = 25 µs, a sketch
would show voltage changes of 12 V across the emf
and voltage drops IRL = 0.293 V and IR = 11.707 V.
(c) At t = 0+ the electric field is electromagnetically
induced. At t = 25 µ the field is electrostatic.
12–12.1 (a) 0.1568 J. (b) 2.306× 108 J/m3.
(c) 24.1 T.
12–12.3 0.416 µH/m.
12–12.5 (a) 0.008 s. (b) See Figure 12.23.
(c) At t = 0, I = 0 and dI/dt = 3 × 103 A/s. At
t = 0.002 s, I = 5.31 A and dI/dt = 2.34× 103 A/s.
At t = ∞, I = 24 A and dI/dt = 0. (d) Battery
provides 0, 63.7 W, and 288 W. (e) Resistor uses 0,
14.1 W, and 288 W. (f) Inductor builds up energy
at rate 0, 49.7 W, and 0. (g) Except for negligible
parasitic capacitance, there is no electrical energy.
(h) Pbatt = PL + PR.
12–13.1 (a) 1.1 N/C. (b) 1.76 N/C.
12–13.3 (a) The problem statement should have
asked you to show that |Ez/Eθ| = l/2πNa, not
2πNa/l. (b) 0.00398. (c) |Eθ| = 0.0329 V/m,
Ez = 0.1309 mV/m. Note: ∆VL = Ezl = 0.0262 mV.
(d) Eθ is electromagnetically induced. (e) Ez is elec-
trostatic.
12–13.5 Let R̃2 = RrRl+RrRm+RlRm. If Er > 0,
then Il = ErRm/R̃2 goes up the left arm and
Ir = Er(Rm + Rl)/R̃2 goes down the right arm.
(a) IrRr. (b) IlRl. (c) Er = −0.787 mV, so
IrRr = −0.562 mV (voltmeter bottom is positive)
and IlRl = −0.225 mV (voltmeter top is positive).

12–13.7 (a) 4 A clockwise. (b) 8 V across left, 0 V
across top, 4 V across right, 0 V across bottom.
(c) VA = −5 V, VB = −2 V, VC = −3 V, VD = 0 V.
(d) 5 V, −3 V, 1 V, −3 V.
12–14.1 (a) I1 = I2 = 6 A, right to left.
(b) I = 1.714 A in both arms, circulating clockwise;
I = 0.968 A in both arms, circulating clockwise.
12–14.3 (a) I1 = I2 = 0. (b) I1 = I2 = 0.
(c) I1 = 0.545 A, I2 = 0.15 A. (d) I = 0.346 A,
circulating counterclockwise. (e) 68.6 µs, 0.193 A.

13–1.1 “Verify that” problem.
13–2.1 From best to worst: iron rods, iron, plastic
(either rods or solid). Iron rods have a large magne-
tization, but a relatively large resistance.
13–3.1 The motor is an external source of mechani-
cal power, and the generator uses the electrical power.
13–4.1 (a) 10 Ω. (b) 100 V.
13–4.3 (a) 92.31 A. (b) 5.94 N, 10.24 m/s2.
(c) 0.01481 V. (d) 92.08 A. (e) 0.224 s.
13–5.1 (a) 429 s. (b) 7.33 A, 0.0703 N.
13–5.3 (a) 228 s. (b) 2.89× 104 m/s. (c) 771 A.
13–6.1 0.0403 s.
13–6.3 88.7%
13–7.1 (a) 80 s. (b) 0.08 N, 1.667 m/s2.
(c) 69.1 m/s, 1.97 m/s.
13–8.1 2.69× 106 m/s, 2.69× 105 m/s,
2.69× 102 m/s, 2.69× 101 m/s,
13–8.3 “Show that” problem.
13–8.5 (a) opposite source current. (b) same as
source current.

14–1.1 Vrms = 1/
√

3, V = 0.
14–1.3 (a) 0.0127 s per radian and 0.08 s per period.
(b) 12.5 s−1 and 78.5 rad/s. (c) 12.5 s−1 is f and
78.5 rad/s is ω.
14–1.5 Vrms = Vm/

√
3; ∆V = Vm/2.

14–1.7 Vrms = Vm/
√

3; ∆V = 0.
14–2.1 Decrease either L or C by a factor of 4.
14–2.3 (a) 2.093× 10−9 F to 0.264× 10−9 F.
(b) 5.23× 10−12 J and 0.660× 10−12 J.
14–2.5 16.24 pF.
14–3.1 (a) Current starts at zero but with finite
slope, going through some damped oscillations until
it is zero at long times. (b) Charge starts at zero and
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with zero slope, going through some damped oscilla-
tions until it is finite at long times.
14–3.3 “Show that” problem.
14–3.5 (a) ω0 = 2.49× 104 rad/s,
f0 = 3.97 × 103 Hz, Rc = 1197 Ω. (b) For R = 5 Ω,
we have R < Rc; very underdamped. A sketch would
show that the voltage initially rises quadratically in
time, and then goes to a slowly damped oscillation
around the applied emf.
14–4.1 (a) 29.4 cm2. (b) 800 turns.
14–5.1 (a) 5.86 Ω, 56.1◦. (b) energy is absorbed.
14-5.3 (a) B provides power, A receives power.
(b) −55◦.
14–5.5 (a) 500 Ω, 6.37 µF, −90◦. (b) 510 mJ.
14–5.7 (a) Scalar. (b) The y-component of the
rotating vector, or phasor, gives a scalar that equals
the voltage.
14–5.9 (a) At low f capacitors serve as open cir-
cuits (finite voltage), at high f capacitors serve as
closed (or short) circuits (zero voltage). (a) At low
f inductors serve as closed (or short) circuits (zero
voltage), at high f inductors serve as open circuits
(finite voltage).
14–6.1 5 ms was a misprint. The intended time lag
was 0.5 ms. This gives Z = 40 Ω, φ = 0.1885 rad =
10.80◦, R = 39.3 Ω, XL = 7.50 Ω, L = 0.0199 H.
14–6.3 XL = 1.57 Ω, Z = 20.06 Ω,
φ = 0.0784 rad = 4.49◦, tlead = 0.250 ms,
Im = 4.23 A.
14–6.5 XC = 3.02 × 104 Ω, R = 1.433 × 105 Ω,
Z = 1.464× 105 Ω, φ = −11.86◦.
14–6.7 Z = 160 Ω, XL = 30.14 Ω, R = 157.1 Ω,
φ = −0.1894 rad = −10.85◦, tlag = 6.85× 10−5 s.
14–6.9 φ = 0.1520 rad, XL = 1.839 Ω,
L = 0.665 mH, Z = 12.14 Ω.
14–6.11 (a) Irms = 4.87 A for all circuit elements.
(b) ∆VR,rms = 116.8 V, ∆VL,rms = 27.5 V.
(c) PR,rms = 569 W, PL,rms = 0. (d) φ = 0.231 rad,
tlag = 0.614 ms.
14–6.13 (a) Inductor, with XL = 39.25 Ω,
L = 0.1041 H. (b) P = 148.4 W.
14–7.1 (a) f = 62.5 kHz. (b) ZR = R = 200 Ω,
ZL = XL = 3571 Ω. (c) power surges have high fre-
quencies, for which inductors have a high impedance.
14–7.3 Units misprint: capacitance is in µF, not
µH. (a) Capacitor. (b) Resistor. (c) VR,m = 2.40 V,

VC,m = 24.9 V. (d) VR,m = 17.35 V, VC,m = 18.00 V.
14–7.5 “Show that” problem.
14–8.1 (a) Yes. (b) No. (c) Yes.
14–8.3 (a) XL = 6.283 Ω, XC = 0.796 Ω,
Z = 6.79 Ω, φ = 53.9◦. (b) Im = 3.53 A,
VL,m = 22.2 Ω, VR,m = 14.14 Ω, VC,m = 2.81 Ω.
(c) Voltage leads current by 0.374× 10−3 s.
(d) 14.41 V, voltage lags current by 0.781 × 10−4 s.
(e) 26.3 V, voltage leads current by 3.99× 10−4 s.
(f) 19.39 V, voltage leads current by 6.25× 10−4 s.
14–8.5 (a) 1340 Hz, Irms = 0.05 A.
(b) VL,rms = 6.316 V, VR,rms = 1.20 V,
VC,rms = 6.316 V. (c) Z = 191 Ω, φ = 82.8◦,
Irms = 0.00628 A. (d) VL,rms = 1.587 V,
VR,rms = 0.1507 V, VC,rms = 0.397 V.
(e) Rc = 252.6 Ω. Definitely a resonance, but rather
broad, since Q = 5.625 is fewer than the 6.26 radians
that correspond to a full period.
14–8.7 “Show that” problem.
14–9.1 For water, a valve permits a small force to
control a large flow of water; for electricity, a valve
permits a small voltage to control a large flow of elec-
tricity.
14–9.3 See Figure 14.14b. The grid voltage de-
termines whether or not electrons are drawn off the
cathode; once off the cathode, they go to the anode.
14–10.1 Neither of them can dissipate energy, and
on average neither of them can store energy.
14–10.3 (a) P > 0 when refinery is buying power.
(b) P < 0 when refinery is selling power.
14–10.5 (a) cosφ0 = 0.423. (b) Add capacitor with
C = 1.957 µF. (c) Z = 1215 Ω.
14–11.1 (a) 6.25 turns. (b) 62.5 turns.
14–11.3 100 V.
14–11.5 (a) Ns/Np = 1/10. (b) Lower voltage side
has higher current; thicker wire decreases the Joule
heating rate.
14–11.7 (a) Pgen = 4800 W.
(b) P = Pgen = 4800 W. (c) Pwires = 2.56 W.
(d) Pload = 4797.44 W.
14–11.9 See Section 14.11.3.
14–11.11 (a) R = 1 Ω. (b) Rc/R = 50.
(c) L = 13.37 mH, C = 21.39 µF. (d) Ns/Np = 100.
14–12.1 Toaster.
14–12.3 (a) Em = 0.400 V. (b) Z = 20.8 Ω, φ =
54.8◦. (c) Im = 8.16 A. (d) F = −0.1011 N.
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14–12.5 Use the geometry of Figure 14.18a, with
an inductor and capacitor in series with the circuit.
(a) IR + LdI/dt + Q/C = Emsinωt,
Em = ωBmlx. (b) I = (Em/Z)sinωt, Z and φ as in
(14.71) and (14.72). (c) F = −(EmbBm/2Z) sinφ.
(d) If ω > ω0, L dominates; if ω < ω0, C dominates.
14–13.1 (a) 23.9 µm. (b) d = 0.001 inch is 25.4 µm,
so that the field will penetrate, but down by a factor
of e−d/δ = 0.346.
14–13.3 “Show that” problem.

15–2.1 (a) 2011 m/s. (b) 2 min. (c) 70 min.
(d) 60 flagmen.
15–3.1 2.83× 1016 N/C-s.
15–4.1 0.01096/m.
15–4.3 (a) dy/dx = x/(a− y),
d2y/dx2 = a2/(a− y)3. (b) 1/a. (c) d2y/dx2 = 1/R,
where R = a is the radius of curvature.
15–5.1 120 m/s.
15–5.3 3 N.
15–5.5 (a) Energy flowing along the string is more
concentrated. (b) Yes. (c) 3361 N. (d) It corresponds
to hanging a mass of 342.6 kg; unlikely.
15–5.7 “Show that” problem.
15–5.9 (a) 2.048 m/s. (b) 0.36 m. (c) −0.653 m/s.
(d) −0.626 m/s2.
15–5.11 The large phases require high accuracy.
(a) 251.3274 m−1. (b) 2010.6193 s−1. (c) 320 Hz.
(d) 0.003125 s. (e)−8048.23 rad≡0.527 rad. (f) In cm,
y(x, t) = 0.03 sin[251.3274x + 2010.6193t + 0.527].
(g) −0.0200 cm.
15–5.13 (a) 3.0 kg/m. (b) 0.72 N.
15–5.15 (a) 147.3 m/s. (b) 170 cm and 85 cm.
(c) 86.6 Hz and 173.3 Hz.
15–5.17 (a) 7.48 m. (b) 18.70 m. (c) 0.01282 s.
(d) 78.0 Hz. (e) 0.0358 m, −2.65 m/s, −8600 m/s2.
15–5.19 (a) d2y

dx2 = v2(d2y
dt2 ) and d2z

dx2 = v2(d2z
dt2 ).

(b) v =
√

F
µ . (c) f1 = v

2L .
15–6.1 −12000 x̂ V/m.
15–6.3 (a) (D/c) sin(qx−ωt). (b) (D/c) sin(qy−ωt).
15–6.5 (a) 0.009375 m. (b) 670.2 m−1.
(c) 2.01× 1010 s−1. (d) 0.15 sin(qy − ωt) mT.
15–7.1 (a) 303 m. (b) 3.367 m.
15–8.1 (a) r−1. (b) r−1/2.
15–8.3 1.584× 105 V/m; 0.528 mT.

15–9.1 (a) 4.17× 10−8 m/s2. (b) 19,200 s.
(c) 8× 10−4 m/s. (d) 7.68 m.
15–9.3 (a) uE = uB = 8.95 sin2(qy − ωt) mJ/m3.
(b) ~S = 5.37× 106 sin2(qy − ωt) ŷ W/m2.
(c) P = 0.0179 sin2(qy − ωt) N/m2.
15–9.5 (a) ~S = −2πkmn2rI dI

dt r̂.
(b) P/l = 4π2kmn2r2I|dI

dt |, flowing radially inward.
(c) dP/l = 8π2kmn2rdrI|dI

dt |.
(d) d(dUB/dt)/l = 8π2kmn2rdrI|dI

dt |. This equals
P/l, so dP = d(dUB/dt).
15–10.1 (a) 3.93 m, (b) 1.132, (c) 1.282.
15–10.3 (a) 5.07× 1014 Hz. (b) 5.07× 1014 Hz.
(c) 443.7 nm. (d) θrefl = 23◦, θrefr = 17.04◦.
15–10.5 (a) θcrownglass

c = 41.14◦,
θdiamond

c = 24.41◦. (b) Crown glass. (c) Diamond.
15–11.1 2.3 W/m2, polarized vertically.
15–11.3 (a) 0. (b) 0.134 W/m2, at 35◦ to the x
axis.
15–11.5 2.58 W/m2, polarized vertically.
15–11.7 (a) 53.1◦. (b) 36.9◦.
15–12.1 (a) and (b) See Section 15.12.
15–12.3 −2881 x̂ A/m.
15–13.1 “Show that” problem.
15–14.1 (a) 2.4 m. (b) 2.4 m.
15–14.3 R/Rc ≈ 0.25. This corresponds to
Q = Rc/2R ≈ 2.0 radians, or 0.32 of a full oscillation.
It damps out very quickly.
15–15.1 (a) δL = (πA/2L)2L. (b) “Show that”
problem.
15–15.3 (a) 5.09× 103 m/s. (b) 1.964× 10−3 s.
15–15.5 24.9 m.
15–15.7 Using (15.82), so vwater = 1.432×103 m/s,
gives 114.8 Hz. (Using vwater ≈ 4.3vair, as in exam-
ple 15.7, so vwater ≈ 1.475×103 m/s, gives 118.3 Hz.)

16–2.1 (a) 76.6 mm. (b) 287 Hz.
16–2.3 4(d2−m2λ2)y2−4m2λ2D2=m2λ2(d2−m2λ2).
16–2.5 (a) 0.212 m. (b) 1604 Hz.
16–2.7 (a) one line of maxima, no lines of minima.
(b) one line of maxima, two lines of minima. (c) five
lines of maxima, six lines of minima.
16–2.9 (a) See Fig.16.6a. (b) See Fig.16.7a. (c) See
Fig.16.8a.
16–2.11 Use tan θ ≈ sin θ. (a) 4.08 m. (b) 12.53◦.
16–3.1 “Show that” problem.
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16–3.3 (a) φ = 2π + 2θ− 6θ′. (b) sin2θ = 1−(n/3)2

1−(1/3)2 .
(c) For n = 4/3, φ− 180◦ = 51.0◦.
16–4.1 See Section 16.4.
16–4.3 See Section 16.4.
16–4.5 At 90◦ (top of circle) get maximum increase
in period; At 270◦ (bottom of circle) get maximum
decrease in period;
16–4.7 Grimaldi’s experiment showing light within
the geometrical shadow, and bright and dark fringes
just outside the geometrical shadow.
16–4.9 Birefringent crystals, unless oriented prop-
erly, will give two images.
16–5.1 (a) “Show that” problem. (b) vs. (c) vp.
16–5.3 For small amplitude disturbances the
equations are linear, which leads to an amplitude-
independent sound velocity. Hence the relative
amounts of reflection and refraction are amplitude-
independent.
16–6.1 (a) 109.87 Hz. Out of tune by 0.12%. (b)
Tone at (fA − f ′E)−1.
(c) 7.5 s.
16–6.3 λ′/λ = v/c. Since the experiments indicate
that λ′ in the film is less than λ in air, we deduce
that v < c.
16–6.5 (a) The sources have a coherence time much
shorter than the measuring time of the eye. (b) The
sources have a coherence time longer than the mea-
suring time of the ear.
16–6.7 (a) No. (b) No.
16–6.9 (a) 489.44 nm. (b) 611.8 nm and 407.9 nm.
16–6.11 (a) 691.3 nm, 518.5 nm, and 414.8 nm.
(b) 592.6 nm and 460.9 nm.
16–6.13 (a) 912 nm. (b) 606.5 nm, 485.2 nm, and
404.3 nm.
16–6.15 113.1 nm.
16–6.17 Correct for the misprint of 1575, rather
than 1515, lines at atmospheric pressure.
(a) n1 = 1.000293. (b) λvac = 690.2 nm.
(c) d = 0.4998 m.
16–6.19 (a) N = 2∆D/λ. (b) 600 nm.
16–6.21 (a) 409 nm. (b) 0.422 degrees, 8.1 mm.
(c) 611.
16–6.23 (a) 858 nm. (b) 613 nm.
16–7.1 “Show that” problem.
16–7.3 (a) 1.536 mm. (b) 0.541 mm.

16–7.5 Break up the illuminated part of the plane
into tiny strip-shaped sources parallel to the finite
opaque strip (or into tiny annulus-shaped sources
concentric with the finite opaque disk). At the cen-
ter of the geometrical shadow, wavelets from all strips
(or annuli) add in phase, giving an interference max-
imum.
16–7.7 366.5 nm.
16–7.9 (a) 162.5 µm. (b) 0.220◦, 0.660◦.
16–7.11 (a) 0.0766◦. (b) 0.0321 cm.
16–7.13 For m = ±1 minima: (a) 184.7 µm.
(b) 0.428◦, 0.486 cm.
16–7.15 197.1 µm.
16–7.17 (a) “Show that” problem. (b) “Show that”
problem.
16–7.19 (a) 3.93 mm. (b) 1.5× 10−8 radians.
(c) 150 radians – unresolvable.
16–7.21 (a) 2.16×1012 m. (b) 3100 times the radius
of the sun. (c) 6.79× 1014 m.
16–7.23 (a) 0.671 mm. (b) 0.0419 mm. (c) 3.5 m.
(d) 5.75 m.
16–8.1 (a) 2d = (m + 1

2 )λ/nO,E. (b) O-beam has
520 nm (m = 3) and 404.4 nm (m = 4); E-beam has
557.1 nm (m = 3) and 433.3 nm (m = 4).
16–8.3 (a) 63 nm. (b) 0.00451◦.
16–9.1 (a) maxima out to m = ±6. (b) m = 0 at
0◦; m = ±1 at ±9.04◦; m = ±2 at ±18.32◦; m = ±3
at ±28.13◦; m = ±4 at ±38.94◦; m = ±5 at ±51.79◦;
m = ±6 at ±70.54◦. (c) maxima out to m = ±4.
(d) 0.0212 rad = 1.213◦. (e) 43.9 nm.
16–9.3 Interpret third maximum to be third order
(m = 3). (a) 513.4 nm. (b) mmax = 10.
(c) θ6 = 36.3◦.
16–9.5 400 nm ≤ λ ≤595 nm.
16–9.7 4030 lines.
16–9.9 1216 slits.
16–9.11 (a) “Show that” problem. (b) “Show that”
problem. (c) Multiples of three.
16–10.1 [scattering angle, angle of incidence rela-
tive to normal]: (a) [20◦, 80◦]. (b) [160◦, 10◦].
16–10.3 0.16 nm.
16–10.5 m = 4 gives λ = 0.01139 nm, m = 5 gives
λ = 0.00911 nm.
16–10.7 (a) 0.205 nm, 1.467×1018 Hz. (b) 0.270 nm,
1.111× 1018 Hz.
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16–10.9 2dsinθ = mλ and nV = nA/d = constant re-
lates the volume and area densities and the plane sep-
aration. Higher nA means smaller d and thus larger
θ and larger scattering angle 2θ.
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Chapter 12 Food for Thought questions on pp.512-513, 515, and 517

pp.512-513 See Figure 12.6.

1. Primary moves leftward, with IP counterclockwise as seen from the right.
Then ~Bext is along →̂, d ~Bext/dt is along ←̂, and ~Bind is along →̂.

2. Primary moves rightward, with IP clockwise as seen from the right.
Then ~Bext is along ←̂, d ~Bext/dt is along ←̂, and ~Bind is along →̂.

3. Primary moves leftward, with IP clockwise as seen from the right.
Then ~Bext is along ←̂, d ~Bext/dt is along →̂, and ~Bind is along ←̂.

4. There is no general correlation between ~Bext and ~Bind;
There is a general correlation whereby ~Bind opposes d ~Bext/dt.

p.515 See Figure 12.8(a). In all cases, the observer is to the right.

Situation
d ~Bext

dt
~Bind Eind, Iind

~Fnet Compress or Expand

pull magnet from loop ⊗ � Counterclockwise ⊗ Expand
push loop to magnet � ⊗ Clockwise � Compress

pull loop from magnet ⊗ � Counterclockwise ⊗ Expand
push reversed magnet to loop ⊗ � Counterclockwise � Compress

p.517 See Figure 12.9(a). The observer is to the right.

Situation
d ~Bext

dt
~Bind Eind, Iind

~Fnet Compress or Expand

reverse primary ⊗ � Counterclockwise � Compress

Table problems 12-4.11 and 12-4.13

12–4.11

Observer
d ~Bext

dt
~Bind Eind, Iind ~τ Compress or Expand

reader ⊗ � Counterclockwise opposite ~ω Expand

12–4.13 See Figure 12.32.

Observer
d ~Bext

dt
~Bind Eind, Iind

~Fnet Compress or Expand

from above ⊗ � Counterclockwise � Compress


