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Coupled parametric oscillators: From disorder-induced current to asymmetric Ising model
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We study the effects of the interplay of weak disorder and weak coupling in a system of parametric
micromechanical oscillators. Each oscillator is bistable, enabling the mapping of its stable states onto spin states.
The coupling changes the rate of interstate switching of an oscillator depending on the state of other oscillators.
We demonstrate that the change is exponentially strong and therefore manifests even for weak coupling.
Difference in the oscillator eigenfrequencies translates into disorder in the system. The analysis and the
experiment show that disorder leads to a nontrivial stationary state that displays current. The system provides
a well-controlled and fully characterized implementation of the asymmetric Ising model, in which coupled
spins affect each other differently. This model plays an important role in physics and biology. Our findings
open the possibilities of constructing and exploring asymmetric Ising systems with controlled parameters and
connectivity.
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I. INTRODUCTION

Parametric oscillator is one of the best-known examples
of a bistable system. It has two vibrational states with equal
amplitudes and opposite phases [1]. These states emerge when
the oscillator eigenfrequency is periodically modulated. They
have a period equal to twice the modulation period and can
be associated with classical bits or Ising spin states, providing
a basis for classical logic operations [2,3]. Superpositions of
the opposite-phase coherent states of an oscillator can also
encode a qubit [4,5]. Coupled parametric oscillators can serve
as Ising machines for classical and quantum annealing [6–14].
Besides computation, various other applications of parametric
oscillators have been studied, from force and mass sensing
[15,16] to rare events in classical and quantum systems far
from thermal equilibrium [17–22] and phase transitions into a
time-symmetry-broken (time-crystal) state [23–25].

In many implementations, such as the modes of coupled
microwave cavities [26,27], electrical circuits, or mechanical
systems [14,25], the individual units in a system of coupled
oscillators are not identical. In other words, disorder unavoid-
ably exists. Even weak disorder can have a profound effect
on parametric oscillators because their two vibrational states
have equal amplitudes and in this sense are degenerate.
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An important aspect of Ising systems pointed out by Hop-
field [28] is the possibility to use coupled spins to model
neural networks, which memorize multiple patterns. This
possibility has been attracting increasing interest over the
years, particularly in view of the progress in machine learning
[29,30]. In the Hopfield model the spin coupling energy has
the conventional form of Ji jσiσ j , where σi, σ j take on values
±1 and Ji j = Jji, and the network dynamics can be analyzed
using the methods of statistical physics. The model is sym-
metric in the sense that the effect of spin i on spin j is the
same as the effect of spin j on spin i.

However, most neuron networks are presumably asym-
metric: neuron i can affect neuron j stronger than neuron j
affects neuron i. If neurons are associated with spins, one can
think formally that Ji j �= Jji and then the coupling may not be
described by the coupling energy. The corresponding model
is called an asymmetric Ising model. It has attracted much
attention as one of the leading models of neural networks
[31–36] and gene regulatory networks [37] and has been used
to describe experiments on neurons (cf. [38,39] and references
therein). Overall, the asymmetric Ising model is one of the
most important and broadly relevant types of nonreciprocal
systems [40].

In spite of the importance of the asymmetric Ising model,
there have been no studies that relate the spin coupling pa-
rameters to the parameters of the underlying physical system.
Understanding the dynamics of this system enables one to
examine to what extent the mapping on coupled spins is ade-
quate, in the first place. Determining the relationship between
the parameters of the system and the effective spins is essen-
tial for implementing and exploring asymmetric Ising models.

In the present paper we demonstrate that, due to the dis-
order, coupled parametric oscillators provide a system that
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can be described by an asymmetric Ising model. Moreover,
against common wisdom, we show that disorder, rather than
obstructing the current in the system, leads to the onset of a
current that circulates in the stationary state. It also leads to
nontrivial correlations and nontrivial dynamics that emerge
even for nearest-neighbor coupling. The description of our
system naturally translates to the Glauber picture [41] in
which the rate of switching between the states of a spin de-
pends on the states of the spins to which it is coupled. In the
case of oscillators, the relevant quantity is the rate of switching
between the period-two vibrational states of an oscillator that
depends on which vibrational states are occupied by other
oscillators. We describe the mapping of the oscillators on
spins and independently measure the parameters of the system
that enter the model. In particular, we measure an important
characteristic of driven oscillators in the presence of fluctua-
tions, the logarithmic susceptibility [42], which describes the
exponentially strong effect of a periodic force on the switch-
ing rates of an individual uncoupled parametric oscillator.

The parametric oscillators we study are microelectrome-
chanical resonators modulated close to twice their eigenfre-
quencies. Such resonators enable exquisite control of their
eigenfrequencies and the coupling. Since the decay rates of
our resonators are small, the modulation needed to excite
parametric vibrations is comparatively weak, so that the vi-
brations are nearly sinusoidal.

With micromechanical resonators, we demonstrate that the
asymmetric Ising model does not have detailed balance. As
an immediate consequence, a probability current emerges in
the system in the stationary state. We measure this current for
a system of two coupled nonidentical parametric oscillators.
The measurements are in excellent agreement with the theory.

We consider the case where the coupling of the oscil-
lators is weak, so that each oscillator still has two stable
vibrational states, and their amplitudes and phases are only
weakly changed by the coupling. However, the coupling can
significantly change the rates of noise-induced switching be-
tween the states. To gain an intuitive understanding, consider
a Brownian particle in a symmetric double-well potential
U (q) = U (−q), where q is the particle coordinate. Because of
thermal fluctuations, the particle switches between the wells
with the rate W ∝ exp(−�U/kBT ), where �U is the barrier
height and T is temperature [43]. If the potential is tilted,
the barrier heights are incremented by ±δU in the opposite
wells, breaking the symmetry of the interwell switching rates.
The rates acquire extra factors exp(±δU/kBT ). Even for a
small tilt, the ratio δU/kBT can be large, for low temperatures.
In that case the stationary populations of the wells become
significantly different.

Consider now a set of weakly interacting particles, each in
a double-well potential, with coupling energy 1

2

∑ ′Vi jqiq j . A
particle localized in a well exerts force on other particles. This
force has opposite signs depending on which well the particle
occupies. It tilts the potentials of the other particles and breaks
the symmetry of their interwell switching rates, see Fig. 1(a).

The key idea here is that, when one particle is switch-
ing, which is a rare event, the particles coupled to it are
most likely occupying their stable states at the potential
minima. One can associate the stable states of individual
particles with spin states σ = ±1, and then the interaction

FIG. 1. (a) Two weakly interacting particles in double-well po-
tentials. As shown by the thin-blue lines, the potential of the particle
on the right (the “blue” particle) is symmetric in the absence of
coupling. When coupling is turned on, this potential is modified de-
pending on the position of the particle on the left (the “red” particle),
as represented by the thick-blue lines. It tilts towards the left if the red
particle is in the right side of the red potential. In the bottom panel,
the red particle is in the left side of the red potential. (b) Scanning
electron micrograph of two torsional resonators located side-by-side.
The scale bar measures 100 µm. (c) Cross-sectional schematic of the
control and actuation scheme. In each resonator, the torsional spring
constant is modulated by a periodic voltage on the left electrode to
excite parametric resonance, where two vibrational states of the same
amplitude but opposite phases coexist. The right electrodes are used
to control the eigenfrequencies (Appendix B). The voltage difference
Vcpl between the top plates controls the capacitive coupling between
the two resonators.

between the particles maps onto the spin-spin coupling. The
change of the barrier heights and thus the switching rates
due to the particle-particle interaction is reminiscent of the
spin-spin coupling-induced change of the spin switching rates
in the Glauber model. For example, for two coupled spins, the
change is ∝ exp(−J̃12σ1σ2/kBT ) with J̃12 ∝ V12. Importantly,
the two spins affect each other symmetrically even if the
potentials of individual particles are different (Appendix A).

As we show, the picture of coupled particles in double-
well potentials extends to coupled parametric oscillators, even
though there are no static double-well potentials. The exten-
sion works if the oscillators are identical and the coupling
is weak. In this case the changes of the switching rates are
equal within each pair of coupled oscillators. The system is
mapped onto the symmetric Ising model. On the other hand,
in a qualitative distinction from an equilibrium system of
particles in double-well potentials, if the oscillators have dif-
ferent parameters, we show that the coupling-induced changes
of the switching rates are different for such oscillators. The
picture of a symmetric change in potential barriers no longer
applies. Instead, the system is mapped onto the asymmetric
Ising model. In our system, switching between the period-two
vibrational states is activated by noise with controlled inten-
sity, which allows us to fully characterize the switching rates.

It is important to have an independent way to characterize
the effect of the oscillator coupling on the switching rates.
We show that it can be done by measuring the change of
the switching rates due to an extra drive at half the mod-
ulation frequency. We demonstrate that the change of the
logarithm of the switching rate is linear in the drive amplitude
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and measure the corresponding logarithmic susceptibility.
Thus far the logarithmic susceptibility has been only seen in
simulations [44].

II. COUPLED MICROMECHANICAL RESONATORS

We present experimental results for a system of two
micromechanical torsional resonators. They are shown in
Fig. 1(a). Each resonator consists of a movable polysilicon
top plate (200 µm × 200 µm × 3.5 µm) supported by two
torsional rods, with two fixed electrodes underneath. The res-
onators are fabricated using a surface micromachining process
in which the silicon top plate and electrodes are separated by
a 2-µm-thick sacrificial silicon oxide layer. This silicon oxide
layer is subsequently etched away so that each top plate is free
to rotate about its torsional rod in response to torques applied.
The resonators are located side by side. Their vibrations can
be excited and detected independently. The vibration eigen-
frequencies can be fine-tuned capacitively, including the case
where the resonators are coupled, by dc voltages applied to the
left and right electrodes (Appendix B). Application of an ac
voltage on the left electrode of a resonator generates a periodic
electrostatic torque that excites vibrations of the top plate. The
vibrations are detected by measuring the current flowing out
of the top plate induced by the capacitance change between
the plate and the two underlying electrodes.

In this study, only the fundamental modes of torsional
vibrations are used. The eigenfrequencies of the resonators are
almost identical, with ω1/2π ≈ 15860.562 Hz for resonator
1 (the left resonator in Fig. 1) and ω2/2π ≈ 15860.598 Hz
for resonator 2 (the right resonator in Fig. 1). Long term
drifts in ω1,2 are compensated by adjusting the dc voltage on
the right electrodes (Appendix B), so that ω1,2 stay within
∼25 mHz of the target values. The damping constants are
�1/2π ≈ 64.2 ± 0.5 mHz and �2/2π ≈ 62.7 ± 0.3 mHz for
resonators 1 and 2, respectively.

The spring constants of both resonators are modulated
electrostatically together at frequency near 2ω1 ≈ 2ω2, lead-
ing to parametric excitation of the vibrations. We also inject
independent broadband Gaussian voltage noises for each
resonator that lead to occasional switching between the
period-two vibrational states.

As shown in Fig. 1(b), the adjacent edges of the plates form
interdigitated comb-shaped electrodes to allow the plates to
couple when there is a potential difference Vcpl between them.
When Vcpl = 0 V, we verify that there is no coupling between
the plates. We keep Vcpl small as we focus on the regime of the
weak coupling that only weakly perturbs the dynamics in the
absence of noise.

All measurements are performed at room temperature at
pressure below 10 µtorr. The ability to independently tune
the eigenfrequencies and the coupling between the resonators
is crucial for revealing the features of the asymmetric Ising
model.

The equations of motion of coupled parametric oscillators
have the form

q̈i + 2�iq̇i + ω2
i qi + γiq

3
i + M−1

i

∑
j

′
Vi jq j

= (Fp/Mi )qi cos ωpt + ξi(t ). (1)

For our pair of torsional resonators, i = 1, 2. The coordinate
qi is the rotation angle of the ith resonator, Mi is its moment
of inertia, γi is the Duffing nonlinearity parameter, Fp and ωp

are the amplitude and frequency of the parametric modulation,
respectively, and ξi(t ) is zero-mean white Gaussian noise of
controlled intensity 4Di�i, 〈ξi(t )ξ j (t ′)〉 = 4Di�iδi jδ(t − t ′).
Parameters Vi j are the controlled parameters of the oscillator
coupling, with Vi j = Vji. In the experiments on the effect of
the coupling, Di determines the effective temperature of the
noise. We set D1 = D2.

We use resonant modulation, |ωp − 2ωi| 	 ωi, which al-
lows us to parametrically excite vibrations even with small Fp.
In the absence of resonator coupling and noise the two stable
vibrational states of the ith resonator are

qi(σi; t ) = Aiσi cos[(ωp/2)t + ϕi], (2)

where Ai and ϕi are the vibration amplitude and phase, and
σi = ±1. The values of Ai, ϕi depend on the resonator pa-
rameters; for small damping |ϕi| 	 1. For brevity, and where
it may not cause confusion, we use ↑ and ↓ for σi = 1 and
σi = −1, respectively.

In what follows we associate the vibrational states (2) with
spin states. This association is justified provided the change of
these states because of coupling the oscillators to each other,
i.e., the change of the amplitudes Ai and phases ϕi, is small.
The weakness of the coupling is thus a major condition of
the mapping of the system of oscillators on the system of
coupled spins.

A. Interstate switching

Classical and quantum noise causes transitions between
the states σi = ±1 of an isolated oscillator. By symmetry, the
rates Wi(σi) of transitions σi → −σi of the ith oscillator are
the same for the both states. For weak noise, the transitions are
rare, Wi(σi ) 	 �i, and the dependence of the switching rate on
the noise intensity is given by the activation law [17,19]. For
classical noise

Wi(σi ) = Ci exp[−Ri(σi)/Di], (3)

where Ri(σi ) = Ri(−σi ) is the effective activation energy and
Ci ∝ �i for weak damping. Activated switching in single para-
metric oscillators has been measured in a number of systems
[18,20,23].

In our experiment, the switching rate of each resonator is
extracted from the Poisson distribution of the residence times
(Appendix C). Due to slight difference in the damping con-
stants, the switching rates for the two resonators are measured
to be different. We verify that, when the coupling is zero,
the two coexisting states with opposite phases are equally
occupied in each resonator and the populations of all four
states σ1,2 = ±1 are equal (Appendix D).

III. LOGARITHMIC SUSCEPTIBILITY

We now consider the way of describing the effect of cou-
pling to the jth oscillator on the dynamics of the ith oscillator.
As seen from Eqs. (1) and (2), if the noise and the coupling
of the oscillators are weak, to describe this effect, one can
replace the coordinate of the jth oscillator q j (t ) in the equa-
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tion of motion of the ith oscillator (1) by its stable-state value
q j (σ j ; t ). In this approximation, the ith oscillator is driven by
a force at frequency ωp/2 exerted by the oscillators to which it
is coupled. The force changes when the jth oscillator switches
between its vibrational states.

The effect of weak coupling can be understood if one con-
siders the dynamics of an isolated parametric oscillator driven
by a weak extra force Fd cos[(ωp/2)t + φd ] that mimics the
force from other oscillators [24]. Such force breaks the sym-
metry of the vibrational states σi = ±1. A major consequence
of the symmetry lifting for weak force is the change of the
switching rates Wi(σi ). To leading order in Fd this change has
been predicted [45] to be described by an increment of the
activation energy that is linear in Fd ,

Ri(σi ) = R̄i + �Ri(σi ),

�Ri(σi ) = χiσiFd cos(φd + δi ). (4)

Here R̄i is the value of R(σi ) in the absence of the drive.
The parameters χi and δi are the magnitude and phase of
the logarithmic susceptibility, i.e., the susceptibility of the
logarithm of the switching rate. They strongly depend on the
parameters of the oscillator and the parametric modulation,
but are independent of Fd and φd [45].

As seen from Eqs. (3) and (4), for small noise intensity
even a weak drive can significantly change the switching rates.
It therefore can significantly change the stationary populations
of the states. From the balance equation for the population of
the ith oscillator ẇi(σi ) = −Wi(σi )wi(σi ) + Wi(−σi )wi(−σi )
we obtain for its stationary populations the expression

wi;st (σi ) = Wi(−σi )/[Wi(σi ) + Wi(−σi )].

Equation (4) shows that, for a parametric oscillator, a drive at
half the modulation frequency plays the same role as a static
field applied to an Ising spin. Consider a spin aligned along
the z axis and assume that an additional field hz is applied.
The energy change is −hzσ

z. If the spin is subject to ther-
mal noise, its switching rate W (σ z ) acquires an extra factor
exp(−2hzσ

z/kBT ). Comparing this expression to Eq. (4) and
taking into account that, for the oscillator, the noise intensity
D plays the role of kBT , we see that hz can be associated
with χiσiFd cos(φd + δi )/2. It is proportional to the drive
amplitude Fd .

For a parametrically driven micromechanical oscillator, a
strong population change that periodically depends on phase
φd was seen in experiments [46]. However, the general ef-
fect of the linear dependence of log[W (σi )] on the drive
amplitude of a periodic force in bistable systems has not
been demonstrated other than in simulations [47]. This effect
may be responsible for the deviation of the escape rate from
the expected quadratic dependence on the drive amplitude in
Josephson junctions [48].

We measure the logarithmic susceptibility of each res-
onator in our two-resonator system. By setting Vcpl = 0 V we
ensure there is no coupling between the two resonators. For
each resonator, we apply a resonant drive Fd cos[(ωp/2)t +
φd ] on top of the parametric modulation at ωp. The drive
phase φd is chosen to be 3.3◦ so that the results can be
compared to the case of coupled oscillators when coupling
is later re-introduced. Figure 2(a) shows the random switches

FIG. 2. Measurement of the logarithmic susceptibility of a single
resonator. Coupling between the two resonators is turned off. We
present results for resonator 1 and indicate the states σ1 = 1 and
σ1 = −1 by ↑ and ↓, respectively. (a) In the presence of noise, res-
onator 1 randomly switches between two coexisting vibration states
with opposite phase. The two light-grey lines are thresholds for iden-
tifying phase switches. The dark-grey lines represent another choice
of threshold (see Appendix C). A drive at half the modulation fre-
quency with amplitude Fd = 1.04 × 10−17 Nm breaks the symmetry
and renders the residence times, and thus the stationary populations
of the states ↑ and ↓ different. (b) The ratio wst (↑)/wst (↓) increases
as Fd increases. Circles are measured results for the chosen drive
phase φd = 3.3◦. The solid line represents theory calculated using
the simulated logarithmic susceptibility. Inset: same data shown in
semilog scale. (c) Logarithm of the ratio of the switching rates
from states ↑ and ↓ with the resonant drive turned on, W1(↑) and
W1(↓) (up and down triangles, respectively), to the rate with no drive
W̄1 = C1 exp(−R̄1/D), plotted as a function of 1/D. The switching
rates are modified by different amounts for the two states according
to Eq. (4). The increments of the effective activation energies �R1(↑)
and �R1(↓) are obtained from the slopes of the linear fits through
the origin. (d) Increment |�R1| as a function of Fd for resonator 1.
The slope of the linear fit through the origin yields χ1 cos(φd + δ1)
defined in Eq. (4). Measurements are shown in red. Numerical simu-
lations are shown in pink.

of the phase of resonator 1 as a function of time at a
constant Fd of 1.04 × 10−17 Nm. The ratio of populations
wst (σ1 = +1)/wst (σ1 = −1) ≡ wst (↑)/wst (↓) is obtained by
measuring the residence time in the two states σ1 = ±1.
Figure 2(b) shows that this ratio deviates from 1 as Fd is
increased.

Next, the switching rates are measured by fitting to the
Poisson distribution of the residence times (Appendix C).
Figure 2(c) shows the effect of 1/D (which mimics the inverse
noise temperature) on the logarithm of the ratio of switch-
ing rates with the symmetry breaking drive turned on and
off. The upper and lower branches represent decrease and
increase of the activation energy respectively, corresponding
to opposite signs of σ1 in Eq. (4). We obtain the increment
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|�R1| from the average of the magnitude of the slopes of the
two linear fits through the origin. The linear dependence of
log[W1(σ1)/W̄1] on 1/D in Fig. 2(c) confirms that the effect
of a weak symmetry-breaking drive is primarily a change
�R1(σ1) of the activation energy of interstate switching. If
D is small compared to |�R1|, the change of the switching
rate can be substantial. As shown in Fig. 2(d), |�R1| is indeed
linear in Fd for a weak drive. The factor χ1 cos(φd + δ1) for
resonator 1 is given by the slope of the linear fit (solid-red
line). Measurements are then repeated for resonator 2 to yield
χ2 cos(φd + δ2).

In Fig. 2(d) the measurements are compared with the re-
sults of simulations of the switching rate. There is excellent
agreement between measurement and the general expressions
(3) and (4). For stronger drive the stable vibrational states
of the resonators change significantly and the dependence of
log[Wi(σi )] on Fd becomes nonlinear (Appendix F).

IV. DYNAMICS OF COUPLED PARAMETRIC
OSCILLATORS

It follows from the above results that, if we now consider
coupled oscillators, the rate of switching σi → −σi of the ith
oscillator depends on the states {σ j} of the oscillators coupled
to it. Since the resonant force on the ith oscillator from the jth
oscillator is Vi jq j (σ j ; t ), from Eqs. (2)–(4), for weak coupling
we have

Wi(σi, {σ j �=i}) = W̄i exp

⎡
⎣−

∑
j �=i

Ki jσiσ j

⎤
⎦, (5)

Ki j = −Vi jχiA j cos(φ j + δi )/Di, (6)

where W̄i = Ci exp(−R̄i/Di ) is the switching rate in the ab-
sence of coupling. The change of the activation energy
�Ri(σi, {σ j �=i}) is equal to

∑
j �=i Ki jσiσ jDi.

Equation (5) has the form of the expression for the switch-
ing rates of coupled Ising spins. In the standard Ising model
Ki j is given by the ratio of the coupling energy Ji j to kBT [41].
Therefore Ki j = Kji. In our case, if all oscillators are identical,
we also have Ki j = Kji, as seen from Eq. (6). Therefore the
system of coupled identical parametric oscillators maps onto
the standard Ising model of coupled spins.

If the oscillators are different, Ki j �= Kji. As Vi j = Vji in
Eq. (6), the difference originates from both the vibration am-
plitudes and logarithmic susceptibilities. For Ki j �= Kji, the
system is mapped onto the asymmetric Ising model. As seen
from the known expressions for the vibration amplitudes and
phases as well as the logarithmic susceptibilities (cf. [45]),
the difference between Ki j and Kji can be already large if, for
example, the oscillator eigenfrequencies are slightly different:
|ωi − ω j | 	 ωi, but the ratio |ωi − ω j |/�i is not small and,
importantly, the noise intensity is small.

A. The balance equation

We can now consider the distribution w(σ1, σ2, ...) ≡
w({σi}) of the spins over their states, i.e., the distribution of
the coupled oscillators over their vibrational states. The evo-
lution of this distribution is described by the balance equation,

which can be written in the form

ẇ({σi}) = −
∑

i

σi

×
∑
σ ′

i

σ ′
i [Wi(σ

′
i , {σ j �=i})w(σ ′

i , {σ j �=i})], (7)

with the switching rates given by Eq. (5). Even if the rates W̄i

are different for different spins (different parametric oscilla-
tors), but the model is symmetric, Ki j = Kji, Eq. (7) has the
stationary solution wst ({σi}) = const × exp[ 1

2

∑
i, j Ki jσiσ j],

which has the form of the thermal distribution of the conven-
tional symmetric Ising model. This solution does not apply if
Ki j �= Kji.

The time dependence of w({σi}) is determined by the
eigenvalues of the 2N × 2N matrix Wi(σi, {σ j �=i}), where N is
the number of spins. For a symmetric Ising model all eigen-
values of this matrix are real. To see this, we change in Eq. (7)
from the distribution w to w̃,

w({σi}) = exp

⎛
⎝1

4

∑
i, j

Ki jσiσ j

⎞
⎠w̃({σi}).

For Ki j = Kji, the balance equation for the function w̃ reads

d

dt
w̃({σi}) = −

∑
i

Wi(σi, {σ j �=i}) w̃({σi})

+
∑

i

W̄i w̃(−σi, {σ j �=i}). (8)

The off-diagonal elements of the matrix in the right-hand
side are given by W̄i. They are independent of the spin state
and are thus the same for σi = 1 and σi = −1. Therefore all
eigenvalues of Eq. (8), and thus also of Eq. (7), are indeed
real. For an asymmetric Ising model the eigenvalues of the
matrix of the transition rates can be complex, see Sec. V A 1.
This is another significant difference between symmetric and
asymmetric Ising models.

It is seen from Eq. (7) that the trace of the distribution
w({σi}) is conserved,

∑
{σi} ẇ({σi}) = 0. This shows that one

of the eigenvalues of the matrix Wi(σi, {σ j �=i}) is zero. The
corresponding eigenvector is the stationary probability dis-
tribution wst ({σi}), which we normalize,

∑
{σi} wst ({σi}) = 1.

The distribution wst ({σn}) is generally not known for an asym-
metric Ising model. Its structure is significantly different from
that for a symmetric model even where the asymmetry is
weak, see Appendix H.

From Eqs. (5) and (6) we see that the switching rates do
not change if all spins change sign. We note that the rates
of switching between the states σ → −σ (σ = ±1) of an
isolated spin (isolated parametric oscillator) are the same by
symmetry. For coupled oscillator the symmetry is restored
if the signs of all σi are changed. A consequence of this
symmetry seen from Eq. (7) is that, in the stationary regime,
the distribution also does not change if all spins change signs,

Wi(σi, {σ j �=i}) = Wi(−σi, {−σ j �=i}),

wst ({σi}) = wst ({−σi}) (9)

(we do not consider spontaneous symmetry breaking that may
occur in an infinite system).
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B. The probability current

The lack of detailed balance in the asymmetric Ising model
can be shown without knowing the stationary distribution.
One has to compare the ratio of the rates of flipping an ith
spin back and forth directly or with a kth spin flipped back and
forth on the way. For a system with detailed balance the result
should be the same. We now compare these ratios. To shorten
the notations, we keep in the expressions for the rates only the
directly involved spins σi and σk and explicitly indicate which
of them is flipped; other spins are not flipped. The detailed
balance condition reads

W (σi, σk → −σi, σk )

W (−σi, σk → σi, σk )
= W (σi, σk → σi,−σk )

W (−σi, σk → −σi,−σk )

× W (σi,−σk → −σi,−σk )

W (−σi,−σk → σi,−σk )

× W (−σi,−σk → −σi, σk )

W (σi,−σk → σi, σk )
. (10)

For an asymmetric Ising model the equality does not hold:
it follows from Eq. (6) that the ratio of the right-hand side
to the left-hand side is exp[4(Kik − Kki )σiσk]. The result is
independent of the switching rates W̄i,W̄k in the absence of
coupling.

Directly related to the lack of detailed balance is the onset
of a probability current in the stationary state. An elementary
transition is a flip of a single spin, with the rate that depends
on other spins. In the stationary state, the current associated
with the rates of flipping the ith spin back and forth for a given
configuration of other spins {σ j �=i} is

I (σi, {σ j �=i} → −σi, {σ j �=i})

= wst (σi, {σ j �=i})Wi(σi, {σ j �=i})

− wst (−σi, {σ j �=i})Wi(−σi, {σ j �=i}). (11)

For symmetric coupling, Ki j = Kji, the current (11) is zero
(Appendix G).

We note that the onset of current is not necessarily related
to the disorder in the underlying system of oscillators. A
periodic nonreciprocal systems that displays the probability
current is described in Sec. VI.

V. THE STATIONARY DISTRIBUTION AND THE
PROBABILITY CURRENT FOR TWO COUPLED

MICROMECHANICAL RESONATORS

A. Explicit expressions

We now relate the general expressions to the system of
two coupled parametric oscillators studied in the experiment.
In this case the stationary probability distribution of the cor-
responding spins and the probability current can be found
in the explicit form. Because of the symmetry with respect
to changing the signs of all spins (9), it suffices to give the
stationary distribution wst (σ1, σ2) for σ1 = σ2 and σ1 = −σ2,

wst (1, 1) = 1

4

W̄1 exp(K12) + W̄2 exp(K21)

W̄1 cosh(K12) + W̄2 cosh(K21)
,

wst (1,−1) = 1

4

W̄1 exp(−K12) + W̄2 exp(−K21)

W̄1 cosh(K12) + W̄2 cosh(K21)
. (12)

For a symmetric system, K12 = K21 = K , we have
wst (1, 1)/wst (1,−1) = exp(−2K ) independent of the values
of W̄1,2, whereas for an asymmetric system the populations
depend not only on the coupling parameters Ki j , but also on
the interrelation between the switching rates of the oscillators
in the absence of coupling W̄1 and W̄2.

From Eqs. (11) and (12), the stationary probability current
in the two-spin system is

I (1, 1 → 1,−1)

= W̄1W̄2

2

sinh(K12 − K21)

W̄1 cosh(K12) + W̄2 cosh(K21)
(13)

[here we use ±1 to indicate the values of the spins
σ1 and σ2; I (1, 1 → 1,−1) ≡ I (σ1 = 1, σ2 = 1 → σ1 =
1, σ2 = −1)]. As expected, the current is zero in a symmetric
system, K12 = K21. Note the Kirchhoff’s rule,

I (1, 1 → 1,−1) = I (1,−1 → −1,−1)

= I (−1,−1 → −1, 1)

= I (−1, 1 → 1, 1). (14)

This equation shows that the current flows along the loop of
the states of two spins.

Approaching the equilibrium

For a system of two coupled spins we find from Eq. (7) that
the nonzero eigenvalues are

λ2 = −2(W̄1 cosh K12 + W̄2 cosh K21),

λ3,4 = 1
2λ2 ± [

1
4λ2

2 − 4W̄1W̄2 cosh(K12 − K21)
]1/2

. (15)

We see that Re λ2,3,4 < 0, which indicates that the system ap-
proaches a stationary state with increasing time. However, the
roots λ3,4 can be complex; for example, for W̄1 = W̄2 = W̄ and
K12 = −K21 = K we have λ3,4 = −2W̄ (cosh J ± i sinh J ).
This case corresponds to the parameters K12 and K21 having
opposite signs. For coupled parametric oscillators Ki j and Kji

are proportional to the same coupling constant, and therefore
they have the same signs, so that the eigenvalues (15) are real.

B. The experiment

A central part of this paper is the demonstration of the
asymmetry in the coupling coefficients and the existence of
a probability current using our system of two coupled para-
metric oscillators (i = 1, 2). Weak coupling between the two
resonators is introduced by applying Vcpl = 0.3 V. We adjust
the dc voltages on the right electrodes of the resonators to
tune the resonant frequencies to be close but nonidentical,
with ω1 − ω2 = 0.4 Hz. The two resonators are subjected to
parametric modulation of the same amplitude and the same
frequency ωp. As shown in Fig. 3(a), when ωp is swept up, res-
onator 2 undergoes a subcritical bifurcation first, followed by
resonator 1. The electrostatic coupling between the two plates
favors the configuration where the phases of the resonators
are opposite to each other. In the absence of injected noise,
resonator 1 adopts a vibration phase opposite to resonator 2
as ωp is increased. Correlations in the phase were previously
observed in two nanomechanical parametric resonators [16]
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FIG. 3. Implementation of an asymmetric Ising model with two
nonidentical coupled parametric oscillators. (a) Vibration amplitudes
of resonators 1 (red) and 2 (blue), with �ω/2π = −0.4 Hz and
Vcpl = 0.3 V, under identical parametric modulation with no noise
added. The black arrow marks ωp/2 for measuring noise-induced
switching for the rest of the figure. Rotation angle of 1 mrad
corresponds to displacement of 100 nm at the edge of the plate.
(b) Switchings between the four states of the two-resonator system
in the presence of noise. The areas of the circles are proportional
to the measured stationary populations wst (σ1, σ2) (the first arrow
from the left refers to σ1 and the second arrow refers to σ2). The
lengths of the straight arrows between the circles are proportional
to the products of the measured switching rates Wi(σ1, σ2) and the
corresponding populations wst (σ1, σ2). The purple arrow represents
the net probability current. (c) Logarithm of the measured changes
of the switching rates due to coupling as a function of 1/D. The
values of �Ri(σi, σ j ) ≡ −D log[Wi(σi, σ j )/W̄i] are determined by
the slopes of the linear fits. The difference between |�R1(σ1, σ2)|
and |�R2(σ2, σ1)| for the same pairs (σ1, σ2) is identified from the
different magnitudes of the slopes. This difference determines the
asymmetry of the Ising model. (d) Dependence of |�R1| (red) and
|�R2| (blue) on V 2

cpl that is proportional to the coupling constant. The
values of |�Ri| are the average values of |�Ri(σi, σ j )| for σi = σ j

and σi = −σ j . The pink and light blue lines are obtained from theory
based on the independently simulated logarithmic susceptibilities of
individual uncoupled resonators.

undergoing supercritical bifurcations. Unlike Ref. [16] where
the amplitude increases from zero in a continuous fashion, for
the frequency up-sweep in our measurement the amplitudes
jump sharply from zero in a subcritical bifurcation.

Next, we fix ωp at 2ω2 and increase the noise intensity
while maintaining the same effective temperatures in the two
resonators, D1 = D2 = D. The noise induces switching of
each of the two resonators at random times. We measure
the time intervals during which each of the four vibrational
states of the two-resonator system is occupied and obtain
the stationary probability distributions wst (σ1, σ2). For brevity
we indicate in Fig. 3 the states of each resonator σ = 1 and
σ = −1 by ↑ and ↓, respectively, as we also did in Fig. 2.
Therefore the four states are ↑↑, ↑↓, ↓↑, and ↓↓.

We find that, after a transient time, the state popula-
tions become time-independent. The areas of the circles in
Fig. 3(b) are proportional to the measured stationary probabil-
ity distribution. We find that wst (↑↓) and wst (↓↑) are equal,
as expected by symmetry arguments, and that they exceed
wst (↑↑) and wst (↓↓). This result is consistent with notion that
the electrostatic coupling favors opposite vibration phases in
the two resonators, so that K12, K21 < 0.

To compare the result with the theory, it is necessary to
independently determine the rates W̄1,2 and the coupling pa-
rameters K12 and K21. For two coupled resonators, there are
a total of eight transitions, as illustrated in Fig. 3(b). In the
experiment, each of the eight switching rates is individually
measured, by fitting to the Poisson distribution of the resi-
dence times (Appendix C). Measurements are performed both
before and after the coupling is turned on to give W̄i and
Wi(σi, σ j ) respectively [for two resonators, we use the notation
Wi(σi, σ j ) rather than Wi(σi, {σ j})]. The ratio Wi(σi, σ j )/W̄i

represents the modification of the switching rate of resonator
i due to coupling.

Figure 3(c) plots the logarithm of the ratio Wi(σi, σ j )/W̄i

for the two resonators as a function of 1/D, where red and
blue results correspond to switching of resonator 1 and 2
respectively. For the upper branches where the phases are
identical, the switching rates are increased due to coupling,
and vice versa for the lower branches. The lines are linear fits
through the origin from which the change of the activation
barriers �Ri can be obtained by taking the negative values of
the slopes.

We observe that, in agreement with Eq. (9),

Wi(σi, σ j ) = Wi(−σi,−σ j ) (16)

within the measurement uncertainty. Therefore in Fig. 3(c)
we show the logarithm of the ratio of the average values of
Wi(σi, σ j ) and Wi(−σi,−σ j ) to W̄i.

There is a clear difference between the measured val-
ues of |�R1| and |�R2| for the same sets (σ1, σ2). For
resonator 1, the slopes measured in Fig. 3(c) are 3.6 ×
10−7 N2kg−2Hz−1 and −3.0 × 10−7 N2kg−2Hz−1 for σ1 = σ2

and σ1 = −σ2, respectively, whereas those for resonator 2 are
6.6 × 10−7 N2kg−2Hz−1 and −5.8 × 10−7 N2kg−2Hz−1 for
σ1 = σ2 and σ1 = −σ2, respectively. Averaging the magnitude
of the slopes �Ri(σi, σ j ) for σi = σ j and σi = −σ j yields
|�R1| exceeding |�R2| by a factor of 1.7. The difference
between |�R1| and |�R2| demonstrates that our system of
two parametric resonators with different resonant frequencies
maps onto the asymmetric Ising model.

Figure 3(d) shows that |�R1| and |�R2| are proportional
to the square of potential difference Vcpl between the two vi-
brating plates, with different proportionality constants for the
two resonators. The measured values of |�Ri| are compared
in Fig. 3(d) with Eq. (6) evaluated with the numerically simu-
lated values of the logarithmic susceptibility and the vibration
amplitudes and phases Aj, φ j independently calculated for
each resonator in the absence of coupling. There is good
agreement between the entirely independent measurements
with the coupling (circles) and the simulations with no cou-
pling [the lines based on Eq. (6)]. In turn, the simulations with
no coupling are in excellent agreement with the measurement
of the logarithmic susceptibility with no coupling, as seen
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from Fig. 2. The linear dependence of log[Wi(σi, σ j )/W̄i] on
1/D in Fig. 3(c) confirms the proposed mechanism of the
strong effect of even weak coupling, provided the noise is also
weak.

As discussed earlier, a difference between |�R1| and
|�R2|, and hence K12 and K21, implies that detailed balance
is broken, giving rise to a net probability current. In the
experiment, the probability currents are obtained by taking
the product of the measured stationary probability distribution
and the measured switching rate out of the specific state. They
are represented by block arrows in Fig. 3(b). The lengths of
the arrows are chosen to be proportional to the product of the
measured stationary probability distribution and the measured
switching rate. Our measurement demonstrates the lack of de-
tailed balance, as evident from the difference in length of each
pair of arrows. The magnitude of the net probability current
for the four branches are identical within the measurement
uncertainty (Appendix E). As denoted by the purple arrow in
Fig. 3(b), the net probability current flows in the clockwise
direction for ω2 − ω1 = −0.4 Hz.

1. The correlation function

The explicit solution of the balance equation allows one to
calculate the correlation functions of the spins. For a two-spin
system the relevant nontrivial correlator is 〈σ1σ2〉. From the
explicit form of the stationary distribution given by Eq. (12)
we find

〈σ1σ2〉 = 2[wst (1, 1) − wst (1,−1)]

= W̄1 sinh K12 + W̄2 sinh K21

W̄1 cosh K12 + W̄2 cosh K21
. (17)

For small |K12|, |K21| the correlator (17) is linear in K12, K21,
whereas if K12, K21 are large and have the same sign 〈σ1σ2〉 ≈
sgnK12.

We compared Eq. (17) with the measured 〈σ1σ2〉 as a
function of the coupling, with the independently measured
parameters. The good agreement provides an extra proof of
the consistence of the evaluation of the stationary distribution
and of the picture of switching oscillators as a whole.

2. Effect of the frequency detuning of the oscillators

In our system of two coupled resonators with near identical
damping, the sign and magnitude of the probability current are
largely determined by the frequency mismatch �ω = ω2 −
ω1 if the coupling and the noise intensity are fixed. When �ω

is changed to 0.4 Hz by adjusting the electrode potentials, we
find that the sign of the net probability current is reversed.
Figure 4(a) plots the net probability current averaged over the
four branches as a function of �ω. The line represents the
probability current predicted by Eq. (13) with K12 and K21

given by the simulated value of the logarithmic susceptibility
of a single resonator using Eq. (6).

The difference between K12 and K21, and hence the
probability current, can be tuned to zero by choosing �ω. In
our system, choosing �ω equal to zero makes the probability
current vanish within measurement uncertainty. Detail
balance is restored. The two resonators therefore map to
the symmetric Ising model (Appendix G). The stationary

FIG. 4. Dependence of probability current on the frequency mis-
match �ω between the two resonators at Vcpl = 0.3 V. Purple circles
are measurement. Calculations for two resonators based on the sim-
ulated logarithmic susceptibility of individual units are plotted in
black. The straight line is a linear fit through the origin. (Inset) For
the considered weak coupling the frequency anticrossing as a func-
tion of ω2 − ω1 is undetectable. The color represents the amplitudes
of forced vibrations of the two modes in mrad; x axis is the bias VR,1

(V) that controls ω1, whereas y axis is the frequency of resonant drive
(Hz) applied to both resonators. Red squares and blue circles mark
the values of ω1 and ω2 used in the main figure.

distribution wst found in the experiment in this
case coincides with the standard expression
wst ({σi}) ∝ exp(

∑
Ki jσiσ j/2). We further show

in Appendix G that, while wst (↑↓) = wst (↓↑)
exceed wst (↑↑) = wst (↓↓) due to the coupling, the switching
rates given by Eq. (11) lead to vanishing of the net probability
current.

VI. PERIODIC ASYMMETRIC GLAUBER CHAIN

Along with the random disorder generally inherent to a
system of coupled parametric oscillators, an asymmetric Ising
model can be implemented with a more intricate system in
which the disorder is constructed. A simple and important ex-
ample is where groups of two different oscillators are repeated
periodically. If the oscillators form a chain with nearest-
neighbor coupling, they can be mapped on a spin chain in
which every other spin is the same, but the coupling of the
spins on the even sites to those on the odd sites differs from
the coupling of the spins on the odd sites to those on the even
sites,

K2i 2i±1 = Ke, K2i+1 2i+1±1 = Ko (Ko �= Ke ).

We set the switching rates in the absence of the coupling to be
periodic, too,

W̄2i ≡ W̄e, W̄2i+1 = W̄o, ∀i.

In the spirit of the Glauber work on the Ising model [41]
we will concentrate on the dynamics for weak coupling,
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|Ki j | 	 1, so that

Wi(σi, {σ j �=i}) ≈ W̄i(1 − Ki i+1σiσi+1 − Ki i−1σiσi−1). (18)

The chain has two spins per unit cell. If it is periodic and
the number of cells is N [that is, in Eq. (18) i = 1, 2, ..., 2N
and σi+2N = σi], we can switch to the Fourier representation
of the average spins

σe(k) =
N∑

n=1

e2ink〈σ2n〉, σo(k) =
N∑

n=1

eik(2n−1)〈σ2n−1〉.

The equations for the Fourier components for periodic bound-
ary conditions read

1

W̄e

d

dt
σe(k) = −σe(k) + 2Keσo(k) cos k,

(19)
1

W̄o

d

dt
σo(k) = −σo(k) + 2Koσe(k) cos k.

Equations (19) describe diffusion waves that propagate in
the chain. Such waves decay in time, for a given k, that is,
if we consider a wave ∝ exp[ikn − iω(k)t], the “eigenfre-
quency” ω(k) has an imaginary component. Because there are
two spins per unit cell, there are two branches of the diffusion
waves. Their eigenfrequencies are

ω1,2(k) = − 1
2 i(W̄e + W̄o) ± 1

2 i[(W̄e − W̄o)2

+ 16W̄eW̄oKeKo cos2 k]1/2. (20)

Since the parameters |Ke,o| are small, Im ω1,2(k) < 0, i.e., dif-
fusion waves decay in time in our nonequilibrium system, as
expected. A qualitative feature of the system is that this decay
can be accompanied by temporal oscillations. This occurs if
Re ω(k) �= 0. In turn, this requires that KeKo < 0, i.e., K2i 2i±1

and K2i+1 2i+1±1 have opposite signs. Also, for small |Ke,o| this
requires that the switching rates in the absence of coupling
be close, |W̄e − W̄o| 	 W̄e,o. As noted earlier, for parametric
oscillators the coupling parameters Ki j and Kji have the same
sign, and therefore the frequencies (20) are imaginary.

To the lowest order in the coupling Ke,o the stationary
distribution of the periodic chain is

wst ≈ Z−1 exp

[
W̄eKe + W̄oKo

W̄e + W̄o

∑
i

σ2i(σ2i+1 + σ2i−1)

]
.

(21)

To the zeroth order in the coupling the partition function
is Z → Z0 = 22N . We emphasize that the solution (21) only
works to the lowest order in Ke, Ko. Beyond this approxima-
tion the distribution wst cannot be written in the simple Ising
form of the exponential of the sum

∑
i σ2i(σ2i+1 + σ2i−1).

Even though the chain is periodic, there is still a nonzero
probability current. For example, the current for the flip of
an even-site spin while the surrounding spins have the same
orientation as this spin is

I (σ2i = σ2i±1 = 1 → σ2i = −1, σ2i±1 = 1)

= W̄eW̄o

2(W̄e + W̄o)
(Ko − Ke ). (22)

Here we have taken into account that we have to sum over
all spin configurations except for the spins on the sites

2i − 1, 2i, 2i + 1. Equation (22) shows that, if spins on the
“odd” sites are “stronger”, Ko > Ke, and are aligned, σ2i+1 =
σ2i−1, the probability current flows from the configuration
where even-site spins are parallel to odd-site ones to the con-
figuration where they are antiparallel.

The even-odd configuration can be easily extended to
a square lattice. This opens a question of the onset of
“magnetization” in a large periodic system depending on
the asymmetry. Such magnetization may correspond to the
parametric oscillators vibrating in phase or, in turn, in
counterphase.

VII. CONCLUSIONS

The results of the paper show that even weak coupling
of parametric oscillators, where the coupling energy is small
compared to the energy of the parametrically excited vi-
brations, leads to unexpectedly rich features of the system.
These features come from interplay of the coupling, small
fluctuations, and small differences between the oscillator
eigenfrequencies. For an isolated oscillator, fluctuations lead
to occasional transitions between degenerate vibrational states
with the same amplitudes and opposite phases. Coupling lifts
the degeneracy, as vibrations of one oscillator bias the other
oscillator to vibrate in phase or in counterphase, depending
on the coupling sign. Fluctuations accentuate this bias, by
allowing the oscillators to switch between the states and thus
to adjust to each other. The effect of coupling on the switching
rates underlies the mapping of the system on a system of
coupled Ising spins, with the two projections of an individ-
ual spin corresponding to the two vibrational states of an
individual oscillator. If the oscillators are not identical, they
affect each other differently, so that the system maps onto the
asymmetric Ising model, enabling exploring this model in a
fully controlled experiment.

We found the stationary probability current in an asymmet-
ric Ising system and measured it in a system of two coupled
parametric oscillators. The current originates from the differ-
ence of the parameters of the underlying individual oscillators,
or in other words, from the disorder in the system. Emergence
of the current is associated with the breaking of the detailed
balance. Even a small difference of the oscillator parameters
can generate a substantial current provided that fluctuations
are also small.

Our measurements are done in the regime where the
coupling-induced change of the oscillator frequencies is much
smaller than the frequencies themselves, and the noise-
induced spread of the vibration amplitudes is much smaller
than the amplitudes themselves. Yet the ratio of the properly
scaled coupling and noise intensity can be arbitrary. We note
that, for a parametrically excited oscillator, noise necessarily
comes along with relaxation, so that it is present even in the
quantum regime.

The experiment shows that the effect of weak coupling
of parametric oscillators can be quantitatively described in
terms of an entirely independent effect of an additional drive
at half the modulation frequency applied to an individual
oscillator. It is demonstrated that, in a broad range of the
drive amplitudes, the drive leads to a change of the logarithm
of the rate of switching between the vibrational states of the
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oscillator, which is linear in the drive amplitude. To the best
of our knowledge, this is the first direct measurement of the
logarithmic susceptibility in a physical system. The result is
found to be in excellent agreement with simulations.

We note that the effect of the drive at half the modulation
frequency on a parametric oscillator is similar to the effect
of a static z field on an Ising spin. Therefore a system of
coupled oscillators provides a versatile platform to study the
dynamics of symmetric or asymmetric Ising systems in the
presence of a static field, which can be fully controlled on
each spin.

The stationary state of an asymmetric Ising model is not
known, generally. While the system of coupled parametric
oscillators maps on the model in the presence of disorder in
the oscillator parameters, a more sophisticated system can be
constructed by “organizing” disorder, so that groups of two or
more types of different oscillators are repeated periodically.
Among other problems, such system allows addressing the
problem of phase transitions in the presence of the probability
current.

Our results demonstrate that a system of slightly different
parametric oscillators provides a long-sought inorganic im-
plementation of an asymmetric Ising model. The parameters
of the model are determined by the oscillator parameters,
including the eigenfrequencies and the coupling, as well
as the amplitude and frequency of the parametric mod-
ulation. These parameters can be controlled in a broad
range. For oscillators based on micro- and nanomechan-
ical resonators, this opens a way of creating asymmetric
Ising networks with variable coupling strength and variable
connectivity, which is the problem of interest for diverse
disciplines, from statistical physics to biology to artificial
intelligence. Besides these applications, such networks pro-
vide a conceptually simple setting for studying features of
many-body dynamics away from thermal equilibrium. One
of the major generic features is the lack of detailed bal-
ance, which leads to the onset of a probability current in the
stationary state.
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APPENDIX A: COUPLED PARTICLES
WITH BISTABLE POTENTIALS

Here we show that, even in the presence of disorder, but
in thermal equilibrium, coupling between particles in bistable
potentials does not lead to mapping on the asymmetric Ising
model. We consider particles with coordinates qn in double-
well potentials Un(qn), where n enumerates the particles. We
count the coordinate qn off from the barrier top of Un(qn). For
an isolated particle, the potential Un(qn) is symmetric and has
minima at Qnσn, where σn = ±1 and Qn is the value of |qn| at

the minimum,

Un(qn) = Un(−qn),

dUn/dqn = 0 for qn = 0,±Qn. (A1)

The minima at ±Qn are the stable states of the particles. Par-
ticles switch between the minima due to thermal fluctuations.
For isolated particles the rates Wn(σn) of interstate switching
σn → −σn are the same for the both states σn = ±1, with

Wn(σn) = Wn(−σn) = W̄n,

W̄n = Cn exp(−�Un/kBT ). (A2)

Here �Un = Un(0) − Un(Qn) is the barrier height between the
wells of Un(qn); for a Brownian particle, the prefactor Cn has
been first studied by Kramers [43].

Weak potential coupling between the particles is described
by the term in the potential energy of the system, which has
the form

Ucpl = 1

2

∑
n,m

′
Vnmqnqm (A3)

where Vnm are the coupling parameters. A more general form
of Ucpl does not change the results as long as we consider
the case where the global symmetry {qn} → {−qn},∀n, is
preserved; this case is of utmost interest in terms of revealing
the effect of the coupling on the system dynamics.

For low temperatures, the particles reside mostly close to
the potential minima ±Qn and only rarely switch between the
minima, the rates Wn(σn) are small compared to the relaxation
rates. When the mth particle is close to its minimum Qmσm, the
potential of the nth particle is incremented by −VnmqnQmσm.
Respectively, the depth of the σnth potential well is incre-
mented by VnmQnQmσnσm. As a result the rate of switching
from this well becomes

Wn(σn, {σm �=n}) = W̄n exp

⎛
⎝−σn

∑
m �=n

Kpot
nm σm

⎞
⎠,

Kpot
nm = −VnmQnQm/kBT . (A4)

It is seen from this equation that Kpot
nm = Kpot

mn . The system of
weakly coupled particles in symmetric double-well potentials
maps on a symmetric Ising model, for low temperatures. It is
not required that the potentials be identical. We note that the
parameters Kpot

nm are not small for weak coupling provided the
temperature is low.

The difference from bistable parametric oscillators origi-
nates from the fact that, in the case of the oscillators, the
changes of the switching rates are determined not by changes
of the depths of the effective potentials in the rotating frame,
but by the logarithmic susceptibilities.

APPENDIX B: EXCITATION AND DETECTION SCHEMES

The top plate of each resonator i (i = 1, 2) is subjected
to electrostatic torques exerted by the left and right elec-
trodes. If the potential difference between the top plates Vcpl =
V top

2 − V top
1 is nonzero, there is also an electrostatic attraction

between the two top plates. Each top plate is connected to the
input of an amplifier that is a virtual ground for ac voltages.
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For resonator i, the total electrostatic torque
from the two electrodes is given by the sum τi =
1
2

∑
α=L,R(dCα,i/dθi )(V

top
i − Vα,i )2, where the subscript α

denotes the left (L) or the right (R) electrode, CL,i (CR,i) is
the capacitance between the top plate and the left (right)
electrode. VL,i and VR,i are the voltages on the left and right
electrodes, respectively. Expanding the torque about the
initial angle θ0,i gives

τi = 1

2

∑
α

[
C′

α,i + C′′
α,iθi + 1

2
C′′′

α,iθ
2
i + 1

6
CIV

α,iθ
3
i

]

× (
V top

i − Vα,i
)2

, (B1)

where θi is the rotation angle of resonator i measured from θi,0.
C′

i ,C′′
i ,C′′′

i , and CIV
i denote the derivatives of Ci with respect

to θi, evaluated at θ0,i. Higher order terms are neglected.
VR,i contains only a dc component that is used to adjust

ωi via the electrostatic spring softening effect. VL,i consists of
small ac voltages on top of a dc component V dc

L,i . It is used
to control the parametric modulation, the symmetry-breaking
torque and the noise torque. Considering only the dc compo-
nent and the term responsible for the parametric excitation

VL,i = V dc
L,i + Vp,i cos(ωpt ), (B2)

where Vp,i << |V top
i − V dc

L,i|. To induce transitions between
the two coexisting vibration states, a noise voltage Vn,i(t ) is
added to VL,i. When the logarithmic susceptibility is mea-
sured, an additional ac component Vd cos( ωp

2 t ) is added.
Throughout the experiments we use the modulation frequency
ωp = 2ω2 when measuring noise-induced switching in two
coupled resonators.

As seen from Eqs. (B1) and (B2), the time-independent
component of τi modifies the system parameters. The term in-
dependent of θi shifts the equilibrium position of θi,0. The term
1
2

∑
α C′′

α,iθi�V 2
α,i, which is linear in θi, leads to electrostatic

spring softening due to the static potential differences, produc-
ing a shift in the resonant frequency. Here �VL,i = V top

i − V dc
L,i

and �VR,i = V top
i − VR,i. The nonlinear restoring torques of

1
4

∑
α C′′′

i θ2
i �V 2

α,i and 1
6

∑
α CIV

i θ3
i �V 2

α,i modify the Duffing
nonlinearity.

The time-dependent components of τi are responsible for
the parametric modulation term and noise term in Eq. (1),
with Fp = C′′

L,iθi�VL,iVp,i and ξi(t ) = 1
Mi

C′
i�VL,iVn,i(t ). For

the symmetry breaking drive, Fd = C′
i�VL,iVd .

Vibrations in each resonator are detected by measuring the
change of capacitance between the top plate and the two un-
derlying electrodes. The dc voltages described above lead to
build up of charges on the top plates. As each of the top plates
rotates, the capacitances with the two underlying electrodes
change. Charges flowing out of the two top plates are detected
independently by two separate amplifiers. The outputs of each
amplifier is fed into a lock-in amplifier referenced at ωp/2.

Throughout the experiment, the dc voltages V top
2 and V dc

L,2
for resonator 2 are fixed at 0 V and −1.00 V respectively,
so that �VL,2 is maintained constant at 1.00 V. For resonator
1, Vtop,1 is changed to control the coupling with resonator 2
as explained in more details below. V dc

L,1 is then adjusted to
maintain �VL,1 constant at −1.28 V. Fp is set to be identical
for the two resonators, by choosing Vp,1�VL,1 = Vp,2�VL,2.

FIG. 5. (a) Schematic of the actuation scheme and measurement
circuitry. Voltages applied to the left electrodes generate the para-
metric modulation at ωp, the drive at ωp/2 and the noise. Voltages
V dc

R,i applied to the fixed electrodes allow fine tuning of the resonant
frequencies. The dc voltage differences between each top plate and
the underlying electrodes leads to an ac current flowing out of the
top plate as it rotates. Capacitive coupling between the two plates
is controlled by the voltage difference V top

1 − V top
2 . (b) Vibration

amplitude of resonators 1 (red) and 2 (blue) subjected to identical
parametric modulation as functions of ωp/2. There is no coupling
between the resonators and the eigenfrequencies are tuned to be
almost equal.

The voltages VR,1 and VR,2 applied to the right electrodes
are used to control ω1 and ω2 respectively, as mentioned
earlier. Unlike VL,i, VR,i contains no ac components. Initially,
�VR,1 and �VR,2 are chosen to be −0.5 V and 0.5 V respec-
tively to bring ω1 and ω2 close to each other. Subsequently,
small changes to �VR,1 and �VR,2 allow the fine tuning of �ω

to the desired value via the electrostatic spring softening ef-
fect discussed above. Furthermore, VR,1 and VR,2 are adjusted
regularly to compensate for long term drifts in the resonant
frequencies. The adjustment is performed by first setting Vcpl

to 0 V. Subsequently, the vibration amplitude in response to
the parametric modulation is measured at a specific ωp. The
changes in amplitude from the value recorded at the beginning
of the experiment are used to infer the shifts in the eigen-
frequencies. Small changes to VR,1 and VR,2 are sufficient to
bring the vibration amplitudes, and hence the eigenfrequen-
cies, back to the original values for the experiment to continue.

The two plates have identical width of 200 µm and thick-
ness of 2 µm. Coupling between them is generated when
Vcpl = V top

1 − V top
2 is applied to the interdigitated comb shaped

electrodes with separation ranging from 3 µm to 5 µm at dif-
ferent locations. Even though the equilibrium positions of θ1,2,
as counted from the horizontal axis in Fig. 5(a), are nonzero,
the static rotations are small. When there are no vibrations,
the sidewalls on the two plates remain largely parallel and
aligned with each other. The electrostatic potential energy
between the two top plates is given by 1

2C12(θ1, θ2)V 2
cpl, where

C12 is the capacitance between the two plates. If we disregard
the small misalignment of the plates, C12 contains a term
λ(θ1 − θ2)2, where λ is a proportionality constant. This term
determines the coupling energy in Eq. (1). Specifically, V12 =
V21 = λV 2

cpl. As shown in the inset in Fig. 4, level anticrossing
does not occur for the small Vcpl used in this paper. The term
∝ λ(θ2

1 + θ2
2 ) in the coupling energy leads to changes of ω1

and ω2, by δω1 and δω2 respectively, with δω1 ∼ δω2. These
changes are measured at the beginning of the experiment from
the shifts in the peaks of the linear resonant response from
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their value at Vcpl = 0 V. As described earlier, in the procedure
to compensate for the long term drifts in ω1,2, Vcpl is set to 0 V.
After the compensation is completed, Vcpl needs to be changed
back to the target value. The previously recorded values of
δω1,2 are used to adjust the applied voltages on the electrodes.
In particular, ωp is changed by 2δω2 so that the parametric
drive frequency coincides with ω2. VR,1 is also adjusted to
account for the small difference between δω1 and δω2 so that
�ω ≡ ω2 − ω1 is maintained at the desired value.

Voltage noise Vn,i(t ) is applied on the left electrode of
resonator i to induce transitions between the two coexist-
ing states of opposite phases. The noise voltage originates
from the Johnson noise of a 50-� resistor at room tem-
perature. After amplification, the noise voltage is bandpass
filtered with center frequency f0 = 3000 Hz and bandwidth
fbd = 40 Hz. For resonator i, the filtered noise voltage is then
mixed with a carrier voltage at frequency fc,i to generate two
sidebands centered at fc,i ± f0. For instance, in Fig. 3, fc1

and fc2 are 12841.8 Hz and 12851.8 Hz respectively. The
resonant frequencies ω1,2/2π lie within the corresponding
upper sideband. The frequency difference fc,2 − fc,1 is chosen
to be much larger than the frequencies �i/2π , 3γiA2

i /2πωp

(i = 1, 2) that characterize the motion of the modes in the
rotating frame (here Ai is the vibration amplitude), so that
the two resonators are effectively subjected to independent
noise voltages, because the relevant spectral components orig-
inate from different frequencies of the pass band (note that
the above characteristic frequencies are much smaller than
40 Hz). Finally, the noise voltages are multiplied by a fac-
tor ci proportional to

√
�i/�VL,i to give Vn,i(t ) so that the

effective temperature is identical in the two resonators. In
Eq. (1), ξi(t ) = 1

Mi
C′

i�VL,iVn,i(t ) and the noise correlation
time is ∼2π/ fbd. Therefore on the time scale of slow motion
in the rotating frame the noise is effectively δ correlated.

APPENDIX C: MEASUREMENT OF SWITCHING RATES

To measure the switching rate of an individual resonator,
its oscillation phase ϕ is recorded as a function of time using
a lock-in amplifier. Figure 2(a) shows part of a record for res-
onator 1. If the resonator initially resides in the state σ = −1
with ϕ ≈ π , we identify that it has switched to the σ = +1
state with ϕ ≈ 0 when the phase goes over the threshold ε,
where π/4 < ε < π/2. In switching from the initial state
σ = +1 with ϕ ≈ 0 the phase with overwhelming probabil-
ity jumps to −π ≡ π (mod2π ). In this case the threshold is
−π + ε. As the resonator switches back and forth between
the two states, we record two sequences of residence times
for the two states separately. The residence times in each state
are plotted as a histogram. A typical histogram is shown in
Fig. 6. The exponential decrease in the histogram confirms
that the transitions are random and uncorrelated in time. An
exponential fit to the histograms yields the switching rate.
Fitting to a separate histogram gives the rate of switching from
another state. We check that the measured switching rate does
not depend on the choice of ε. For example, in Fig. 2(a), the
dark and light lines indicate two different choices of threshold
ε. They yield measured switching rates that are equal within
the error bar of the fitting.

FIG. 6. Histogram of the residence times recorded for res-
onator 1 switching out of the σ1 = +1 state at Fd = 0, D = 3.01 ×
10−6 N2 kg−2 Hz−1 and ωp/2 = ω1. The slope of the linear fit gives
the rate of switching out of this state.

For uncoupled oscillators in the absence of the symme-
try breaking drive, the measured switching rates out of the
two states of each resonator are identical to within exper-
imental uncertainty. Their value gives W̄i for resonator i.
Moreover, the stationary probability distributions wst (↑↓),
wst (↓↑), wst (↑↑), and wst (↓↓) are measured to be equal to
within measurement uncertainty (Appendix D).

To measure the logarithmic susceptibility of a single res-
onator, the switching rates are measured after the symmetry
breaking drive is turned on. The fractional change of the
switching rates for the two states are opposite in sign, as
illustrated for resonator 1 in Fig. 2(c).

Logarithmic susceptibility can be calculated using the
method of optimal fluctuation [42] or found from simu-
lations [47]. The results have been established to be in
excellent agreement. Therefore here we directly used sim-
ulations to find the magnitude χ and the phase δ of the
logarithmic susceptibility. To do this we incorporated the
drive Fd cos(ωpt/2 + φd ) into the equation of motion (1) of
resonator 1 and set the coupling parameters Vi j equal to
zero. We then switched to the rotating frame and used the
standard rotating wave approximation to reduce the problem
to a set of equations for the quadratures of q1(t ). Forced
vibrations at frequency ωp/2 in the laboratory frame corre-
spond to stable stationary solutions of the equations for the
quadratures in the absence of noise. Noise causes switching
between these states. The residence times are identified and
used to calculate the switching rate in a manner similar to
the measurement procedure described above. This procedure
allowed us to avoid simulating multiple (�107 − 109 in our
case) oscillations of the parametric oscillator in the laboratory
frame.

To measure the Ising model parameters K12 and K21, the
switching rates are measured before and after the coupling is
turned on. The fractional change of the switching rates for
resonators 1 and 2 are plotted in red and blue respectively in
Fig. 3(c).

APPENDIX D: FLUCTUATIONS OF THE UNCOUPLED
RESONATORS

For two uncoupled resonators (Vcpl = 0 V), the stationary
state populations wst (↑↑),wst (↓↓),wst (↑↓), and wst (↓↑) are
measured to be near identical (Fig. 7). As shown in Fig. 7(b),
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FIG. 7. (a) Stationary populations of the four states of two un-
coupled resonators. (b) Measured rates of switching out of the states.
For the red (blue) circles, only resonator 1 (2) switches.

the rates of switching for resonator 1, W̄1(σ1, σ2 → −σ1, σ2),
are identical for all initial states to within measurement
uncertainty. The measured switching rates for resonator 2,
W̄2(σ1, σ2 → σ1,−σ2), are also identical for all states. How-
ever, the switching rates of different resonators are different:
W̄2(σ1, σ2 → σ1,−σ2) exceeds W̄1(σ1, σ2 → −σ1, σ2) by a
factor of ∼2 because the resonators have slightly different
damping constants.

APPENDIX E: MEASUREMENT OF PROBABILITY
CURRENT

For two coupled resonators, there are eight transitions
as shown in Fig. 3(b). In the experiment, we measure the
switching rate for each transition as well as the stationary
populations of the four states. The probability current from
one state A to another state B is obtained using the following
procedure. First, we evaluate the product of the measured
stationary population of state A and the measured transition
rate out of state A to state B. Then, we calculate the product
of the measured stationary population of state B and the mea-
sured transition rate out of state B to state A. In general, these
two products are not equal to each other. The net probability
current from state A to state B is the difference between these
two products. We find that the net probability currents for
the four pairs of states are identical to within measurement
uncertainty, as shown in Fig. 8 for three different values of
�ω. This result is in agreement with Eq. (14). The values of
the probability current plotted in Fig. 4 represents the mean
value of the measured probability current for the four pairs of
states in Fig. 8 for �ω = −0.4 Hz.

APPENDIX F: CHANGES OF ACTIVATION BARRIER
BEYOND THE LINEAR REGIME

The effect of the coupling on the switching rate was
seen in Ref. [14], but the logarithmic-susceptibility regime

FIG. 8. The net probability current for each of the four pairs of
transitions in the opposite directions for two coupled resonators for
�ω = −0.4 Hz (solid squares), 0 Hz (hollow circles) and 0.4 Hz
(solid circles).

was not identified there. We emphasize that the mapping
on the asymmetric Ising model in our study applies in the
regime where the change of the activation barrier has the
form �Ri(σi, {σ j �=i}) = Diσi

∑
j �=i Ki jσ j . In particular, for two

oscillators �Ri(σi, σ j ) = −�Ri(−σi, σ j ) = −�Ri(σi,−σ j ).
The value of �Ri(σi, σ j ) in this regime is determined by
the logarithmic susceptibility, and in our experiment we have
measured it independently.

The logarithmic-susceptibility regime refers to weak cou-
pling. If the coupling is stronger, even where it does not lead to
the onset of new vibrational states, not only are the switching
rates modified, but the very stable states of individual oscil-
lators, i.e., their amplitudes and phases, significantly change
depending on the states of other oscillators. Therefore one
cannot think of an oscillator as having just two states, which
underlies the mapping on a spin system.

When the amplitude Fd of the symmetry-breaking drive
is small for an individual, uncoupled resonator, the change
in the vibration amplitudes of the two states is also small.
The changes of the activation barriers �Ri(σi = +1) and
�Ri(σi = −1) are of opposite signs but near identical magni-
tude. |�Ri| is proportional to the amplitude of the symmetry
breaking drive, with a proportionality constant given by the
logarithmic susceptibility. As Fd increases, the difference in
the vibration amplitudes and phases of the two states cannot
be ignored. Figure 9(a) extends the range of Fd of Fig. 2(d)
to show that, for resonator 1, |�R1(σ1 = +1)| and |�R1(σ1 =
−1)| are no longer equal for large Fd . Furthermore, the depen-
dence of �R1(σ1) on Fd does not follow a linear relationship.
Figure 9(b) shows a similar plot for resonator 2.

As described in Sec. IV, when weak coupling is turned
on between two resonators, the effects on resonator 1 from
the coupling to resonator 2 can be understood in terms of the
logarithmic susceptibility of resonator 1 subjected to a sym-
metry breaking drive, and vice versa for resonator 2. Beyond
the weak coupling regime, the increase in switching rates
for initial states with identical phases is no longer equal in
magnitude to the decrease of switching rates for initial states
with opposite phases. In fact, the phase difference between the
two vibration states in each oscillator deviates considerably
from π . Figure 10 shows the measured and simulated results
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FIG. 9. (a) Increments |�R1(σ1 = +1)| (up triangles) and
|�R1(σ1 = −1)| (down triangles) of the activation energy as a func-
tion of Fd for resonator 1. The range of Fd is about 5 times larger than
in Fig. 2(d). Measurements and numerical simulations are shown in
red and pink respectively. The lines are fits to the simulated results
by parabola. They have the same linear term as the line in Fig. 2(d).
Different quadratic terms are used for σ1 = ±1. (b) Similar plot for
resonator 2. Measurements and numerical simulations are shown in
dark blue and light blue respectively.

for the change of the activation barrier when the range of
Vcpl is extended beyond that in Fig. 3(d). While Fig. 3(d)
plots |�R1,2|, Figs. 10(a) and 10(b) show �R1(σ1, σ2) and
�R2(σ1, σ2) separately and without the absolute value. Since
Wi(σi, σ j ) = Wi(−σi,−σ j ) as described by Eq. (8), it follows
that �Ri(σi, σ j ) = �Ri(−σi,−σ j ). In Fig. 10, the up triangles
represent the average of the measured values of �Ri(↑↓)
and �Ri(↓↑). The down triangles represent the average of
�Ri(↑↑) and �Ri(↓↓), both of which are negative. The
results for Fig. 3(d) are obtained by averaging |�Ri(↑↓)|,
|�Ri(↓↑)|, |�Ri(↑↑)|, and |�Ri(↓↓)| for V 2

cpl < 0.1 V2. For
V 2

cpl > 0.1 V2, the difference in the magnitude of �R1,2 for
initial states of the same and opposite phases becomes more
apparent. In Figs. 10(a) and 10(b), the sum of the top and
bottom branches are shown as the thick lines, the deviation
of which from zero increases with V 2

cpl.

FIG. 10. (a) Dependence of the change �R1 of activation barriers
for switching of resonator 1 on V 2

cpl. Initial states with the phase of
resonator 1 identical (opposite) to resonator 2 are represented by up
triangles (down triangles). Measurements are shown in red. The thin
pink lines are obtained from theory based on the effect of a symmetry
breaking drive on individual uncoupled resonators using numerical
simulations from Fig. 9. The thick pink line is a sum of the thin
lines. (b) Similar plot for resonator 2. Measurements and numerical
simulations are shown in blue and light blue respectively.

FIG. 11. (a) Vibration amplitudes of resonator 1 (red) and 2
(blue), with �ω/2π = 0 Hz and Vcpl = 0.3 V, under identical para-
metric modulation with no noise added. (b) Typical records of the
phase of the two resonators as a function of time when noise is added.
(c) Stationary probability distributions of the four states. (d) Change
of the transition rates from the four initial states due to coupling.
For red (blue) circles, only resonator 1 (2) switches. (e) Switchings
between the four states. The areas of circles are proportional to
the measured stationary probability distributions wst (σ1, σ2). The
lengths of the arrows are proportional to the product of the measured
switching rates and the corresponding initial stationary probability
distribution. (f) Logarithm of the measured changes of the transition
rates due to coupling as a function of 1/D for resonator 1. The
magnitude of the slopes of the linear fits yields |�R1|. (g) Similar
plot for resonator 2, with |�R2| given by the magnitude of the slope
of the linear fit.

APPENDIX G: POPULATION AND TRANSITION RATES
OF COUPLED IDENTICAL RESONATORS

In this section, we tune the difference between K12 and
K21 to near zero by choosing �ω/2π = 0 Hz. As a result,
the probability current vanishes to within experimental uncer-
tainty. Detailed balance is restored and our system maps onto
the symmetric Ising model.

Figure 11(a) shows the vibration amplitudes of the two
resonators with �ω/2π = 0 Hz under parametric modulation
in the absence of injected noise. The slight difference between
the response curves is due to the difference in the decay
rates of the modes. Application of noise leads to switching
in both resonators, as illustrated in Fig. 9(b). As a result
of the coupling (Vcpl = 0.3 V) that favors opposite phases in
the two resonators, the transition rates Wi(σi, {σ j = σi}) and
Wi(σi, {σ j = −σi}) are increased and decreased compared to
the uncoupled values W̄i respectively. Moreover, the fractional
changes for resonators 1 and 2 are identical to within exper-
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imental uncertainty, as shown by the adjacent red and blue
circles in Fig. 11(d). Figures 11(f) and 11(g) plot the change
in transition rates due to the coupling as a function of 1/D for
resonators 1 and 2 respectively. The magnitudes of the slopes
of the linear fits are identical to within ∼10% consistent with
|�R1| = |�R2| and hence K12 = K21 = K .

We examine how detailed balance is manifested in the
probability current, taking the transitions between the ↑↑ state
and ↑↓ state as an example. The transition rates W1(↑↑)
and W1(↑↓) are changed from W̄1 by factors exp(−K ) and
exp(K ) respectively. The stationary probability distribution
for Ki j = Kji = K is wst = Z−1 exp[ 1

2

∑
i, j(i �= j) Kσiσ j] where

Z is the normalization factor. In the case of two resonators we
see that wst (↑↑) and wst (↑↓) are changed from their value 1

4
in the absence of coupling by Z−1 exp(K ) and Z−1 exp(−K )
respectively, where Z = 4 cosh K [Fig. 11(c)]. The products
W1(↑↑)wst (↑↑) and W1(↑↓)wst (↑↓) remain equal in mag-
nitude, as represented by the same length of the two block
arrows in Fig. 11(e). The net probability current between the
states ↑↑ and ↑↓ is therefore zero.

APPENDIX H: WEAKLY ASYMMETRIC CHAIN

To illustrate the nontrivial effect of the asymmetry on the
stationary distribution we briefly consider the case where the
asymmetry is weak,

Ki j = K̄i j + δKi j, K̄i j = K̄ ji, δKi j = −δKji, (H1)

with |δKi j | 	 |K̄i j |. To zeroth order in δKi j , the stationary dis-
tribution w

(0)
st is given by the standard Ising-model expression

w
(0)
st = Z−1 exp

⎛
⎝1

2

∑
i, j

K̄i jσiσ j

⎞
⎠,

where Z is an equivalent of the partition function.
To reveal the complexity of the dynamics we can fur-

ther simplify the analysis by considering nearest-neighbor
coupling, K̄i j = K̄δi j±1, and assuming that the rates W̄i are

the same for all spins, W̄i = W̄ ,∀i. We will seek the first-
order correction to the stationary distribution in the form
w

(0)
st ({σi})w(1)

st ({σi}). This correction is given by a set of
equations

W̄ w
(0)
st

N∑
i=1

exp[−K̄σi(σi+1 + σi−1)]

× [
w

(1)
st (σi, {σ j �=i}) − w

(1)
st (−σi, {σ j �=i})

]
= −2W̄ w

(0)
st sinh K̄

N∑
i=1

exp(−K̄σiσi+1)

× δKi i+1(σi−1σi+1 − σiσi+2). (H2)

The equation set (H2) for 2N−1 independent components
of w

(1)
st ({σi}) (on account of the symmetry {σi} → {−σi})

has actually only 2N−1 − 1 independent equations and needs
to be complemented by the condition

∑
{σi} w

(0)
st ({σi}) ×

w
(1)
st ({σi}) = 0.
It immediately follows from Eq. (H2) that the correction

w
(1)
st to the stationary distribution, even though linear in δKi j ,

is “nonlocal”, as each term in the sum over i in the right-hand
side depends on spins on four sites. Therefore this correction
describes the modification of extended correlations in the sys-
tem by the asymmetry.

We note that for N = 2 the right-hand side of Eq. (H2)
is zero. In this case there is no first-order correction to the
stationary distribution. This is seen from the explicit form of
wst in the main text. However, already for N = 3, one can
see from Eq. (H2) that all probabilities w

(1)
st ({σi}) are affected

by δKi j .
We note also that the difference of the left- and right-hand

sides of Eq. (H2) can be written as the sum of the site currents∑
i I (σi, {σ j �=i} → −σi, {σ j �=i}). The current on each site is

nonzero already in the first order in the asymmetry δKi j , but
the sum of the currents over the sites is equal to zero. This
is the analog of the Kirchhoff law for the probability current
in the stationary regime.
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