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PHY481 - Lecture 6: Gauss’s law
Griffiths: Chapter 2

Electric field lines - Faraday’s ideas
An extremely useful concept in developing new ideas and results in EM is the concept of electric field lines. An

electric field line is a series of vectors where at each point the vector points in the direction of the force on a unit
charge at that point and it has a length equal to the magnitude of the force. ie. we plot the vector function ~E. The
properties of electric field lines constructed in this way are as follows.

1. At each point along an electric field line, the force on a positive test charge is in a direction tangent to the field
line at that point. This implies that electric field lines come out of positive charges and go into negative charges.

2. The density of lines at any point in space is proportional to the magnitude of the electric field at that point.
3. Electric field lines begin and/or end at charges, or they continue off to infinity. i.e. they do not begin or end in

free space.
4. Electric field lines do not cross.

Very important special case: conductors
1. If there is no current flowing, then the electric field is zero, ~E = 0, inside a conductor.
2. If there is no current flowing, then at the surface of a conductor, the electric field is normal to the surface of the

conductor.

Gauss’s Law
The integral form of Gauss’s law in free space is,

Electric flux = φE =
∮
S

~E · d~a =
qencl
ε0

=
q

ε0
(1)

where qencl is the total charge inside the closed surface S, and usually we will replace it by q, with the fact that it
is the enclosed charge taken implicitly. This law follows from Coulomb’s law and superposition in combination with
the properties of electric field lines. The proof of Gauss’s law in general follows from the following statements.

Property 1. (i) For a charge q with a spherical shell at radius r it is easy to prove that Gauss’s law is correct. (ii)
For a charge that is outside of a spherical shell it is also easy to prove that the total flux through the shell is zero. This
is proven by noting all flux lines originate or terminate at a charge, or go to infinity. Therefore a flux line originating
from a charge outside the spherical shell and which enters the spherical shell must also leave the spherical shell. The
net flux through the surface of the shell due to that flux line is then zero.

Property 2. Flux lines are like a conserved fluid flow so that any surface drawn around a charge must have the
same total flux through it. This gives us a great deal of freedom in drawing the surfaces through which flux flows.
For a single charge clearly a spherical surface is most convenient.

Property 3. If we have a distribution of charge inside a Gaussian surface, we can break the charge up into small
pieces and treat each piece with a spherical surface, and the total flux through a surface surrounding all of the charges
is the same as the sum of the flux due to each little piece of charge through a spherical surface surrounding that
charge. This property is due to the superposition property that is correct in electrostatics.

The qencl on right hand side of Eq. (1) is the total charge in the volume τ enclosed by the closed surface S, which
may be written in either discrete or continuous forms,

qencl =
∑
iετ

qi =
∫
τ

ρ(~r)d~r (2)

where ρ(~r) is the charge density.
The differential form of Gauss’s law follows from using the last expression on the RHS of this equation and applying

the divergence theorem to the LHS of Eq. (1) to find,∮
S

~E · d~a =
∫
τ

(~∇ · ~E)dτ =
1
ε0

∫
τ

ρdτ which implies ~∇ · ~E = ρ/ε0 (3)

Note that the superposition integral gives the solution to electrostatics and must satisfy the differential forms, ie.

If ~E(~r) =
∫
τ

[
kρ(~r′)d~r′

|~r − ~r′|3
(~r − ~r′)] then ~∇∧ ~E = 0, ~∇ · ~E = ρ/ε0 (4)

Solving electrostatics problems using Gauss’s law
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Gauss’s law is only useful for exact solutions when the electric field has high symmetry, typically either spherical,
cylindrical or planar symmetry. The symmetry of the electric field follows from the symmetry of the charge
distribution that we are given.

1. Spherical symmetry: In this case we consider shell’s of charge or even spheres of charge where the charge density
only depends on r. Consider first a uniform shell of charge of radius R, with charge per unit area σ (with units C/m2

of course). Find the electric field for r < R and r > R. First we note that “by symmetry” the electric field only
depends on r, so we can write ~E(~r) = E(r)r̂. We therefore choose a spherical surface and on that surface E(r) is a
constant. The flux integral can then be carried out, so that,

φE =
∮
E(r)r̂ · r̂da =

∫ π

0

∫ 2π

0

E(r)r2sin(θ)dθdφ = 4πr2E(r) (5)

The charge enclosed by the Gaussian surface depends on the radius r: For r < R, qencl = 0; while for r > R,
qencl = 4πR2σ = Q. we then find that E(r) = kQ/r2 for r > R and E(r) = 0 for r < R. This is the famous
shell theorems, which in workds state that the electric field inside a uniform shell of charge is zero and outside is
like a point charge at the origin. Now consider two uniform shells of charge of radii R1 and R2, having charge
densities σ1 and σ2. Find the electric field in the three regimes r < R1, R1 < r < R2, and r > R2. Since we have
spherical symmetry we of course have Eq. (5) so we only need to find the enclosed charge. In the three cases we have
qencl = 0, Q1, Q1 + Q2. Alternatively we could solve the problem by superposition i.e. add the electric fields due to
the two shells of charge. Capacitors are the special case where Q1 = −Q2. What does the electric field look like in
that case? We will return to this a little later. It is relatively straightforward to generalize to an arbitrary charge
density ρ(r).

2. Cylindrical symmetry: Here the most basic problem is a uniform cylindrical shell of charge or radius s1. We
choose a cylindrical Gaussian surface so the electric field is ~E = E(s)ŝ. The flux through the Gaussian surface is,

φE =
∮
E(s)ŝ · ŝda =

∫ L

0

∫ 2π

0

E(r)sdφdz = 2πsLE(s) (6)

The enclosed charge is 0 for s < s1, and 2πs1Lσ for s > s1, so the electric field is E(s) = 0 for s < s1 and
E(s) = λ/(2πε0s) for s > s1. Here it is nice to define the charge per unit length λ = 2πs1σ. Using a similar procedure
or superposition it is straightforward to write down the electric field due to two concentric cylinders of charge, with
radii s1 and s2 and charge per unit length λ1 and λ2. Capacitors correspond to the case λ1 = −λ2. It is relatively
straightforward to generalize to an arbitrary charge density ρ(s).

3. Planar symmetry: Here we consider an infinite, uniform, thin sheet of charge lying in the x-y plane, with
charge density σ per unit area. By symmetry the electric field is ~E(~r) = E(z)ẑ. Now we can choose a cylindrical or
rectangular Gaussian surface as the only flux is through the top and bottom surfaces. If we define a to be the area of
the top and bottom surfaces, we find the flux to be,

φE =
∮
E(s)ŝ · ŝda = 2aE(z) (7)

The electric field is then ~E(~r) = σẑ/2ε0. The case of many parallel sheets of charge can be solved using superposition
or by applying Gauss’s theorem in a similar way. Capacitors correspond to the case of two sheets with σ1 = −σ2.
What does the electric field look like in that case? What does the electric field look like if we consider a finite sheet
of charge?

4. The remarkable case of the electric field near a conducting surface
There is a general and remarkable result for conducting surfaces that follows straightforwardly from the fact that

E|| = 0 at conducting surfaces and that ~E = 0 inside conductors. In that case (i) Charges inside conductors are
“screened” and the net charge ends up at the surfaces of the conductor density. (ii) If there is a charge density σ(~r)
at position ~r at the surface of a conductor, then the electric field near ~r and outside the conductor is (σ(~r)/ε0)n̂.


