
Coding notes for the ICCP

Jos Seldenthuis, Chris Verzijl, Erin McGarrity, and Jos Thijssen

January 24, 2013

“There are only two kinds of programming languages:
those people always bitch about and those nobody uses.”

— Bjarne Stroustrup

These coding notes are a short introduction to scientific programming, combined with a
list of best practices. Programming is an art; it takes time to become experienced, but
these guidelines will help you to avoid common mistakes. Follow them! They were born
out of years of experience, and will save you and your instructors a lot of time. You will be
spending most of your time thinking about your algorithms and debugging your code, not
actually writing it. Writing clean code, following best practices, and not trying to be overly
clever will make your life a lot easier.

Choosing a programming language is about picking the right tool for the job. In the case
of the ICCP, that means Fortran. We won’t force you to use a particular language, but for
most of the programs you’ll write, dynamic languages such as MATLAB or Python are too
slow, while C, C++ and Java lack the built-in numerical facilities1 (with Java also being slow).
Fortran is over half a century old — it first appeared in 1957 — and can be a bit quirky, but
for better or worse, it’s still the industry standard when it comes to scientific computing.
Besides, modern Fortran — the most recent standard updates appeared in 2003 and 2008
— is not nearly the monstrosity it used to be; it’s actually a quite pleasant language for
computational physics. Even if you already have some experience with another language,
take it from us that you will be faster if you use Fortran for the ICCP. If you want to continue
in computational physics you’ll encounter it sooner or later anyway (think LAPACK), and the
ICCP is the perfect time to learn.

These notes are by no means a Fortran reference. High-quality documentation can
be easily found online. Good starting points are http://fortran90.org and http://en.
wikipedia.org/wiki/Fortran_language_features. The Intel Fortran Compiler Language
Reference is freely available (Google it). We also recommend Modern Fortran Explained by
Metcalf, Reid and Cohen, or Fortran 95/2003 for Scientists & Engineers by Chapman.

1 Getting your toes wet with Fortran and Linux

For this course we recommend using the GNU Fortran compiler, as it is free and of reason-
ably high quality.2 Linux is the platform of choice, since it’s most suited to programming and
high-performance computing. OS X, being a Unix variant, is also an option, but installing

1It’s called Fortran — FORmula TRANslation — for a reason!
2You’re welcome to use the Intel Fortran compiler, which is free on Linux, but remember to change the compiler

flags, since they differ from gfortran.

1

http://fortran90.org
http://en.wikipedia.org/wiki/Fortran_language_features
http://en.wikipedia.org/wiki/Fortran_language_features

the required packages is generally a bit more work. In these notes we will assume that
you’re using Ubuntu.3

After booting Ubuntu, you need to install a Fortran compiler. Open the Ubuntu Software
Center; in the search box, type gfortran, select the ‘GNU Fortran 95 compiler’ and click
‘Install’. It might also be useful to install the LATEX word processor, for writing reports. You
can find it by searching for texlive. Once you have gfortran installed, you can start writing
programs. You will generally compile and run your programs from a terminal window (also
called a console). Note that anything you type in the console is case-sensitive! A few useful
commands are:

ls # display the contents of the current directory
ls -l # display contents with extra details
cp file path # copy ’file’ to ’path’
mv file path # move ’file’ to ’path’
rm file # remove ’file’
mkdir dir # create a new directory called ’dir’
cd dir # change current directory to ’dir’
rmdir dir # remove directory ’dir’ (only if it’s empty)
rm -r dir # remove directory ’dir’ (even if it’s not empty)

For your first program, open a terminal, create a directory for the ICCP files and open
your first Fortran file by typing

mkdir iccp # create a new directory called ’iccp’
cd iccp # move to the new directory
gedit myprog.f90 # open a text editor with the file ’myprog.f90’

The gedit text editor pops open in which you can type your first program:

1 program MyProg

3 implicit none

5 real(8), parameter :: PI = 4 * atan(1d0)
6 integer, parameter :: N = 20

8 real(8) :: radius, surface, circumference
9 integer :: i, fibonacci(N)

11 print *, "Give the radius"
12 read *, radius
13 surface = PI * radius**2
14 circumference = 2 * PI * radius
15 print *, "The surface of the circle is ", surface
16 print *, "and the circumference is ", circumference

18 fibonacci(1) = 0

3You can use Ubuntu as a native installation, run it from a flash drive, under a virtual machine, or under Windows
using Wubi. Ask your instructor.

2

19 fibonacci(2) = 1
20 do i = 3, N
21 fibonacci(i) = fibonacci(i - 1) + fibonacci(i - 2)
22 end do
23 print *, "Fibonacci sequence:"
24 print "(4I6)", fibonacci
25 ! The ratio of neighboring Fibonacci numbers converges to the
26 ! golden ratio.
27 print *, "Golden ratio:", 1d0 * fibonacci(N) / fibonacci(N - 1)

29 end program

It is probably obvious what this program does. However, a few remarks are in order:

• The program starts with a declaration of variables. real(8) denotes a floating-point
variable with double (8 byte) precision. Similarly, integer denotes an integer number.
Not specifying a size generally defaults to 4-byte precision. implicit none prevents
Fortran from trying to infer the type from the variable name, which is a major source
of bugs — always include this!

• The attribute parameter specifies that we are declaring a constant. Although Fortran
is case-insensitive, it is considered good practice to always use uppercase names for
constant variables.

• Note the calculation of π as 4 arctan(1) — convenient and accurate.

• Single-precision (4 byte) floating-point numbers can be written as 0.1 or 1e-1 (scien-
tific notation). For double-precision numbers, use d instead of e in scientific notation,
e.g., 1d-1. It is also possible to specify the precision as a suffix: 1.0_4 for single and
1.0_8 for double precision. This also works for integers.

• integer :: fibonacci(N) allocates an array of 20 integers, with the array index
running from 1 to 20.

• ‘*’ is multiplication, ‘**’ is exponentiation.

• The print statement on line 24 contains the formatting string "(4I6)". This tells
Fortran to print 4 integers per line, each taking up 6 characters.

• Comments in Fortran start with ‘!’ and last until the end of the line.

• Dividing integers results in an integer, so 3 / 2 = 1 instead of 1.5 as you might ex-
pect. Multiplying by 1d0 on line 27 forces Fortran to do a double-precision floating-
point calculation.

Now we compile and run the program. Compiling means translating the Fortran source
code into machine code (processor instructions). This can be done by simply typing

gfortran myprog.f90

which will result in the executable file a.out. This is the default name for the output. You
can specify a different name by compiling with

3

gfortran myprog.f90 -o myprog

which results in a program with the name myprog. During compilation, the compiler may
generate error messages and warnings. The errors must be fixed before an actual running
program is produced, and it is good practice to also make sure no warnings are generated.

The compilation process can be tuned by passing certain command-line arguments to
the compiler. We recommend using always at least the following:

gfortran -Wall -Wextra -march=native -O3 myprog.f90 -o myprog

• -Wall and -Wextra turn on all warnings. This may generate a lot of messages, but
fixing them all leads to much cleaner code. This can be a huge time saver; not only for
you, but also for your instructors! If your program doesn’t behave as expected, first
try to fix all warnings before asking your instructors for help.

• -march=native tells the compiler to generate machine code using all available pro-
cessor instructions on your machine. On moderns CPUs this leads to much faster
code, since gfortran can use vector instructions. The downside is that it can result in
executables that will not run on a different machine.

• -O3 turns on all optimizations. This increases the compilation time significantly, al-
though it should still be fast enough for the programs you’ll write in the ICCP. The
runtime of your program, on the other hand, will dramatically decrease. The only
reason not to use this flag is that it might interfere with the debugger (see below).

• A possible additional optimization flag is -ffast-math. This flag enables floating-point
optimizations which might reduce accuracy or result in incorrect behavior, especially
in situations such as divide-by-zero. We therefore recommend not using this flag until
you have verified that your program produces the correct results. After that you can
use it to make your program faster, but do check that it still behaves correctly.

If the program was compiled correctly, you can run it by typing ./a.out or ./myprog. Note
that ./ specifies the path, i.e., the location where to find the program. The dot means the
current directory, and the slash separates directories and file names (like the backslash in
DOS and Windows).

2 Structuring your code to keep your instructors sane

“Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.”
. . . because that guy might be you in six months.

— Martin Golding

Readability is the most important quality of your code. It’s more important even than being
bug-free; you can fix a readable but incorrect program, while an unreadable program is next
to useless even if it works. As an example of what not to do, take a look at the following
gem, originally written in FORTRAN IV for an IBM 1130 (in 1969!):

4

1 SUBROUTINE SNPPIC
2 DIMENSION ILINE(133),INUM(50),ICHR(50)
3 COMMON ISET
4 DATA IBLNK/1H /
5 DO 4 I=1,133
6 4 ILINE(I)=IBLNK
7 5 K=1
8 10 READ (2,1000) (INUM(I),ICHR(I),I=1,ISET)
9 DO 40 I=1,ISET

10 IF (INUM(I) .NE. -1) GOTO 100
11 DO 15 L=K,133
12 15 ILINE(L)=ICHR(I)
13 WRITE (7,2000) (ILINE(K),K=1,133)
14 ILINE(1)=IBLNK
15 DO 20 K=2,133
16 20 ILINE(K)=ICHR(I)
17 K=1
18 100 IF (INUM(I) .EQ. -2) GOTO 200
19 IF (INUM(I) .EQ. 0) GOTO 40
20 DO 30 J=1,INUM(I)
21 ILINE(K)=ICHR(I)
22 K=K+1
23 30 CONTINUE
24 40 CONTINUE
25 GOTO 10
26 200 RETURN
27 1000 FORMAT (25(I2,A1))
28 2000 FORMAT (133A1)
29 END

This a perfect example of spaghetti code; it makes me want to pick out my eyes with a
fondue fork. If you can figure out what it does, I’ll buy you a beer.4

To keep your code readable, you need to structure your program in a smart way, while
following a reasonable coding style. A coding style encompasses things like naming conven-
tions, indentation, comment rules, etc.; see the Coding style section below for our recom-
mendations. In this section we focus on structure.

2.1 Functions and subroutines

As a (silly) example, let’s say you need to sum all integers in a certain interval. Programmers
are lazy, so we’re going to write a program to do that for us. Gauss, of course, found a way
to do this very quickly, but for the sake of the example, let’s pretend we don’t know about it.

1 program SumsBeforeGauss

3 implicit none

4It’s part of one of the first open source programs in history, so no cheating with Google!

5

5 integer :: first, last, total, i

7 print *, "First:"
8 read *, first
9 print *, "Last:"

10 read *, last

12 total = 0
13 do i = first, last
14 total = total + i
15 end do

17 print *, "Total:", total

19 end program

Note that we can’t use the word sum as a variable name, since that’s a Fortran intrinsic, so
we use total instead. This program is simple, clean, and doesn’t need comments to show
what it does. However, we can do better. Summing numbers in an interval is a generic
mathematical operation, which we might need to do more often. It therefore makes sense
to move that code to a separate subroutine which we only have to write once and can then
reuse as many times as we need. In Fortran, this would look like

1 program SumsBeforeGauss

3 implicit none

5 integer :: first, last, total

7 print *, "First:"
8 read *, first
9 print *, "Last:"

10 read *, last

12 call stupid_sum(first, last, total)

14 print *, "Total:", total

16 contains

18 subroutine stupid_sum(a, b, total)

20 integer, intent(in) :: a, b
21 integer, intent(out) :: total

23 integer :: i

25 total = 0

6

26 do i = a, b
27 total = total + i
28 end do

30 end subroutine

32 end program

In Fortran, subroutines are invoked with the keyword call followed by the name of the
routine and an optional list of parameters in parentheses. The code for the subroutine itself
appears after the keyword contains. We don’t have to type implicit none again, since
that’s inherited from the program. When declaring the parameters, we need to specify not
only the type, but also how we’re going to use them, i.e., the intent. For input and output
parameters, we use intent(in) and intent(out), respectively. For parameters functioning
as both, we use intent(inout).

stupid_sum is essentially just a mathematical function. Wouldn’t it then be nice to be
able to use it that way, by simply invoking it with total = stupid_sum(first, last)?
Fortunately, Fortran allows us to do just that:

1 program SumsBeforeGauss

3 implicit none

5 integer :: first, last

7 print *, "First:"
8 read *, first
9 print *, "Last:"

10 read *, last

12 print *, "Total:", stupid_sum(first, last)

14 contains

16 integer function stupid_sum(a, b) result(total)

18 integer, intent(in) :: a, b

20 integer :: i

22 total = 0
23 do i = a, b
24 total = total + i
25 end do

27 end function

29 end program

7

A function in Fortran is just a subroutine returning a value. We therefore need to specify
the type of (the result of) the function as well as its arguments. This type is given before
the keyword function. result(total) tells Fortran that the local variable total (of type
integer) holds the return value of the function.

Splitting reusable code off into subroutines and functions is absolutely necessary for any
non-trivial program. Always take the time to think about the structure of your program
before you start typing. The golden rule here is: every function or subroutine should do one
thing and do it well. In practice this also means they should be small; if your function doesn’t
fit on a single screen, that’s usually an indication that you should split it up. Besides making
the code more readable, this also makes it easier to modify. Let’s say that you suddenly
discover Gauss’ trick for summing intervals. All you need to do then is replace stupid_sum
by smart_sum:

1 ! Gauss was a genius! 1 + 2 + 3 + ... + n = n * (n + 1) / 2
2 integer function smart_sum(a, b) result(total)

4 integer, intent(in) :: a, b

6 total = (b * (b + 1)) / 2 - (a * (a - 1)) / 2

8 end function

You don’t have to search through all your code to change the calculation everywhere; you
just update the function and your entire program suddenly becomes a lot faster.

2.2 Modules

Many functions and subroutines are reusable not only within a single program, but also
between programs. In that case it is a good idea to place those routines in a module. For
example, if you envisage using Gauss’ algorithm very often in the future, you might want to
create the module gauss.f90:

1 module Gauss

3 implicit none
4 private

6 public smart_sum

8 contains

10 integer function smart_sum(a, b) result(total)

12 integer, intent(in) :: a, b

14 total = (b * (b + 1)) / 2 - (a * (a - 1)) / 2

16 end function

8

18 end module

By default, all functions and subroutines in a module are visible to external programs. This
can cause collisions with similarly names functions in other modules, especially in the case
of helper routines that are only used within the module. Common practice is therefore
to specify the private keyword to change the default behavior; only the routines that are
explicitly made public are then usable elsewhere.

Any program can now use the functions in gauss.f90 by simply specifying use Gauss:

1 program Sums

3 use Gauss

5 implicit none

7 integer :: first, last

9 print *, "First:"
10 read *, first
11 print *, "Last:"
12 read *, last

14 print *, "Total:", smart_sum(first, last)

16 end program

You now have two different files that need to be compiled to produce a working program.
It’s possible to do this by hand, but there is a much easier way (see next section).

3 The magic of Makefiles

Once your programs become larger, it is convenient to split the source code into several
files. However, to obtain a running program, each of these files has to be compiled sepa-
rately (resulting in a relocatable object file, with extension .o) and then combined (linked)
into a single program. Doing this by hand quickly becomes tedious, so we resort to using
Makefiles. We create a file called Makefile that contains all compiler invocations, and then
we can compile the program by simply typing

make

Similarly, we can remove all compiler-generated files with

make clean

The make program is smart enough to only compile files that have changed; so if you just
fixed a bug in file6.f90, it will only recompile that file (generating file6.o) and perform
the linking step, without touching the other files.

So, what does this Makefile look like?

9

1 FC = gfortran
2 FFLAGS = -Wall -Wextra -march=native -O3
3 LDFLAGS =
4 LIBS = -llapack

6 COMPILE = $(FC) $(FFLAGS)
7 LINK = $(FC) $(LDFLAGS)

9 OBJS =
10 OBJS += mymod.o
11 OBJS += extra.o
12 OBJS += myprog.o

14 all: myprog

16 myprog: $(OBJS)
17 $(LINK) -o $@ $^ $(LIBS)

19 %.o: %.f90
20 $(COMPILE) -o $@ -c $<

22 clean:
23 $(RM) myprog $(OBJS) *.mod

Let’s go through it step by step:

• The first lines declare a few variables for later use. FC is set to the Fortran com-
piler gfortran, FFLAGS contains the compiler flags and LDFLAGS the linker flags. The
COMPILE and LINK variables combine these to get the compile and link commands.

• Most non-trivial programs make use of several function libraries, such as the Linear
Algebra PACKage (LAPACK). These libraries are stored under /usr/lib and have file-
names such as liblapack.a or liblapack.so. You can link such a library with your
program by specifying the -llapack argument to the linker. Note that you have to
omit both lib and the extension (.a or .so) from the library name. Since libraries
have to appear after the object files for the linker, they are specified in the separate
variable LIBS. If the library cannot be found in the system paths, you can tell the com-
piler to search for it in the directory PATH by adding the option -LPATH to LDFLAGS,
e.g., LDFLAGS = -L$HOME/mylib.

• Makefiles are built around rules, which have the form ‘target: prerequisites’ fol-
lowed by some lines with the commands needed to create the target from the prereq-
uisites. Except for a few special targets, such as all and clean, make will assume the
target is a file, and try to recreate it if the target is older than the prerequisites. Note
that the lines with the build commands have to start with a tab character, not spaces!

• If make is invoked without any parameters, the default target is all, which in our case
depends on myprog. myprog in turn depends on the list of object files in $(OBJS). This
is the reason we only specified the object files and not the source code files. The

10

executable is generated by invoking the linker, which combines the object files with
the external libraries. In the Makefile, $@ is an alias for the target. On line 17, for
example, $@ is replaced by myprog when running make. Similarly, $ˆ is an alias for all
prerequisites, in this case the list $(OBJS).

• Since we don’t want to specify a separate rule for every object file, we use wild-
cards. %.o: %.f90means every object file ending in .o depends on the corresponding
source file, ending in .f90. $< on the command line is an alias for the first prerequi-
site, in this case the source file. The -c option tell the compiler to only perform the
compilation step to create an object file, and to skip linking. Note that the object files
are compiled in the order specified in $(OBJS). This means that if the program file
myprog depends on the module mymod, mymod.o needs to be listed before myprog.o.

• The special target clean is used to delete all compiler-generated files. This includes
the executable myprog, the object files listed in $(OBJS) and any automatically gener-
ated module files (with extension .mod).

In the rest of these notes we will assume that you have created a Makefile for each project
based on this template.

4 Debugging; or, where you’ll be spending 90% of your
time

“Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you’re as clever as you can be when you write it,
how will you ever debug it?”

”The most effective debugging tool is still careful thought, coupled with
judiciously placed print statements.”

— Brian Kernighan

The MyProg program does not contain any bugs (fingers crossed) and works as expected.
However, any non-trivial program will be buggy after your first attempt at writing it. In this
course you will spend the majority of your time debugging your algorithms and your code,
not on the actual writing! To ease your pain, we recommend following the golden rules of
debugging:

• Always fix the first error first. Errors have a tendency to cascade, with a simple
typo early on generating loads of errors in the rest of your program.

• Don’t ignore warnings. Warnings are often an indication that your code doesn’t
actually do what you think it does. And if it does happen to work, it’s an indication of
bad programming practice, or worse, style.

• Test early, test often. No matter how large the project, always start with a trivial
program and make sure that works. Then add functionality bit by bit, each time making
sure it compiles and works.

11

• Produce lots of output. You might think that there can’t possibly be a bug in that
beautiful expression, but you’re wrong. There are countless innocuous subtleties to
programming that can result in inaccuracies or unintended side effects. Test your
program by printing the intermediate results.

• Keep a rubber ducky on your desk. You’ve been staring at your code for hours,
it’s obviously correct, yet it doesn’t work. In that case the best thing to do is to try
and explain your code to someone else. It doesn’t matter who it is; they don’t have
to understand Fortran, or even programming in general. It can be your partner, your
mother, your dog, or even a rubber ducky. Just explain it line-by-line; ten to one says
you’ll find the bug.

Even if you do follow these rules — and you should! — you will run into bugs that you don’t
understand. Often they can be fixed by backtracking and checking every intermediate step,
but bugs can be elusive. In those cases a debugger comes in handy. To use a debugger
under Ubuntu, install the gdb and ddd packages. You’ll also need to compile your program
with the -g flag to generate debug symbols, and turn off any optimizations as they might
reorder expressions in your code, i.e.,

gfortran -Wall -Wextra -march=native -g myprog.f90 -o myprog

If the program compiles, you can invoke the debugger with

ddd ./myprog

This will open a window showing the source code of your program and a GDB console (the
actual debugger). You can run the program by pressing the ‘Run’ button, and interrupt
a running program with ‘Interrupt’. You can also insert so-called breakpoints into your
program by right-clicking on a line and selecting ‘Set Breakpoint’. If you then run your
program, it will execute until it encounters the breakpoint, where it will pause. You can then
step through your code by clicking ‘Step’ or ‘Next’. ‘Step’ will move to the next statement in
your code. ‘Next’ does the same, but it will step over subroutines instead of entering them.
You can inspect variables by right-clicking on the name and selecting ‘Print x’ or ‘Display x’.

Play around with the debugger for a while until you’re comfortable using it. It will
come in very handy when you’re hunting bugs, and as we said before, that’s what you’ll be
spending most of your time on.

5 Optimization — where you shouldn’t spend 90% of your
time

“Premature optimization is the root of all evil.”
— Donald E. Knuth

“Rules of Optimization:
Rule 1: Don’t do it.
Rule 2 (for experts only): Don’t do it yet.”

— Michael A. Jackson

12

Impatience is the most important characteristic of a good programmer. However, this does
result in a tendency to focus too much or too early on optimizing code. Don’t. Always make
sure your code is correct and readable before you try to make it faster. And if you do, the
golden rule is: don’t optimize your code, optimize your algorithms. This may seen counter-
intuitive; after all, what’s wrong with fast code? However, modern CPUs are complex beasts,
and unless you’re an expert, it’s not at all obvious which expressions result in the fastest
code. This also means that a lot of tricks that used to be valid ten years ago no longer are.
Let’s look at a few examples:

• Division is slower than multiplication by an inverse. Although true, optimizing
for this results in code that is hard to read, and possibly less accurate. Besides, when
you’re using the -ffast-math option, gfortran will do this for you. A similar observa-
tion holds for exponentiation; it is slower than multiplication in general, but gfortran
will automatically convert x**2 to x * x, provided the exponent is integer.

• Unwinding small loops reduces overhead. Common wisdom says that

1 do i = 1, 3
2 call do_something(i)
3 end do

is slower than

1 call do_something(1)
2 call do_something(2)
3 call do_something(3)

because of the overhead of the loop. Although again true in principle, modern CPUs
use branch prediction, which reduces the overhead. Moreover, unwinding loops re-
sults in more machine code, which might actually hurt performance if it no longer fits
in the CPU instruction cache. When you compile with -march=native, the compiler
knows about the CPU limitations and will decide whether loop unwinding is the smart
thing to do.

• Calculate everything only once. Let’s say that x2 occurs four times in your expres-
sion, then it makes sense to calculate x2 = x**2 separately and use the result four
times, right? Possibly yes, but only if it improves readability. Common subexpression
elimination is something compilers have done for ages, so again gfortran will do this
for you.

There are countless more examples, but I think you get the idea. In short: optimize for read-
ability; write clean code and let the compiler worry about the rest. Unless you’re intimately
familiar with things like cache misses, branch prediction and vector instructions, you won’t
be able to outsmart the compiler.

5.1 Some optimizations you are allowed to use

That being said, there are a few general rules that will prevent your code from accidentally
becoming horrendously slow:

13

• Don’t reinvent the wheel. Don’t try to write your own matrix multiplication routine,
use matmul, or the routines from BLAS (see appendix). Fortran has many built-in
numerical functions that are much faster than anything you’ll be able to write — use
them! (Google ‘Fortran intrinsics’ to get an overview.)

• Use array operations. You can add two arrays by writing

1 do i = 1, n
2 do j = 1, m
3 c(i, j) = a(i, j) + b(i, j)
4 end do
5 end do

or by simply writing c = a + b. Guess which is both faster and more readable?

• Keep inner loops small. The code inside loops, especially in nested loops, is executed
many times. This code will likely be the bottleneck of your program, so it makes sense
to concentrate your optimization efforts there. Move as much code out of the inner
loop as possible.

• Don’t use system calls in nested loops. Certain operations, such as allocating
memory, or writing to the screen or disk, require a system call — a function call to the
underlying operating system. Such calls are expensive, so try to avoid them in nested
loops. Especially disk I/O is slow. Luckily, modern operating systems are smart enough
to buffer these operations, but they can still become a bottleneck.

• Be smart about memory usage. First, don’t use more memory than you need, espe-
cially more memory than is physically available. That will result in paging (storing and
retrieving data from disk), which is orders of magnitude slower than direct memory
access. Second, think about memory layout. Fortran uses column-major ordering for
arrays. This means that the array a b c d

e f g h

i j k l

is actually stored in memory as [a, e, i, b, f, j, c, g, k, d, h, l]. Because of this, operations
within a single column are much faster than operations within a single row; the proces-
sor can easily load a whole column into the cache,5 but not a whole row. It is therefore
important to carefully consider your array layout. For example, if you have an array
containing the coordinates of many particles, then a 3 × n layout will be more efficient
than n × 3. In the former, the x, y and z coordinates are close together in memory,
meaning that operations on single particles will be fast.

These optimizations are more about preventing your code from becoming unnecessarily
slow, than trying to squeeze the last drop of performance out of it. Besides, low-level opti-
mizations generally yield only about a factor of 2 speedup, and that’s if you know what you’re
doing. Optimizing your algorithms by improving scalability is where the real speedups can
be gained.

5The cache is a small amount of memory physically located on the CPU. Access to this memory is much faster
than to the main memory in your computer.

14

5.2 Scalability; or, the importance of big O

If you want your program to be fast, choose your algorithms carefully. The fact that you can
approximate an integral by a simple sum does not mean that’s the best way to do it. In fact,
the naive approach is often the worst method, both in terms of computational complexity,
i.e., how much more expensive the calculation becomes when you increase the size of the
problem, and numerical accuracy, i.e., how small the error becomes when you increase the
number of steps/iterations. Both the complexity and the accuracy of an algorithm are gener-
ally quantified using big O notation. Big O notation is essentially a Taylor expansion of your
algorithm; usually in the step size h to approximate the error, or the dimension n to approx-
imate the computation time. In general, only the highest or lowest power matters, since
that will be the dominant term for large n or small h. Different algorithms for solving the
same problem are compared by looking at their big O characteristics. However, scaling is
not everything. Some algorithms, such as the famous Coppersmith-Winograd algorithm for
matrix multiplication, scale very well, but have such a large prefactor in their computational
cost, that they’re inefficient for all but the largest problems.

Long story short; spend some time doing research before you start coding. Look at dif-
ferent algorithms, compare their accuracies and complexities — don’t forget the complexity
of implementation! — and only then start writing. Don’t just go for the seemingly obvious
approach. For example, naively integrating an ordinary differential equation (ODE), i.e.,
using the Euler method, will make an error of order O

(
h2)

at each integration step, giving
a total error of O(h). Moreover, this method is unstable, meaning that for stiff equations the
solution will oscillate wildly and the error grow very large. The Runge-Kutta method, on the
other hand, makes an error of O

(
h5)

per step, giving a total error of O
(
h4)

(which is why
it’s generally referred to as ‘RK4’). Additionally, the method is numerically stable. Alterna-
tively, the velocity Verlet algorithm has a global error of O

(
h2)

, but it is symplectic, i.e., it
is time-reversible and conserves (a discrete version of the) energy. This makes it ideal for,
e.g., molecular dynamics simulations. Both methods are significantly more accurate than
the Euler method, without being harder to implement. Moreover, better scaling of the error
means that they need fewer iterations, making them also much faster; it’s a win-win.

Numerical analysis is a large field, and it can be quite daunting trying to understand
the merits of different methods, or even finding them. For this, we recommend the book
Numerical Recipes. It covers a wide range of topics, focuses on best practices, and does not
ignore coding effort when comparing algorithms. It even includes the full source code of the
implementations! We recommend always using it as your starting point, with one exception:
linear algebra (see appendix).

We conclude this section with an overview of the computational complexity of certain
common operations. This will give you an idea of the most likely bottleneck in your code.

• All scalar operations are O(1), i.e., constant time. Integer operations are much faster
than floating-point operations. Addition and subtraction are the fastest, followed by
multiplication and finally division. Functions like sqrt, exp, log, sin, cos, etc., are not
always available as single processor instructions, especially for complex numbers, in
which case they are implemented as actual function calls. It goes without saying that
this is much slower than basic arithmetic.

• Scaling a vector or a matrix means performing an operation on each element. The
complexity is therefore O(n) for vectors and O

(
n2)

for matrices, where n is the di-

15

mension.

• Vector addition and taking an inner product are O(n), matrix addition is O
(
n2)

.

• Matrix-vector multiplication means taking an inner product for each row, so the com-
plexity is O

(
n2)

.

• Solving a system of linear equations is also O
(
n2)

, but the prefactor is much larger
than for matrix-vector multiplication.

• Naive matrix-matrix multiplication is O
(
n3)

. Libraries such as BLAS and LAPACK are
smarter and do it in O

(
nlog2(7)) ≈ O

(
n2.807)

. Another reason to not write this yourself.6

• Taking the inverse of a matrix and calculating the eigenvalues/eigenvectors are both
O

(
n3)

. However, eigendecomposition has a much larger prefactor and is therefore
significantly slower. It is logically the most expensive matrix operation, since all oper-
ations on a diagonal matrix are O(n).

• Iterative algorithms like conjugate-gradient or Krylov-subspace methods are supra-
convergent in the number of iterations, i.e., the error decreases by a constant factor
at each iteration. They are especially suitable for sparse matrices, since each iteration
is O(n), where n is the number of non-zero elements instead of the dimension.

6 Coding style

“Consistently separating words by spaces became a general custom about
the tenth century A.D., and lasted until about 1957, when FORTRAN
abandoned the practice.”

— Sun FORTRAN Reference Manual

A major part of writing clean code is following a sensible coding style. Although style is
subjective and a matter of taste, consistency is not. Which style you pick is not as important
as sticking to it. However, certain styles are objectively better than others. While we won’t
force a particular style, you will make it a lot easier for your instructors to read your code
if you follow these guidelines, and that’s always a good thing. Remember: you will be
spending a lot more time reading your code than writing it; keep it clean.

• Line width — Limit the line width of your source to 80 characters. This has been
standard practice for decades, and vastly improves both readability and the ability to
cleanly print your code. If you do need more than 80 characters on a line, use the
Fortran continuation character ‘&’.

• Indentation — Indent every block, be it a program, module, subroutine, function,
do or if block by 4 spaces. Don’t use tabs! Code that looks properly aligned on
you machine may look horrible on another because of a different tab setting. Proper
indentation makes it clear where control structures begin and end, and is a major
boon to readability. If the indentation puts you over the 80 character limit, that’s an
indication that you need to refactor your code intro smaller subroutines. Four levels
of indentation should generally be the maximum.

6The Fortran intrinsic matmul is actually implemented using BLAS.

16

• Spaces — Put spaces around binary operators, including ::, and after keywords and
commas, not after unary operators, function names or around parentheses. For exam-
ple

1 real(8) :: x, y
2 x = func1()
3 if ((x < 0) .or. (x > 1)) then
4 y = func2(-2, x + 3)
5 end if

• Naming — Identifiers in Fortran can’t contain spaces. Use CamelCase to separate
words in program and module names, and lower_case_with_underscores for function
and variable names. Names should be descriptive, but they don’t have to be overly
long. You can use calc_deriv instead of calculate_derivative, but naming your
function cd is a shooting offense. Unfortunately, until the appearance of Fortran 90,
only the first six characters of an identifier were significant, leading to such beautifully
transparent function names as dsytrf in legacy codes like LAPACK. They could get
away with it because it was the eighties; you can’t. One exception to this rule is
using short identifiers like i, j and k as loop counters, or x and y as arguments to
mathematical functions. However, these should always be local variables or function
arguments, never global identifiers.

• Functions and subroutines — Functions and subroutines should follow the Unix
philosophy: do one thing and do it well. Split your program into small self-contained
subunits. This makes it a lot easier to understand your code, and to modify it after-
wards. If a function does not fit in its entirety on a single screen, it is too long — split
it up. Don’t worry about the overhead of calling a function. If you use optimization
flags like -O3, the compiler will try to inline them anyway.

• Modules — Separate your program into logical units. Combine related functions and
subroutines into modules. For example, a single module with function integrators, or
ODE solvers. If you use the object-oriented features of Fortran, it is also good practice
to create separate modules for classes, e.g., a sparse-matrix object.

• Comments — Comments are kind of a double-edged sword. If used wrongly, they can
actually hurt readability. The golden rule is: never explain how it works, just what
it does. The how should be evident from the code itself. “Good code is its own best
documentation.” If you follow the other guidelines regarding naming and keeping
functions small, you can generally suffice with a small comment at the beginning of
every function or subroutine.

One final point, not of style, but important nonetheless: start every program and module
with implicit none. This is an unfortunate holdover from older versions of Fortran; it
forces you to explicitly declare all variables, instead of Fortran trying to infer the type from
the name. Forgetting implicit none and making a typo in one of your variable names is a
major source of bugs. Never ever omit this!

17

A Linear algebra

When it comes to linear algebra, don’t try to write your own routines, always use the BLAS
(Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACKage)7 libraries. Ev-
eryone does. Maple, Mathematica, Matlab and Python (with NumPy and SciPy) all use it
under the hood. The dot_product and matmul intrinsics in Fortran are implemented with
it. It’s installed on every supercomputer and contains some of the most sophisticated and
optimized code known to man. The fact that these libraries are written in Fortran is actu-
ally one of the main reasons to use Fortran for high-performance computing. Nevertheless,
BLAS and LAPACK can be a bit low-level sometimes, and the Fortran 77 syntax doesn’t help
matters much. For your convenience, we therefore provide two functions for common tasks:
calculating the inverse and the eigenvalues + eigenvectors of a real symmetric matrix. This
should help you get started. For other functions, use Google. BLAS and LAPACK are quite
extensively documented.

1 ! Calculates the inverse of a real symmetric matrix.
2 !
3 ! a - On input, a real symmetric matrix. Only the upper triangular part is
4 ! accessed. On output, A is overwritten by its inverse.
5 subroutine matinvrs(a)

7 real(8), intent(inout) :: a(:, :)

9 integer, external :: ilaenv

11 integer :: i, j, n, nb, lwork, info, ipiv(size(a, 1))
12 real(8), allocatable :: work(:)

14 n = size(a, 1)

16 ! Calculate the optimal size of the workspace array.
17 nb = ilaenv(1, "DSYTRI", "U", n, -1, -1, -1)
18 lwork = n * nb

20 allocate (work(lwork))

22 ! Invert the matrix.
23 call dsytrf("U", n, a, n, ipiv, work, lwork, info)
24 if (info /= 0) stop "error in call to dsytrf"
25 call dsytri("U", n, a, n, ipiv, work, info)
26 if (info /= 0) stop "error in call to dsytri"

28 deallocate (work)

30 ! Copy the upper triangular part of A to the lower.

7http://www.netlib.org/lapack/. Under Ubuntu, install the liblapack-dev package to obtain BLAS and
LAPACK, and don’t forget to add -lblas and -llapack to $(LIBS) in your Makefile.

18

http://www.netlib.org/lapack/

31 do j = 1, n - 1
32 do i = j + 1, n
33 a(i, j) = a(j, i)
34 end do
35 end do

37 end subroutine

1 ! Calculates the eigenvalues and, optionally, the eigenvectors of a
2 ! real symmetric matrix.
3 !
4 ! jobz - If jobz = "N", compute eigenvalues and eigenvectors, if jobz = "V",
5 ! compute both.
6 ! a - On input, a real symmetric matrix. Only the upper diagonal part is
7 ! accessed.
8 ! w - On output, contains the eigenvalues of A.
9 ! v - On output, if jobz = "V", the columns are the eigenvectors of A.

10 subroutine mateigrs(jobz, a, w, v)

12 implicit none

14 character, intent(in) :: jobz
15 real(8), intent(in) :: a(:, :)
16 real(8), intent(out) :: w(:), v(:, :)

18 integer :: n, lwork, info
19 real(8), allocatable :: work(:)

21 n = size(a, 1)
22 v = a

24 ! Query the optimal size of the workspace.
25 allocate (work(1))
26 lwork = -1
27 call dsyev(jobz, "U", n, v, n, w, work, lwork, info)
28 lwork = int(work(1))
29 deallocate (work)

31 allocate (work(lwork))

33 ! Diagonalize the matrix.
34 call dsyev(jobz, "U", n, v, n, w, work, lwork, info)
35 if (info /= 0) stop "error in call to dsyev"

37 deallocate (work)

39 end subroutine

19

B Plotting with PLplot

Plotting the results of your calculation from Fortran is easiest with PLplot. PLplot is a cross-
platform scientific plotting package with support for multiple programming languages. Un-
der Ubuntu, you need to install the packages libplplot-dev and plplot11-driver-cairo.
The plplot-doc package might also come in handy. If you have it installed, you can access
the documentation of, e.g., the plline subroutine by typing

man plline

on the command line.
In order to successfully compile a program using PLplot, you need quite a few compiler

flags and libraries. However, Ubuntu (and most other distributions) is smart enough to
figure that out for you. Add the following two lines near the top of your Makefile, but after
the declarations of FFLAGS and LIBS:

FFLAGS += $(shell pkg-config --cflags plplotd-f95)
LIBS += $(shell pkg-config --libs plplotd-f95)

The pkg-config command will generate the correct compiler flags on the fly.

B.1 Plotting functions

As a quick introduction to using PLplot, we go through the following demo program step by
step:

1 program PLplotDemo

3 use plplot

5 implicit none

7 call plparseopts(PL_PARSE_FULL)

9 ! gnuplot color scheme
10 call plscol0(0, 255, 255, 255) ! white
11 call plscol0(1, 255, 0, 0) ! red
12 call plscol0(2, 0, 255, 0) ! green
13 call plscol0(3, 0, 0, 255) ! blue
14 call plscol0(4, 255, 0, 255) ! magenta
15 call plscol0(5, 0, 255, 255) ! cyan
16 call plscol0(6, 255, 255, 0) ! yellow
17 call plscol0(7, 0, 0, 0) ! black
18 call plscol0(8, 255, 76, 0) ! orange
19 call plscol0(9, 128, 128, 128) ! gray

21 call plinit()

23 call plot_x2(0d0, 1d0, 21)

20

25 call plend()

27 contains

29 subroutine linspace(x1, x2, n, x)

31 real(8), intent(in) :: x1, x2
32 integer, intent(in) :: n
33 real(8), intent(out) :: x(n)

35 real(8) :: dx
36 integer :: i

38 dx = (x2 - x1) / (n - 1)
39 do i = 1, n
40 x(i) = x1 + (i - 1) * dx
41 end do

43 end subroutine

45 subroutine plot_x2(x1, x2, n)

47 real(8), intent(in) :: x1, x2
48 integer, intent(in) :: n

50 real(8) :: x(n), y(n)
51 integer :: i

53 call linspace(x1, x2, n, x)
54 do i = 1, n
55 y(i) = x(i)**2
56 end do

58 call plcol0(7)
59 call plenv(x(1), x(n), y(1), y(n), 0, 0)
60 call pllab("x", "y", "y=x#u2")

62 call plcol0(1)
63 call plline(x, y)

65 call plcol0(2)
66 call plpoin(x, y, 2)

68 end subroutine

70 end program

21

• use plplot imports the PLplot functions and subroutines into our program.

• call plparseopts(PL_PARSE_FULL) parses any command-line arguments of your pro-
gram that are relevant for PLplot (see below).

• By default, PLplot plots all figures on a black background with red axes. This is incon-
venient, especially for printed figures. Lines 11–19 change the color scheme of color
map 0 (which is used for line plots) to that of gnuplot (with the exception of color 0,
since that’s the background color).

• All plotting commands must be given between the calls to plinit and plend.

• plot_x2 plots the function y = x2 for n values between x1 and x2.

• The linspace subroutine generates a linearly spaced array, similar to the MATLAB
function of the same name.

• call plcol0(7) sets the current foreground color to 7 (black), which we use for the
axes and labels. The call to plenv sets the minimum and maximum values of the axes,
scales the plot to fill the screen (the first 0 parameter) and draws a box with tick marks
(the second 0). pllab is then used to set the x and y labels and the title of the plot.

• Finally, we draw a red line (color 1) through the points with plline and draw the
points themselves in green (color 2) with plpoin. The points are drawn with the ‘+’
glyph (code 2).

If the program compiles successfully, you can run it with

./plplotdemo -dev xcairo

The argument -dev xcairo tells PLplot to use the Cairo X Windows driver, which will open
a window showing the plot. It is also possible to generate a PostScript image by typing

./plplotdemo -dev pscairo -o demo.ps

and similarly a PDF with pdfcairo. You can find out about the command-line parameters by
running

./plplotdemo -h

or by specifying no arguments at all.

B.2 3D animations

For some programs, such as a molecular dynamics simulation, it is convenient to be able
to watch the motion of particles in real time. For this we’ll make use of the 3D plotting
facilities of PLplot. First, we setup the viewport with

1 call plsdev("xcairo")
2 call plinit()

4 call pladv(0)
5 call plvpor(0d0, 1d0, 0d0, 1d0)
6 call plwind(-1d0, 1d0, -2d0 / 3, 4d0 / 3)
7 call plw3d(1d0, 1d0, 1d0, xmin, xmax, ymin, ymax, zmin, zmax, 45d0, -45d0)

22

Since the animation will play real-time, we specify the Cairo X Windows driver directly
with plsdev instead of parsing the command line. Lines 5–7 map the world coordinates —
bounded by xmin, xmax, etc. — to the screen. This will result in a box which is rotated by 45
degrees around the z and x axes. We end the program with

1 call plspause(.false.)
2 call plend()

The call to plspause makes sure the program terminates after the animation finishes, in-
stead of leaving the last frame on screen indefinitely.

We plot particles by calling the following subroutine:

1 subroutine plot_points(xyz)

3 real(8), intent(in) :: xyz(:, :)

5 call plclear()
6 call plcol0(1)
7 call plbox3("bnstu", "x", 0d0, 0, "bnstu", "y", 0d0, 0, "bcnmstuv", &
8 "z", 0d0, 0)
9 call plcol0(2)

10 call plpoin3(xyz(1, :), xyz(2, :), xyz(3, :), 4)
11 call plflush()

13 end subroutine

xyz is a 3×n array, with the first row containing the x coordinates of the particles, the second
the y, and the third the z coordinates. We first clear the screen with plclear, then draw the
axis with plbox3, and finally the particles with plpoin3. The particles are drawn as small
circles (code 4). Finally, we update the screen by calling plflush. Calling plot_points
repeatedly results in a smooth animation. Although this works quite well for checking the
movement of particles, PLplot is not a 3D engine and won’t run at more than about 100
frames per second. We therefore recommend not plotting every step in your simulation, but
skipping a few frames.

For more documentation on PLplot, Google is your friend.

C Parallel computing — employing a thousand monkeys

“Here be dragons.”

If you have a multicore processor, or even multiple processors or machines available, one ob-
vious way to speed up your code is to employ multiprocessing. However, this is a difficult and
dangerous endeavor, especially if you don’t have any prior experience. Parallel programs
are far more difficult to write and debug than sequential ones, mostly because concurrency
introduces entire classes of potential bugs, like race conditions and deadlocks. Also, even
if it does work, it’s not always beneficial. Some algorithms simply don’t scale to multi-
ple processors. Nevertheless, parallel programming is unavoidable in high-performance
computing. While a true introduction is outside the scope of these notes, we’ll give a few
guidelines that might help you from accidentally shooting yourself in the foot:

23

• Make sure your program works first. Although this is true for optimizations in
general, it is doubly so for parallel programs. Programs are much harder to debug
when they run in parallel, so leave parallelization for the final step.

• Check whether the bottleneck in your program benefits from parallelization.
Not every algorithm scales well. It would be a waste of time to spend effort paralleliz-
ing your code only to discover that it’s now actually slower.

• Use OpenMP.8 For the ICCP you won’t be using supercomputers or systems with
multiple nodes. Sophisticated libraries like MPI9 are overkill and introduce needless
complexity. OpenMP only works on single machines with shared memory, but it is by
far the easiest framework to use. All you need to do is add -fopenmp to FFLAGS and
LDFLAGS in your Makefile and add a few directives to your code. For example

1 !$omp parallel do
2 do i = 1, n
3 y(i) = x(i) * i
4 end do
5 !$omp end parallel do

will execute the loop in parallel. Use Google for more information on how to use
OpenMP.

• Don’t use more threads than you have physical cores. This may seem like stating
the obvious, but it actually happens rather often. Most modern Intel processors imple-
ment hyper-threading. This doubles the apparent number of cores, which helps with
task switching when you’re running many different programs at once. However, for
CPU intensive calculations, like the ones you’ll be running, the threads will be compet-
ing for the available physical cores. In that case doubling the number of threads will
actually harm performance.

8OpenMP is available for C, C++ and Fortran. If you are using C++, the Intel Threading Building Blocks library
is a possible alternative; it has high-level support for certain algorithms and data structures.

9Message Passing Interface: a standardized protocol for communications between nodes in a cluster — used on
pretty much every supercomputer in the TOP500.

24

	Getting your toes wet with Fortran and Linux
	Structuring your code to keep your instructors sane
	Functions and subroutines
	Modules

	The magic of Makefiles
	Debugging
	Optimization
	Some optimizations you are allowed to use
	Scalability; or, the importance of big O

	Coding style
	Linear algebra
	Plotting with PLplot
	Plotting functions
	3D animations

	Parallel computing

