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PHY481 - Review sheet for Midterm 1
Griffiths: Chapters 1-3

Electric Field
There are two types of charge and they interact through Coulomb’s law ~F = 1

4πε0

qQ
r2 r̂ = 1

4πε0

qQ
r3 ~r. The interaction

between many charges is found by using superposition. The electric field due to a charge Q through, ~E = ~F
q , so that

the electric field is the force per unit charge. Since the unit of force is the Newton (N), the unit of electric field is
N/C, where C is the unit of electric charge, the Coulomb. The electric field at position ~r due to a point charge at
position ~r′ is ~E(~r, ~r′) = k Q

|~r−~r′|3 (~r − ~r′) The superposition principle indicates that the electric field at position ~r due
to n charges at positions ~r1...~rn is given by the vector sum,

~E(~r) =
n∑
i=1

k
Qi

|~r − ~ri|3
(~r − ~ri) = k

∫
d~r′ρ(~r′)
|~r − ~r′|3

(~r − ~r′) (1)

where ρ(~r′) =
∑
iQiδ(~r

′ − ~ri). When treating continuous charge distributions, we may be given a charge per unit
length, λ, a charge per unit area σ or a charge per unit volume ρ. Typical superposition problems: ring of charge;
disc of charge; line segment etc. Note that you can always solve the superposition problem for the potential and then
take a gradient to find the electric field. This is often easier.

An electric field line is a series of vectors where at each point the vector points in the direction of the force on a unit
charge at that point and it has a length equal to the magnitude of the force. ie. we plot the vector function ~E. The
properties of electric field lines constructed in this way are as follows. (i) At each point along an electric field line,
the force on a positive test charge is in a direction tangent to the field line at that point. This implies that electric
field lines come out of positive charges and go into negative charges. (ii) The density of lines at any point in space is
proportional to the magnitude of the electric field at that point. (iii) Electric field lines begin and/or end at charges,
or they continue off to infinity. i.e. they do not begin or end in free space. (iv) Electric field lines do not cross.

Conductors: If there is no current flowing, then the electric field is zero, ~E = 0, inside a conductor, and at the
surface of a conductor the electric field is normal to the surface (know the reasoning behind this).

The integral form of Gauss’s law in free space is,

φE =
∮
S

~E · d~a =
qencl
ε0

(2)

where qencl =
∑
iετ qi =

∫
τ
ρ(~r)d~r where ρ(~r) is the charge density. The differential form of Gauss’s law: ~∇· ~E = ρ/ε0

(know how to derive this). Know how to solve Gauss’s law problems in spherical, cylindrical and planar geometries,
including at a conducting surface. It is good memorize some of these: kQr̂/r2; λŝ/(2πε0s); σn̂/(2ε0); σn̂/ε0 and their
derivations. Another useful result is the electric field inside a uniform sphere of charge ρ~r/(3ε0).

Electrostatic potential
The difference in potential energy between two positions a and b is ∆Uab =

∫ b
a
~Fext · ~dl = −

∫ b
a
~F · ~dl. We define

Vab = Uab/q so that

∆Vab = −
∫ b

a

~E · ~dl, (3)

for any path between a and b. This definition is consistent with the differential form, where ~∇ ∧ ~E = 0 implies that
~E = −~∇V . Since ~∇ · ~E = ρ/ε0, we have ∇2V = −ρ/ε0 (Poisson’s equation). The special case ρ = 0 is Laplace’s
equation. The superposition formula for the potential is

V (~r) =
∑
i

kqi
|~r − ~ri|

→
∫
d~r′

kρ(~r′)
|~r − ~r′|

. (4)

Typical superposition problems: ring of charge; disc of charge; line of charge; shell of charge; uniform sphere of charge.
It is good to memorize some of the results: kQ/r (outside a uniform sphere or shell of charge); −λln(s)/(2πε0) + C
(outside a line or uniform cylinder of charge); −E0z+C (sheet of charge or uniform electric field in z-direction). You
should know how to derive these by integration of the Gauss’s law results.

The potential energy of a small element of charge in a potential is U = qV →
∫
ρ(~r)V (~r) (constant V ), however

the energy required to set up a charge distribution is Un = 1
2

∑n,n
i 6=j

kQiQj

rij
=

∑n,n
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kQiQj

rij
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∫
ρ(~r)V (~r). Each pair
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interaction is counted once (you should know the reasoning behind this factor of (1/2)). The energy density in the
electric field is u(~r) = 1

2ε0
~E2.

The capacitance is defined through a geometry consisting of two separated conductors one carrying charge Q and
the other a charge −Q. The voltage difference between the two conductors is V . Then we define Q = CV . You
should know how to find C for parallel plate, co-axial cylinder, and concentric sphere cases (also the case of an
isolated conducting sphere where the other electrode is defined to be at infinity). It is useful to know the results
for the parallel plate (ε0A/d); concentric cylinder (2πε0/(ln(b/a))); and concentric sphere (4πε0/(1/a − 1/b) - the
isolated sphere case is when b→∞. The energy stored in a capacitor follows from U = (1/2)

∫
ρV → QV/2 = CV 2/2.

More advanced methods
The boundary conditions across a charged surface are (Know how to derive these):

E⊥above − E⊥below =
σ

ε0
; E

‖
above − E

‖
below = 0; Vabove − Vbelow = 0. (5)

Image charge method: Point charge near a grounded conducting surface q′ = −q; z′ = −d; line charge near a
grounded conducting cylinder λ′ = −λ; b = R2/a; point charge near a grounded conducting sphere q′ = −qR/a; b =
R2/a. Potential found by superposition and applies outside conductor. If the conductors are neutral instead of
grounded, an additional charge is added to ensure neutrality. In sphere and cylinder cases the additional charge
is at the center of the conductor. Image charge method also works for polygonal section taken out of a polygonal
conductoring wire, provided the section is from a polygon with an even number of sides. The image charges then
alternate in each remaining section of the conductor. Know how to calculate the electric field, induced charge at the
surface, the force on the real charge, and the energy required to bring the charge in from infinity.

The general solutions to Laplace’s equation with two co-ordinates allowed to vary are:
V (x, y) = (a+ bx)(c+ dy) +

∑
k[A(k)cos(kx) +B(k)sin(kx)][C(k)cosh(ky) +D(k)sinh(ky)] (Cartesian);

V (s, φ) = (A+Bln(s)) +
∑∞
n=1(Ansn + Bn

sn )(Cncos(nφ) +Dnsin(nφ)) (Cylindrical);
V (r, θ) =

∑
l=0(Alrl + Bl

rl+1 )Pl(cosθ) (Spherical polar).
Good example problems are: square with fixed potential or charge density on two sides and zero potential or charge
on other two, find potential inside; cylindrical shell with fixed potential or charge density with opposite signs on top
half and bottom half (find potential inside and outside); spherical shell with with fixed potential or charge density
with opposite signs on top half and bottom half (find potential inside and outside). It is good to know the first three
Legendre Polynomials: P0 = 1;P1 = u;P2 = (3u2 − 1)/2; where u = cosθ.

Know how to solve the simpler problems: concentric shells or cylinders with fixed potentials (no angle dependence);
grounded or charged conducting sphere or cylinder in a constant electric field (only the first angle terms).

Multipole expansion can be derived from, 1
|~r−~r′| =

∑
l=0

r′l

rl+1Pl(cosθ) r > r′. For a dipole this leads to
Vdipole = k(~p · r̂)/r2. Outside a general charge distribution ρ(~r′) the potential can be expanded as a multipole series,
VQ + Vdipole + Vquadropole + .... The first term is the potential for a point charge, but with Q =

∫
ρ(~r′)dτ . The second

term is the dipole potential where the dipole moment is given by ~p =
∑
i qi~ri =

∫
~r′ρ(~r′)dτ .

General features of electrostatics
Only saddle points in the interior: Solutions to Laplace’s equation on any domain have no minima or maxima

in the interior of the domain, there can only be saddle points in the interior. All minima or maxima occur on
the boundaries of the domain. Earnshaw’s theorem: The electric field derived from a potential obeying Laplace’s
equation has the property that on the interior of a domain there is always at least one direction with a positive
field and one direction with a negative field. Therefore charge configurations in electrostatics are unstable, with
opposite charges tending to collapse and like charges moving an infinite distance appart. Uniqueness theorem: Two
solutions to Laplace’s equations, V1 and V2, found using the same fixed voltage (Dirichelet) boundary conditions
must be the same solution (know how to prove this). Two solutions to Laplace’s equation satisfy

∫
ρ1V2d~r =

∫
ρ2V1d~r.

Other things you should know
Dipole in a constant field U = −~p · ~E, ~τ = ~p ∧ ~E. The gradient in the three co-ordinate systems
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,
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∂
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). (6)

Divergence theorem, Stokes theorem. Transformation of unit vectors from cylindrical to cartesian co-ordinates. Use
of the gradient in spherical polars to show that the electric field of a dipole is k(3(~p · r̂)r̂ − ~p)/r3.


