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PHY481 - Midterm IB (2009)
Time allowed 50 minutes. Do all questions - to get full credit you must show your working.

The general solutions to Laplace’s equation with two co-ordinates allowed to vary are:
V (x, y) = (a+ bx)(c+ dy) +

∑
k[A(k)cos(kx) +B(k)sin(kx)][C(k)cosh(ky) +D(k)sinh(ky)] (Cartesian);

V (s, φ) = (A+Bln(s)) +
∑∞
n=1(Ansn + Bn

sn )(Cncos(nφ) +Dnsin(nφ)) (Cylindrical);
V (r, θ) =

∑
l=0(Alrl + Bl

rl+1 )Pl(cosθ) (Spherical polar).

Problem 1. Write down Gauss’s law in integral form and derive the differential form of Gauss’s law from it. Write
down Faraday’s law in integral form and derive the differential form from it. Derive the boundary conditions

E
‖
above − E

‖
below = 0; E⊥above − E⊥below =

σ

ε0
(1)

for the parallel electric field and perpendicular electric field just above and just below a thin surface that has charge
density per unit area σ.

Solution
Gauss’s law in integral form is, ∮

~E · d~a =
q

ε0
(2)

Using the divergence theorem and writing, q =
∫
ρ(~r)d~r, we find,∫

(~∇ · ~E)d~r =
1
ε0

∫
ρ(~r)d~r (3)

This is satisfied if ~∇ · ~E = ρ/ε0, the differential form of Gauss’s law. Faraday’s law is,∮
~E · d~l = −∂φB

∂t
(4)

Using Stokes theorem and writing φB =
∫
~B · d~a, we find,∫

~∇∧ ~E · d~a = − ∂

∂t

∫
~B · d~a (5)

This is satisfied if ~∇∧ ~E = −∂ ~B∂t , the differential form of Faraday’s law.
Choose a small rectangular contour with the surface lying within the contour and two sides of the rectangle parallel

and two sides perpendicular to the surface. Applying the integral form of Faraday’s law (with the ∂φB/∂t = 0), we
have, ∮

~E · ~dl = (E‖above − E
‖
below)dl = 0 so E

‖
above − E

‖
below = 0. (6)

Note that the perpendicular parts of the contour sum to zero as the two sides are in opposite directions but have the
same electric field.

Now apply Gauss’s law to a small cubic Gaussian surface where the surfaces of the cube are either parallel or
perpendicular to the surface, and the surface lies within the cube. If the cube is small enough, we can treat the
electric field and the charge density as constant over the patch, so that,∮

~E · ~da = (E⊥above − E⊥below)da =
σda

ε0
so E⊥above − E⊥below =

σ

ε0
(7)

The parallel components cancel so we are left with the perpendicular components.

Problem 2. A thin disc of uniform charge density σ and radius R is centered at the origin with its normal along
the ẑ axis. Find the potential of the disc on the z-axis and show that it reduces to a point charge form for large z
and to the form for an infinite sheet of charge as z → 0.
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Solution
Using the superposition formula, the potential on the z-axis is given by,

V (z) =
σ

4πε0

∫ 2π

0

∫ R

0

sdsdφ

(s2 + z2)1/2
(8)

Doing the integrals yields,

V (z) =
σ

4πε0
2π(s2 + z2)1/2|R0 =

σ

2ε0
[(R2 + z2)1/2 − z] (9)

As z → 0, we use an expansion in z2/R2, so that to leading order,

V (z) =
σ

2ε0
[(R2 + z2)1/2 − z]→ σ

2ε0
[R− z]→ C − σ

2ε0
z, (10)

which is the potential corresponding to a contant electric field of σ/2ε0. As z → ∞, we can use an expansion in
R2/z2, so that to leading order,

V (z) =
σ

2ε0
[z(1 +

R2

2z2
)− z]→ σ

2ε0
R2

2z
→ kQ

z
(11)

where we used Q = πR2σ and k = 1/(4πε0). At long distances the potential looks like that of a point charge, as
expected.

Problem 3. A grounded conducting sphere of radius R is centered at the origin and is in a uniform electric field
~E = E0ẑ. Find an expression for the potential outside the sphere, i.e. for r > R. Find an expression for the induced
charge density on the surface of the sphere (it should be a function of θ). If the sphere is now disconnected from
ground and there is an additional charge Q placed on the sphere, what is the new expression for the potential?

Solution
The potential corresponding to a uniform electric field in the ẑ direction is −E0z = −E0rcosθ. This has the angular

form corresponding to the (l = 1) term in the solution to Laplace’s equation in spherical polar co-ordinates. If there
is no net charge on the cylinder and the cylinder is grounded, we set the l = 0 term to zero. Therefore we try the
solution,

V (r, θ) = (A1r +
B1

r2
)cosθ (12)

To satisfy the boundary condition at infinity, we set A1 = −E0. To ensure that the potential goes to zero at the
surface of the sphere, we set −E0R+B1/R

2 = 0, so that, B1 = E0R
3. The solution is then,

V (r, θ) = −E0(r − R3

r2
)cosθ (13)

It is clear that the parallel electric field at the surface of the conducting sphere, i.e. − 1
r
∂V
∂θ |R = 0 as required. The

induced charge density at the surface is found from

σ = ε0En(R) = −ε0
∂V

∂r
|R = 3ε0E0cosθ (14)

If the sphere is disconnected from ground and a charge Q is added to the conducting sphere, then the potential outside
the sphere is given by,

V (r, θ) = −E0(r − R3

r2
)cosθ +

kQ

r
+A0 (15)

where A0 is an arbitrary reference potential, that we can choose to be zero.

Problem 4. Three isolated infinite metal (i.e. conducting) slabs have their normals along the z axis, so the slabs are
parallel to each other. The top slab has total charge Q, while the bottom slab has total charge q. Find the charge on
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the top surfaces of each slab and on the bottom surfaces of each slab.

Solution
Label the surface charges, starting from the top of the top slab, q1, q2, q3, q4, q5, q6. We have,

q1 + q2 = Q; q3 + q4 = 0; q5 + q6 = q (16)

By superposition, the electric field above the top slab is E1 = q+Q
2ε0A

, while the electric field below the bottom slab

is E4 = −(q+Q)
2ε0A

, where A is the area of a slab. When using superposition we add up the contributions of all six
surface charges. Now we use Gauss’s law, by taking a cubic Gaussian surface, with surfaces of area A with faces
parallel and perpendicular to the slabs. Choose one face to lie within the top slab with another face above the top
slab, Then we have, E1 = σ1/ε0 = q1ε0A, therefore, q1 = q+Q

2 . Similarly q6 = q+Q/
2 . By charge conservation we

then have q2 = Q−q/
2 and q5 = q−Q

2 . Taking a cubic Gaussian surface with one face inside the top slab and another
inside the middle slab, it is evident that the total flux is zero through the Gaussian surface is zero. Therefore the en-
closed charge is zero so we must have q2+q3 = 0, so q3 = −q2 = q−Q

2 . Charge conservation then gives q4 = −q3 = Q−q
2

Problem 5. An infinitely long cylindrical shell of radius R has charge density distribution σ = σ0sin(2φ) on its
surface, where σ0 is a constant. Find the electric field inside the cylinder.

Solution
The charge density at the surface is related to the perpendicular component of the electric field (see Eq. (1)), so

the angular dependence of the potential must be the same as the angular dependence of the charge density boundary
condition, we therefore choose, the n = 2 term in the general solution,

V (s, φ) = (A2s
2 +

B2

s2
)sin2φ (17)

where we set the constant C2 = 1 without loss of generality. In addition, we need to ensure that the solution is
non-singular for s → 0 as there are no charges in the interior of the cylinder, we therefore set B2 = 0 for s < R. To
find the relation between the charge density and the potential, we need to use the boundary contitions given in Eq.
(1). We can also use the fact that the potential is continuous across the cylindrical surface. The solutions inside and
outside the cylindrical shell are,

Vout =
B2

s2
)sin2φ; Vin = A2s

2sin2φ (18)

Continuiting of the potential at the surface Vout(R) = Vin(R) implies that B2/R
2 = A2R

2. The equation for the
perpendicular component of the electric field is then,

E⊥out(R)− Eperpin (R) = −∂Vout
∂r
|R +

∂Vin
∂r
|R =

σ

ε0
=
σ0sin(2φ)

ε0
(19)

Doing the derivatives and using B2 = A2R
4 gives,

2A2Rsin(2φ) + 2A2Rsin(2φ) =
σ0sin(2φ)

ε0
(20)

so that A2 = σ0
4ε0R

. The potential inside the cylinder is,

V (s < R, φ) = Vin =
σ0

4ε0R
s2sin2φ (21)

The electric field inside the cylinder is,

~E(s < R, φ) = −∂V
∂s

ŝ− 1
s

∂V

∂φ
φ̂ = − σ0

2ε0R
s[sin(2φ)ŝ+ cos(2φ)φ̂] (22)


