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PHY481 - Lecture 30: Magnetic materials
Griffiths: Chapter 6

Magnetostatics of materials

No applied current or external field
The magnetostatics treatment of magnetic materials is based on the concept of the magnetic moment density or

magnetization ~M . The magnetic field produced by a given magnetization is treated by finding the current sources that
produce the magnetization ~jb = ~∇ ∧ ~M , ~Kb = ~M ∧ n̂. Once we have these bound currents we can find the magnetic
fields inside and outside magnetized domains using the standard methods of magnetostatics. Three examples are:

(i) Magnetized cylinder of radius R and length l, with l >> R (needle), with ~M = M0ẑ and ẑ the cylinder axis.
In that case, the ~jb = 0 and ~Kb = M0φ̂. We can then use Ampere’s law to find the field: Bl = µ0Kbl, so that

~B = µ0Kbẑ = µ0
~M . Outside the cylinder and for distances r >> l, the magnetic field looks like that of a magnetic

dipole, with dipole moment ~m = ~MπR2l.
(ii) Magnetized disc of radius R and thickness l << R, with ~M = M0ẑ and ẑ the cylinder axis.
Again ~jb = 0 and ~Kb = M0φ̂. The magnetic field is not like that of a current ring, with the current in the ring is

I = Kbl. At long distances the magnetic field is like that of a dipole, with dipole moment again ~m = ~MπR2l, while
the magnetic field at the center of the disc is µ0Kbl/2R. If the disc is really thin (l → 0), the magnetic field at the
center of the disc goes to zero. This means that ~B 6= µ0

~M .
(iii) Magnetized sphere of radius R and magnetization ~M = M0ẑ.
In this case we need to carry out a more detailed calculation (see last lecture). The magnetic field inside the sphere

turns out to be a constant ~Bin = 2
3µ0

~M . The magnetic field outside the sphere is like that of a dipole, with dipole
moment ~m = 4π

3 R
3 ~M .

With applied field or applied current
In this case bound currents still occur, but we also have to take into account the external current or magnetic field.

This is most easily carried out for the case of an external current if , that generates a field as described by Ampere’s
law. Actually the field generated by the external (or free) current is usually called the magnetic intensity ~H and is
found using

∮
~H · d~l = if , or ~∇∧ ~H = ~jf . All of the calculations we did before using Ampere’s law can be carried out

to calculate ~H. We also need to find the magnetic field, which requires that we treat both the bound currents and
the free currents, using;∮

~B · d~l = µ0(if + ib); or ~∇∧ ~B = µ0(~∇∧ ~H + ~∇∧ ~M) so that ~B = µ0( ~H + ~M) (1)

Note that the equation ~B = µ0( ~H + ~M) applies even in cases where there is magnetization, but no applied current
(if = 0), however we cannot simply set ~H = 0. Instead we only have

∮
~H · d~l = 0 and this integral can be zero even

though ~H is not zero everywhere. This can be checked by writing ~H = ~B/µ0 + ~M and checking that the resulting
expression for ~H is zero for all contours.

Given the external current we find the magnetic intensity, ~H it produces but we don’t know either the bound
currents or the magnetization so we can’t go further without a relation between the applied field and either of these
quantities. The simplest and most often discussed case is linear isotropic response - this is the only case we treat in
this course.

Linear magnetic materials
Linear magnetic materials are characterized by a linear relation between the magnetization and the magnetic field

intensity, ~M = χm ~H, which is similar to the definition of linear dielectrics, ~P = ε0χe ~E but not completely analogous.
We then have,

~B = µ0( ~H + ~M) = µ0(1 + χm) ~H = µ ~H (2)

where χm is the magnetic susceptibility and µ = µ0(1 +χm) is the permeability. Sometimes the relative permeability
µr = 1 + χm is also used.

Paramagnets are linear materials with χm > 0
Paramagnets do not exhibit spontaneous magnetic order, nevertheless they can have large magnetic susceptibilities.

The magnetic moment of paramagnetic materials tries to align in the direction of the applied magnetic field. Actually
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many materials magnetically order at sufficiently low temperatures, but when the ordering temperature is very low,
materials are called paramagnetic. The susceptibility of paramagnetic materials obeys the Curie Law,

χm =
µ0C

T
(3)

Paramagnetic materials are attracted to magnets.

Diamagnets are linear materials with −1 < χm < 0
If elementary particles did not have an intrinsic magnetic moment, then all materials would be diamagnetic. That

is, the magnetic moment of materials would be opposite the direction of the applied field. Superconductors are the
best diamagnets, and magnetic fields can be completely excluded from the interior of a superconductor. The phase is
called the Meissner phase of a superconductor. From the expression,

~B = µ0(1 + χm) ~H (4)

it is evident that in order for flux to be completely expelled so that ~B = 0 inside the superconductor, we must have,
χm = −1. A measurement of χm is one of the first measurements that people do to determine if a material is in the
superconducting state. Diamagnetic materials are repelled from magnets. This enables the possibility of magnetic
levitation. Since superconductors are the best diamagnets, they are good candidates for possible magnetic levitation
applications, such as maglev trains.

Magnetic field enhancement in a solenoid containing iron
For a solenoid with n turns per unit length and carrying current I, we found,

B0 = µ0nI (5)

This is the result for a solenoid in air. Now if we place a material inside the solenoid, we use Ampere’s law for the
field intensity, and ~B = µ ~H, to find,

H = ni; and B = µH = µ0(1 + χm)ni (6)

From this expression it is evident that the magnetic field inside the solenoid is greatly enhanced if the center (the
core) of the solenoid is composed of a magnetic material which has large magnetic susceptibility χm, for example
permalloy. Note that this seems different to dielectrics where the electric field is reduced when a dielectric is placed
between the plates of an isolated capacitor. However, if a capacitor is connected to a battery, the electric field is
unaltered by the addition of the dielectric, however the charge stored increases by a large amount. If we associate the
charge stored on the capacitor with the flux in the solenoid, then the two devices appear more similar. This is the
analogy that is often used.

The energy stored in the solenoid is still Li2/2, but we need to calculated L again. L is defined through

Li = Nφ so that L = N2µA/l (7)

This is just the formula that we have for vacuum, but with µ0 → µ. The energy stored in the inductor thus increases
dramatically when a large permeability material is used for the core of the inductor. As an example, consider an
inductor containing permalloy with µ = 10000 and with N = 10, 000, A = 0.1m2, l = 1m, carrying a current of
20A, then U = N2µAi2/l = 4 × 1013J (a gallon contains about 108J). The magnetic energy is a very large number
and looks attractive for energy storage applications. However there are a number of critical limitations, ranging from
hysteresis to resistive losses and the effects of large magnetic fields on materials and people.

The stored energy is Li2/2 = volumeB2/2µ, from which we deduce that the energy density is 1
2
~B · ~H.


