In worksheet 1 you learned how to evalute a sum of the form
,
where E(k) is some expression depending on k, using
Fortran:
sum=E(0) DO k=1,N sum=sum+E(k) END DO
The only difference between this worksheet and the previous one is that the
expression to sum is more complicated. Complication comes because of the
presence of a factorial, which is not a built in function in Fortran.
However, even if there were a factorial function in Fortran, the best way to
evaluate E(k) is not to directly compute
.
Rather, you can use a recursive
relation (which is very easy to derive from eq.1) which just depends on the ratio
R(k) of two consecutive terms in the power series, R(k) = E(k)/E(k-1). In terms
of the ratio R(k), the sum in then found using the simple loop,
expression=E(0) DO k=1,N expression=expression*R(k) END DO
Notice that we already needed the same loop to do the summation. So in fact we can merge the two DO loops into one loop from k=1 to k=N. Do not forget to initialize the sum to the zeroth-order term sum=E(0)=1. Look through the formulas given above to see what equations you need to put in the loop for calculating E(0) and R(k).