
PHY481 - Lectures 7 and part of 8

Sections 3.5-3.6 of PS

A. Finding the electric field - continued

(vi) Uniform shell of charge (shell theorems)

The shell theorems state that (i) the electric field inside a uniform shell of charge is zero

and (ii) that the field outside the uniform shell of charge is the same as that of a point

charge with the same total charge as the shell.

These results are easy to derive from Gauss’s law, in the same way as for the cylindrical

case. However now we use spherical surfaces of radius r < R and r > R, where R is now

the radius of the spherical shell of charge. The shell has charge density σ and the total

charge on the shell is Q = 4πR2σ. We first consider a Gaussian surface consisting of a

spherical shell, which is concentric with the charged shell, with radius r < R. Noting that

by symmetry the electric field is directed radially and only depends on r, then since there

is no enclosed charge the electric field for r < R is zero in agreement with the first shell

theorem. Considering a spherical shell of radius r > R, we have,
∫

S

~E ·
~dA = 4πR2E(r) =

Q

ǫ0

so that ~E =
1

4πǫ0

Qr̂

r2
(1)

which proves the second shell theorem.

Now lets prove the first shell theorem directly. Consider a general point ~r inside the

sphere. If we place a spherical co-ordinate system at that point, then we can draw a cone of

infinitesimal solid angle dΩ = sinθdθdφ extending from this origin to the spherical surface.

The cone has two intersections with the spherical shell, on opposite sides of the sphere. The

areas of the spherical shell subtended by this solid angle are dA1 = r2

1
dΩ and dA2 = r2

2
dΩ.

The magnitude of the electric field at ~r due to these two areas of charge is given by,

dE = kσ(
dA1

r2
1

−

dA2

r2
2

) = 0 (2)

This construction applies to all parts of the spherical surface, proving the first shell theorem.

Proof of the second shell theorem is more involved.

It is also relatively straightforward to demonstrate the second shell theorem by direct

integration, using polar co-ordinates it may be shown that the electric field in the radial

direction for r > R where R is the radius of the shell, is given by,

Er(r) =
σ

4πǫ0

∫ π

0

(r − Rcosθ)2πR2sinθdθ

(R2sin2θ + (r − Rcosθ)2)3/2
(3)
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which reduces to the point charge result. in deriving this expresion we used

dA = 2πR2sinθdθ

(vii) Uniformly charged sphere of radius R

Again we carry out the flux integral to find, for a surface of radius r,

φE = E(r)4πr2 (4)

The charge enclosed by this surface changes with r. For r < R, the enclosed charge is given

by,

q(r < R) =
4π

3
r3ρ (5)

while for r > R we have,

q(r > R) =
4π

3
R3ρ (6)

Using Gauss’s law φE = q/ǫ0, we thus have,

E(r < R) =
rρ

3ǫ0

=
Q

4πǫ0

r

R3
(7)

where Q = 4πρR3/3 is the total charge on the sphere. The electric field outside the sphere

of charge is like that of a point charge (shell theorem),

E(r > R) =
1

4πǫ0

Q

r2
(8)

In both cases, the direction of the electric field is r̂. (see problem 3.19)

B. Electric potential energy and electric potential

Physical definition

The electric potential energy (U) is the potential energy due to the electrostatic force.

As always only differences in potential energy correspond to physical observables. However

we define a reference potential energy and calculate all differences in potential energy with

respect to this reference. In electrostatics, the potential energy is defined to be zero when

the charges are an infinite distance apart.

The difference in potential energy in moving a charge between two positions a and b is

defined in terms of the work done in moving the charge between these two positions, so that,

∆Uab =
∫ b

a

~Fext ·
~ds = −

∫ b

a

~F ·
~ds (9)
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where ~F is the Coulomb force on the charge and ~ds is a small element of distance along the

path we choose to take from a to b. Note that Eq. (19) does not depend on the path we

take. All paths from a to b give the same change in potential energy. Note also that Eq.

(19) is true only for conservative forces, ie. systems in which there is no dissipation (e.g.

friction).

Instead of using the Coulomb force, we defined the electric field which is the force per

unit charge. In the same way we define the electric potential, V , to be the potential energy

per unit charge, ie. U = qV . The electric potential is so important it is given its own unit,

the volt (V ). In terms of the electric potential, equation (19) is,

∆Vab == −

∫ b

a

~E ·
~ds (10)

From this equation we see that the units of voltage are Nm/C. We have defined the volt to

be the unit of voltage, so we have the relation V = Nm/C or V/m = N/C. So far we have

used N/C as the units of electric field. This is usual in electrostatics. However in circuit

theory it is usual to use volts/meter (V/m).

If we move a charge q from a point a to a point b, then the charge in potential energy,

Uab, of the system is

∆Uab = −

∫ b

a

~F ·
~ds (11)

- ~F is the electric force on charge q due to all of the other charges in the system

- ~ds is a small displacement along the path we choose to take from a to b.

If we define the electric potential to be the potential energy per unit charge, so that V = U/q,

then the difference in electric potential is given by,

∆Vab =
1

q
∆Uab = −

∫ b

a

~E ·
~ds (12)

We define the potential energy and hence the potential of a charge at infinity to be zero.

With the definition of potential given in Eq. (22) and taking the potential at infinity to

be zero, we can calculate the potential at each position from the electric field.
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