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I. ORIGINS OF THERMODYNAMICS, KINETIC THEORY AND STATISTICAL MECHANICS
A. Engines

Thermodynamics originated with the study of heat engines. A precursor to heat engines, the vacuum pump, was
designed by the German scientist Otto von Guericke who, in 1650, created the world’s first ever vacuum in what are
known as the Magdeburg hemispheres. He was driven to make a vacuum in order to disprove Aristotle’s long-held
supposition that “Nature abhors a vacuum”.

Shortly thereafter, Irish physicist and chemist Robert Boyle learned of Guericke’s designs and in 1656, in coor-
dination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed the
pressure-volume correlation: PV = constant. At that time, air was assumed to be a system of motionless particles
rather than a system of moving molecules. Later, after the invention of the thermometer, the temperature could be
quantified, providing Gay-Lussac the opportunity to derive his law (P oc T'), which quickly led to the ideal gas law.

PV = NkgT = nRT (1)

This law works quite well for most gases and even for steam, provided they are at pressures and temperatures well
away from any phase transitions. The ideal gas law was thus the basis for a lot of the early heat engine development.

Even before the establishment of the ideal gas law, an associate of Boyle’s named Denis Papin in 1679 built a high
pressure steam cooker, also called a bone digester or pressure cooker, which is a closed vessel with a tightly fitting
lid that confines steam until a high pressure is generated. Later designs included a steam release valve to keep the
machine from exploding. By watching the steam release valve rhythmically move up and down at high heat levels,
Papin conceived and designed a piston and cylinder engine. He did not however follow through with his design.
Nevertheless, in 1697, based on Papins designs, engineer Thomas Savery built the first heat engine. Although these
early heat or steam engines were crude and inefficient, they attracted the attention of the leading scientists of the time.
One such scientist was Sadi Carnot (1796-1832), the father of thermodynamics, who in 1824 published “Reflections on
the Motive Power of Fire”, a discourse on heat, power, and engine efficiency. This marks the start of thermodynamics
as a modern science.

Prior to 1697 and the invention of the Savery Engine, horses were used to power pulleys, attached to buckets,
which lifted water out of flooded salt and coal mines in England. In the years to follow, more variations of steam
engines were built, such as the Newcomen Engine, and later the Watt Engine. In time, these early engines would
be utilized in place of horses. Thus, each engine began to be associated with a certain amount of “horse power”
depending upon how many horses it had replaced. The main problem with these first engines was that they were slow
and clumsy, converting less than 2% of the input fuel into useful work. Hence the need for a new science of engine
dynamics was born. Carnot defined “motive power” to be the expression of the useful “effect” that a motor is capable
of producing. He introduced the first modern day definition of “work” as weight lifted through a height. In 1769
Frenchman Nicolas-Joseph Cugnot build the first self-propelled steam engine. In 1804 Richard Trevithick built the
first steam locomotive and in 1829 George Stevenson build the Rocket a practical steam locomotive. This ignited the
railway revolution in Europe and the US. Steam engines use the Rankine cycle and are used in most of the electricity
production in the world, including coal, gas, nuclear and solar thermal generators

In 1843, James Joule experimentally found the mechanical equivalent of heat, and in 1845 he reported his best-
known experiment, involving the use of a falling weight to spin a paddle-wheel in an barrel of water, heating the
water and allowing him to estimate a mechanical equivalent of heat. This led to the theory of conservation of
energy and explained why heat can do work. The name “thermodynamics” was introduced, in 1849, by the British
mathematician and physicist William Thomson (Lord Kelvin) who used the term in a paper on the “Carnot” efficiency
of steam engines. These developments lead to the simple formula for the Carnot efficiency of an ideal heat engine,
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where W is the mechanical work done by the heat engine, @ g is the heat energy supplied by an isothermal heat source
with Ty it’s temperature, while Q¢ is the waste heat delivered to an isothermal cold reservoir that is at temperature
Tc.
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B. Introduction of relation between entropy and heat

In 1850, the famed mathematical physicist Rudolf Clausius defined the term entropy S to be the heat lost or
turned into waste, stemming from the Greek word entrepein meaning to turn. The Clausius equality states that for

a reversible process, we have,
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so that d@Q/T is a state function, like internal energy, pressure and other thermodynamic functions. This lead him to
introduce the idea that there is a new thermodynamic state function S = @ /T that he called entropy. Note that the
product d@Q = T'dS has units of energy. Clausius also derived the virial theorem (1870) and the equipartition theorem
follows from it. For an ideal gas the internal energy U = 1kgT per degree of freedom (DOF).

C. Laws of thermodynamics

The laws of thermodynamics are based on a continuum “caloric theory” which did not explicitly require atomic
scale understanding. In modern form the laws of thermodynamics, are:
Zeroth Law: If system A and system B are in thermal equilibrium with system C, then system A is in thermal
equilibrium with system B.
First Law: Increase in internal energy of a system (AU) = heat supplied to the system (Q) - work done by the
system W. This is often written in differential form dU = d@Q — dW.
Second Law: When two isolated systems in separate but nearby regions of space, each in thermodynamic equilibrium
in itself (but not necessarily in equilibrium with each other at first) are at some time allowed to interact, breaking
the isolation that separates the two systems, allowing them to exchange matter or energy, they will eventually reach
a mutual thermodynamic equilibrium. The sum of the entropies of the initial, isolated systems is less than or equal
to the entropy of the final combination of exchanging systems. In the process of reaching a new thermodynamic
equilibrium, total entropy has increased, or at least has not decreased. For reversible heat transfer Q) = T'dS.
Third Law: The entropy of a perfect crystal at absolute zero is exactly equal to zero.

D. Key engine cycles and properties

Three ideal cycles that many heat engines aspire to are the Rankine cycle, the Carnot cycle and the Stirling cycle
(See Fig. 1).

The Carnot cycle applies to ideal IC engines: 1-2 heat supplied to produce isothermal expansion of gas at Tp; 2-3,
isentropic expansion of gas, while cooling to T¢; 3-4 isothermal compression of gas at T with heat loss to reservoir;
4-1 isentropic compression of gas to temperature T}y.

Stirling engine applies to ideal heat pumps and refrigerators: 3-4, an external heat source produces isothermal
expansion at T; 4-1, isovolumetric or isochoric heat removal; 1-2, isothermal compression with heat loss to a reservoir
at temperature T¢; 2-3, isovolumetric or isochoric heat addition.

The Rankine cycle applies to ideal steam turbines: d-e water is pumped from low to high pressure; e-b an external
heat source converts the water to (superheated) steam at constant pressure; b-c(c’) the steam expands driving a
turbine. In an ideal cycle this is isentropic; c(c’) - e, the steam is condensed to water (heat is extracted).

The work done is

W= / pdV (4)

and when integrated over a full cycle is equal to the area enclosed within the cycle. When the cycle is run according
to the arrows in Fig. la, the net work done BY THE SYSTEM is positive and the heat energy added to the system is
larger than the heat extracted. When the cycle is run in this way, heat is used to do work as is typical of an internal
combustion engine used in transportation, and electricity generation where the fuel used to generate heat may be
nuclear, coal, gas, biogas, solar thermal. The heat engine is the centerpiece of our energy generation and utilization
technologies and the upper limit of efficiency of all of these systems is given by the Carnot efficiency (see Eq. 2).
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FIG. 1. Pressure - volume loops for the ideal Carnot, Stirling and Rankine cycles

When the cycle is run in reverse, the net work done by the system is negative or in other words work is provided
by an external system. In this case the arrows on Qg and Q¢ are reversed, so that heat is extracted from a cold
reservoir and pumped into a hot reservoir. This is the principle of operation of a refridgerator or a heat pump where
mechanical work is supplied in order to move heat energy into or out of a system. In the case of a refridgerator we
want to move heat out of a cold reservoir so the coefficient of performance (COP) is,
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For a heat pump used for example to heat a house, we want to add heat to a hot reservoir, so we have,
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Carnot’s theorem states:

- All irreversible heat engines between two heat reservoirs are less efficient than a Carnot engine operating between
the same reservoirs.

- All reversible heat engines between two heat reservoirs are equally efficient with a Carnot engine operating between
the same reservoirs.

The Carnot and Stirling engines have equal ideal efficiencies. The Rankine cycle is less efficient, but is more practical
for many real applications, such as electricity generation.

E. History of kinetic theory and its relation to heat

Kinetic theory, the study of the motion of atomic scale particles, provides an atomic scale basis for entropy and heat
and hence is an integral part of statistical mechanics. The idea that heat is a form of motion is perhaps an ancient
one and is certainly discussed by Francis Bacon in 1620 in his Novum Organum. The first written scientific reflection
on the microscopic nature of heat is probably to be found in a work by Mikhail Lomonosov (1711-1765), in which
he wrote, “(..) movement should not be denied based on the fact it is not seen. Who would deny that the leaves of
trees move when rustled by a wind, despite it being unobservable from large distances? Just as in this case motion
remains hidden due to perspective, it remains hidden in warm bodies due to the extremely small sizes of the moving
particles. In both cases, the viewing angle is so small that neither the object nor their movement can be seen.”

During the same years, Daniel Bernoulli published his book “Hydrodynamics” (1738), in which he derived an
equation for the pressure of a gas considering the collisions of its atoms with the walls of a container. He proved that
this pressure is two thirds the average kinetic energy of the gas in a unit volume; and derived the relation between
pressure, velocity and height in an incompressible fluid flow

P+ %pv% + pgh = constant (incompressible fluid), (7)
where P is pressure pv? /2 is kinetic energy density of the moving fluid, p is fluid density, and & is height of the fluid
in a gravitational field. Note that the kinetic energy in this expression does not include the random thermal motion
of the atoms in the fluid. Instead vp in this expression is more analogous to a drift velocity, and I have added the
subscript to make this explicit, as students often confuse these two velocities. Bernoulli’s ideas, however, made little
impact on the dominant theory of heat (or caloric) engines. Bernoulli made a connection with Gottfried Leibniz’s vis



viva principle, an early formulation of the principle of conservation of energy, and the two theories became intimately
entwined throughout their history. In addition to their conflict over the invention of calculus, Leibnitz’s vis viva
theory seemed in opposition to the conservation of momentum introduced by Newton and Descartes, though now of
course we know they are complementary. Though Benjamin Thompson suggested that heat was a form of motion as
a result of his experiments in 1798, no attempt was made to reconcile the theoretical and experimental approaches,
and it is unlikely that he was thinking of the vis viva principle.

John Herapath later independently formulated a kinetic theory in 1820, but mistakenly associated temperature with
momentum rather than vis viva or kinetic energy. His work ultimately failed peer review and was neglected. John
James Waterston in 1843 provided a largely accurate account, again independently, but his work received the same
reception, failing peer review even from someone as well-disposed to the kinetic principle as Humphry Davy. Further
progress in kinetic theory started only in the middle of the 19th century, with the works of Rudolf Clausius, James
Clerk Maxwell, and Ludwig Boltzmann. In his 1857 work on the nature of the motion called heat, Clausius for the
first time clearly states that heat is related to the average kinetic energy of molecules. This interested Maxwell, who
in 1859 derived the momentum distribution later named after him. Boltzmann subsequently generalized Maxwell’s
distribution for the case of gases in external fields.

F. Classical molecular dynamics - Visualizing statistical mechanics

God does not care about our mathematical difficulties. He integrates empirically. — Albert Finstein

Molecular dynamics (MD) covers a broad class of methods in both classical and quantum physics. Classical
MD involves solving Newton’s equations for each particle in the simulation box, while quantum or ab-intio MD
involves solving for the time dependence of atoms or nuclei by first solving Schrodinger’s equation for the relevant
wavefunctions. We shall concentrate on classical MD. This seems trivial in that we simply solve Newton’s equations
to find the trajectory for each particle or atom in the system. The key difficulty is that we are usually interested in
many particles, for example in simulating the evolution of Galaxies we need to take millions of stars, or in simulating
a protein we need to take hundreds of different amino acid residues each of which has many atoms. The modern era
of MD began with the work of Alder and Wainright on hard- sphere liquids in the late 1950s. The paper by Rahman
in 1964 on a molecular dynamics simulation of liquid argon with a soft sphere (LennardJones) potential represented
an important next step. Simulations of complex fluids followed; the original study of liquid water by Stillinger and
Rahman was published in 1971. Simulations of proteins began soon after with to of the early innovators being Levitt
and Karplus.

Now MD is a standard tool in all areas of science and engineering, and there are many MD packages available for a
variety of different communities. For proteins and other biomolecules the standard packages are CHARM, AMBER,
GROMOS... while for polymers and other materials LAMMPS is a standard. A key element in all of these packages is
the interatomic potential that is used. The force is found from the potential and the range of the potential determines
the type of algorithm that is used, with different methods being applied to long range as opposed to short range
potentials. Many of these packages also have Monte Carlo (MC) options and some also have options for quantum
calculations, i.e. quantum MC and/or quantum MD.

MD methods can be considered as a method for sampling the classical phase space density p({gi,p;},t). The phase
space density obeys the Liouville equation that could itself be integrated, but its phase space is very large so this
approach is limited to a few particles. However, if ergodicity holds we carry out an MD calculation with any starting
configuration and at long times all configurations will be sampled. In practice, ergodicity is difficult to achieve as the
energy landscape of most interesting problems is rough, and because the fundamental timestep of the MD method
for atomic systems is very short, typically of order a femtosecond. Even after millions of timesteps the total MD
simulation time in atomic systems is only nanoseconds or at most microseconds, which is a fundamental limitation of
the method. The basic MD algorithm is as follows.

Basic molecular dynamics algorithm
Choose the number of particles to be simulated N, the interaction potential and the boundary conditions.
Place the particles at initial positions 7;(t = 0).
Choose initial velocities for all of the particles ;(¢t = 0).
Then, do
1. Find the force on each particle f;(t)
2. Use this force and the velocities ¥;(¢) to move each particle to a new position 7;(t + dt)
3. Calculate ﬁ (t + 0t) using these new positions
4. Find the new velocities, v;(t + dt)



FIG. 2. MD snapshots: Particles in a box; Protein in water; A Galaxy

5. Calculate averages. If converged exit, otherwise return to 1

To carry out steps 2 and 4, we need a procedure to go from the acceleration (or force) to the positions and velocities.
We also need to define a potential. First we look at the way that we find the positions and velocities from the force.
We shall discuss this in more detail later.

1. A specific example - MD model for Argon

The next step is to define a potential energy to describe the interactions between the particles. As an example, we
consider an important interatomic potential that is used in materials science, chemistry and biology, the Lennard-Jones

pair potential,
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The repulsive term is due to coulomb and exchange interactions of the electron clouds of each particle, while the
attractive term is due to induced dipole-dipole interactions. For Argon the parameters of the model are m = 6.69 x
10~20kg, e = 1.654 x 10721J, 0 = 3.405 x 10~ °m. The minimum of the potential is at 7, = 2!/, and the depth of
the minimum is —e. The time scale of the problem is 7 = (mo?/e) = 2.17ps. In most simulations, scaled units are
used, which in our problem corresponds to setting, m = 1,0 = 1,e = 1, so that one unit of time in our simulations
corresponds to 2.17ps. In practice, the timestep required for the simulations in the scaled units is ¢ = .004, which
corresponds to a real time unit of 8.68fs. This is typical of simulations of atomic motion and in cases where the
interactions are strong, the timestep has to be shorter, for example in covalently bonded systems. Since the timestep
is so short, simulations over millions of timesteps only lead to real times of order ns to us, which is a fundamental
limitation of MD simulations. The force between two atoms found from the LJ potential is,
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The total force on a particle is found by summing this force over all neighbors of the particle.

With these procedures, we are able to follow the trajectories of all the particles in the simulation. From these
trajectories, we would like to calculate properties. But what can we calculate. Since the calculation conserves
the total energy, the temperature does not change (on average), so how do we change the temperature? How do
we calculate the pressure and the equation of state? To understand this better we need to understand classical
interacting particle systems more fully. It is also important to note that the formulation of statistical physics that we
shall develop does NOT apply to gravity where the interaction potential ( ie. 1/r) is long range and spans the system.
The use of statistical mechanics to derive thermodynamics relies on subdividing the system into subsystems that can
be treated as non-interacting because the surface to volume ratio is small and the interaction range is small compared
to the length scale of the sub-systems. Even for long range interactions an analysis can be carried through and it
leads to “non-extensive” thermodynamics amongst other interesting features. We first concentrate on cases where
the interactions have a length scale which is much smaller than the size of the system so that the thermodynamics is
extensive.



G. History of Equilibrium Statistical Mechanics

In association with Clausius, in 1871, the Scottish mathematician and physicist James Clerk Maxwell formulated
a new branch of thermodynamics called Statistical Thermodynamics, which functions to analyze large numbers of
particles at equilibrium, i.e., systems where no macroscopic changes are occurring, such that only their average
properties such as temperature 7', pressure P, and volume V become precise. Soon thereafter, in 1875, the Austrian
physicist Ludwig Boltzmann formulated a precise connection between entropy S and molecular motion:

S = kplog(Q(E)) (10)

being defined in terms of the number of possible states or degeneracy Q(E), at fixed energy F where kp is Boltzmann’s
constant.

The year 1876 was a seminal point in the development of the modern theory of statistical mechanics as the chem-
ical engineer J. Willard Gibbs (1839-1903), the first person in America to be awarded a PhD in engineering (Yale),
published an obscure 300-page paper titled: “On the Equilibrium of Heterogeneous Substances”, wherein he began
the formulation of the basics of partition functions, free energies and the foundations of equilibrium statistical me-
chanics. The term Statistical Mechanics was introduced by Gibbs at a meeting of the American Association for the
Advancement of Science in Philadelphia in 1884. This was one of the rare occasions when Gibbs went to a meeting
away from New Haven. He had been professor of mathematical physics at Yale University since 1871 and had served
nine years without salary. Only in 1880, when he was on the verge of accepting a professoship at John Hopkins
University, did his institution offer him a salary. He had realized that the papers of Maxwell and Boltzmann initiated
a new discipline which could be applied to bodies of arbitrary complexity moving according to the laws of mechanics
which were investigated statistically. In the years following 1884 he formulated a general framework for Statistical
Mechanics and in 1902 published his treatise that lays out many of the foundations of free energies and partition
functions. Gibbs started his consideration with the principle of conservation of the phase space volume occupied by
a statistical ensemble of mechanical systems. He considered three types of ensembles. The so-called microcanonical
ensemble of Gibbs is an ensemble of isolated systems which all have the same energy. Boltzmann called this ensemble
“Ergoden”. In this case each member of the ensemble corresponds to a different microstate and all microstates have
the same probability. The canonical ensemble of Gibbs corresponds to systems in contact with a heat bath. In this
case the energy of the individual systems is allowed to fluctuate around the mean value E. If E, is the energy of
an individual system v of the ensemble, its probability p, is proportional to an exponential function linear in the
energy p, x Exp(—E,/kpT) which is nowadays often called the Boltzmann factor. For the grand-canonical ensemble
of Gibbs not only the energy but also the number of particles IV, of the individual systems is allowed to fluctuate
around the mean value N.

At equilibrium a system does not prefer any of its available equi-energetic microstates. Given Q(E) microstates
at a particular energy, the probability of finding the system in a particular microstate is simply p = 1/Q(E). Of
course physical systems are always evolving dynamically at the microscale so the assumption above assumes that
regardless of the detailed dynamics of the problem, the same long-time probability occurs for each microstate that
has the same energy. This is highly non-trivial and is actually completely wrong for many non-interacting systems!
However once interactions are included it turns out to be true in an important but restricted sense. The validity
of the hypothesis depends on the time scale of the experiments and on the structure of the energy landscape of the
system under consideration.

The postulate is justified in part, for classical systems, by Liouville’s theorem, which shows that if the distribution
of system points through accessible phase space is uniform at some time, it remains so at later times. Similar
justification for a discrete system is provided by the principle of detailed balance. Thus, if the dynamics of a system
leads to an equal probability of occupancy of all microstates at the same energy, then the system is “well mixed”, it
exhibits “molecular chaos”, it is called “ergodic”, and at long times Equilibrium Statistical Physics applies. However
the time scale required to achieve complete mixing can be impossible in some cases, such as glasses, in which case
hysteresis or “memory” effects occur. In fact on experimental times many systems are not ergodic. In the modern
literature there is much discussion of “complex energy landscapes” where non-ergodicity is typical. Nevertheless non-
equilibrium extensions of statistical physics and thermodynamics can be applied to understand many aspect of even
these non-ergodic cases.

II. FOUNDATIONS OF STATISTICAL MECHANICS

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite
amount of time will almost surely type a given text, such as the complete works of William Shakespeare.



Now it is time to state, understand and then justify the following four laws that form the foundations of Equilibrium
Statistical Physics (ESP). Keep in mind that statistical mechanics applies to the behavior of very large numbers of
interacting subsystems, with some examples being spin systems, atomic systems, Fermion and Bose systems, quantum
fields etc.

Aziom (i) The fundamental postulate of equilibrium statistical mechanics:

At equilibrium all accessible microstates with the same energy are found with equal probability.

A mathematical expression of this statement is as follows. If Q(E) is the number of accessible microstates at energy
E, the probability of being in any one state is p(E) = 1/Q(E).

Corollary 1: A closed system at equilibrium is in a state of maximum entropy.

Corollary 2: Equilibrium dynamics is ergodic, so that averages over sufficiently long times and ensemble averages
give the same result.

Aziom (it) The definitions of entropy

The Boltzmann/Planck Entropy is given by: S = kgin(Q(E,N,V)), where kg is Boltzmann’s constant.
Corollary 1: Entropy is also given by the Gibb’s formula, S = —kg Y, piln(p;), where p; is the probability of a state
with energy F;.

Corollary 2: In quantum systems entropy is given by the von Neumann formula, S = —kgtr(pin(p)), where p is the

density matrix, p = e_ﬁﬁ/Z with A the Hamiltonian and Z = tr(e‘ﬂH).

Aziom (iii) The fundamental thermodynamic relation
The fundamental thermodynamic relation is: dU = dQ — dW = TdS — PdV + udN + .....,
where p is the chemical potential of one species.

Aziom (iv) The second law of thermodynamics (Boltzmann H-theorem,)
In a closed system, entropy either increases or stays the same, % > 0.

A. Arguments supporting axiom (i)

Perhaps the most general argument in favor axiom (i) is then through the master equation that focuses on the
transition rates between states. Each state of a many body system has probability p;, and the transition rate between
this state and another state, with probability p;, is given by w;;. The rate of change of the probability p; is given by
the deceptively simple but very important “master equation”

dp;
pr > (wjipy — wigpi)- (11)
i

At equilibrium the probability p; is independent of time, so that,

Z(Wjipj —wi;p;) =0 at equilibrium. (12)
J

Now note that we expect the forward rate w;;, and reverse rate wj; to be the same at equilibrium in a closed system,
which immediately implies that p; = p; as required by axiom (i). This rate theory applies to both classical and
quantum systems, though of course the rates are different and in the purely quantum case are often calculated using
tunneling theory. In the classical case, the rates are often taken to be thermally activated.

Another general result supporting axiom (i) is Liouville’s theorem for the evolution of phase space density of a
classical system. In a classical system with N particles, a state of the system is described by a set of positions ¢; and
a set of momenta p;. The probability of finding the system in a state with a given set of positions and momenta is
given by the phase space density, p({g;}, {p;}). Liouville’s theorem states that the time evolution of the phase space
density is given by,

3n
o0+ 2l + i =0 (13)



This is often written in the compact form,
Idp
ot
Actually, Liouville’s equation is a conservation equation as it follows from the fact that the Hamiltonian dynamics

conserves the phase space volume because there is no dissipation. Therefore p obeys the continuity equation in the
6N dimensional phase space,

+{p,H} =0 (14)
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This reduces to the Liouville equation by noting that,
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where we used Hamilton’s equations, p = —9H/dq, ¢ = OH/Jp. Liouville’s equation is just the equation for a
conserved current of the probability density in phase space, so that if the initial phase space density is a constant
everywhere, it remains constant for all time. However, it is not true that a constant density is achieved for any starting
condition for any density, that is, the uniform state is not necessary stable to small random perturbations.

The density matrix p = exp(—BH)/Z, where Z is the canonical partition function and is time independent, is the
quantum mechanical extension of the classical phase space density. H is the Hamiltonian. von Neumann showed that
the density matrix has the following time evolution,

in2 4 [p,H] =0. (17)
ot

It is relatively easy to derive this from the Schrodinger equation but it is more difficult to take the classical limit and
show that it reduces to the Liouville equation.

Despite the fact that the uniform solution is consistent with the Master equation and the Liouville equation, axiom
(i) is actually counter-intuitive as many non-interacting systems do not occupy all states with equal probability. There
are (at least) two major issues regarding the validity of axiom (i):

Firstly does the dynamics explore all of the available phase space? In fact non-interacting systems and most of the
interacting systems we study in physics courses are not ergodic. For example consider a system of coupled harmonic
oscillators. In these systems if you put the system in one normal mode it stays there for all time. There has been
intense study of the conditions for the “onset of chaos” in dynamical systems. In low dimensional systems interesting
routes to chaos have been discovered and explored computationally. However, “integrable systems”, that is those
whose dynamics we can solve for analytically are non-ergodic. This means that to really study chaotic systems we
need to use computational approaches. The consensus after much head scratching, analysis and simulations is that
interactions that produce chaotic dynamics are essential to the validity of axiom (i). However in systems with many
degrees of freedom even weak interactions lead to mixing of states so that at long times all accessible states mix in
accordance with axiom (i). In terms of normal modes, the introduction of interactions leads to transitions between
different states or normal modes of the many body system so that at long times all modes with equal energy have the
same probability of occupancy.

The second key issue regarding axiom (i) addresses the issue of the timescales required to achieve ergodic dynamics.
The slowest timescales of the dynamics are the most important for this issue, and in the Master equation of Eq. (6)
lead to the smallest transition rates. If one of the transition rates in this equation is longer than the experimental
time, then the experiment is in the non-ergodic regime. There are many systems that are non-ergodic due to large
energy barriers that separate regions of phase space into distinct subdomains. Perhaps the simplest example is a
magnetic storage bit on a hard drive disk. These days each bit is around 10nm? and contains thousands of atomic
scale spins that are aligned in the same direction. Though the two possible orientations of the magnetic domain
or bit are equal in energy, the dynamics does not explore both orientations at room temperature, so the system is
non-ergodic. In general at low enough temperatures, all many particle systems are non-ergodic! Once there is a phase
transition, the phase space breaks up into separated regions. The dynamics on experimental timescales only explores
one region, depending on the initial condition of the experiment. This behavior is nicely illustrated by simulations.
This behavior is often represented pictorially by drawing energy landscapes. In the case of the magnetic system there
are two minima in the energy at low temperature, with a large barrier in between. Protein folding is believed to have
a funnel landscape, that has a complex and rough component. Many frustrated systems, such as glasses have complex
energy landscapes with barriers on a wide range of energy scales. This leads to hysteresis, aging and memory effects
in most experiments on these systems.



B. Arguments supporting axiom (ii)

Even the early work on thermodynamics of engines noted the relation between the “freedom” of a working gas and
the “heat” content of the gas. The first law of thermodynamics makes this explicit by relating the change in internal
energy to the heat added to a system minus the work done by the system AU = @@ — W. Clausius introduced the
entropy through dS = dQ/T, so the entropy must be an extensive quantity and 7'S must have the units of energy,
and it must be extensive. Boltzmann proposed his form of the entropy to have these properties.

In order to understand the “freedom” or degeneracy in a system, we first consider non-interacting systems. A
simple example is a spin half model of magnetism where each spin can be in one of two states “spin up” or “spin
down”. If we have N spins, the total number of available states is Q(E, N) = 2V. In a similar way, a classical gas
has degeneracy Q(E, N) o< VV. To find a quantity that is extensive we must take a logarithm of these degeneracies,
so that S o In(Q(E)).

It is easy to show that Corollary 1 of axiom (ii) is consistent with the Boltzmann entropy, by using p; = 1/Q(FE),
so that,

1
Q(B)

S =—kg Zpiln(pi)) = —kpQ(E) In( ) = kpln(Q(E)) (18)

Q(E)

By transforming to the basis of energy eigenstates, the von Neumann entropy of Corollary (ii) reduces to the entropy
of Corollary (i),

S = —kptr(pin(p) = —kptr(UTpUUTIn(p)U) (19)

where U is the unitary matrix that diagonalizes both the Hamiltonian H and the density matrix p = Emp(—ﬂf] )/ Z.
These matrices can be introduced into the trace formula as the trace formula is invariant under cyclic permutations
of a matrix product, and the unitary matrix has the property UUT = unit matriz. In the (many body) eigenfunction
basis, the von Neumann entropy is then,

S = —kptr(U'pin(p)U) = —kp Y _ piln(p;) (20)

where, in the canonical ensemble, p; = exp(—BE;)/Z, where Z = Y, e #Fi. In carrying out this reduction, we also
use the fact that g and In(p) commute and hence are diagonalized by the same unitary matrix.

C. Arguments supporting axiom (iii)

Axiom (iii) follows from the first law of thermodynamics, the Clausius relation between heat and entropy, with
the addition of the contribution due to changing the particle number. The first law of thermodynamics states
AU(S,V)=Q —W — TdS — PdV. If we include the possibility of changing the number of particles in the system,
the change in internal energy is udN, where pu is the energy required to add a particle to the system. Note that there
are a variety of definitions of y and the issue is subtle in systems with energy gaps, such as semiconductors. As long
as we clearly define the process underlying our definition of y there is no ambiguity. Here, our definition is adding
a particle to the system, though we could also define it through removing a particle, or by taking an average of the
addition and removal processes. In any case once we add the energy due to adding a small number of particles dV,
with p constant, we find,

dU(S,V,N) = TdS — PdV + pdN (21)

as stated in axiom (iii). This will form the basis of many of the derivations of thermodynamic relations that we need
to carry out, so it is worth memorizing.

It is important to note that the axiom (iii) may be stated much more generally, as dU = dQ —dW , with dQ = T'dS as
above, but with the possibility of much more general forms of the “generalized” work. A generalized work expression
that includes magnetostatic and electrostatic terms as well as many chemical species is,

dW =PdV — H-dM — E-dP = " ju;dN; + .. (22)

where H and E are the applied magnetic and electric fields, while M and P are the magnetization and polarization.
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These, and other terms are added to treat problems arising in magnetic, superconducting and dielectric materials,
as well as systems with many components. Further generalizations may be required if the incremental work is more
complex or anisotropic. For most of the course we shall focus upon the special case where the mechanical work is
isotropic so we get PdV and the system is monatomic so the chemical potential term is udN. In chemistry there
must be more than one species so that chemical reactions can occur so in those applications the term ), p;dN; is
required. Chemists often want to determine the amount of heat released or absorbed in a reaction, i.e. is the reaction
endothermic (heat absorbtion) or exothermic (heat released), and the equilibrium constants of the reaction, i.e. at
chemical equilibrium what is the concentration of reactants and products.

D. Arguments supporting axiom (iv) - Boltzmann’s H theorem

For a broad range of systems axiom (iv) can be proven by starting with a time derivative of the Gibb’s entropy,

d i d i d %
f:kgzzn )T+ = <k Y n(p) T (23)

dt

where in the last equation we used the fact that ) . p, = 1 so that ) . dp;/dt = 0. Now we can use the Master
equation (with wj; = wij) to write,

— = —kp Y _wi(p; —p)log(pi) or — = —kp Y wi;(pi — p;)log(p;) (24)
i#£] i#£]

where we exchanged the indices in the last expression on the RHS. Summing the two forms and dividing by two, we
have,

- = **k’B > wij(pi = p;)(log(p;) — In kB > wij(pi — pj)llog(pi/p))] (25)
i#] 1#]

Now notice that the two terms in brackets ()[] are either both positive (if p; > p;) or both negative (if p; < p;), so
that the right hand side of this equation is either positive or zero, as stated in axiom (iv).

III. EQUILIBRIUM CONDITIONS, PARTITION FUNCTIONS AND FREE ENERGIES

Mathematics is a language - J. Willard Gibbs

A. Equilbrium conditions

The fifth aziom. In the thermodynamic limit a large system can be divided into smaller, but still in the thermody-
namic limit, subsystems that can be treated as independent.

The thermodynamic variables V and N are extensive as the volume (number of particles) in a large system is simply
a sum of the volume or number that make up the larger system. A fundamental axiom of statistical physics is that if
subsystems are large enough the energy, entropy, and free energies are also extensive. This is not so obvious and relies
on the independence of the subsystems. Clearly when the subsystems are brought into contact there are interactions
across the interfaces, however the contribution of this interaction scales as Interaction length(Sur face area/V olume).
In the large system limit this can be neglected and the subsystems are treated as independent. Small systems are
therefore clearly NOT in the thermodynamic limit due to the fact that the surface to volume ratio can be quite
significant. If the interaction length becomes large this is further accentuated.

A consequence of the independence of subsystems in the thermodynamic limit is that the statistics of thermodynamic
variables is Gaussian with corrections to the mean that scale as 1/V'/2 where V is the system volume. This the central
limit theorem and is essential to the existence of well defined thermodynamic averages. It is correct provided the
systems size is large enough, the interaction range is finite and provided the statistics of a subsystem are described by
a distribution with a finite second moment. The additive nature of the energy and other extensive quantities provides
an important tool in developing the connections between statistical physics and thermodynamics. First we find the
conditions for equilibrium.
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FIG. 3. A closed thermodynamic system broken into 2 subsystems that can exchange energy, change volume and exchange
particles. At equilibrium the temperature, pressure and chemical potential are the same.

Consider two systems, systems 1 and 2, characterized by their entropy, volume and number of particles, (S1, V1, N1)
and (Ss, Va, Na) respectively. The two systems are at equilibrium with each other, and are in contact and can exchange
both energy and particles, their volumes may also change provided the total volume is fixed. In the thermodynamic
limit, the combined system has internal energy U = Uy + Us, entropy S = S7 + Ss, volume V = Vi + V5, and number
of particles N = N; + Ny. The combined system is isolated, and is at equilibrium. We then have,

AUy = dEy =T1dS1 — PidVhi + pndNy, and  dUs = dEy = TedSs — PadVa + piadNo (26)
In the combined system E,S,V, N are fixed, so we can write,
dUy = dEy = TodSs — PodVa + p2dNe = d(E — Ey) = Tad(S — S1) — Ped(V — V1) + ped(N — Ny) (27)
which reduces to
—dE; = —(T2dS; — P2dVy + padNy) (28)
Comparing the first of Eq. (26) with Eq. (28) we find the equilibrium conditions,
Ty =Ty Pr=PFP; p=ps (29)

The analysis above obscures an important approximation that is made in the analysis. This approximation is
revealed by considering instead an analysis based on the density of states. The density of states of the combined
system is,

Q(E,El,Eg) = Q(El)Q(EQ) with FE = E1 + EQ,Nl,NQ fixed. (30)
so that,
UE) => 0 (E)Q(E - E) ZQQ D (E — E;) (31)
E;

where we have to sum over the available states of one of the subsystems as we have only one constraint on the total
energy. However these functions are extremely rapidly varying with energy, so there is an extremely sharp maximum
in the total density of states at some value of E;, that we take to be F,,. Using the method of steepest descents, we
therefore have,

Since the total energy FE is a constant, we have,
9B, 0= aTQQ(E Ep) - Ql(Em)T- (33)
Dividing by Q4 (E,)Q0(E — E,,), we find,
1 Q1 (Erm 1 Qo (E — By,

Ql(E’"L) aEm QQ (E - Em) aE’m

051 > <3SQ >
et — (== 35
<8U1 V1,N1 U, Va2,N2 ( )

which may be written as,
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FIG. 4. A small system (subsystem - red) within a larger system (reservoir - the rest). The subsystem is still in the thermo-
dynamic limit and the subsystem and reservoir are statistically independent.

The conditions for equilibrium are constant temperature, constant pressure and equal chemical potential for each
species in the system.

Using the fundamental thermodynamic relations we can relate the pressure, temperature and chemical potential to
derivatives of the the internal energy,

oU oUu oU
dU =TdS — PdV dN = | — ds —_— av —_— dN 36
G (65>VN +(aV)S,N +(aN)SV (36)
so that,
oU oU oU
T: P . P:_ R . = _— . 37
(6S>V,N’ (aV)S,N’ a <6N>S,V 37)

B. Boltzmann weights and partition functions

So far our discussion has used the microcanonical ensemble where E,V, N are fixed as this enables us to develop
the fundamentals in the most straightforward way. In contrast most practical model calculations are difficult in the
microcanonical ensemble so that it is easier to work in the canonical (T,V, N fixed), grand canonical (T, V, u) fixed
or some other ensemble. All of the thermodynamics can be derived using any of these ensembles so we can choose
the one that is easiest. We also have to be able to deduce the properties in other boundary conditions as many
experiments have different conditions such as fixed pressure instead of fixed volume or constant heat (or entropy)
instead of constant 7. We shall return to this when we discuss the various free energies including the internal energy
U(S,V,N), Helmholtz free energy (A(T,V,N)), the Enthalpy (H(S,p, N)) and the Gibb’s free energy (G(T,p, N)).

There are several ways to show that the Boltzmann fact describes the way that the probability of a state varies with
its energy. All of them are based on the fundamental postulates of equilibrium statistical mechanics. One approach
is to consider that one of the subsystems, is small compared to the rest of the system that is considered to be the
“reservoir”. Lets take subsystem 1 to be small and subsystem 2 to be large. In this case, we call subsystem 2 the
reservoir. Then of course Fo >> F7. The reservoir is at temperature T. Consider the case where no particle exchange
occurs, but heat exchange does. The probability a state with energy E; in system 1 is occupied is p1 (E1) = 1/Q1(E4).
Since Q(E) = Q1 (E1)Q2(Es), p(E) = p1(E1)p2(E2). Now the energy of the total system is conserved so that p(E) is
a constant.

S3(E) E105(E)
kp kg OF
where we used the result (see Eq. (37)) that 0S/0F = 1/T and 8 = 1/(kgT). This is of course the Boltzmann factor

in the cannonical ensemble. We normalize the Boltzmann factor to make it a probability, by setting Ag = 1/Z, where
Z is the canonical partition function. We are thus lead to the definitions,

p1(E1) = p(E)Q(E—Ey) = const exp(Se(E—E1)/kp) = const exp| +..] = Apexp(—BE1) (38)

e~ PE:

VA

p; = , Z= Z e PP (Canonical ensemble (39)

where ¢ runs over all states in the system, including those that have the same energy. Note that if we fix the energy
E;, = E, then we restrict the system to fixed energy as applies to the microcanonical ensemble. In that can the
canonical partition function reduces to Q(E), the density of states in the microcanonical ensemble.
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A second approach is the use the maximum entropy principle, so that if the entropy is given by the Gibb’s form,

S =—kp Zpiln(Pi) (40)

then the probabilities will try to maximize the entropy. In the microcanonical ensemble, this maximization must
preserve normalization of the probabilities so that ), p; = 1. Imposing this constraint, we have,

M—-1 M—1 M—1
S=—kg > piln(p;) — k(1= > p)in(1— Y p;) (41)
i=1 i=1 i=1
Taking a derivative with respect to p; yields,
oY M-1
o —kplin(p) —In(1= Y p)]=0 or pi=1-=Y p (42)
’ i=1 i=1

This is solved by p; = 1/M where M is the number of states at energy E (i.e. M = Q(F)). This calculation can also
be carried out using a Lagrange multiplier where we introduce the constaint by writing,

S =—kp Zplln Di) sz -1) (43)

The entropy is then maximized with respect to p; and with respect to the Lagrange multiplier A. The latter condition
leads to the constraint that we want to impose, ie. ). p; = 1. Setting the derivative with respect to p; to zero now
gives,

p; = e kB=A (44)
This is a constant, just as we found before. However we have to fix the constant using other information, i.e. e7¥2=* =
1/M. The Lagrange multiplier procedure is easily extended to the cannonical and grand-canonical distribution
functions by imposing further conditions using additional Lagrange multipliers.
In the canonical ensemble the energy is not fixed, but we have to ensure that the relation ), p;e; = E so that the
correct average energy is preserved. To impose that condition, we consider a second Lagrange multiplier, 53,

S=—kp szln Pi) sz —1) = kpB()_pie; — E) (45)

Taking a variation of this with respect to p; and setting the resulting equation to zero yields,

—Bes
_ —kp-A—fe _ € 4
bi =€ 7 ( 6)
where
1
e kA = 7 and Z = E e~ P (47)

This procedure generalizes easily to any ensemble, for example if we consider the grand canonical ensemble where
>; pini — N is the number of particles, then the entropy is

= _kB szln pz sz - 1 kBﬂ szez - + k/’BﬂM szN N) (48)

so the probability is,

—B(ei—uN;
pi = e—hp—A—fefuN; _ ¢ Pl
= -

—_
=
fln

where = =), e~ Blei=nNi) ig the grand partition function.



14
C. Quantum systems

So far we have talked about phase space where the density in phase space obeys the Liouville equation and we have
talked a lot about systems where we have a set of energy levels. In quantum systems we also have a set of energy
levels, so the formalism involving energy levels is appropriate. Everything we have discussed so far thus applies to the
quantum case, provided we work in the basis of the eigenfunctions of the Hamiltonian operator, and provided we take
expectations of operators that commute with the Hamiltonian. To treat more general operators, we need to extend
the formulation. The most straightforward way to carry out is to generalize the partition function in the canonical
ensemble, where,

Z =Y e PP =tr()) (50)
where A is a matrix with Boltzmann weights on its diagonal. Now if the Hamiltonian is H and is diagonalized by a
unitary transformation U, which has the properties UTU = UU' = Unit matriz so that,
U'HU = Ay, then H=UlgU' (51)
where A is a diagonal matrix with the eigenvalues of H on the diagonal, so that,
tr(UHU") = tr(H) (52)

where we used the cyclic property of the trace, ie. tr(ABC) = tr(BCA). Now we note that the matrix e=PH s
diagonalized by the same matrix as H, which follows from expanding the exponential, therefore,

tr(Ue PAUY) = tr(\) = tr(e PH). (53)
We thus find that in any quantum mechanical basis, the cannonical partition function is given by,
Z = tr(e PH) (54)
It is then natural to define the density matrix in the cannonical ensemble as,

—BH

Z

p= (55)

From which it is easy to show that all operators that commute with H reduce to the expected form in the diagonal
representation. It is a little more work to show that ensemble averages of operators that do not commute with H are

also correctly desribed by this expression. Note that in some books the density matrix is defined as e B while in

other it is defined as e=AH /Z. Here we use the latter definition.
The generalization of the grand partition function follows in a similar manner so that,

tr(efﬂ(ﬁ*“m) (56)

[1]

where N is the number operator.

D. Relation between partition functions and entropy

These relations are found by using the Gibbs formula for the entropy,

S = —k‘B ZpJTL(pJ (57)

Using the Boltzmann probability in the canonical ensemble p; = exp(—pSe;)/Z, we have,

S =—kp Zpi[k_;} —In(2)] = % +kpln(Z) so U—TS=—kpTin(Z) (58)
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Using the Boltzmann probability in the grand canonical ensemble p; = exp[—pS(e; — uN;)]/Z, we have,

— uN; — U—-uN _ -
= —kp Zpl kBT —(& =Ny —In()] = ——— +kpin(Z) so U—TS—uN = —kpTin(Z) (59)

Because of these relations, we define two new free energiess, the Helmholz energy F(or A) = U — T'S and the Grand
Potential & = U — T'S — ulN, so that we have the fundamental relations between the partition functions and free
energies,

F=U-TS=—-kpTin(Z); and ®c=U-TS —uN = —kgTIin(E) (60)

E. Interesting Aside: Connection with information theory - Shannon entropy

Consider information transmission down a noisy communication channel. If a signal contains NV bits, and we want
to transmit a signal that has a fix value for each bit, then the perfect transmission case corresponds to p; = 1, where
p; is the probability of the perfect signal state amongst the 2V states possible with N binary bits. Shanon defined
the information function (really its the ignorance function!)

— Y pilogupi = (—logup). (61)

When all the probabilities (p;) are equal, I is maximal, and we have minimal information about the system. When
our information content is maximal (i.e., one rho is equal to one and the rest are zero, such that we know what state
the system is in), the information function is minimal. The logarithm can to be to any base b, though for digital
electronics it is usually 2. When the base is e, the information function is the thermodynamic entropy, provided we
multiply by —kp. Maximum information transmission corresponds to minimization of the Shannon entropy.

F. Derivation of two key thermodynamic relations: U =TS — PV + uN; and SdT — VdP + Ndu = 0.

First note that U — T'S + PV = uN is NOT the same as the fundamental thermodynamic relation dU = T'dS —
PdV + pdN.

To discover U — T'S + PV = uN note that there is a general mathematical theory of homogeneous functions and
homogeneous equations, where a homogeneous function has the property that,

fQz, Ay, Az) = N f(x, Y, 2). (62)

Because the energy (or entropy) are defined in terms of extensive variables and are themselves extensive, they are
also homogeneous, so that,

U(S,V,N) =U\S,A\V,AN) or AU = U, (63)

which is a linear homogeneous relation (k = 1). Now we take a derivative of this relation with respect to A and using

the chain rule we find,
GU)\) ( OU X ) ( AU )
= (= S+ e V4 (e N 64
(50557 s 5+ (5095 ) s+ (087 e oy

From the fundamental thermodynamic relation we also have,

oU oU oU
dU = TdS — PdV + pdN = (55>v, s + (av> av + (W)s,v AN (65)

oU oU oU
T—(as)m’ P“(av)w’ “‘(azv)s,v' (66)

so that,
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Using these relations in Eq. (64), we find
U=TS—-PV +uN (67)

which is the first relation that we seek. From now on we shall refer to this equation as the Fundamental Thermodynamic
Relation IT (FTR II) and Eq. (66) as FTR I. FTR II in combination with the relations between the partition functions
and thermodynamic quantities F = U — TS = —kgTin(Z), and & = U — TS — uN = —kgTIn(Z) (see Eq. (60))
yields,

PV = kgTin(S) (68)

which will use in calculations of the properties of quantum gases.
To find the Gibbs-Duhem relation, we note that now we have two expressions for dU, so that

dU = d(TS — PV 4+ uN) =TdS — PdV + udN (69)
from which we deduce the Gibbs-Duhem relation,

SdT — VdP + Ndy = 0. (70)

IV. OUTLINE OF KEY MANY BODY STATISTICAL PHYSICS SYSTEMS

Statistical physics systems may be formulated in many different ways depending on the problem. The key systems
are: classical and quantum interacting particle systems, “classical” and quantum interacting spin systems, classical
and quantum interacting field systems.

An example of a classical particle Hamiltonian is represented by the Hamiltonian,

N -2
H=3 g+ VAR (71)

The fact that the momentum only appears quadratically leads to the equipartition theorem for the kinetic energy. An
important special case is the case of pair potentials, such as gravity, coulomb and Lennard-Jones interactions where
Vn({7:}) = E;VN Va(7;). The classical particle Hamiltonian is used for simulations in all areas of science, including
simulations of gravitating systems, simulations of proteins and polymers and simulations of atomic solid state systems.
Simulations are often carried out using Molecular dynamics, a method we shall talk in detail about later. In complex
systems such as proteins and solid state materials developing good potentials is a large part of the problem and these
developments are often based on ab-intio quantum methods. The simulation procedures however rely on statistical
physics and thermodynamics. An example of a quantum particle Hamiltonian (or many body Hamiltonian) is the
Hubbard model,

H= Z tijCZCj +U Zni’Tni"L (72)

J>1

where ¢; is the creation operator, and n; is the number operator. This is a first approximation to the description of
electrons in materials with strong Coulomb interactions. The first term describes the band energy or kinetic energy,
while the second term describes the on-site Coulomb repulsion.

An example of a classical or quantum spin system is,

H=Y"1,8-5, (73)

j>i

In the simplest the spin is a scalar that has two values, up or down. This is the Ising spin case. More general scalar
spin models allow the spin to take values —S,,02, —Smaz + 1, -....8maz. Vector spin models often consider the vecor S
to have n components and to be normalized to magnitude one. In that case the n = 1 case corresponds to a vector
that can have values on the perimeter of a circle, so it is called the O(1) model. This applies for example to vortex
states in superconductivity. If the spin vector has n components it is called an O(n) model as the vector lies on the
surface of a sphere in n — dimensional space. In classical spin models the spins operators are classical variables,
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while in quantum spin models they are quantum operators. For example the Hamiltonian () for the case of a spin 1/2
quantum system with O(3) symmetry is the Heisenberg Hamiltonian,

N N
H= Z Ji;Si - 8; = Z Jij(oi o +a]o] +ai0}) (74)
j>i J>i

where 0%, 0¥, 0% are the Pauli matrices.

Field theories do not have an underlying lattice and are instead described in terms of fields at each point in space.
This is familiar from electricity and magnetism which is a classical field theory, and quantum electrodynamics which
is a quantum field theory. The methods of field theory have played an important role in modern statistical physics.
Landau developed a field theory to describe the phase behavior of statistical systems based on very general symmetry
arguments. Ginzburg-Landau theory adds fluctuations to this analysis and this theory is the most successful for
treating the phase behavior of complex many body systems. We shall discuss Landau theory and the Ginzburg-
Landau approach in the third section of the course. One important example is the Landau field theory for the
superconducting or superfluid state in the absence of a field,

2
H = [[= 5 V61 + alof? + ool (75)

where ¢ is a complex field (wavefunction). A similar model may be written down as a continuum limit for spin
models, such as the Ising model. Using a field theory approach to the magnetic phase transition Ken Wilson applied
quantum field theory methods to statistical physics leading to analytic calculation of critical exponents characterizing
behavior near second order phase transitions. This work was acknowledged with a nobel prize in 1982. Later we shall
extend this Hamiltonian to treat the effect of an applied magnetic field in superconductors and charged superfluids,
enabling effective models of the mixed and intermediate states of superconductors in a field. Alexei Abrikosov used
this field theory to theoretically demonstrate the existence of the flux lattice in superconductors and his work was
acknowledged with a nobel prize in physics in 2003. We can also add an external potential to describe the behavior of
superfluid in an atomic trap. Carl Wieman and Eric Cornell developed experimental methods to demonstrate Bose
condensation of Rubidium atoms in an optical and magnetic trap. Their work was rewarded with the 2001 Nobel prize.

V. COMPUTATIONAL METHODS

These days simulation studies in statistical physics are as important as analytic analysis so that every physicist needs
to know the basics of computational methods and the strengths and weaknesses of each approach. The most important
computational methods in statistical physics can be placed in two broad categories, Monte Carlo (MC) methods and
Molecular Dynamics (MD) methods. There are classical and quantum versions of both of these methods. Here
we discuss classical MC and classical MD methods applied to classical spin systems and classical particle systems
respectively. MC and MD methods provide systematic methods to sample configurations in phase space with the
correct Boltzmann probabilities for a statistical physics system. MC methods directly sample configurations, while
MD methods follow trajectories in phase space using a physically correct particle dynamics. Classical and quantum
methods are available. We want to calculate the ensemble average of an operator, so that in the canonical ensemble,

Oz —Be;
<O>=217f; <0 >

Zl e Be;

where )°. indicates a sum over all many-body energy levels, [ dw is shorthand for the 6N dimensional phase space
integral and tr is the trace. Note that the internal energy U is found by taking a derivative,

[ dwOePH <O oe tr(Oe=BH)

o fdwe_ﬂH ’ tr(e_ﬂﬁ) (76)

U=<E>=) ep = —%ln(Z) (77)

K3
Summing over all states is prohibitive in all of the many body systems discuss in Section IV. In all cases the phase
space grows at least exponentially with the system size (number of particles). For example the simplest case is a
two state system where each particle can be in one of two states so that the number of possible configurations of an
N particle system is 2%V, which is an exponential growth with the number of particles. Even for systems with only
500 particles the number of state is greater than current estimates of the number of atoms in the observable universe
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(10%9). Clearly taking the thermodynamic limit is hard if we want to sum over all states. This is the “combinatorial
explosion” that we have to overcome in statistical physics, many-body physics and quantum field theory. (Note that
quantum computers many help with this by storing an exponential number of states in a linear number of qubits -
this field is moving forward rapidly but still far from practical use.)

Monte Carlo and Molecular dynamics methods provide strategies to find estimates of ensemble averages without
summing over all configurations.

A. Classical Monte Carlo simulations

In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940’s) during
which J. von Neumann, S. Ulam, N. Metropolis and R. Feynman used random numbers to estimate neutron scattering
and absorption rates in materials. The Metropolis method which you will use in the first coding assignment originated
in the paper: ”Equation of state calculations by very fast computing machines”, by N. Metropolis, A.W. Rosenbluth,
M.N. Rosenbluth, M. Teller and E. Teller, J. Chem. Phys. 21. 1087 (1953). A recent retrospective ”Marshall
Rosenbluth and the Metropolis algorithm”, Physics of Plasmas 12, 57303 (2005) describes some of the history and
makes it clear that Metropolis actually had little to do with the development of what is now called the Metropolis
method. The credit should really go to Rosenbluth and Teller. A form of the Metropolis algorithm which is more
efficient for polymer chains and proteins was also developed by Rosenbluth, and is called the Rosenbluth algorithm.

The Metropolis method is the most widely used Monte Carlo method. Monte Carlo methods can be considered to
be improvements or variations on other random sampling methods such as importance sampling, which have a longer
history. They are also the most widely used example of a computational method where we try to deduce the typical
behavior of a complex system by repeated stochastic simulations. A few examples of the use of Monte Carlo methods
in physics are:

(i) Thermodynamic quantities in statistical physics (e.g. Ising model magnetization)
(ii) Multiple integrals in mathematics and analysis

(iii) Reaction-diffusion problems in chemical engineering and geophysics

(iv) Polymer or protein conformations

(v) Particle showers in Nuclear and HEP

Monte Carlo methods are used to generate a sequence of configurations to represent the typical behavior of a
statistical physics system at a given set of conditions, such as fixed temperature, volume, number or particles etc. We
can use these configurations to find the average behavior of properties of interest, such as the internal energy. The
statistical physics average of any operator in classical and in quantum systems for operators that commute with H is
given by,

<0 >= Z Oipi = tr(0p) (78)

K2

where H is the Hamiltonian and 8 = 1/(kgT) with kp Boltzmann’s constant and T' the temperature. In a Monte
Carlo simulation, we generate configurations with the correct Boltzmann probability, so the probability factor in Eq.
() is already accounted for. We therefore calculate a quantity, for example the energy, in each configuration and then
take a simple average. The central problem in a Monte Carlo simulation is to find a set of configurations that sample
the Boltzmann probability correctly. We use the classical Ising model as an example.

1. An example - The Ising model

The Ising model was invented to provide an understanding of phase transitions in ferromagnets, where it is known
that mangetism is lost for T > T, where T, is the Curie temperature. The behavior near T, is complicated and
co-operative so that there is actually a singular behavior in many physical properties at T.. In addition the geometry
of the magnetic domains at T, is fractal. All of these properties can be deduced by using the Monte Carlo method to
find the average properties of Ising magnets. The Hamiltonian of a spin 1/2 Ising magnet is given by,

H=-JY" 85, (79)
<33>

where J > 0 is a ferromangetic exchange constant, S; = +1 is a spin variable, and the sum is over nearest neighbor
sites on a lattice. We take the square lattice as our example, but the model can be defined on any graph structure,
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including complex networks. As well as the average energy, which approximates the internal energy, a second operator
or quantity that is very important in magnetic materials is the magnetization, m = (3>, < S; >)/N. We can use the
Monte Carlo method to generate a sequence of configurations and then to calculate the energy and magnetization of
each configuration.

2.  Generating configurations - the Metropolis method in the canonical ensemble

Consider again the equilibrium Boltzmann probability of finding a state, 7,
pi = e Fi/keT |7 at equilibrium in the canonical ensemble (80)

We want to make sure that this probability is correctly recovered by our MC sampling procedure, at least if we run
the sampling procedure for long enough. Of course in non-ergodic systems we can’t reach all states, nevertheless we
can find a stable limiting sampling of configurations in key regions of phase space.

We know that the Boltzmann probability has a time evolution given by the master equation,

dp;it) =D [wjip;(t) = wizpi(t)] o

J

where now the time dependence of the probabilities is made explicit. At long times the probabilities approach steady
state, at least in ergodic systems. Now we can use a discrete form of the time derivative and set ¢ = 0, to find,

pi(t+1) =pi(t) + Z[wjipj(t) — w;;pi(t)] (82)

If we know the transition probabilities w;;,w;;, then for a given initial set of the probabilities {p;} we can simulate
the time evolution of the probabilities. However this is prohibitive computationally due to the fact that the phase
space grows exponentially with the number of spins or particles in the system. The Metropolis method is an efficient
method for sampling configurations with the correct probability.

To sample equilibrium configurations correctly, we have to ensure that the transition rates that we use lead to
the equilibrium probabilities (). At equilibrium, the probabilities should have no more time dependence, so Eq. ()
becomes

Z[wjipj —w;;p;] =0 for every i (83)
J

where p; and p; are now the equilibrium Boltzmann probabilities. This important balance equation defines the
transition rates w that are consistent with equilibrium. A simple way to ensure that this equation holds is to demand
that every term in the sum is zero, which gives the detailed balance condition,

Wji _ Pi _ —(Bi~E;)/ksT (84)
Wij Py

A very important feature of this equation is that Z cancels on the RHS, so the ratio of transition rates depends only
on the energy difference between two states. Calculating Z is difficult because it requires a sum over all states.

The Metropolis MC method gives a set of transition rates that satisfy detailed balance condition and in practice is
efficient computationally. It is also simple to program. The MC procedure is as follows:

The Metropolis MC' algorithm
Choose a spin Hamiltonian, graph structure and number of spins
Choose an initial state and boundary conditions to be used
Choose a procedure for MC “moves”, e.g. a single spin flip of a randomly chosen spin
Then, do
1. Find the energy of an initial state, F;.
2. Find the energy, E;, of a state where a randomly chosen MC move is carried out on the initial state.
3. Choose a random number X¢]0, 1].
4. If wy; = e~ BE;—Ei) > X, accept the MC move and store the new state as the initial state.

If wi; = e PE;=E:) < X reject the MC move and keep the initial state



20

5. Update averages. If averaged quantities are converged to required accuracy, Exit. If not return to 1.

To show that this procedure satisfies detailed balance, consider the two cases I; — E; > 0 and E; — E; < 0, which
lead to,

Wi = Siﬁ(EjiEi); Wi = 1 if Ej —FE; >0 (85)

and
Wi; = 1; Wj; = €_ﬁ(Ei_Ej) if Ej —FE; <0 (86)

In both cases the detailed balance condition is satisfied.

There are many ways to choose different MC moves. A single spin flip is the simplest and is often used, however
spin exchange is also used a lot. More sophisticated algorithms that flip clusters of spins are much more efficient near
critical points. Algorithms such as the Swensden-Wang and Wolff algorithms are used extensively for this purpose.
In glasses and in other systems that are not ergodic, a wide variety of different approaches have been tried. This area
is still very active.

Later in the course we shall talk more extensively about phase transitions, however here take note that the nearest
neighbor spin half ferromagnetic Ising model exhibits a second order phase transition in two and higher dimensions.
The magnetization shows this phase transition very clearly and so is called an “order parameter” for the transition.
At temperatures less than the critical or Curie temperature, the system is magnetized, while for T' > T, the system
is a paramagnet. The behavior near the Curie point, T, is of the form,

m~|T,—T|? (87)

and is mathematically singular, in the thermodynamic limit. At the Curie point the domain structure is very inter-
esting, exhibiting a power law, fractal, distribution of domain sizes. If we cool the system from a high temperature
domain state, the MC procedure finds it very difficult to restore the magnetized state. This is also true in real magnets
where a demagnetized magnet needs to be cooled in a field to restore its magnetic alignment. This is an example of
non-ergodicity.

The mathematical singularity in the magnetization behavior only occurs for large samples at equilibrium, so that
smaller samples have a rounded behavior near T,. This rounding behaves as,

m(T.,L) ~ L™P/v (88)

which is called finite size scaling. Moreover, the larger a sample is, the longer it takes to relax to its equilibrium value,
and the relaxation time diverges near the critical point, a phenomenon called critical slowing down. So if the MC
simulations runs are not long enough, the critical behavior is further rounded. This behavior is further exacerbated
by non-ergodicity in the low temperature phase.

B. Classical molecular dynamics

God does not care about our mathematical difficulties. He integrates empirically. — Albert Finstein

Molecular dynamics (MD) covers a broad class of methods in both classical and quantum physics. Classical
MD involves solving Newton’s equations for each particle in the simulation box, while quantum or ab-intio MD
involves solving for the time dependence of atoms or nuclei by first solving Schrodinger’s equation for the relevant
wavefunctions. We shall concentrate on classical MD. This seems trivial in that we simply solve Newton’s equations
to find the trajectory for each particle or atom in the system. The key difficulty is that we are usually interested in
many particles, for example in simulating the evolution of Galaxies we need to take millions of stars, or in simulating
a protein we need to take hundreds of different amino acid residues each of which has many atoms. The modern era
of MD began with the work of Alder and Wainright on hard- sphere liquids in the late 1950s. The paper by Rahman
in 1964 on a molecular dynamics simulation of liquid argon with a soft sphere (LennardJones) potential represented
an important next step. Simulations of complex fluids followed; the original study of liquid water by Stillinger and
Rahman was published in 1971. Simulations of proteins began soon after with to of the early innovators being Levitt
and Karplus.

Now MD is a standard tool in all areas of science and engineering, and there are many MD packages available for a
variety of different communities. For proteins and other biomolecules the standard packages are CHARM, AMBER,
GROMOS... while for polymers and other materials LAMMPS is a standard. A key element in all of these packages is
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the interatomic potential that is used. The force is found from the potential and the range of the potential determines
the type of algorithm that is used, with different methods being applied to long range as opposed to short range
potentials. Many of these packages also have Monte Carlo (MC) options and some also have options for quantum
calculations, i.e. quantum MC and/or quantum MD.

MD methods can be considered as a method for sampling the classical phase space density p({g;,p; },t). The phase
space density obeys the Liouville equation that could itself be integrated, but its phase space is very large so this
approach is limited to a few particles. However, if ergodicity holds we carry out an MD calculation with any starting
configuration and at long times all configurations will be sampled. In practice, ergodicity is difficult to achieve as the
energy landscape of most interesting problems is rough, and because the fundamental timestep of the MD method
for atomic systems is very short, typically of order a femtosecond. Even after millions of timesteps the total MD
simulation time in atomic systems is only nanoseconds or at most microseconds, which is a fundamental limitation of
the method. The basic MD algorithm is as follows.

Basic molecular dynamics algorithm

Choose the number of particles to be simulated N, the interaction potential and the boundary conditions.
Place the particles at initial positions 7 (¢ = 0).

Choose initial velocities for all of the particles ¥;(t = 0).

Then, do

Find the force on each particle f;(t)

Use this force and the velocities #;(t) to move each particle to a new position 7;(¢ + dt)

Calculate ﬁ(t + 0t) using these new positions

Find the new velocities, ¥;(t + dt)

Calculate averages. If converged exit, otherwise return to 1

Cri W N

To carry out steps 2 and 4, we need a procedure to go from the acceleration (or force) to the positions and velocities.
We also need to define a potential. First we look at the way that we find the positions and velocities from the force.

1. The Verlet algorithm

The molecular dynamics (MD) trajectories (or configurations) of classical particles are found by numerically inte-
grating Newton’s second law for each particle, ie.

. &,

=Mi s (89)

where in the discussion below we take all of the masses to be the same.

There are many ways to numerically integrate these equations and their accuracy is dependent on some power of
the time interval used in the discrete approximation. The first derivative such as velocity may be written in three
basic ways: the backward difference;

_dr T(t) — 7t — o)

it)y=— = —F—-——~ ot
i =5 S o) (90)
the forward difference;
Loy dr ot +6t) —(t)
v(t) = i 5 + O(dt) (91)
and the central difference
3(t) = dit 7t + o0t) — 7(t — ot) +O(51)? 92)

T dt 26t

Notice that the central difference has a correction of higher order than the forward or backward difference, as is seen
by expanding the right hand side of these equations in a Taylor series. The second derivative can be written in a
similar manner, however the best form is the central difference,

= d?r(t) 7t + 6t) — 27(t) + 7(t — 6t)
i) =~ = 5t

+ O(8t)* (93)
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To demonstrate these equations we write the Taylor series,
1 1 1
Pt + 0t) = 7(t) + 5t (t) + aat%”(t) + iétgf’”(t) + Eét‘lf””(t) + .. (94)
and
— — — 1 2 1 31 1 4 11
7t — 0t) = 7(t) — 67 (t) + gét 7 (t) — ﬁét 7 (t) + Iét 7(t) + .. (95)

For example the discrete or central difference form of the second derivative is found by adding these two equations.
Using the central difference form of the second derivative in Newton’s equations, we write the most basic form of the
Verlet algorithm,

F(t + 6t) = 27(t) — 7t — 6t) + 6t2Fs(t)/m; Basic Verlet (96)

In order to use this equation we need the positions as two times 7(t) and 7(¢ — dt). Alternatively we can use the
backward difference for the velocity and write expressions in terms of the velocity at time ¢,

Fi(t + 0t) = 75(t) + T (t)t + 6t F;(t)/m; Basic Verlet (97)
and
ri(t +0t) — Ti(t)
ot

This algorithm works quite well, but a better algorithm is found by using a so-called leapfrog procedure, which leads
to the velocity Verlet algorithm, which is given by the two equations,

Ti(t + 0t) = (98)

B+ 6t) = 7 (1) + 55 (t) + %&21%) Jma (99)
and
;(t + 0t) = T (t) + %575(132»(1& +6t) + Fi(1)) (100)

So step 2 in the MD algorithm above is given by Eq. () or (), while step 4 is given by Eq. () of (). Note that only one
force calculation is required for each timestep, as the forces at the previous time can be stored, so only step 3 needs
to be carried out at each timestep, while step 1 uses forces calculated at the previous timestep.

2. An example - MD model for Argon

The next step is to define a potential energy to describe the interactions between the particles. As an example, we
consider an important interatomic potential that is used in materials science, chemistry and biology, the Lennard-Jones

pair potential,
o\ 12 PN
) = de[ | — — (=7 101
Vi =id(Z) - (2)) (101

The repulsive term is due to coulomb and exchange interactions of the electron clouds of each particle, while the
attractive term is due to induced dipole-dipole interactions. For Argon the parameters of the model are m = 6.69 x
10~26kg, € = 1.654 x 10721, 0 = 3.405 x 10~'9n. The minimum of the potential is at 7, = 2'/%¢, and the depth of
the minimum is —e. The time scale of the problem is 7 = (mo?/e) = 2.17ps. In most simulations, scaled units are
used, which in our problem corresponds to setting, m = 1,0 = 1,e = 1, so that one unit of time in our simulations
corresponds to 2.17ps. In practice, the timestep required for the simulations in the scaled units is §t = .004, which
corresponds to a real time unit of 8.68fs. This is typical of simulations of atomic motion and in cases where the
interactions are strong, the timestep has to be shorter, for example in covalently bonded systems. Since the timestep
is so short, simulations over millions of timesteps only lead to real times of order ns to us, which is a fundamental
limitation of MD simulations. The force between two atoms found from the LJ potential is,

~ A
v]
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The total force on a particle is found by summing this force over all neighbors of the particle.

With these procedures, we are able to follow the trajectories of all the particles in the simulation. From these
trajectories, we would like to calculate properties. But what can we calculate. Since the calculation conserves
the total energy, the temperature does not change (on average), so how do we change the temperature? How do we
calculate the pressure and the equation of state? To understand this better we need to understand classical interacting
particle systems more fully.

C. Finding T and P using energy conserving MD

In classical particle systems the Hamiltonian or Energy can often be approximated by pair interactions, so that

N 5 N
P; .
H:KE+V:Z%+ZVQ(TU). (103)
=1 1>
In the cannonical ensemble, the probability finding a particle at a point in phase space is given by,
p= Ae™PH = DrDv- (104)

where H is the Hamiltonian. Note that the Boltzmann probabilitiy factors into a part that contains the potential and
a part that contains the momentum. The momentum part of the Hamilonian is simply >, p7/2m. Now note that p,
also factors, i.e. p, = py,...py, and the probability of finding any one particle in a momentum state p; is then,

72 B 3/2 72
5;) = Are Pem = [ — TTWERT 105
pan(i) = re5x = (G2} s (103)
This expression holds for every particle in the system. Often this is written in terms of the velocities
3/2
. mﬂ _ m@?
pmB(0) = (%> e 25T (106)

where the constant A; is found by normalizing the probability. From this “Maxwell-Boltzmann” distribution it is
easy to show that the root mean square velocity of particles is related to the temperature through

%m <P >= ngT or < KFE >= gNkBT for a monatomic system (107)
More generally, the kinetic energy per degree of freedom is %k‘BT, which is of course the equipartition theorem. For
an ideal gas the kinetic energy and the internal energy are the same. However for an interacting system the internal
energy is the kinetic plus potential energy, so the equipartition result applies to the kinetic energy for systems with
interactions that are momentum independent. Now note that from this result we have a procedure for changing the
temperature in our MD simulations. We simply rescale the velocities to satisfy Eq. (). This is one of the most
common “thermostats” used in MD simulations.

Now we want to calculate the equation of state for the interacting classical gas, i.e. we want to see how the ideal gas
law is modified by the interactions. To do this, we use the virial method following standard definitions in mechanics,
where we define the “virial” G = )", P - 7%, so that

N
dG —

o =2K+ ’; Ey - = 2K + Wing + W (108)
Wint is the work of the internal forces, while W, is the work of the external forces. The virial theorem states that
if the average of the time derivative of G is zero, then,

N N

dG fi 5 S

<E>:0:<ZE>+Z<Fk~rk>:2<KE>+Z<Fk-rk> (109)
k k=1 k=1

The generalized theorem states that this equality is correct for each component of the sum above, as we shall show

later. The reason that the average of the time derivative of G is zero at long time is that it is approximately
(G2 — G1)/(ta — t1), with G5 and G; bounded and with zero average.

internal

N
Y <Fy-ih>= > <Fy i >+Ly(—PLyL.) + Ly(~PL,L.) + L.(—PL,L,) (110)
k=1 k=1,N
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where P is the external pressure applied to the cubic box. We then have,

internal
- 1 -
PV = NkgT + - E < Fy -7 >= NkgT + - E <’Fij~Fij> (111)
3 k=1,N 3j>i

where the last expression on the right is for the case of pair potentials, such as the LJ model for inert gases such as
Argon.

From the MD simulation we get a series of configurations. From these configurations we can find the temperature
and the pressure. We can also look at other more detailed properties such as the mean square displacement of particles,
and the local arrangements of the particles. Since MD uses a realistic dynamics, the dynamical properties can also
be studied, for example if we start with a dense cluster of Argon at high temperatures how long does it take to melt
or evaporate? We can also do the opposite simulations, i.e. if we state with a gas of Argon and quench the system
to low temperatures, does it form crystals of solid Argon? Does it form a glass? There is an interesting and useful
result used in many MD simulations, called the Jarzynski equality (JE), which is an equation that relates free energy
differences between two equilibrium states and non-equilibrium processes.

VI. THERMODYNAMIC POTENTIALS
A. Reversibility and exact differentials

If the differential of a scalar function of n variables F'(z1...x,) is given by,

dF = fi(ay..xy)dz; (112)
and a Taylor expansion exists so that,
oF
i = ) 113
fi= 5 (113)

Then dF is an exact differential and,

ofi  O*F  dfi  O°F

dr;  Ox;0m; Oz,  Ox0r; (114)

That is, the order of the derivatives do not matter. These obvious looking identities are used extensively in thermo-
dynamics and in that context are called Maxwell relations.

From a physics perspective, the most important property of an exact differential, is that its integral depends only
on its end points, i.e. if F' is an exact differential and i, f are arbitrary initial and final points of a path integral, then

B
/ dF = Fg — F4  or equivalently -7{dF =0. (115)
A

Clausius noted that at equilibrium d@Q/T is an exact differential with these properties. In physics variables with these
properties are called state variables. At equilibrium, all thermodynamic variables are state variables. Moreover, the
second law states that if a processes is carried out away from equilibrium d@ > T'dS, so that more heat is required to
move the system from one state to another, hence there is a loss of efficiency in the use of the heat.

Since thermodynamic variables are exact differentials, a Taylor expansion exists, so that for example the internal
energy U(S,V, N) may be written as,

ou ou ou
=TdS — P N=|— — — N 11
au dS — PdV + ud (aS>VNdS+(av>S,NdV+(aN)SVd (116)

so that,

oUu oU oU
r= <as>’ —P= (av>SN’ n= (aN)SV (117
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Similar relations may be written down for any thermodynamic variable. Moreover it is straightforward to write down
Maxwell relations from these expressions. Before doing that we need to understand more fully the free energies that
are used in thermodynamics and their physical origins.

In a similar manner the entropy, S(U,V, N), can be written as,

1 P I a8 oS a8
dS = —=d —dV — =dN = | — d — d — dN 11
S (8U>V,N U*(@V>U,N V*(@N)U,V )
so that,
1 oS a8 1 oS
- (22 .p=(2= P Y (e 119
r=(a), =), 5= (x),, (19
The volume, V(U, S, N) may be written as,
1 T 1 oV ov oV
dV = —=d —d ZdN = | — d — d — dN 12
V=R T p (w)s,N 0+ (55) 0 5+ (55) 120
so that,
(v : r_(ov . H_ v (121)
P o )sy P oS )yn P ON )y s
Finally, the number of particles, N (U, S, V), has the representation,
1 T P ON ON ON
dN = —dU — —dS + —dV = () dU + <> ds + () dN 122
K K K U ) sy 98 Juv W Jus 122
so that,
T N T N P N
XOREIORENE
H o ) sv H AT W )us

In writing these expressions, the independent variables are one of the set U, S,V, N. Sometimes we need to use
different independent variables, due to the way in which experiments or simulations are carried out. The set of
variables U, S, V, N are most natural for the microcanonical ensemble. However in the canonical ensemble we want
the independent variable T instead of S. In the grand canonical ensemble, in addition, we want the independent
variable u instead of IN. One extension that we consider below is where we have a charged species. In that case
the conjugate variables are charge ) and voltage V. In the microcanonical ensemble @ is the independent variable,
while in the grand canonical ensemble Vj is the independent variable. Actually the electrostatic potential can be
incorporated as a contribution to the chemical potential, though we shall treat them separately for now.

B. Work done by the reservoir, Legendre transforms

One of the fundamental postulates of equilibrium statistical physics is that entropy is maximized. However we know
that in mechanics and in many other ground state problems energy is minimized. Moreover if a system is connected
to a reservoir, the work done by the reservoir also has to be taken into account. A simple example from electrostatics
is to consider a capacitor that is initially uncharged attached to a battery. The battery is the reservoir in this case.
Now close a switch to the battery. The lowest energy state of the capacitor is the uncharged state, however the
battery supplies charge to the capacitor, reducing the energy in the battery. If the capacitor has capacitance C, and
the battery has voltage Vj, the energy of the system at any charge state of the capacitor is,

2
E® == _ow 124
o~ Qo (124)
Note that here we do not worry about the total energy in the reservoir, but only the change in energy of the reservoir
(—QVp) as the capacitor is charged. The first term is the energy in the capacitor and the second term is the energy
supplied by the reservoir (the battery). Minimizing with respect to the charge gives @ = CVy. In doing this
minimization, we consider that the battery is perfect so that the voltage does not change. We also assume that there
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is no dissipation. In this example, the charge is “conjugate” to the voltage of the battery. The point of this example
is that if we minimized the energy of the capacitor without the effect of the reservoir, the answer would be @) = 0,
but in the presence of the reservoir, we get a different answer, Q@ = C'V}.

Now consider the mathematical definition of the Legendre transform. If we have a function of f({z;}), the Legendre
transform with respect to the variable x is,

Lif,z] = f - %iﬂl (125)

Clearly this can be repeated to generate a Legendre transform with respect to any number of the variables {z;}. For
a function of one variable, we write,

Lf@)=f~Gta=7~fur (126)

This can also be considered as the equation for the tangent to a line, where f is the intercept and f, is the slope. The
Legendre transform can then be considered to be a family of tangents to the original function. Note that L(L(f)) = f.
To show this, we define g = f — f,x, so that

L) =g~ gp.fo = f - fua - T g g (127)

There are many other intriguing properties of the Legendre transform, however it is better to keep in mind the physical
reasons for introducing the Legendre transform.

C. The right free energy to minimize

In a statistical physics or thermodynamics calculations we can either maximize the entropy or minimize the correct
free energy. In both cases we have to take into account the contribution of the reservoir. Many reservoirs can be
considered. For example consider the internal energy that includes many terms in the generalized work,

dU =TdS — PdV + H -dM + E -dP +_ juudN; + VidQ; + fdL + ... (128)

(2

where many physical processes are considered. In addition to the terms in Eq. (), a term for the case of charge
transfer of multiple species (V;d@;) and a simple elastic process (fdL) are added. The chemical potential and charge
transfer pieces can be combined in many cases, but it is pedagogically nice to treat them separately for the time
being. Now note that the quantities that are the independent variables in this expression, S, V,M ,15, N;,Q;, L are,
in most experiments, NOT the things that are controlled. Instead the conjugate variables P, H , E, Wi, Vi, f are most
often the quantities varied. In statistical physics terms there is a reservoir that has this conjugate variable fixed.
In these cases, the quantity that is minimized is the Legendre transform of the internal energy with respect to the
quantities that are actually varied in the experiment. For example in the case of a charge reservoir for one species,
we have U — U — V;@Q;. This can be compared to the example of a capacitor (). In general we can define an energy
Y (T, P, u, H ...) where the variables in brackets define the Legendre transform that is taken. For example,

Y(S,P,H,N;,f)=U+PV —H M- 1;dN; — fdL (129)

3

Some of these Legendre transform functions are sufficiently important that they have been given their own names.
We have already seen two of them. Consider the case of a canonical ensemble where the reservoir is at constant
temperature. The heat energy supplied by the reservoir is then —7'S. This is the physical origin of the definition of
the Legendre transform U — T'S as the correct quantity that should be minimized. This is the Helmholtz free energy
(A or F), so that

A=U~-TS; sothat dA=dU—TdS—SdT =—SdT — PdV + Y _ ;dN; (130)

where we used the fundamental theorem of thermodynamics to deduce the final expression on the right hand side. We
have also found that A = F' = —kgTlin(Z), where Z is the canonical partition function. Of course many experiments
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are carried out by controlling T rather than S, so the the Helmholtz free energy should be used in the theoretical
study of optimal states. In some experiments, the control variable is the heat added to the system, so that the entropy
is effectively the control variable, however the pressure is controlled instead of the volume as occurs in many gas phase
processes with a piston. In the case where there is the the possibility of volume change at fixed pressure (constant
pressure reservoir), we define the enthalpy,

H=U+PV; sothat dH=TdS+VdP+  udN;. (131)

In this ensemble no heat is exchanged. In cases where the reservoir allows heat exchange at constant 7' and volume
change at constant P, we must minimize the Gibb’s free energy which is the correct Legendre transform for that case,
ie.,

G=U+PV-TS=A+PV sothat dG=—SdT+VdP+ Y udN; (132)

From the relation U =TS — PV 4 uN, we find that G = N, so the Gibb’s free energy is the chemical potential per
particle.

Finally, we have the grand potential which is the correct Legendre transform for a reservoir that allows exchange
of heat and particles, but the volume is fixed, so the correct Legendre transform is,

g =U-TS - mwN; sothat dbg=—SdT —PdV - Ndpu, (133)

If we use this relation with the equation U = T'S — PV + N, we find that ®¢ = —PV. Recall that ¢ = —kgTin(E),
so that PV = kgTin(Z), so we can find the pressure and hence the equation of state from the grand canonical partition
function. We will use this relation frequently when working with Bose and Fermi gases.

Note that we could carry through a similar procedure for the entropy, but it is unfamiliar as it is seldom used. The
entropy in the microcanonical ensemble is changed when a connection is made to a reservoir, and the change is of a
similar form to that required for add the effect of a reservoir to the internal energy.

Of course the entropies are always maximized while the energies (thermodynamic potentials) are minimized.

VII. RESPONSE FUNCTIONS, ENERGY AND PARTICLE NUMBER FLUCTUATIONS
A. Thermodynamic response functions

Thermodynamic response functions are often measured as they provide excellent indicators of phase changes and
access to fundamental constants. Moreover, as we shall see below, response functions are related to fluctuations of
the energy and particle number. Response functions are not all independent and there are relations between them.
These relations provide important checks on theoretical and experimental results.

Five commonly measured thermodynamic response functions are: the specific heat at constant volume Cy or at
constant pressure C'p, the adiabatic and isothermal compressibilities, kg, k7 and the coefficient of thermal expansion
ap. These quantities are defined through the relations,
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B. Energy and particle number fluctuations, central limit theory and relation to response functions

In the microcanonical ensemble, the energy is fixed, however there are fluctuations in the kinetic energy and in
the potential energy. Since the kinetic energy fluctuates, the temperature fluctuates. In the canonical ensemble,
the temperature is fixed but the energy fluctuates. In the grand-canonical ensemble, the energy and the number of
particles both fluctuate. In this section we will explore the relations of fluctuations to the thermodynamic variables
in the problem. We shall focus on fluctuations in the canonical and grand canonical ensemble.

First consider the canonical ensemble where the temperature is fixed but the energy fluctuates. The internal energy
is the mean of the energy, while the fluctuations in the energy are related to the size of the system as demonstrated by
the central limit theorem, from which we know dE/E ~ 1/N /2 However it is possible to find a much more precise
relation by studying the energy fluctuations directly. To do this we first define,

SE=[<(E-<E>?>"V2=[<E*>-<E>Y/? (139)
where we use the notation that < O >=}". O;p;. Now note that,

10°Z
and < E?>= Zaa? (140)

~107

From these expressions we find the neat result,

1922 102, 0%n(Z)

2 _ 2 2_ + (=Y
(E) " =<E*>-<E> 7 05 (Zaﬁ) o5 (141)
Therefore we find that,
ou ou oT
EY=-(— =—| = — = kpT? 142
687 ==(35),., = (a7),. (55),,, = 70" )
Note that it is easy to show that the specific heat may also be written as,
oS 0’F
Oy =T () S () . (143)
T )y oT? VN

The square of the energy fluctuations are thus proportional to the specific heat. This gives a nice way of getting the
specific heat from a numerical simulation in the canonical ensemble. An alternative method is to calculate U =< F >
and then take a numerical derivative with respect to T', however this is not as accurate computationally.

Since the energy and the specific heat are extensive, we have,

oF 1

as required by the central limit theorem. This means that the energy calculated in the canonical ensemble can deviate
at most by N'/2 from the energy used in the microcanonical ensemble, so the thermoynamic behavior is the same.

A similar argument can be carried out for the fluctuations in the particle number within the grand canonical
ensemble, so that,

9%In(Z) o%pP
6N)? =< N? > — < N >?= (kgT)*~——— = kgTV | =— 145
(6) (TP =ksTV (Ga) (145)
after some analysis this may be related to the isothermal compressibility k7,
dN)?
( N) = kBTpI{T (146)

where p = N/V is the number density. Again the central limit theorem is evident as (§N)2/N ~ 1,s0 §N/N ~ 1/N1/2.

It is important to note that we can also find the specific heat in the grand-canonical ensemble, and the result will
be the same as the cannonical ensemble, up to deviations of order 1/N 1/2 We can even find the specific heat from the
microcanonical ensemble where it is related to the fluctuations in the kinetic energy (the Lebowitz equation), which
is often used in MD simulations.
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C. Maxwell relations and finding expressions in terms of response functions

Response functions are the most commonly measured properties of materials. In the case of particle systems,
commonly measured response functions include, Cy, Cp, kg, k7 and ap (see Eq. (124-128) for the definitions of
these response functions. Note that all of these response functions are defined at constant N, so we are working with
two variable expressions. In more general cases a formulation in terms of Jacobians can be useful, though there is
some notation overhead to learn. In the case of magnetic systems the magnetic susceptibility, x, is the most commonly
measured response function. Here we shall discuss methods to find relations between response functions and to reduce
most thermodynamic derivatives to expressions involving the standard response functions above.

Maxwell relations come from second derivatives of the free energies. Using the derivative relations for each of the
standard free energyies and the entropy ie. S,U, F, H, G, it is easy to write down three Maxwell relations for each
case, leading to 15 Maxwell relations in all. See Appendix H of Pathria and Beale. For example for the internal
energy, we start with the fundamental thermodynamic relation to write,

dU =TdS — PdV + uN = (gg) x ds + (gg) . dv + (2][{]) . dN (147)
so that,
r=(as): = (o). = (v, e
and hence
2 2
(asv) = (avas) = (av),,, =~ (as)., w9

The procedure to derive any of the Maxwell relations is then: (i) Look at the independent variables in the expression.
(ii) choose the free energy with these independent variables. (iii) write down the derivative form of this free energy
and hence the relations between dependent variables and derivatives of the free energy, (iv) Choose the appropriate
cross derivatives to reproduce the Maxwell relation.

For example let’s prove the Maxwell relation,

(g]/i>s,zv B (gJVV>S,P (150)

The enthalpy H(P,S, N) = U + PV has the appropriate independent variables. We have,

OH OH OH
dH = dU + PdV +VdP =TdS + VdP + udN = () ds + () dP + () dN (151)
a5 PN op S,N ON)gp
so that,
OH OH
Hn = (M)S,P and V = (aP>S7N (152)
and therefore,
ou 0*H
.l — 1
<8P>S’N (8P8N) (153)
and
2% O’H
i R i 154
<6N>S,p (svor) (154

The order of the partial derivatives on the RHS of (153) and (154) can be switched, therefore the Maxwell equation
(150) is correct.
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D. Solving strategies

Sometimes the independent variables in a thermodynamic expression are not the same as those in the standard
potentials. In that case it is useful to define a new potential with the correct independent variables. For example,

consider the relation,
N E
T (3) - <5> , (155)
oT VB o TV

where 8 = 1/T for this problem. The fact that Su is held constant is a hint that an entropy form might help. However
the natural variables for entropy are S(U,V, N), and

1 P n
dS = =dU 4+ =dV — =dN 156
T + T T (156)
We want an entropy expression where T, V., Bu are held constant. However we can also use 3, V, Su and then use the

chain rule for the T derivatives. To get an entropy expression with these independent variables, we write down the
Legendre transformed entropy,

Y(B,V,Bu) =S = BU + BuN (157)

Writing an expression for dY and finding the appropriate Maxwell relation for the partials of Y, along with use of
the chain and inverse rule (see below), solves the problem.

E. Partial derivative relations that help in reducing thermodynamic relations

The following rules of multivariable calculus can be used to help solve many problems in thermodynamics,

or\ Oy .
<(9y)z =1/ <6x)z Inversion (158)

<g§>z = (SZ))Z (%;)Z Addition of a variable (159)
ox Jy 0z )
(31/)2 (82’)1 (M)y = —1 Triple Product (160)
If A(z,y), then,
0A\  [0A 0A oy o
<8l‘>z = <8x>y + <8y)m (895)2 +  non — natural derivative (161)
Proofs:
1. Inversion: Consider z(y, z) and y(z, z), so that,
[0z ox . _ (% dy
d:v—(ay)zdy+<az>ydz, dy—<6x>zdx+<az>mdz (162)

In the case that dz = 0 we find from these two expressions,

or oy or dy
— —_— . = —_— —_— :1 —_— 1
w=(5) e aw=(5) == (5) =v(5). (163)

2. Addition of a variable:
ox Ox ow
(5).- (52). (5. e
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This is the inverse of the chain rule.

8. Triple product: If we want to find a triple product relation on three variables x,y, z that obey an equation of
state. This is typical in thermodynamics, for example PV = NkgT is really a function of three variables as we can
define density p = N/V, so that P = pkpT. We define a function f(x,y,z) = 0 whose solution leads an equation of
state. If f has a Taylor expansions, we can write,

_(of of of

Since f(z,y,2) = 0, df = 0. Moreover, this Taylor expansion must hold for any infinitesimal dz, dy,dz. We consider
just the special cases dx =0 or dy = 0 or dz = 0. In these cases we find,

: ® (®
ox dy ) . 0z Oz yz ay 0z Ty
o) =75 () = o la) = (166)
oy ), ( of ) Ox ( af ) 0z ),
ox v 0z
yz zy
A product of these expressions leads to the triple product rule.

4. Non-natural derivative: Consider that we have a function A(x,y) so that,

0A 0A
A=|—-— = 1
d (8x>yd$+<8y)mdy (167)

Now divide through by dx while keeping a new variable z fixed, so that,
0A 0A 0A Jy
gAYy _ (Y4 itk = 168
(5). QML+<mein Hes)

F. Relating thermodynamic expressions to response functions

With some effort, most thermodynamic relations can be written in terms of measurable quantities, such as response
functions. Besides the basic Maxwell relations outlined above, a variety of other derivatives may be stated, in particular
in terms of “non-natural” variables. An example of an application of the non-natural derivative is as follows: The
natural variables for the entropy are S(U,V, N), but we may still consider the function S(T, V'), and assuming that

N is constant we may write,
oS oS
dS=|—= | dT — | dV 169
(57), 7+ (57), o9

Moreover, we may define new derivatives by dividing through by one of the infinitesimals (in this case dT" or dV'), and
we may choose to keep a new variable constant, for example,

08\ _Cp_Cv [0S\ (VY _ Cv 95 _Cv or
<8T>P T T +<8V>T<8T)P 7 tVer (av)T T +VO‘P<3T)V (170)

where a Maxwell relation
2
(35> _ (5 F > _ (E)P> (171)
ov ), oTovV aT ),

was used to find the last relation on the RHS. Now we use the triple product,

OP oT oV
(w)m (av)m (ap)m = (172)

so that,

= (173)
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so that,
oP ap
7 == 174
<8T> v kT )
so we find the nice relation,
TV a7
Cp=Cy+ —2P (175)
KT

Another interesting relation between response functions is,

(176)

To show this, we use the triple product rule, then the inversion rule, then the chain rule, then inversion again and
finally the triple product rule again. In a very succinct form this can be written as follows, (assuming N fixed),

CL(B) - (2 () o LB G o

"y \op v ), \os

- _ il - _ = Vir
s 14 V(%)P V(BS)P(BT)P Cp

(177)

oT /) p \oV

Using (175), this reduces to the last expression on the RHS of (176).

VIII. FURTHER REMARKS ON QUANTUM SYSTEMS

We have noted a couple of times that the statistical mechanics of quantum systems looks the same as that of
classical systems when we work in the basis where the Hamiltonian H is diagonal. For example, consider the classical
expressions in the cannonical ensemble

Z=Y e U=>"pE; S=-kpy pin(p) (178)

where p; = e PP /Z in the cannonical ensemble. and by definition > ;Pi = 1. These expressions can be written in
quantum form by noting that the trace of an operator is the same in all basis sets in a Hilbert space, due to the cyclic
property tr(ABC) = Tr(BCA) along with the unitarity of the transformation to diagonalize H. Using this property,
these expressions may be written in terms of the trace, so that,

Z=tr(e Py | U=wr(pH); S =—kptr(pn(p)) (179)
where the density matrix is given by,
,ﬁﬁ

Z

e

p= (180)
and by definition ¢r(p) = 1. Using the procedure above, the thermodynamic expectation of any operator that
communites with H can be written as tr(ﬁé), but is this expression also correct for non-commuting operators? What
is the physical meaning of the operator p? What happened to the ergodic hypothesis? We now discuss these questions.

To get started, lets return to the microcanonical ensemble so we have a system described by a wavefunction that
is evolving in time. We can find the eigenvalues of the many body system and define the degeneracy in the same
was as in the classical case, so there are Q(FE) states with energy E (in a system with a continuum density of states
Q(E) = D(E)dE). We label the degenerate states with the label k = 1...Q(FE), so the k'" state has energy Ej and
many-body wavefunction Wy. The state ¥y is taken to be phase coherent so it is a “pure” quantum state. The
expectation value of an operator in any one of these states is < Uy|O|¥) > as is usual in quantum physics. This
expectation is of course general and applies to operators that don’t commute with H. According to the ergodic
hypothesis, in the microcanonical ensemble each of the available states is equally likely, so the ensemble average of
the operator is given by,

Q(E)
<0 >=——= Z < U4|O|¥), >  microcanonical (181)
k=1
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OKAY, ANYONE WHO'S FEELING | BECAUSE. TM MULTIPLYING | SHIT JUST
LIKE THEY CAN'T HANDLE THE WRAVEFUNCTION BY ITS | GOT AEAL.
THE PHYSICS HERE SHOULD | COMPLEX CONJUGATE,
PROBABLY JUST LEAVE NOW.

THATS RIGHT.

0/

FIG. 5. Pure states

That is, each of the degenerate wavefunctions is included in the sum in the same way, though of course the value of the
expectation value may be different in each case. In writing this expression we have assumed that the ergodic hypothesis
extends to the quantum case and this warrants further discussion. The key conceptual aspect to note is we are taking
two averages. A quantum, phase coherent, average through the expectation value and a “classical” probabilitistic
average through the ensemble sum. In quantum systems it is important to distinguish between these two averages.
Equilibrium statistical physics is a special case of this distinction as the incoherent average can be generalized to
any probability distribution. Phase incoherence may be due to non-equilibrium and/or non-thermal effects such as
inelastic scattering. In that case the system may be described by a “mixed” state where the wavefunction of the
mixed state is an incoherent sum of phase coherent components. The average of an operator in a general mixed state
where M states are incoherent with respect to each other and where each state occurs with probability py is given by,

M
< O >mized state™ Zpk < ¢k|0|¢k > general (182)
k=1

which is the generalization of the microcanonical average above to arbitrary probabilities, py. In mathematical terms,
a pure state is a single vector in Hilbert space, while a mixed state is a probabilitic summation of such states. This
distinction is clear when the amplitudes of a pure state are negative or complex, however if the amplitudes are real
we need another test, which is given below in terms of the density matrix.

The ergodic hypothesis in the quantum case has the same caveats as those occuring in the classical case, so that
at high energies in a closed system we can expect efficient energy exchange between the degrees of freedom of the
system and approach to equal occupancy of each available state. We can take the limit of weak interactions to argue
that ergodicity applies in the long time limit even in quantum systems, so that an approximation that considers ideal
Bose and Fermi approximations can still be a good starting point.

Now we focus on the practical task, i.e. is the average of an operator in quantum statistical physics given by,

< 0 >=tr(p0) (183)

We will do this in the microcannonical ensemble so that we need to reduce this expression to Eq. (). To do this we
need to define the density matrix in the microcanonical ensemble. First we expand the pure state |¥ > as,

Wi >= " ankln > (184)

Then we define the elements of the density matrix of a pure state to be products of the expansion coefficients of the
state

p]':zm = a’ﬂka’;@ka (185)

then the density matrix of a mixed state should weighted sum of each of the elements of this matrix, so that,

Prm = 3 DkPl- (186)
k
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With these definitions we find that,

M
A 1 N A
<0 >= i E E Dklnklr,, < m|O|n > (187)

k=1 mn

It is clear that this is the same as Eq. (182). Now we want to reduce this to the trace formula (183). To do this, we
use Eqs. (185) and (186) to write,

<0 >=Y" pumOmn = tr(p0) (188)

mn

where in the microcanonical ensemble p, = 1/Q(FE).
It is convenient to write the density matrix as an operator,

p=> prl¥i >< Ty (189)
k

which indicates an outer product of the wavevectors so that an element of the density matrix is,

Prm = Y Dknkpyy, (190)
k

In the energy basis, the probabilities p; must reproduce the Boltzmann factors described above, so that pr = 1/Q(FE)
in the microcanonical ensemble, p, = e #Fr/Z in the canonical ensemble and pyy = e_B(E’“_N”)/E where the
probability here is for a state of energy Ej, with N particles. This expression holds when N commutes with H. It is
easy to check if a density matrix is from a pure state or from a mixed state. For a pure state,

p2=p pure state (191)

while for a mixed state this does not hold. The purity of a mixed state is P, = tr(p?) which should be one for a pure
state.

Finally lets look at the time development of the density matrix. For a time dependent wavefunction, the density
matrix for a mixed state is written as,

pt) =D ol Wi(t) >< Wi (D)] (192)
k

which has time dependence,

ap(t) 0|Wy(t) > 0 < U(t)]
ot zk:pk ( N < Wi (t)] + | Wi (t) > P (193)
Using Schrodinger’s equation,
O > g ) > (194)
ot
gives,
in 0 a1 ey (195)
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Assigned problems and typical quiz problems
Typical quiz Problems

Quiz Problem 1. Prove the expression for the Carnot efficiency for a perfectly reversible Carnot cycle using an
ideal gas.

Quiz Problem 2. Show that in the eigenfunction basis, the von Neumann entropy S = —kptr(pln(p)) reduces to
the Gibbs form S = —kp >, piln(p;) where the sum is over all eigenstates.

Quiz Problem 3. Use Stirling’s approximation to show that,

l?’L( (JTY)) ~ —N(pln(p) + (1 — p)ln(l —p))’ where p= n/N (196)

Quiz Problem 4. If S = —kgN[pin(p) + (1 — p)in(1 — p)], by doing a variation with respect to p find the value
of p that gives the maximum entropy. Demonstrate that it is a maximum by showing that the second derivative with
respect to p is negative.

Quiz Problem 5. Use the Master equation to prove the second law of thermodynamics, i.e. in a closed system
ds/dt > 0.

Quiz Problem 6. Give three examples of systems where the ergodic hypothesis fails. Explain why it fails in these
cases.

Quiz Problem 7. Why is the ideal gas law still a good starting point for high temperature gases, even though a
non-interacting gas is non-ergodic?

Quiz Problem 8. Using p; = ¢ #Fi/Z in the Gibbs form for the entropy, show that FF = —kgTin(Z), where
F =U —T5 is the Helmholtz free energy. Here Z =}, e PEi is the canonical partition function.

Quiz Problem 9. If z = e PFi=FEj) 5o that wj; — f(x). Show that the Metropolis algorithm is given by
f(x) = min(z,1).

Quiz Problem 10. If x = e #(Fi=Fi) 5o that wj; — f(z). Show that detailed balance is satisfied for any f(x)
satisfying f(z)/f(1/x) = x. Moreover, show that f(x) = x/(1 + ), the heat bath algorithm, is one such solution.

Quiz Problem 11. For a monatomic interacting classical gas, with interactions that only depend on the particle
co-ordinates, derive the Maxwell Boltzmann distribution of velocities and show that the average kinetic energy is
given by < KE >=3NkgT/2.

Quiz Problem 12. Using the fact that §E? =< E? > — < E >2= kgT?Cy show that §E/E is proportional
1/N1/2,

Quiz Problem 13. Write down the central difference form of the second derivative. Using this expression for the
acceleration, write down the basic form of the Verlet algorithm for Molecular dynamics.

Quiz Problem 14. Given that the virial is defined to be G = >, pi - 7. Explain why the average of its time
derivative is expected to be zero at long times.

Quiz Problem 15. The ground state structure of Argon is a fcc crystal. If a MD simulation is carried out where
a high temperature structure is quenched to a low temperature where the fcc structure is the equilibrium state. If
the starting high temperature state in your MD simulation is a liquid phase, do you expect the simulation to find the
correct fce state? Explain.

Quiz Problem 16. In a MC calculation of the ferromagnetic Ising model on a square lattice, you calculate the
magnetization as a function of temperature as accurately as you can. However your simulations remain rounded at
the critical point, instead of showing the behavior m ~ |T, — T'|® expected in the thermodynamic limit. Explain the
physical origins of the rounding that you observe. Your experimental colleague does a measurement of a model Ising
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magnet that consists of quantum dots with around 1000 spins in each quantum dot. She also observes a rounding
of the behavior of the magnetization. Provide some reasons why her magnetization experiment also gives a rounded
behavior near the critical point.

Quiz Problem 17. Derive the relation,

internal

PV = NkpT + 3 %:<Fpﬁ> (197)

Explain the physical origin of each of the three terms. This relation is not always true for periodic boundary condi-
tions, though rather fortuitiously it is true for periodic boundaries provided the interaction potential is a pair potential.

Quiz Problem 18. Show that
(6E)* = kpT?Cy (198)

Assigned problems

Problem 1. Find the relation between pressure and volume for an ideal gas under going an adiabatic process.

Problem 2: Derive the ideal monatomic gas law using kinetic theory. You may use the equipartition result
U=3NkgT.

-2

Problem 3. Find the degeneracy Q(E, N) for N Ising spins (spin 1/2) with Hamiltonian H = —h)_, S;.

Problem 4. Consider a random walk on a one dimensional lattice where the probability of stepping to the right
or to the left is 1/2. Find the probability that after NV steps the walker is at position x lattice units from the starting

position. Use Stirling’s approximation to show that for large N the probability distribution is a Gaussian in z. Find
the average mean square distance the walker is from the origin as a function of V.

Problem 5. Prove the central limit theorem for a set of N independent subsystems that each have an energy E;
drawn from a Gaussian distribution with standard deviation o.

Problem 6. Find the entropy of mixing for a system consisting of m different atom types, with n; of each atom
type and with the total of atoms, N =" n;.

Problem 7. Derive Stirling’s approximation [n(N!) = Nin(N) — N.

Problem 8. Find the entropy of a system of N non-interacting gas particles in a box of volume V = L%, where d
is the dimension. Consider two cases: Where the particles are distinguishable; and where they are indistinguishable.
Is the entropy extensive in both cases? Assume that all configuration of the particles have the same energy, so we
can ignore the kinetic energy term.

Problem 9. Prove the central limit theorem holds for any distribution provided it has a finite standard deviation.
i.e. extend the solution to problem 5 to arbitrary distributions that have a finite second moment.

Problem 10. Which of the following is an exact differential? a) dU(x,y) = 2zdz + 3zydy; b) dU(z,y) =
(—1/y)dx + (z/y*)dy; c) dU(x,y) = —ydx + xdy ? For these three examples, set dU = 0 and solve the differential
equations to find y(z). In cases where the differential is exact, find U(z, y).

Problem 11. By using the fact that S is extensive show that

S oS oS
N() +V<) +E<) =5 (199)
ON )y g o )ne OE ) v

and hence that Ny = E + PV —TS.
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Problem 12. Using the fact that G = uN and Ny = E + PV — TS prove the Gibbs-Duhem relation.

Problem 13. From the fundamental thermodynamic relation show that,

0 aVv
GRY = () . (200)
OP ) s N ON /s p
Problem 14. From the fundamental thermodynamic relation show that,
2
9Cp =-T oV . (201)
OP ) r N oT? PN

Problem 15. The equipartition theorem states that for a classical particle system of volume V with NV particles,
described by Hamiltonian H, the following relations hold,

H
< Si% >= kT0;; (202)
J

where s; can be either the spatial or momentum co-ordinate. Using the canonical partition function, carry out the
integrals explicitly to verify this theorm for a system described by the quadratic Hamiltonian,

pf L, 5
H= Z2m +Z§k¢ri. (203)

Find the internal energy of this system as a function of temperature. Is this consistent with the equipartion theorem?

Problem 16. You discover a new state of matter that has equation of state and internal energy given by,
P = AT3)V, U = BT"Ln(V/Vy) + f(T) (204)

where B, n,Vj are constants while f(7T') only depends on the temperature. Find a numerical value for n, and find a
relation between the constants B and A.

Problem 17. From the fundamental thermodynamic relation show that (here we use 8 =1/T)

N E
T (‘9) - (3> (205)
oT V.8 ou TV
Problem 18. From the fundamental thermodynamic relation show that (here g = 1/T)
1 (or ON 8(S/N)> <8P)
[ = = — | — and —p? ( == 206
T2 (aBU>E,V <8E>5H,v g 9 Jrn or) , (206)

where p = N/V is the number density.

Problem 19. From the results of problem 18 show that

ap “\9p oy H\aT 207
<ap)S/N,N <5P>T,N | (8T>p,N ] 2Cy (207)

Problem 20. Consider a system with an order parameter, z. If the volume(V'), energy(F) and particle number(N)
are fixed, then the system will choose the value of x with the maximum entropy. Now consider that the same system
is connected to a reservoir that has temperature T' and chemical potential i, so it can exchange energy and particles
with the reservoir. Show that the total entropy, that is the sum of the entropy of the reservoir and the system, is

maximized when
oP
<> =0 (208)
ox TV
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Hint: You can assume the system and reservoir are at the same temperature and chemical potential as required by
equilibrium. Moreover you may use PV =TS — E + uN.

Problem 21. Consider a system where the thermodynamics are a function of temperature and another variable x
which can be varied by an experimentalist. Assuming that

E
(ZS)I =T; andusing F=FE-TS (209)
show that,
E F

®),-®)

or )¢ oz ) 1

Problem 22. Show that
0*F

=T =— 211
v <8T2)N,v e

Using this relation show that, < E?2 > — < E >2=kpT?Cy.

Problem 23. Show that

U= (a(F/T)> (212)
N,V
Problem 24. Show that

Vv (8P> =5; and V (8P> =N (213)
oT W N o)

Problem 25. From the fundamental thermodynamic relation show that

(glb;)m T <g¥)m (214)

Problem 26. Consider a single harmonic oscillator with energies Ey = hiw(k+1/2). Find the average energy of the
system as a function of temperature. Find the average occupancy of each energy level as a function of temperature.
Is there a regime where your result for the average energy is in agreement with the equipartition theorem?

Problem 27. For a pure state show that

2= (215)
Also show that for a mixed state this identity fails.
Problem 28. Consider two single particle pure states with wavefunctions
1
¥ >2= 575 (10 > £[1>) (216)

Write down the density matrix for each of these pure states and verify that they have purity equal to one. Now
consider the density matrix of a mixed state consisting of p = pyp + p_p_, where py + p_ = 1. Find the purity of
this state, and the value of the mixing probability p; at which the purity is smallest.

Problem 29. Show that Eqgs. (179) reduce to Eqgs. (178) in the eigenvalue basis.



