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Lecture 1

Classical Brownian motion and escape
problem.

Investigation of transport phenomena is a very important area of physics. Many quanti-
ties that are measured in experiment are immediately related to transport—whether this is
conductivity, which is determined by electron transport in a conductor, or light absorption
spectrum, etc. In a naive picture of transport there is something that moves and “carries”
what is transported. For example, an electron is diffusing through a conductor and carries
electric charge.It is implied in this picture that

Fig. 1.1.

(i) a “carrier” is a good (quasi)particle, its lifetime is large compared
to h̄/E where E is its characteristic energy, and

(ii) the scattering events (“collisions”) happen occasionally: the du-
ration of a collision tcol ¿ Γ−1 where Γ scattering rate; therefore
collisions occur successively in time and do not interfere.

Obviously, (i) and (ii) are interrelated with each other.
The physical problems are: What are “carriers” and “scatterers”

in a particular system and how do the carriers move? For example, is
it a nearly free motion with occasional scattering as described above,
or incoherent jumps between localized states, with the duration of a
jump small compared to the intervals between the jumps—again, a very
similar picture, in a sense? Where and when does this picture apply?
What happens if it does not—what are the most substantial corrections
to the kinetic-equation approximation? How can we calculate transport coefficients?

In the first part of the course we will be deal-

Fig. 1.2.

ing with the transport of a particle which moves in
a “regular” potential and is coupled to a thermal
bath, and we will start with the simplest prob-
lem: how does a particle escape from a metastable
state? We know that the escape is thermally acti-
vated for high temperatures and is due to quantum
tunnelling for T = 0. But how does the transition
from one regime to another occur?

Apart from the obvious difference between classical and quantum approaches the two
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6 LECTURE 1. CLASSICAL BROWNIAN MOTION AND ESCAPE PROBLEM.

concepts of the escape are different in one more respect: thermal activation implies that
there is a bath which, on one hand, provides relaxation towards the stable state, and, on
the other hand, provides the particle with the energy sufficient to escape. In the quantum
picture coupling to a bath is often ignored. But to get a complete picture we have to take it
into account (and we apparently have to do that if we want to describe experiment).

Fig. 1.3.

The role of coupling to a bath is even
more apparent if one thinks about reso-
nant tunnelling. What is the correct lan-
guage when we describe the states of a
dust particle on a desk if there is a pe-
riodic array of the desks? Is the particle
“smeared” over the desks, which is hard
to believe? Why not? If we have zero
temperature–will the particle be smeared

coherently, or could it be that the tunnelling matrix element between equivalent states is
equal to zero?

The work on the classical theory of transport phenomena goes back to Einstein. Nearly
90 years ago he analyzed diffusion of particles in liquid and gave the theory of Brownian
motion. Although this theory is studied at high school I shall remind it a little bit and use it
in the analysis of the classical theory of escape; as we shall see that there is still something
to think over.

1.1 Qualitative picture of escape from a metastable

state

The problem of escape of a thermal equilibrium Brownian particle was considered by Kramers
more than 50 years ago, and this work has a very special status: not enough classical to be
noncited, but yet quite well-known to have more than 100 citations a year. The problem
is immediately related to many physical systems, there is a huge number of experiments,
including very recent ones, although initially it was formulated in chemistry as the problem
of a chemical reaction rate. Let us first analyze it qualitatively.

t

q

Fig. 1.4.

If we have a particle which experiences
friction and is moving in a potential it will
go down to the potential minimum over the
characteristic relaxation time trel. This mo-
tion is simple: it is described by mechanical
equations of motion, and we have a simple
trajectory. On having arrived to the vicinity
of the stable state the particle will perform
small fluctuations about this state.

There will also occasionally occur large
fluctuations, and one of these fluctuations
will give rise to the escape. Obviously, if a
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system arrives to a given point away from the potential minimum as a result of a fluctuation
it moves along a random path, this path is not described by simple mechanical equations of
motion, and each path will be different from the others. However, the probability densities
for the motion along different paths will be quite different (exponentially different, as we
will see), and most likely all the paths will lie within a “narrow tube” around the most
probable optimal path. The concept of the optimal path is the basic concept in the theory
of large fluctuations—both of the classical fluctuations that we will be considering now and
of quantum fluctuations that will be considered later. In a way, optimal paths of large
fluctuations are complimentary to the classical dynamical trajectories in the absence of
fluctuations.

1.2 Path-integral formulation of the theory of Brown-

ian motion

To formulate the problem of the optimal path of a Brownian particle we shall go back to
the initial Einstein’s idea that a particle experiences collisions with the molecules of the
surrounding liquid. Assume that a particle does not have a macroscopic velocity, let us
evaluate the force f(t) acting on it (one component of the force). The collisions occur very

frequently, at the instants t
(i)
col, with the momentum transfer pi, therefore on the coarse-

grained time scale

f(t) =
1

∆t

∑

t<t
(i)
col
<t+∆t

pi

We assume that there are many very weak collisions over ∆t, each of them changing the
position and the velocity of the particle only slightly.

Now we perform ensemble averaging (we have many Brownian particles), and, since all
pi are random and independent from each other, we get:

〈f(t)〉 = 0, 〈f 2(t)〉 =
2D

∆t
, D =

1

2
ν 〈p2

i 〉 (1.1)

where ν is the average frequency of the collisions. Obviously, the values of f(t) at the instants
of time differing by more than ∆t are uncorrelated. One more important thing to notice is
that there is a simple interrelationship between the higher-order moments of f(t):

〈f 2n+1(t)〉 = 0, 〈f 2n(t)〉 =
(2n+ 1)!

2nn!

(
〈f 2(t)〉

)n
(1.2)

(notice the similarity with the proof of the Wick’s theorem! We use very substantially
that the number of collisions within ∆t is large.) Eqs. (1.1), (1.2) tell that the probability
distribution of f(t) is Gaussian on the discretized time scale,

p[f(t1), f(t2), . . .] = Const× exp

(
−∆t

4D

∑

k

f 2(tk)

)
, tk − tk−1 = ∆t

Now we take the limit ∆t→ 0, and we get

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2D δ(t− t′) (1.3)
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Instead of the probability distribution of the discrete variables f(tk), now we will have a
probability density functional that determines the probabilities of the various realizations of
the function of a continuous variable t:

P [f(t)] = exp
(
− 1

4D

∫
dtf 2(t)

)
(1.4)

Averaging over various realizations of the force f(t) comes to the path integral over Df(t)
with the weight P [f(t)]. A very natural way to introduce path integrals! Notice that
Eq. (1.3) follows from Eq. (1.4) immediately. A random process with the probability den-
sity functional (1.4) is called white Gaussian noise (“white” because its power spectrum is
independent of frequency).

We are interested not in the evolution of the force but in the dynamics of the Brownian
particle. This dynamics is described by the equation first suggested (in a more simple
situation) by Langevin in 1908 and called Langevin equation:

q̈ + 2Γq̇ + U ′(q) = f(t) (1.5)

In writing Eq. (1.5) we have assumed simple viscous friction, 2Γ is the friction coefficient,
and we have set the mass of the particle equal to 1. Of course, the form of the “regular”
force that provides the dissipation and the form of the correlators of the random force f(t)
are interrelated. Qualitatively, both forces result from coupling to the bath, and it is clear
that when there is no memory, i.e., the values of the random force in the successive instants
of time are uncorrelated, the friction should be determined by the instantaneous value of the
velocity as well. This can be also seen from the “microscopic” model of the force created by
multiple collisions if one accounts for the velocity of a Brownian particle. More generally, the
instantaneous form of the viscous friction assumed in Eq. (1.5), as well as its magnitude (1.7)
found below, follow directly from the correlator (1.3) because of the fluctuation-dissipation
theorem.

Here, we shall relate the characteristic noise intensity D and the friction coefficient Γ
in a very simple way. Let us consider a motion in the absence of the potential, i.e. “free”
Brownian motion, described by the equation

ṗ+ 2Γp = f(t), p = q̇. (1.6)

The solution of this equation

p(t) = p0 e
−2Γt +

∫ t

0
e−2Γ(t−t′)f(t′) dt′

and its averages obtained with Eq. (1.3)

〈p(t)〉 = p0 e
−2Γt, 〈p2(t)〉 = p2

0 e
−4Γt +

D

2Γ

(
1− e−4Γt

)

imply that the initial momentum p(0) gets “forgotten”, and for tÀ Γ−1

〈p(t)〉 = 0, 〈p2(t)〉 = D/2Γ
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(see Prob. 1.2 at p. 17 for an alternative derivation). In thermal equilibrium the average
squared momentum 〈p2〉 = T , and we obtain

D = 2ΓT, (1.7)

which is also the result of the fluctuation-dissipation theorem as applied to the present case.
From the formal point of view Eq. (1.5) is a stochastic differential equation: the right-

hand side of it is a random function (sometimes in mathematics the term “SDE” is used in
a bit narrower sense). The solution is also a random function—as one would expect it to be.
The probability density functional (1.4) gives not only the probability densities of various
realizations of the time-dependent force, but also the probability densities of various paths
taken by the system (this idea goes back to Feynman). It makes it simple to explain the
idea of the optimal path in the case of the small noise intensity D.

1.3 Variational functional for the optimal path.

It is obvious that for small D the system mostly fluctuates in a narrow vicinity of its stable
state. If the system arrives to a point away from this state, it has to have been driven by a
finite force f(t) that overcame the potential force U ′(q) and the friction. The probabilities
of all appropriate realizations of f(t) are exponentially small, as seen from Eq. (1.4), and
also they are exponentially different for various realizations. The most probable realization
is the one which gives the minimum to the functional in the exponent provided the system
arrives to a given point. Alternatively, one can say that the most probable (optimal) path
is the one that minimizes the functional

R[q, q̇] =
∫
dt (q̈ + 2Γq̇ + U ′(q))2

. (1.8)

The minimum should be taken with respect to the paths that arrive to a given point (q, p ≡ q̇)
at a given instant of time t. In stationary conditions this instant does not differ from any
other instant of time. Therefore we can consider only the paths that start from the stable
state qst at t→ −∞, so that the complete set of boundary conditions becomes

q(t) = q, p(t) = p, q(−∞) = qst, p(−∞) = 0. (1.9)

The above formulation of the theory of large classical fluctuations is sometimes called the
instanton formulation. We shall see later why this term is appropriate, to some extent, and
what is the difference with the “orthodoxal” instanton formulation. Using the boundary
conditions (1.9), one can show (see Prob. 1.1 at p. 17) that the correct variational equation
of motion for the paths that provide a minimum to the functional (1.8) is

q̈ − 2Γq̇ + U ′(q) = 0, (1.10)

and the corresponding minimal value of the functional

R(q, p) = minR = 8Γ
(

1

2
p2 + U(q)− U(qst)

)
. (1.11)
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The probability density to arrive to a given point (q, p) is given by exp(−R(q, p)/4D), up to
a prefactor—the expression looks familiar if you allow for Eq. (1.7)! But notice that we have
not only recovered the known result, but also have found the way along which the system
moves to a given remote point.

Of course, the real value of this formulation is determined by the fact that it makes it
possible to analyze fluctuations in systems away from thermal equilibrium. Beware: there
are pitfalls! It’s not at all that simple to find the optimal paths in this case—there is no this
special time-reversal symmetry inherent to the problem we have been considering. And, of
course, the probability density is not given by the Gibbs distribution.

1.4 The Fokker-Planck equation

A different approach to the description of the random motion of the Brownian particle (1.5)
is based on the equation for its transition probability density. It is seen from Eq. (1.4)
that the probability of realization of the force f(t) within a given time interval (t1, t2) is
independent of the values f(t) has had away from this interval. Therefore if we know the
values of q, p at t = t1 we can find the probability density distribution w(q, p; t2) for t2 ≥ t1,
and this distribution will be independent of the values of q(t), p(t) for t < t1. This property
is called Markovian, and random processes that have it are called Markov processes (I will
not be strictly rigorous from the mathematical point of view, sorry). Markov processes
play crucial role both in classical and in quantum theory of transport phenomena: we shall
see that quantum/classical kinetic equations hold when the corresponding processes are
Markovian. The important feature (noticed by Einstein) is that they should be Markovian
on the coarsened time scale, i.e., for “slow” time. And all averaging we have done so far
and we will be doing in the future should be performed prior to the coarsening: the order of
the transitions is important (there is a well-known Ito vs. Stratonovich controversy on this
issue).

We shall consider the equation for the transition probability density w(q, p; t|q0, p0; t0),
i.e. the probability density for a particle placed at q0, p0 at the initial instant t0 to be at q, p
at the instant t: this quantity describes everything we need. Define

w(q, p; t) = 〈δ(q − q(t)) δ(p− p(t))〉, (1.12)

where q(t), p(t) are given by Eq. (1.5) and the condition q̇(t) = p(t). Then

∂w

∂t
= − ∂

∂q
(pw)− ∂

∂p
〈[−2Γp− U ′(q) + f(t)] δ(q − q(t)) δ(p− p(t))〉 (1.13)

It is straightforward to average the first two terms in the angular braket. To perform aver-
aging in the last term we notice that

p(t) = p(t− δt) +
∫ t

t−δt
dt[−2Γp− U ′(q) + f(t)] (1.14)

If we assume δt here is small, expand the last delta-function in Eq. (1.13) in the integral
from t− δt to t and allow for Eq. (1.3), we will arrive at

∂w

∂t
= −∂ pw

∂q
− ∂ [−2Γp− U ′(q)]w

∂p
+D

∂2w

∂p2
(1.15)
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The last equation (and equations of a similar sort) are usually called Fokker-Planck equation.
For the first time such equation was written by Einstein in the so-called overdamped case
(when one can neglect inertia and drop the term q̈ in Eq. (1.5); see Prob. 1.3 at p. 17).
The form (1.15) was suggested by Klein and Kramers. Notice that Eq. (1.15) is in a way a
continuity equation (it is also sometimes called Boltzmann equation, or vice versa, Boltzmann
equation is called Fokker-Planck equation): if we think of w as a density of a system in the
phase space, then the “current density” along the q-axis is equal to pw, and that along the
p-axis is equal to (−2Γp− U ′)w −D∂w/∂p; the last term is the diffusion current.

1.5 Kramers’ solution of the escape problem

Independently of the way it was initially prepared, a system in a confining potential should
eventually reach the thermal equilibrium, characterized by the familiar Gibbs distribution

wst(q, p) = Z−1 exp

(
−E(q, p)

T

)
,

E(q, p) =
p2

2
+ U(q), (1.16)

Z =
∫
dq dp exp(−E(q, p)/T ),

One can easily see that this indeed is a stationary solution of Eq. (1.15), provided the
fluctuation-dissipation theorem is satisfied, i.e. T ≡ D/2Γ. However, this solution is ap-
parently inapplicable to the case of a potential well from which the system can escape to
infinity. The solution for this case was suggested by Kramers.

The basic idea is that if the noise intensity is

U−∆

q

U(q)

Fig. 1.5.

small enough, T ¿ ∆U , there is a strong hierar-
chy of times. A system placed initially inside the
potential well will thermalize over the time ∼ Γ−1,
and far inside the well the form of the distribution
will be close to Eq. (1.16) (with Z being a cer-
tain constant). This distribution will be gradually
decreasing in intensity because of the flux away
from the well. The characteristic time over which
it will change is determined by the escape proba-
bility W ∝ exp(−∆U/T ) ¿ Γ. Therefore within
the time interval

Γ−1 ¿ t¿ W−1

both the intrawell distribution and the flux

j =
∫
dp pw(q, p; t) (1.17)

are stationary (obviously, the solution (1.16) gives j = 0). The flux should be small, and
far inside the well it can be neglected. However, it may become substantial near the barrier
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top (q = 0) where the distribution (1.16) is exponentially small. We need to find another
stationary solution of Eq. (1.15) other than Eq. (1.16), which describes such a flow near the
barrier top, asymptotically approaches the equilibrium solution in the well, and at the same
time disappears outside the barrier. We can simplify these requirements by factorising the
desired time-independent solution of Eq. (1.15) into a product

w1(p, q) = C(p, q) e−E(p,q)/T ,

where C(p, q) is another unknown function which tends to a constant value as we move into
the well and to zero outside the well. The function C satisfies the following equation

p
∂C

∂q
+ (2 Γ p− U ′(q)) ∂C

∂p
−D ∂2C

∂p2
= 0, (1.18)

which is still too hard to solve in general (but for the overdamped case, see Prob. 1.3 at p. 3).
However, if the special case of the barrier parabolic near the top, U(q) ≈ U(0)− 1

2
Ω2q2, there

exists a solution that depends on the linear combination ξ = q−λp of the coordinate q and the
momentum p, C(p, q) = f(ξ), where λ is so far an unknown constant which must be chosen
to render Eq. (1.18) an ordinary differential equation. After this substitution Eq. (1.18)
becomes

[(1− 2Γλ)p− Ω2λq]f ′ −Dλ2f ′′ = 0, (1.19)

where the expression in square brackets must depend only on the combination ξ = q − λp.
Therefore 1− 2λΓ = Ω2λ2, which gives1 λ±Ω2 = −Γ± (Γ2 + Ω2)

1/2
, and the solution of the

reduced FPE can be written as

f±(ξ) = Const1

∫
exp− Ω2ξ2

2λ±D
dξ + Const2.

Only the function f+ with positive value λ ≡ λ+ can satisfy the boundary condition at
infinity, and the solution of the original Fokker-Planck equation (1.15) can be finally written
as

w1(q, p) = Const exp

(
−p

2 − Ω2q2

2T

)∫ ∞
q−λp

dξ exp

(
− Ω2ξ2

4λΓT

)
. (1.20)

This solution satisfies the physical boundary conditions that the distribution should vanish
for q → ∞ and that it should take on the form (1.16) for q approaching the interior of the
well, i.e. in the range λp− q À √λΓT/Ω. By evaluating the flux (1.17) (e.g., for q = 0—it
does not depend on q near the barrier top), one arrives at the expression for the escape
probability:

W =
1

2π
[λω0 Ω] exp (−∆U/T ) , where ω2

0 = U ′′(qst). (1.21)

Eq. (1.21) gives both the exponent and the prefactor of the escape probability of the classical
Brownian particle, in the broad range of parameters. The situation, however, becomes much
more complicated when quantum effects come into play!

1Clearly, the existence of such substitution is related to the fact that the variational equation (1.10)
of motion for the escaping trajectory becomes linear in quadratic potential; the same values of λ can be
obtained by looking for the solutions in the form q(t) = exp t/λ.
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1.A Dissipation by phonons

We discussed some implications of the “real” Brownian motion of a particle due to multiple
collitions with other particles that constitute the thermal bath. Because the particle expe-
riences so many collisions during any reasonably short time interval, the resulting force is
delta-correlated at the coarsened time scale, while the friction has a simple form without
any memory, or retardation effects. The derived equations of dissipative dynamics are very
general and apply to many systems. In part to illustrate the generality of these equations,
and in part to introduce an easy to quantize implementation of the Brownian dynamics, we
will consider two “truly” microscopic models of Brownian motion. Both correspond to the
linear coupling of a system to a “bosonic bath”, with the Hamiltonian of the form

H = H0 +Hb +Hi, (1.22)

H0 =
1

2
p2 + U(q), Hb =

1

2

∑
µ

(
p2
µ + ω2

µq
2
µ

)
, Hi =

∑
µ

(
fµ q qµ +

1

2
(fµ/ωµ)2q2

)
,

where q, p are the coordinate and momentum of the system, whereas qµ, pµ are the coordi-
nates and momenta of the eigenmodes of the bath. Notice that the coordinate-dependent
terms in Hb and Hi can be written as (1/2)

∑
µ [(fµ/ωµ) q + ωµqµ]2 which makes the structure

of the expression better understandable; one may also say that the last term in Hi allows
for (a part of) the polaron effect of the renormalization of the spectrum of a particle.

The equations of motion corresponding to the Hamiltonian (1.22) are of the form

q̈ + U ′(q) = −∑
µ

fµqµ −
∑
µ

(fµ/ωµ)2q, (1.23)

q̈µ + ω2
µqµ = −fµq. (1.24)

Let us assume that we know the initial (t=0) conditions q(0), p(0), qµ(0) ≡ Aµ cosφµ,
pµ(0) ≡ −Aµωµ sinφµ for both the system and the thermal bath, where Aµ, φµ are the
amplitudes and the initial phases of the vibrations of the bath. Then, for a given trajectory
q(t) of the system, we can find the motion of the bath by solving the linear equations (1.24),
and plug the solutions

qµ(t) = Aµ cos(ωµt+ φµ)− fµ
ωµ

∫ t

0
sinωµ(t− τ) q(τ) dτ

back into Eq. (1.23). As a result, we obtain the independent equation of motion for the
system which self-consistently accounts for the dynamical responce of the bath,

q̈(t) + U ′(q) = L[q(t)] + f(t), f(t) = −∑
µ

fµAµ cos(ωµt+ φµ) (1.25)

L[q(t)] =
2

π

∫ ∞
0

dωF (ω)
∫ t

0
dτ sin(ωτ) q(t− τ) − q(t)

2

π

∫ dω

ω
F (ω). (1.26)

Here the function

F (ω) =
π

2

∑
µ

(f 2
µ/ωµ) δ(ω − ωµ) (1.27)
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has the meaning of the density of states of the bath weighted with the coupling constants.
Obviously, the frequency integration interval should be wide enough to include the frequen-
cies ωµ of all oscillators included in the bath Hamiltonian Hb.

Apparently, Eq. (1.25) does not have a form of the equation of motion for Brownian
particle: we have a retarded self-action mediated by the bath, and, generally, the force f(t)
is not δ-correlated. Therefore, we need to figure out whether this equation can describe the
“unretarded” Brownian motion in principle, with the appropriate choice for the coupling
function F (ω), and also whether this choice can be justified physically, at least for some
systems. Eventually, we shall answer both questions positively. Here, we shall answer the
first question by considering the special form (1.28) of the coupling function F (ω). As we
shall see later, this choice, the so called “Ohmic dissipation” case, is physically reasonable
for describing the system coupled to a fermionic bath. In the next section, we shall show
that the non-retarded Langevin equation also arises naturally for a harmonic (or weakly
anharmonic) oscillator, with nearly parabolic potential U(q).

Let us consider Eq. (1.25) in the special case of “Ohmic dissipation”, with the function
F (ω) of the form

F (ω) = 2Γω exp(−ε ω), (1.28)

where ε is a cutoff parameter, which defines the fast time in the system, similar to the
duration of a collision with a molecule for a Brownian particle. Now the frequency integration
in Eq. (1.25) can be done explicitly, with the result

2

π

∫ ∞
0

F (ω) sin(ωτ) dω = − 1

π

d

dτ

4Γε

ε2 + τ 2
,

2

π

∫ ∞
0

dω

ω
F (ω) =

4Γ

πε
.

After performing the integration by parts in the first term of Eq. (1.25),

L[q(t)] = −4Γ q(t)

πε
− 4Γ

πε

q(t− τ) ε

τ 2 + ε2

∣∣∣∣∣
t

0

− 4Γ

πε

∫ t

0

dτ q̇(t− τ) ε

τ 2 + ε2
,

in the limit ε¿ t, and assuming q(t) varies slowly on the time scale ε, we finally obtain

L[q] = −2Γ q̇(t) (1.29)

(to be consistent, we have to put sign t as a coefficient in the last equation; in what follows
we assume t > 0). So, we do arrive at the right form of the friction force!

To analyze the form of the random force f(t) in Eq. (1.25), we assume that at the instant
t = 0 the amplitudes Aµ and the phases φµ were random and corresponded to thermal
equilibrium of the bath, i.e., we assume that the phases φµ are uniformly distributed over
the interval [0, 2π] and

〈A2
µ〉 = 2T/ω2

µ

Because each of the coupling constants fµ is very small, for the specific form (1.28) of the
coupling function F (ω) one can show that the force f(t) is a Gaussian random process, and

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = T
∑
µ

(f 2
µ/ω

2
µ) cos[ωµ(t− t′)]→ 4ΓTδ(t− t′). (1.30)



1.B. KINETICS OF A HARMONIC OSCILLATOR COUPLED TO A BATH 15

Certainly, this result is not very surprising: it was expected from the fluctuation-dissipation
theorem and the fact that the friction term (1.29) is unretarded.

Eq. (1.25) with the friction term L[q] given by Eq. (1.29) and the Gaussian δ-correlated
random force (1.30) is exactly the Langevin equation for Brownian motion we had before.
We have, therefore, managed to show that Brownian motion can, at least in principle, arise
because of the coupling to the bath of harmonic oscillators.

1.B Kinetics of a harmonic oscillator coupled to a bath

The equations of motion of a classical system cou-

cω∆ω

ω0 ω

F(ω)

Fig. 1.6.

pled to a bath may also be effectively unretarded
in the case of a quite general form of the coupling
function F (ω) (unlike the special form (1.28)), pro-
vided the dynamical system itself has a “fast” time,
while the coupling is weak. In this case the ef-
fect of the bath must accumulate over many peri-
ods of nearly-coherent motion of the system. As we
shall see, this results in the absence of the retarda-
tion on the coarsened (slow) time scale, even though
the “real” dynamics of the system is retarded (non-
Markovian).

Consider a harmonic oscillator coupled to a bath,
described by the Hamiltonian (1.22) with the poten-
tial

U(q) =
1

2
ω2

0q
2. (1.31)

In the absence of the bath, the harmonic motion of this oscillator will have a well-defined
amplitude and phase. The weak coupling to the thermal bath would create a slow modulation
of the harmonic motion. In order to describe this modulation, let us perform the canonical
transformation to the “rotating” frame,

q(t) = (2ω0)−1/2
[
u(t)e−iω0t + u∗(t)eiω0t

]
, (1.32)

p(t) ≡ q̇(t) = −i(ω0/2)1/2
[
u(t)e−iω0t − u∗(t)eiω0t

]
. (1.33)

The introduced complex amplitudes u(t), u∗(t) are not independent; in order for Eq. (1.33)
to be consistent, these coordinates must be related by the expression

u̇(t)e−iω0t + u̇∗(t)eiω0t = 0. (1.34)

Because of this constraint, the acceleration term in the equation of motion (1.25) is expressed
in terms of first derivatives only, and the result combined with Eq. (1.34) can be trivially
reduced to the following set of two first-order differential equations for u(t), u∗(t):

u̇(t) = i(2ω0)−1/2eiω0t [L[q] + f(t)] , u̇∗(t) = −i(2ω0)−1/2e−iω0t [L[q] + f(t)] (1.35)
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If the coupling to the bath is weak enough, these amplitudes will remain nearly a constant
for the time ∼ ω−1

0 . Therefore, (the validity of this approximation will be checked later) we
can replace q(t− τ) in the integral operator L[q] in Eq. (1.35) by the first term of expansion

q(t− τ) = (2ω0)−1/2e−iω0(t−τ)

(
u(t) +

∞∑

n=1

(−τ)n
dn

dtn
u(t)

)
+ c.c., (1.36)

and obtain,

i(2ω0)−1/2 eiω0t L[q(t)] ≈ iu(t)

πω0

∫
dωF (ω)

[∫ t

0
sin(ωτ)eiω0τdτ − 1

ω

]

=
iu(t)

πω0

∫
dωF (ω)

[
1− ei(ω+ω0)t

2(ω + ω0)
+

1− ei(ω0−ω)t

2(ω − ω0)
− 1

ω

]

Assuming the function F (ω) is smooth in a vicinity of the point ω = ω0, we can use the
following asymptotic expressions to evaluate the integral over ω:

sin[(ω − ω0)t]

ω − ω0

→ πδ(ω − ω0),
1− cos[(ω ± ω0)t]

ω ± ω0

→ v.p. (ω ± ω0)−1,

where v.p. means that the principal value of the corresponding integral over ω should be
taken). Then, keeping only the first term in the expansion of q(t − τ), and ignoring the
non-resonant terms depending on the sum of the frequencies, we get the equation describing
the slow dynamics of the system

u̇(t) = −Γu(t)− iP u(t) + i(2ω0)−1/2eiω0tf(t), (1.37)

where
Γ = F (ω0)/2ω0, P =

ω0

π
v.p.

∫
dωF (ω)

[
ω(ω2

0 − ω2)
]−1

. (1.38)

Eq. (1.37) implies that the function u(t) varies very slowly, over the characteristic time

Γ−1, |P |−1 À ω−1
0 .

Using this inequality, we can check the self-consistency of our approximation, i.e. that the
higher-order terms ∼ τn dnu/dtn omitted in L[q] are small. The contribution due to these
terms can be estimated by replacing τn under the integral by the n-th derivative over ω0, with
the result [dnΓ/dnω0] dnu/dtn, [dnP/dnω0] dnu/dtn, which, indeed, is negligible for smooth
enough responce function F (ω).

It can be shown (see Prob. 1.9 at p. 18) that on the time scale coarsened over the interval
of the order of ω−1

0 (and over the characteristic width ωc of the function F (ω)) the forces
f(t) cos(ω0t) and f(t) sin(ω0t) are asymptotically independent and δ-correlated. The final
form of the equations for the slowly varying complex amplitudes of the oscillator is of the
form:

u̇ = −Γ u− iP u+ f̃(t), u̇∗ = −Γ u∗ + iP u∗ + f̃ ∗(t) (1.39)

〈f̃(t)〉 = 0, 〈f̃(t)f̃(t′)〉 = 0, 〈f̃(t)f̃ ∗(t′)〉 = [2ΓT/ω0] δ(t− t′).
Once again, the δ-function here is defined for the coarsened (slow) time; it should be under-
stood that it has a peak of the width ∼ max[ω−1

0 , ω−1
c ].
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Problems

xProblem 1.1 (page 83)
Find the optimal path for a fluctuating Brownian particle that minimizes the functional

���������������
���������������
���������������
���������������p

U(q)

q st
q

Fig. 1.7.

R =
∫
dt(q̈ + 2Γq̇ + U ′(q))2

q(t) = q, q̇(t) = p, q(−∞) = qst, q̇(−∞) = 0,

where qst is the position of the minimum of the potential
U(q) (in fact, the solution here means a second-order dif-
ferential equation for q(t)). Find the corresponding value
of the functional as a function of q, p. Explain why the
equation for the optimal path takes the particular form
you will have found: think about minimal work that a
thermal bath has to do to bring the system to a particular

state.

xProblem 1.2 (page 85)
Rederive the expression (1.7) in the presence of an arbitrary potential U(q). You may find
it helpful to prove the formula 〈p(t)f(t)〉 = D first.

xProblem 1.3 (page 85)
Brownian motion of an overdamped particle is described by the Langevin equation

Q̇+ U ′(Q) = f(t), 〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2Dδ(t− t′)

The corresponding Fokker-Planck equation (FPE) is of the form

∂w

∂t
=
∂[U ′(Q)w]

∂Q
+D

∂2w

∂Q2

where w ≡ w(Q, t) is the probability density. This FPE can be transformed to a Schrödinger-
like equation for the function

U

Q

Fig. 1.8.

φ(Q, t) = eU(Q)/2D w(Q, t).

The lowest eigenvalue of the corresponding equa-
tion is identically zero (why?), and the corre-
sponding eigenfunction is C exp(−U(Q)/2D).

Find the lowest nonzero eigenvalue and the
corresponding eigenfunction for the double-well
potential U(Q) as shown in Fig. 1.8 in the limit
of small D. Notice that the potential in the
Schrödinger-like equation will have three wells in
this case; be careful if you decide to apply the
known results of quantum mechanics for level splitting in the two-well potential.
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xProblem 1.4 (page 86)
Find the optimal fluctuational path for the overdamped Brownian motion.

xProblem 1.5 (page 87)
When deriving the optimal path functional (1.8) from Eqs. (1.5), (1.7), we changed the path-
integration variables from f(t) to q(t), but ignored the corresponding Jacobian. Explain why
this was an adequate approximation. Find the path integral description of an overdamped
particle in the external potential U(q) in terms of the particle’s coordinate q(t).

xProblem 1.6 (page 88)
In the course of escape from a potential well a Brownian particle goes back and forth over
the top of the barrier. Find the ratio of the ingoing and outgoing flows.

xProblem 1.7 (page 88)
Consider the quantum problem of decay and find the lifetime of a metastable state in the
potential well shown at page 11. Assume that the wave function is semiclassical both outside
and well inside the barrier U(q), and that the potential is parabolic near its minimum.

xProblem 1.8 (page 90)
For a classical system coupled to a bath of harmonic oscillators described by an arbitrary
coupling function F (ω), derive the relationship between the correlator of the random force
〈f(t) f(t′)〉 and the retarded dissipation rate κ(t), defined by the equation

L[q(t)] = −2
∫ t

−∞
κ(t− t′) q̇(t′) dt′.

xProblem 1.9 (page 91)
Derive quantum Langevin equation for a harmonic oscillator linearly coupled to a phonon

bath. Use the operators

a = (ω0/2)1/2q + i(2ω0)−1/2p, a+ = (ω0/2)1/2q − i(2ω0)−1/2p.

Assume the coupling to be weak. Evaluate, on the coarsened time scale, the evolution of the
average values 〈an(t) (a+)

m
(t)〉.

xProblem 1.10 (page 92)
Find the power spectrum of voltage fluctuations on a resistor R (for comparatively low
frequencies, in particular for h̄ω ¿ T ). Consider a resistor in a circuit that consists of a
capacitor C, a solenoid with an inductance L, and the resistor itself, held at temperature T ,
and use standard expressions for the energies stored in a capacitor and in a solenoid.



Lecture 2

Quantum escape problem.

2.1 The Crossover from Classical to Quantum Escape.

Classical formulation of the problem of escape from a metastable state is based substantially
on the fact that relaxation is sufficiently fast—much faster than the escape rate. Otherwise,
there would be no such thing as the rate of escape from a metastable state, and the outgoing
current would depend on the initial preparation of the system.

Quite differently, the “standard” quan-
U(q)

En

q1 q2 q

Fig. 2.1.

tum formulation is based on the notion of
the escape from a given quantum state. In
quasiclassical approximation a particle es-
capes from the level n with the probability

W (En) =
ω(En)

2π
exp (−2S (En)) , (2.1)

where the tunneling action

S(E) =
∫ q2

q1
dq [2m(U(q)− E)]1/2 , (2.2)

q1,2 are the turning points, and we set the Planck constant h̄ = 1. The preexponential factor
tells how often the particle “hits” the potential wall, and S is the “action” for the motion
under the barrier.

If the system is coupled to a bath then, strictly speaking, its energy spectrum becomes
continuous, and the Gibbs distribution over the energy levels is formed. We shall ignore
the continuity of the spectrum for a moment and consider only the consequences of the
equilibrium thermal energy distribution. At finite temperatures the system occupies not
only the lowest energy level, but also the excited ones, and it may have energies higher than
the barrier height, too. Therefore, there always exists a possibility of a purely activation
escape over the barrier. If this is not the dominating mechanism, however, we may write
the total escape rate as the sum of the tunneling rates for different levels weighted with the
populations of the levels,

W = Z−1
∑
n

W (En) exp(−En/T ), Z = Tr exp(−H/T ), (2.3)

19
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where H is the Hamiltonian of the system. If the temperature is high enough (but not too
high), the energy levels from which the system is most likely to escape may be (and often
are) close to each other. Then, using the fact that in quasiclassics ∆En = En+1−En ≈ ω(E),
the sum in Eq. (2.3) may be replaced by the integral

W = Z−1
∫ dE

ω(E)
W (E) exp(−E/T ) = Z−1

∫
dE exp(−2S(E)− E/T ). (2.4)

As usual in the problem of escape, the integrand is such a rapidly changing function of energy
that only a close vicinity of its maximum will dominate the value of the whole expression.
This means that we can evaluate the integral over E by the method of steepest descent,

W ≈ Z−1
[
4π
(
∂2S/∂E2

)]−1/2
exp(−R), (2.5)

where both the prefactor and the exponent

R = 2S(E) +
E

T
, 2

∂S

∂E
= − 1

T
, (2.6)

must be calculated at the same energy, given by the second expression above.

-U(q)
q1 q2 q

-E

Fig. 2.2. The energy derivative of the tunnel-
ing action (2.2) is proportional to the period
of oscillations in the “inverted” potential.

The derived equation for this “optimal”
energy has a very simple meaning if we no-
tice that the action S(E) corresponds to
that for a classical motion in the inverted
potential −U(q). It is known from classical
mechanics that the period of the motion is
equal to τp = 2|∂S/∂E|, i.e., the transi-
tions occur, most likely, from the energy
levels for which the period of the oscilla-
tions in the inverted potential is equal to
the reciprocal temperature.

For a generic form of the inverted potential, the period of oscil- τ

∆

p

U E

Fig. 2.3.

lations is limited from below, and Eq. (2.6) does not have a solution
for arbitrarily large temperatures T . Often the energy dependence
of the period of oscillations in the inverted potential τp(E) is mono-
tonic, as illustrated in Fig. 2.3, and in this case the smallest period
is determined by the curvature

Ω2 =

∣∣∣∣∣
d2U(q)

dq2

∣∣∣∣∣

of the potential near the top of the barrier, and, consequently, the solution of Eq. (2.6) will
disappear at temperatures larger than

T0 = Ω/2π. (2.7)

Thus defined characteristic temperature T0 is the crossover temperature: the escape rate is
determined by the quantum tunnelling on one side of T0, whereas on the other side of T0
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escape is thermally activated (note, however, that there are important quantum corrections
to the prefactor, for not too high temperatures).

The derived escape rate (2.5) fails near the crossover temperature T0 since the steepest
descent method does not apply here. More careful estimate above the transition, T > T0

gives R ≈ ∆U/T (where ∆U is the total barrier height), and for T < T0, assuming the
barrier nearly parabolic and the period τp(E) nearly linear in E near the barrier top,

R ≈ ∆U/T −
∣∣∣2τ ′p

∣∣∣
−1 (

T−1 − T−1
0

)2
.

Clearly, in this range of temperatures the quantum correction decreases the tunneling expo-
nent R, and thus alleviates the escape, as one would näıvely expect.

Unfortunately, the argument works only in a rather narrow range of the relaxation rates.
The dissipation must be not too small so that the quantized energy levels near the barrier
top would not be depleted because of the escape, and not too large so that the energy
levels remain well-defined and the quantum-mechanical expression for the tunneling rate is
applicable.

2.2 Escape Probability and Partition Function

Strictly speaking, if a particle is capable of tunneling out of the potential well, it must have
a continuous energy spectrum. The discrete energy levels associated with the original closed
well are transformed into poles of the scattering amplitude analytically continued to complex
values of energy. If the escape rate is small enough, these singularities are very close to the
real axis, and they can be observed in various spectra as sharp absorption or emission peaks.
If the properties of the system are dominated by such peaks, we can ignore the fact that the
spectrum is continuous, and describe the system in terms of eigenstates of complex energy.

In order to benefit from such a descrip-
U(q)

Re

q0

E

Fig. 2.4. The integration in Eq. (2.8) is per-
formed over the shaded region.

tion, we need to reformulate the escape
problem as a non-Hermitian one. This can
be done by imposing the boundary con-
ditions of unidirectional flow far enough
outside the well. Such conditions agree
with our intuitive understanding of escape
as the motion away to infinity with no
chance of scattering back. Now, it is easy
to relate the escape rate, or the rate of the
reduction of the population of the state
inside the well with the imaginary part of
the corresponding energy. This relation can be obtained by multiplying the equations

Hψ = Eψ, Hψ∗ = E∗ψ∗,

where

H = − 1

2m
∇2 + U(q),



22 LECTURE 2. QUANTUM ESCAPE PROBLEM.

by ψ∗ and ψ, respectively, and integrating the difference over the interval including the well
and, partly, the area outside the barrier, as illustrated in Fig. 2.4,

−2ImE
∫ q0

−∞
|ψ|2 dq =

1

2im

(
ψ∗

∂ψ

∂q
− ∂ψ∗

∂q
ψ

)
. (2.8)

Since the wave function is mostly concentrated inside the integration interval, the integral
gives the population of the well, while the r.h.s. of the obtained expression is exactly the
outgoing current j. Defining the escape rate as the ratio of the current to the population of
the well,

W = j
[∫

dq |ψ|2
]−1

,

we obtain

W (En) = −2 ImEn. (2.9)

For a multi-level many-dimensional system the expression for the overall probability of escape
may be obtained by averaging the obtained equation over the states of the system. Assuming
that the imaginary parts of the energies are small, we get

W = 2T Im
∑
n

Z−1 exp(−En/T ) = 2T Im lnZ = −2 ImF. (2.10)

It is not surprising that the partition function and the free energy are complex, since
we are analyzing the problem where a particle can escape to infinity. Another question is
how good and how general the obtained expressions are. First, we assumed that ImE is
small for all energies, which is certainly not true for the states close or above the barrier
top, and one would expect that Eq. (2.10) should be modified when such energies become
substantial. For not too small damping the modification becomes important in the range
T > T0 [T0 defined by Eq. (2.7) is the crossover temperature], but it comes just to an extra
prefactor. This prefactor can be found by accounts for the overbarrier reflection, which
changes the expression for the escape probability (cf. the discussion above), and also for the
modification of the expression for the partition function. The limit of very small dissipation
rate, although mathematically rather involved, can be easily understood on the physical
grounds: the tunneling rate is governed by the depletion of the area close, or even not
very close to the barrier top and, respectively, by the difference between the real and the
equilibrium Gibbs distributions used in Eq. (2.10).

Generally, the matter is delicate when the particle is coupled to a bath, since in this case
we have an infinite number of degrees of freedom, and all time scales are present; the very
fact that the particle is away from the well does not mean that it will not be drawn back as
a result of relaxation of the bath. From a formal point of view, these problems arise because
the current is determined by a two-particle Green’s function, whereas the partition function
is determined by the one-particle Green’s function, and, in general, a two-particle Green’s
function is not expressed in terms of the one-particle one. Clearly, the approach does not
apply to the case of nonequilibrium systems like optically bistable systems, or electrons in a
Penning trap excited by a cyclotron radiation, or bistable chemical and biochemical systems
with in- and outgoing flows, etc.



2.3. PATH INTEGRAL FORMULATION 23

However, in many cases of physical interest Eq. (2.10) (or its modification for T > T0)
does apply to systems coupled to a thermal bath, and enables us to answer a few important
physical questions including the following:

(i) Does the dissipation increase or decrease the tunnelling probability? What is the effect
of small dissipation?

(ii) How does escape occur in the case of a heavily damped (overdamped) motion?

In order to answer these questions, it is convenient to analyze Eq. (2.10) in the path integral
representation.

2.3 Path Integral Formulation

The path integral formulation of quantum mechanics is based on the fact that the amplitude
K(qf , t; qi; t0) of the transition from a point qi occupied at the instant t0 to the final point
qf over the time interval tf − ti > 0, is given by the path integral of the exponent of the
classical action,

ψ(qf , tf ) =
∫
dqiK(qf , tf ; qi; t0)ψ(qi, t0), K(qf , tf ; qi; t0) =

∫
Dq(t) exp(iS[q(t)]),

where

S[q(t)] =
∫ tf

t0
dt L(q̇, q),

and L(q̇, q) is the classical Lagrangian of the system, which we will assume to be time-
independent. For a particle with the mass m = 1 moving in a potential U(q),

L(q̇, q) =
1

2
q̇2 − U(q)

Alternatively, the Feynman’s amplitude K can be expressed in terms of the complete set of
the eigenvalues En and eigenfunctions ψn(q) of the quantum-mechanical Hamiltonian of the
system (for a particle mentioned above H = 1

2
p2 + U(q)):

K(qf , tf ; qi; t0) =
∑
n

ψ∗n(qf )ψn(qi) exp [−iEn(tf − ti)] . (2.11)

The generalization to a system with many degress of freedom is straightforward. Usually, the
operator K(qf , tf ; qi; ti) is called a propagator, but this term is also used in other meanings;
Feynman often called it just a kernel.

The representation (2.11) implies that the equilibrium partition function of the system
can be written in terms of the kernel K as:

Z =
∫
dq
∑
n

ψ∗n(q)ψn(q) exp(−βEn) =
∫
dq K(q,−iβ; q, 0), (2.12)

where β ≡ T−1. Therefore, in order to find the partition function Z we have to evaluate the
trace of the Feynman’s propagator K for imaginary time interval t = −iβ:

Z =
∫

q(0)=q(β)
Dq(τ) exp(−SE[q(τ)]), SE[q(τ)] =

∫ β

0
dτ LE

(
dq

dτ
, q(τ)

)
, (2.13)
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where

LE

(
dq

dτ
, q(τ)

)
= −L

(
i
dq

dt
, q(it)

)
.

The path integral in Eq. (2.13) is taken with respect to all periodic paths that come back to
the initial point over the imaginary time −iβ. The quantity SE is often called the Euclidean
action (in special relativity the metrics of the space-time becomes Euclidean when we switch
to imaginary time). Correspondingly, the Lagrangian LE is called Euclidean, too (mind the
sign!). Generically, LE is a functional of q(τ). For a particle with a unit mass moving in a
potential U(q) the Euclidean Lagrangian has the simple form

LE =
1

2

(
dq

dτ

)2

+ U(q). (2.14)

At low temperatures the imaginary time interval β is large, and the Euclidean action (in
the units of h̄!) is huge for the majority of the paths, and, quite similar to what we had in
the classical problem, it is strongly different for different paths. Therefore the path integral
may be evaluated by the method of steepest descent, i.e., we have to find the extreme paths
q̄(τ) that satisfy the equation

δSE[q]

δq(τ)
= 0. (2.15)

Here δ/δq(τ) means the functional derivative with respect to q(τ). In particular, for the
Lagrangian (2.14) the variational equation takes a standard form of the Lagrangian equation
of motion

− d

dτ

∂LE
∂(dq/dτ)

+
∂LE
∂q

= 0, q(0) = q(β). (2.15a)

For systems with a metastable state Eqs. (2.15) or (2.15a) have several solutions.

-U(q)

q
st

q

Fig. 2.5.

At very low temperatures the particle is mostly local-
ized in the vicinity of the stable (or metastable) position
qst, and the solution of Eq. (2.15) that provides the main
contribution to the partition function Z is trivial,

q̄(τ) = qst, S̄E = β U(qst). (2.16)

It is easy to see that for a particle with the Euclidean La-
grangian (2.14) in a potential with a single minimum this
is the only solution of the variational equation Eq. (2.15).

The value of the Euclidean action S̄E evaluated along
the saddle point path provides the exponent of the partition function. The corresponding
prefactor, as usual in the saddle point approximation, can be found by performing the Gaus-
sian integration over the fluctuations around the saddle-point solution q̄(τ), after expanding
the action SE[q(τ)] to quadratic order in δq(τ) ≡ q(τ)− q̄(τ). Formally, this expansion can
be written as

SE ≈ S̄E +
1

2

∫ ∫
dτ dτ ′

δ2SE
δq(τ)δq(τ ′)

δq(τ) δq(τ ′), (2.17)

where the functional derivatives are evaluated at the path q(τ) = q̄(τ).



2.3. PATH INTEGRAL FORMULATION 25

The Gaussian integration can be conveniently performed after expanding the variation

δq(τ) =
∑
n

cn qn(τ) (2.18)

over the solutions of the eigenvalue problem

∫ β

0
dτ ′

δ2SE
δq(τ)δq(τ ′)

qn(τ ′) = λn qn(τ), qn(β) = qn(0). (2.19)

The kernel of this equation is symmetric, and the functions qn(τ) can be always chosen to
form a complete orthonormal set,

∫ β

0
dτ qn(τ)qm(τ) = δnm

and the action (2.17) becomes

SE ≈ S̄E +
1

2

∑
n

λn c
2
n, q(τ) = q̄(τ) +

∑
n

cn qn(τ). (2.20)

Now we can rewrite the integral over arbitrary paths q(τ) as an integral over the coefficients
cn of the expansion (2.18),

∫
Dq(τ) −→ N

∏
n

∫
dcn/(2π)1/2,

where the overall constant N depends on the normalization; in the following the specific
value of N will not be substantial.

Equation (2.20) implies that at low temperatures the main contribution to the partition
function can be written as

Z0 ≈ N
[
det

(
δ2SE/δq

2
)]−1/2

e−β U(qst) ≡ N e−β U(qst)
∏
n

λ−1/2
n . (2.21)

This defines the determinant in terms of the eigenvalue problem (2.19). For the time-
independent extremal path (2.16) which minimises the Euclidean action for a particle in
a potential well, the eigenvalue equations (2.19) can be written as

−d
2qn
dτ 2

+ U ′′(qst) qn(τ) = λn qn(τ), qn(β) = qn(0),

while the corresponding determinant in Eq. (2.21) is sometimes denoted as

det
(
δ2SE/δq

2
)

= det
[
−(d2/dτ 2) + U ′′(qst)

]
.

The solution of the obtained eigenvalue problem is trivial, and the resulting eigenvalues are
of the form

λn = U ′′(qst) +
4n2π2

β2
, n = 0, ±1, . . .

Our next step will be to find the contribution to the partition function Z from other
extremal paths that exist in the case of a metastable potential.
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2.4 Bounces

top
q q

U

st
q q

-U

Fig. 2.6. The extremal trajectories visualized
as the motion in the inverted potential.

These extremal paths, which can be ob-
tained as a solution of the variational prob-
lem (2.15a), include one more time-inde-
pendent solution q(τ) = qtop, located at
the top of the potential barrier, and a va-
riety of time-dependent solutions that can
be visualized as non-linear oscillations in
the inverted potential −U(q). The time-
independent solution q(τ) = qtop, which
only explores the vicinity of the top of the
potential barrier, is associated with acti-
vational transport. This solution, impor-
tant at the temperatures close or above the
crossover, T >∼ T0, will be considered in
Sec. 3.1. Here we are interested in calcu-

lating the escape rate at very small temperatures, T ¿ T0, which is dominated by a very
special extremal trajectory called the bounce. It corresponds to the motion that starts very
close to the top of the inverted potential −U(q) (i.e., near the stable point qst) with nearly
zero velocity, goes far away from qst accross the well of the inverted potential −U(q), and
then bounces back, with the total energy

E =
1

2

(
dq

dτ

)2

− U(q)

close to the potential energy −U(qst) in the stationary point.
It is easy to understand why the bounces

τ0

bounce stq -q

β τ
Fig. 2.7. A typical form of the bounce so-
lution. A very important simplification
comes from the fact that the displacement
qbounce − qst is exponentially small away
from the peak, so that the functional form
remains the same for all T ¿ T0.

play such a special role in the limit of large
β = T−1. First, the candidate solution must
be a periodic solution, q(0) = q(β), and there-
fore only the trajectories located in the barrier
region, where the inverted potential provides
a restoring force, may apply. This limits the
allowed energies to the interval between the
bottom of the well −U(qst) and the top of the
barrier −U(qtop), i.e., the minimum of the in-
verted potential −U(q). Second, it is easy to
see that in the considered limit the bounce
has the smallest action out of all not-trivial
trajectories. Indeed, the Euclidean action SE[q(τ)] associated with a periodic solution q(τ)
is equal to the action per one oscillation times the total number of the oscillations during the
time interval β. This number is proportional to inverse temperature T−1 for the trajectories
starting somewhere near the middle of the well of the inverted potential −U(q). As a result,
the associated action will be extremely large for small T , which rules out the possibility that
such solutions may be important.
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From the physical notion of the bounce as the trajectory in the inverted potential, it is
clear that the particle spends most of the time (we are talking about the imaginary time!)
near the local maximum qst of the potential −U(q), then it performs a fast trip to the other
side of the “well” over the time ∼ Ω−1 ≡ |U ′′(qtop)|−1/2, and returns to the vicinity of the
point qst. Clearly, the trajectory must lie entirely on one side of this point, i.e., the function
q̄(τ)− qst has no nodes.

Analyzing the linearized equations of motion in the vicinity of the stationary point qst, it is
easy to see that the particle approaches this point exponentially, with the characteristic time
ω−1

0 determined by the frequency of oscillations near the bottom of the well, ω2
0 = U ′′(qst.

Therefore, even though the solution q̄(τ) depends on the total time interval β, for small
enough temperatures, 2π T ¿ ω0,Ω, the form of the bounce solution remains the same
with exponential accuracy. The specific time interval when the fast motion actually occurs,
in particular, the instant τ0 when the system reaches the turning point at the opposite
“potential wall”, is arbitrary, and the extremal solution can be written in the form

q̄(τ) ≡ qbounce(τ − τ0) = Q(τ − τ0) (2.22)

with an arbitrary τ0. For our example of the particle moving in a static potential, the
function Q(τ) is given by the solution of the equation

dQ

dτ
= ± [2 (U(Q)− U(qst))]

1/2 .

This equation is often easier to integrate in a closed form than finding the generic trajectories
at arbitrary energy. For example, the generic motion in a quartic potential U(q) = q2/2−q4/4
is described by elliptic functions. However, one can easily find that the bounce solution is
Q(τ) = ±√2/ cosh(τ), where the plus (minus) sign corresponds to the tunneling under the
left (right) wall. This local in time soliton-like structure of the bounce solution is very
general and very important.

An immediate and quite remarkable consequence of the structure of the bounce solu-
tion (2.22) is that the function

q1(τ) = A−1
1

dQ(τ − τ0)

dτ
, A1 =



∫ β

0
dτ

(
dQ(τ)

dτ

)2



1/2

, (2.23)

which has exactly one node, as follows from the fact that Q(τ)− qst has none, is the solution
of the eigenvalue problem analogous to Eq. (2.19),

∫
dτ ′

δ2SE
δq(τ)δq(τ ′)

qn(τ ′) = Λn qn(τ), qn(β) = qn(0), (2.24)

with the eigenvalue Λ1 = 0. Indeed, it is easy to see that

∫
dτ ′

δ2SE
δq(τ)δq(τ ′)

∣∣∣∣∣
q(τ)=Q(τ−τ0)

dQ(τ ′ − τ0)

dτ ′
= − d

dτ0

(
δSE
δq(τ)

∣∣∣∣∣
q(τ)=Q(τ−τ0)


 = 0,

where the last equality is a consequence of the fact that Q(τ − τ0) is the extremum of the
action SE. The presence of a zero eigenvalue signals that we are in trouble, and in fact we



28 LECTURE 2. QUANTUM ESCAPE PROBLEM.

have two problems. The first one is that the determinant that provides the prefactor and is
equal to the square root of the product of the eigenvalues Λn of the problem (2.24) seems to
vanish! Then the prefactor would diverge. To say it in other words, the action is “flat” in
one of the “directions” in the functional space.

The most elegant way to deal with this problem is to use what is called a collective
coordinate. We recall that the evaluation of the prefactor is based on reducing the path
integral to that over the coefficients cn of the expansion in the eigenfunctions qn(τ),

q(τ) = q̄(τ) +
∑
n

cnqn(τ),
∫
Dq(τ) −→ N

∏
n

∫ dcn
(2π)1/2

(2.25)

This reduction holds if the set of the functions qn(τ) is complete and orthonormal, but
the corresponding eigenvalues Λn may be arbitrary. The increment of the trajectory ∆q(τ)
related to the increment of c1 is equal, as seen from the above expansion, to

∆q(τ) = q1(τ) ∆c1

On the other hand, we have an “internal” degree of freedom related to the shift of the bounce
q̄(τ) = Q(τ − τ0); by shifting the position of the bounce τ0 we change q(τ), and this change
may be accounted for as one of the variations of the trajectory q(τ) over which the path
integration is performed,

∆q(τ) =
dQ(τ − τ0)

dτ0

∆τ0 = −A1 q1(τ) ∆τ0.

These equations provide the relationship between the increments ∆c1 and ∆τ0, and the
integral over c1 can be evaluated explicitly

∫ ∞
−∞

dc1

(2π)1/2
−→ A1

(2π)1/2

∫ β

0
dτ0 = β

A1

(2π)1/2
, (2.26)

where we used the fact that the action SE[q(τ)] is invariant under the time shift τ →
τ − ∆τ0, so that the integrand is actually independent of τ0. A more careful derivation of
this important relationship is given in the Appendix 2.A.

Another issue related to the occurrence of the zero solution Λ1 = 0 in the eigenvalue
problem (2.24) is that this problem also has exactly one negative eigenvalue Λ0 < Λ1 = 0,
as follows from the fact that the eigenfunction q1(τ) has exactly one zero. This means that
the bounce does not provide a minimum to the functional S[q(τ)] in the path integral, or,

formally, the integral of exp
(
−1

2
Λ0 c

2
0

)
over dc0 diverges. On the other hand, if we just wrote

the result formally as ∝ (Λ0)−1/2 we would have an imaginary number. But this is just what
we were trying to get: we have been evaluating the imaginary part of the partition function
Z, and now we see where this imaginary part comes from, formally.

The integral over c0 in the case Λ0 < 0 can be evaluated by analytic conitnuation. The
arguments are subtle. We have to continue analytically the shape of the potential so that
the latter changed from a stable to a metastable, and we have to follow the distortion of the
contour of integration over c0. Eventually, instead of integration along the real axis of c0 we
have to arrive at the integration along the imaginary axis. In a way this is not that surprising
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that we are doing this: as we know, path integrals in real time contain the integrals over
the increment of the coordinate x with the integrands, for a free particle, of the form of
exp(imx2/2h̄∆t), and these integrals are evaluated by the steepest descent method, too.

To gain an idea of what is going on let us

z

2 3

2 3

az +bz

az -bz

Fig. 2.8.

consider an integral

J =
1√
2π

∫ ∞
0

dz exp(−az2 − bz3)

This integral converges for positive a, b. Let us
now change b→ b exp(iφ) and vary φ from zero
to −π, so that b eventually changes its sign. We
can keep the integral converging by shifting the
contour of integration in complex plane, as il-
lustrated with dashed line in Fig. 2.9. As usual
with analytic functions, it does not really matter what integration contour we take, as long
as at |z| → ∞ it ends up in the same shaded area. The imaginary part of the integral for
φ = −π can be evaluated by the steepest descent method by integrating along the contour
shown in Fig. 2.9 with solid line,

Im J =
1√
2π

Im
∫ K

2a/3|b|
dz exp


− 4a3

27b2
+ a

(
z − 2a

3|b|

)2



=
1

2
√

2a
exp[−4a3/27b2],

where |K| → ∞, argK = π/3, and we used the

z

z’

z’’

Fig. 2.9. The shaded areas indicate
the regions where z3 is negative.

fact that the integration along the real axis does
not contribute to the imaginary part of the integral.
The obtained expression differs by a factor 1/2 from
the result one would näıvely expect if the analytic
continuation could be done simply by rotating the
integration contour; this factor arises because we are
integrating in one direction away from the real axis.
If we changed from b to −b by rotating b in the
upper halfplane, we would get Im J with the same
absolute value but the opposite sign.

We can argue now that a similar thing must hap-
pen when we perform the integration over c0 in the
path integral, and in this case we will also get the
factor 1/2. The existence of two signs of ImZ can
be also understood from physical arguments: they
correspond to two possible choices of the unidirectional flow far from the well when defining
the non-Hermitian problem of escape; both signs can be obtained by analytic continuation
from the original stable potential.

Now that we learned to perform the Gaussian integration when the second variation of
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the action has zero and negative eigenvalues, we can write

ImZ =
1

2
β

A1

(2π)1/2
N
∣∣∣det′

(
δ2SE/δq

2
)

bounce

∣∣∣
−1/2

exp(−SE[qbounce]), (2.27)

where
det′

(
δ2SE/δq

2
)

bounce
≡ ∏

n 6=1

Λn,

and the index “bounce” means that the corresponding quantities are evaluated for the bounce
solution q̄(τ) = qbounce(τ) of the variational problem (2.15) or (2.15a) (the eigenvalues Λn

are evaluated for the eigenvalue problem that refers to that same solution), and the prime
means that zero eigenvalue should be omitted when the determinant is evaluated.

Although we calculated only the imaginary part of the contribution of the bounce to the
partition function, it is clear that the real part of the partition function at small temperatures
is dominated by the vicinity of the (meta) stable point qst. Therefore, the correction to the
real part will be relatively unimportant, and, using the fact that the normalization factor N
is the same for integration around all extremal solutions, we can write the final expression
for the escape rate W = 2T Im lnZ in the form

W = C exp(−SE[qbounce]), C =
A1

(2π)1/2

[
det (δ2SE/δq

2)q=qst
|det′ (δ2SE/δq2)bounce |

]1/2

(2.28)

This expression provides a basis for the analysis of the escape rate in the case of a system
coupled to a thermal bath.

2.A Appendix. Collective mode integration.

We shall discuss an alternative way to integrate over the zero-eigenvalue mode in Eq. (2.25).
The integral in Gaussian approximation diverges because, even though the main contribution
to the path integral is due to the paths that are close to the bounce solution Q(τ − τ0), the
position of the bounce τ0 is arbitrary in the interval (0, β), and the associated variation can
be large. To eliminate this zero-eigenvalue mode we need to choose the bounce solution with
an “optimal” position for every variational trajectory q(τ). This can be done by looking for
a value of τ0 such that q(τ) is best approximated by Q(τ − τ0) “on the average”, i.e. that
the integral

M(τ0; q) ≡
∫ β

0
dτ [q(τ)−Q(τ − τ0)]2 (2.29)

reaches a minimum, which implies

f(τ0; q) ≡ ∂M(τ0; q)/∂τ0 = −2
∫ β

0
Q̇(τ − τ0) q(τ) = 0. (2.30)

Clearly, τ0 ≡ τ0[q(τ)] defined by this equation is a functional of q(τ).
Now we shall use the trick similar to the gauge-fixing procedure in the field theory. Let

us introduce

1 =
∫ β

0
δ (τ ′ − τ0 [q(τ)]) dτ ′
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under the integral in the exact partition function (2.13),

Z =
∫ β

0
dτ ′

∫
Dq(τ) exp(−SE[q(τ)]) δ(τ ′ − τ0[q(τ)]) (2.13a)

Since the partition function includes the integration over all possible time-translated trajec-
tories, the integrand does not actually depend on τ ′, and the integration over this variable
is trivial. After selecting an arbitrary value τ ′ = τ0, we can simplify the argument of the
δ-function using the stationarity condition (2.30) and the formula δ(f(x)) = δ(x) |f ′(x)|−1,
with the result

ImZ = β Im
∫
Dq(τ) exp(−SE[q(τ)]) δ(f(τ0; q)) |∂f(τ0; q)/∂τ0| . (2.31)

The linear functionals in this expression are

f(τ0; q) ≡ −2
∫ β

0
Q̇(τ − τ0) q(τ) = −2A1c1, (2.32)

∂f(τ0; q)/∂τ0 ≡ 2
∫ β

0
Q̈(τ − τ0) q(τ) = −2A2

1 + 2A1

∑
n

cnbn, (2.33)

where we used the expansion q(τ) = Q(τ − τ0) +
∑
cn qn(τ), and the coefficients

bn ≡
∫ β

0
q̇1 qn dτ, b1 = 0.

Now we expand the Euclidean action in the exponent with the help of Eq. (2.20) and, keeping
in mind the arguments about the analytic continuation of the formally-divergent integral over
c0, we obtain

ImZ = β N
∫ ∏

n

dcn
(2π)1/2

δ(c1)

∣∣∣∣∣A1 −
∑
n

cn bn

∣∣∣∣∣ e
−S̄E exp

(
−1

2

∑
n

λn c
2
n

)
, (2.34)

which can be further transformed after rescaling cn → cn
√
λn and a rotation,

ImZ = β N ζ1
A1√
2π

e−S̄E
∏ |λn|−1/2 , (2.35)

where the additional correction term

ζ1 ≡
∫ dξ

(2π)1/2
e−ξ

2/2 |1− αξ| = erf
(
1/
√

2α
)

+ α

√
2

π
exp

(
−1/2α2

)
, and A2

1α
2 =

∑

n6=1

b2
n

λn
.

The original assumption that q(τ) is close to Q(τ − τ0) with suitably chosen τ0 is equivalent
to the statement that α is very small (practically, α <∼ 0.5 is enough); in this case the
correction term ζ1 = 1 with exponential accuracy, the whole expression is analytic to a good
approximation, and, therefore, we restore the prescription

∫ ∞
−∞

dc1

(2π)1/2
−→ β

A1

(2π)1/2
. (2.26′)

Otherwise, if α is not small, even though we have a formally exact expression for the cor-
rection factor ζ1, we must admit that the integrand in Eq. (2.34) is not really an analytic
function of c0, and the procedure of analytic continuation described in Sec. 2.4 becomes at
best questionable.



32 LECTURE 2. QUANTUM ESCAPE PROBLEM.

Problems

xProblem 2.1 (page 93)
(Re)derive the equation of motion for a current-biased Josephson junction. Assume that
two identical superconductors are separated by a thin layer through which electron pairs can
tunnel. In a simplie model the spatial dependence of the pair operators ψl,r in the left and
right superconductors is ignored, and the Hamiltonian of the pairs is

H = t
(
ψ†lψr + ψ†rψl

)
− 2eV

(
ψ†lψl − ψ†rψr

)
,
[
ψi, ψ

†
j

]
= δij, i, j = l, r,

where V is the potential difference accross the contact. Seek the solution of the equations of
motion in the form

ψl,r = n
1/2
l,r exp(iφl,r)

with the pair densities nl ≈ nr, and arrive at the Josephson equation for the time derivative
of the phase difference θ ≡ φl − φr as a function of V . Then, assuming that a capacitor C
and a resistor R are switched in parallel to the contact, and the total current through the
circuit is I, find the equation of motion for θ.

E| |

pτ

q

E

U(q)

Fig. 2.10.

xProblem 2.2 (page 94)
Find the temperature dependence of the ex-

ponent R in the quasiclassical escape rate for-
mula for the temperatures close to the tran-
sition temperature T0, if the period of oscil-
lations in inverted potential τp(E) is a linear
function of the energy E, measured off the top
of the potential barrier. What will happen if
this dependence is nonmonotonic, like shown
in Fig. 2.10? The latter dependence arises,
e.g., for the potential −U(q) = 1

2
q2 + 1

4
q4 +Aq

for |A| > 8/73/2.

xProblem 2.3 (page 95)
Check the explicit form of the bounce solution and find the associated action for a particle
moving in a metastable quartic potential,

U(q) =
1

2
q2 − 1

4
q4. (2.36)

xProblem 2.4 (page 95)
The prefactor in the former case can be found explicitly in the limit β → ∞: positive
eigenvalues belong to a continuous spectrum and can be found along the lines described in
L&L “Quantum Mechanics”, pp.79 - 81. Notice that there is only scattering forward for the
potential of the form of −3/cosh2x (h̄ = m = 1). Therefore the eigenvalues are expressed in
terms of the phase for this scattering. Also, when evaluating the ratio of the determinants
(of the products

∏
n λn) you have to use the fact that the main contribution to each of them
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comes from large n, and for large n the eigenvalues for the problem linearized with respect
to the bounce solution are close to those for the problem linearized about the stable state.
The ratio of the difference of the eigenvalues to the eigenvalues themselves is small, and
the product can be replaced by the exponent of the sum (over n) of the latter ratios. The
problem is fairly complicated but you may try to think about it.

xProblem 2.5 (page 97)
Consider a particle coupled to a phonon bath, with the Hamiltonian

H =
1

2
p2 + U(q) +

1

2

∑

k

(
p2
k + ω2

kq
2
k

)
+
∑

k

(
fkqqk +

1

2
(fk/ωk)

2q2
)
,

Find the lowest-order coupling- (dissipation)-induced correction to the exponent for the es-
cape probability for low temperatures. Does the escape probability increase or decrease
because of the dissipation?
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Lecture 3

Activational escape

3.1 Overbarrier transitions

We saw that the small-temperature tunneling rate of a metastable system is governed by the
so called bounce solution of the variational problem (2.15a). These equations can be inter-
preted as the equations of motion of a particle moving in the reverted potential, illustrated
in Fig. 2.6, while the bounce solution at small temperatures is shown in Fig. 2.7. As the
temperature is increased, the shape of the bounce solution gradually changes.

Because the period β of the imaginary time orbit becomes comparable with the period
of oscillations in the inverted potential, the extremal path does not have to spend such an
enormous time near the bottom qst of the original potential well. Therefore, the amplitude
of the oscillations in inverted potential gradually decreases, and finally at the crossover
temperature T0 = Ω0/2π only the harmonic motion with vanishingly small amplitude is
possible (see, however, Prob. 3.2 at p. 32 for an alternative scenario). Near the crossover
temperature the non-trivial bounce solution becomes very close to the stationary solution
q(τ) = qtop localized at the top of the barrier; this implies that the non-linear (usually
quartic) terms in the expansion of the potential near the top of the barrier must be taken
into account, and the steepest descent method does not work.

However, at higher temperatures, T À T0, where, as we saw from a simplified quasiclas-
sical calculation, the escape is governed by the classical overbarrier transport, the imaginary
part of the partition function is once again dominated by the vicinity of a single extremal
trajectory,

q̄(τ) = qtop. (3.1)

For the special case of an isolated particle, the Eucledian action

SE =
∫ β

0
dτ


1

2

(
dq

dτ

)2

+ U(q)


 (3.2)

calcuated along this trajectory is

SE[q̄] = U(qtop)/T.
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Correspondingly, the escape rate, which is generally proportional to exp(−SE[q̄] + SE[qst]),
has the exponent SE[qtop]−SE[qst] = ∆U/T—a familiar result from the theory of activational
transitions.

Two questions to answer are: does the solution (3.1) provide an imaginary part of the
partition function, and, if so, which of the solutions, this one or the bounce, defines the
escape rate? The answer to the second question is determined by the temperature: for T
well below the crossover temperature T0 the action for the bounce solution is less than that
for the activation one, and it is the quantum tunnelling that determines the escape. On the
other hand, for T well above T0 the escape occurs via activation. To see how T0 emerges in
the present formulation we have to analyze the prefactor; from this analysis we shall also see
that the prefactor generates the imaginary part ImZ for the partition function.

Before calculating the prefactor, we need to remember that in weakly-dissipative sys-
tems the quantum mechanical states near the barrier top do not really have an equilibrium
population—these states are dynamically depopulated by the escape. To account for this
effect consistently within the quantum mechanical description, one has to allow for quite
a few factors that we mentioned when the crossover temperature was considered: overbar-
rier reflection, inapplicability of the steepest descent in the case of T ≈ T0, etc. It turns
out, however, that these effects can be accounted for by a simple modification of the escape
probability formula (2.10).

In the classical limit the modified expression can be derived by comparing the imaginary
part of the free energy calculated by analytically continuation of the the classical partition
function

Z =
∫
dp dq exp

(
− p2

2T
− V (q)

T

)
,

with the classical (e.g. Kramers’) escape rate. The corrected relationship has the form

W = 2T0 Im lnZ = −2
T0

T
ImF. (3.3)

It is obvious that this expression calculated at the crossover temperature, T = T0, gives the
same result as the quantum-mechanical expression (2.10) applicable at T < T0, which implies
that the crossover does not have to be particularly broad. This turns out to be indeed the
case: I. Affleck has shown that the crossover region between these two expressions is actually
very narrow, (δT/T0)2 ∼ 1/R, where R is the exponent in the escape rate expression.

The equations for the eigenfunctions of the variational problem linearized in the vicinity
of the extremal solution (3.1) for a particle moving in a static potential are

−d
2qn
dτ 2

+ U ′′(qtop) qn = Λnqn, qn(τ + β) = qn(τ).

The corresponding eigenvalues are Λn = (2πnT )2−Ω2, where, as usual, −Ω2 ≡ U ′′(qtop). As
before, the crossower temperature T0 = Ω/2π; we work in the domain T > T0. Therefore,
there is a negative eigenvalue among Λn, but only one, the eigenvalue with n = 0. The
integration along the corresponding direction has to be done by analytic continuation; as in
the case of the bounce solution we pick up only the “outgoing wave”, and the imaginary
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part of the partition function acquires an additional factor 1/2. The final expression for the
imaginary part of the logarithm of the partition function is of the form

Im lnZ =
1

2

ω0

Ω

∏

n=1

(2πnT )2 + ω2
0

(2πnT )2 − Ω2
exp

(
−∆U

T

)
, (3.4)

where ω0 = [U ′′(qst)]
1/2 is the frequency of oscillations about the minimum of the potential.

Combining Eqs. (3.3) and (3.4), we obtain the overbarrier escape rate

W =
ω0

2π

∏

n=1

(2πnT )2 + ω2
0

(2πnT )2 − Ω2
exp

(
−∆U

T

)
. (3.4a)

In the classical limit T À h̄ω0, h̄Ω, the infinite products in the numerator and the denom-
inator of the prefactor cancel, and Eq. (3.4a) goes over into the Kramers’ result (1.21) in
the absence of dissipation (Γ = 0). For smaller temperatures Eq. (3.4a) gives quantum cor-
rections to the Kramers’ theory. The other interesting thing obvious from Eq. (3.4) is that
the theory appears to “know” that it applies only for temperatures high enough: when T
approaches the crossover temperature T0 = Ω/2π, the prefactor diverges. The formal reason
for this behavior is the emergency of the bounce solution and the associated “soft” mode.
We shall not go into details of the analysis of the range T ≈ T0.

3.2 Partition function for a particle linearly coupled to

a phonon bath.

The above analysis was substantially based on the assumption that the system has enough
time to come to thermal equilibrium before escape occurs. This requires a not too small
relaxation time. And yet we did not specify what is the relaxation that brings the system
to the equilibrium. Of course, one could imagine considering a multivariable system with a
continuous energy spectrum (including the intrawell states in the neglect of the decay), but
still there would remain some uncertainty about how dense should the continuous spectrum
be, etc. Now we shall be more consistent, and consider the escape of a system coupled to a
thermal bath.

Let us start with the simplest case of linear coupling to a phonon bath. As we know, the
Hamiltonian that describes the coupled system and the bath is

H = H0 +Hb +Hi,

H0 =
1

2
p2 + U(q), Hb =

1

2

∑
µ

(
p2
µ + ω2

µq
2
µ

)
, Hi =

∑
µ

(
fµ q qµ +

1

2
(fµ/ωµ)2q2

)
,

where q, p are the coordinate and momentum of the system, whereas qµ, pµ are the coor-
dinates and momenta of the eigenmodes of the bath. We are interested in the dynamics
of the system itself, and it would be nice to get rid of the dynamical variables of the bath
(to “eliminate phonon variables”). Feynman found the way to do it, and indeed it is quite
straightforward within the path-integral formalism (this is why we are using it; unfortu-
nately, long is the way from the expression in the form of a path integral to something
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“finite-dimensional”, but sometimes we can get through it). As we know, we need just to
evaluate the partition function which may be written as a path integral over all periodic
multidimensional paths q(0) = q(β), qµ(0) = qµ(β) of the exponent of the Eucledian action

of the system + bath S
(s + b)
E :

Z(s + b) =
∫ (∏

µ

Dqµ(τ)

)∫
Dq(τ) exp

(
−S(s + b)

E [q(τ), {qµ(τ)}]
)
, (3.5)

S
(s + b)
E =

β∫

0

dτ





1

2

(
dq

dτ

)2

+ U(q) +
∑
µ


1

2

(
dqµ
dτ

)2

+
1

2
ω2
µq

2
µ + fµ q qµ +

1

2

(
fµ
ωµ

)2

q2





.

The action S
(s + b)
E is quadratic in the variables qµ, but there are not only quadratic, but also

linear terms which describe the coupling to the system. This suggests that the integration
over the bath variables qµ can be done in the same way as one evaluates the integral of
exp(−ax2 − bx): one just changes variables (x → x − b/2a) to get rid of the linear term.
To find the substitution one must find the extremum of the quadratic part by solving the
equation d(ax2 + bx)/dx = 0. We shall do the same, and write the extremum equation in
terms of the functional derivative

δS
(s + b)
E

δqµ(τ)
= 0 −→ −d

2qµ
dτ 2

+ ω2
µqµ(τ) + fµq(τ) = 0

The easiest way to solve these equations is to notice that both qµ(τ) and q(τ) are periodic,
and therefore we may write the solution as

qµ(τ) = q(0)
µ (τ)− fµ

∑
n

(
ω2
n + ω2

µ

)−1
e−iτωnqM(n), qM(n) ≡ β−1

∫ β

0
dτ q(τ)eiτωn , (3.6)

where ωn ≡ 2πn/β are Matsubara frequencies. The term q(0)
µ (τ) is the solution of the

equation of motion for the µ-th oscillator in the absence of the coupling to the system.
Clearly, the path integral (3.5) can be understood just as a path integral over q(0)

µ (τ)—we
just perform a linear shift of the functions qµ(τ).

We can now plug (3.6) into the expression for the action (3.5) and substantially simplify
this expression by noticing that the action can be expanded in qµ(τ)− q(0)

µ (τ) to the second
order, and this expansion is exact (allow for the periodicity of the solution to notice that
there are no boundary terms coming from the integration by parts). We can then transform
the integral of the square of the first derivative into the integral of the product of the function
by its second derivative, and we get, eventually:

S
(s + b)
E = S

(eff)
E + S

(b)
E , S

(b)
E =

1

2

∫ β

0
dτ
∑
µ



(
dq(0)

µ

dτ

)2

+ ω2
µ

(
q(0)
µ

)2




S
(eff)
E ≡ SE[q] =

∫ β

0
dτ


1

2

(
dq

dτ

)2

+ U(q)


+

1

2
β
∑
n

Φn qM(n)qM(−n). (3.7)

The term S
(b)
E corresponds, obviously, to the Euclidean action of the bath isolated from the

system. The partition function of the system coupled to the bath is, therefore, factorized
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into the product of the partition function of the dissipating system and the partition function
of the bath uncoupled from it,

Z(s + b) = Z Z(b),

Z =
∫

q(0)=q(β)
Dq(τ) exp(−SE[q]), Z(b) =

∏
µ

[1− exp (−βωµ)]−1 . (3.8)

The coefficients Φn in Eq. (3.7) are determined by the coupling of the system to the bath,
and can be expressed in terms of the function F (ω) that gives the density of states of the
bath weighted with the interaction:

Φn =
2

π
ω2
n

∫
dω

ω−1F (ω)

ω2 + ω2
n

, F (ω) =
π

2

∑
µ

(f 2
µ/ωµ) δ(ω − ωµ) (3.9)

You may notice that these coefficients are simply proportional to the temperature Green’s
function

D(ωn) =
∫ β

0
dτeiτωn

∑

µ, µ′

fµfµ′

ωµωµ′
〈qµ(τ)qµ′(0)〉 =

2

π

∫
dω
ω−1F (ω)

ω2 + ω2
n

evaluated in the absence of the coupling.
We have thus performed what we wanted: all that remained from the coupling to a bath

and from the infinite number of the dynamical variables of the bath in the partition function
Z is just one extra term that depends on the cordinate of the system and is quadratic in
this coordinate. At this point we can start investigating the various effects coming from the
coupling, and these effects will depend, of course, on the form of the function F (ω). It is
clear that to the zeroth order in the coupling we reproduce the partition function of the
isolated system. The effects of weak coupling can be considered by perturbation theory.

3.3 Activational escape in the presence of dissipation

The distinctive feature of the action SE given by Eq. (3.7), as compared with the action of
an isolated particle, is that the effective Lagrangian is nonlocal in the imaginary time. This
is particularly clear if we rewrite Eq. (3.7) in the form

SE =
∫ β

0
dτ


1

2

(
dq

dτ

)2

+ U(q)


+

1

2

∫ β

0

∫ β

0
dτ dτ ′ κ(τ − τ ′)q(τ)q(τ ′), (3.10)

where the non-local interaction strength

κ(τ) ≡ β−1
∑
n

Φn e
−iτωn .

This, certainly, agrees with the nonlocality we observed in our analysis of the classical particle
coupled to a phonon bath: the real-time equation of motion was retarded.

Let us now analyze the trajectories that provide an extremum to the functional SE. The
Euler-Lagrange equation of motion is of the form

δSE
δq(τ)

= 0, or − d2q

dτ 2
+ U ′(q) +

∫ β

0
κ(τ − τ ′)q(τ ′) = 0. (3.11)
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From the explicit form of the expression for κ(τ) and for the coefficients Φn it follows that
on average the retarded interaction vanishes,

∫ β

0
dτ κ(τ) = 0,

which agrees with our interpretation of this term as some sort of a non-local friction. There-
fore Eq. (3.11) has a solution that corresponds to the particle resting at the minimum qst of
the potential U(q):

q̄ = qst; SE[q̄] = βU(qst) (3.12)

The eigenvalue problem (2.19)

−d
2qn
dτ 2

+ U ′′(q̄)qn(τ) +
∫ β

0
dτ ′κ(τ − τ ′)qn(τ ′) = λnqn(τ) (3.13)

for the perturbations about the extremal solution can be easily solved for q̄ = qst, with the
result

λn = ω2
n + U ′′(qst) + Φn. (3.14)

Clearly, all the eigenvalues (3.14) are positive. Notice, however, that the coupling to the bath
changes the values of the eigenvalues even for the problem linearized about the stationary
state.

For a metastable potential there is also a solution of the variational equation (3.11) that
corresponds to the system staying at the top of the potential barrier, q̄ = qtop, with the
action SE = βU(qtop). The corresponding eigenvalues of the problem (3.13) are

Λn = ω2
n − Ω2 + Φn,

where, as usual, −Ω2 = U ′′(qtop) is the curvature of the potential at the top of the barrier.
At high enough temperatures there is only one negative eigenvalue, Λ0 = U ′′(qtop). The
crossover temperature T0 is defined as the temperature at which the smallest nonnegative
eigenvalue of the problem (3.13) vanishes,

ω2
1 + Φ1 = |U ′′(qtop)| for T = T0,

one can check that below this temperature there appears the non-trivial bounce solution for
the non-local extremum equation (3.11).

It is straightforward now to reproduce the results for classical activation escape in the
presence of dissipation. For T > T0, we can just rewrite Eq. (3.4a) with the account taken
of the dissipation-induced renormalization of the eigenvalues

W =

(
U ′′(qst)

|U ′′(qtop)|

)1/2

T0

∏

n=1

ω2
n + U ′′(qst) + Φn

ω2
n − |U ′′(qtop)|+ Φn

exp
(
−∆U

T

)
. (3.15)

In the case of Ohmic dissipation and in the limit h̄→ 0 this expression safely goes over into
the result obtained by Kramers.
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Problems

xProblem 3.1 (page 98)
By an explicit analytic continuation from positive values of λ, find the imaginary part of the
classical partition function for a particle in a metastable potential

U(q) =
q2

2
+ λ

q4

4
, λ < 0

Compare your result with the Kramer’s escape rate in the absence of dissipation (Γ = 0),
and check Eq. (3.3) in this regime.

xProblem 3.2 (page 99)
Show that for a particle linearly coupled to a phonon bath, with the Hamiltonian

H =
1

2
p2 + U(q) +

1

2

∑
µ

(
p2
µ + ω2

µq
2
µ

)
+
∑
µ

(
fµqqµ +

1

2
(fµ/ωµ)2q2

)
,

the term in the effective action that describes the nonlocal in time self-action of the particle
can be written as

δS =
1

2

∫ ∞
−∞

dτ ′
∫ β

0
dτ α(τ − τ ′) [q(τ)− q(τ ′)]2 ,

where

α(τ − τ ′) =
1

2π

∫
dωF (ω) exp(−ω|τ |),

and we assume that q(τ) = q(τ + β). The function F (ω) is the density of states of the bath
weighted with coupling; its explicit form in terms of fµ, ωµ is given in Eq. (3.9). Notice
the simple form of the function α(τ) in the case of Ohmic coupling, F (ω) = 2Γω exp(−εω),
ε→ +0.

xProblem 3.3 (page 100)
Find the bounce solution and evaluate action for an overdamped particle (Ohmic dissipation)
in a cubic potential,

U(q) = 3U0

(
q

q0

)2 (
1− 2

3

q

q0

)
.

“Overdamped” means that you can neglect the term with inertia, i.e., the term d2q/dτ 2 in
the equation of motion.
Hint: Seek the solution in the form q(τ) =

∑
n cn exp(iωnτ); the set of equations for cn can

be solved in the present case.

xProblem 3.4 (page 102)
Evaluate the effective action for the coupling to a phonon bath of the form

Hi =
∑
µ

fµ(q)qµ.
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Resonant tunneling
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Lecture 4

Instanton formulation

4.1 Ohmic dissipation

In the previous lecture we studied the quantum decay of a system in the presence of a
dissipation caused by the coupling to a bath of harmonic oscillators (phonons). We traded
the infinite number of phonon degrees of freedom for the retarded interaction, and arrived
at the following effective Euclidean action

SE =
∫ β

0
dτ


1

2

(
dq

dτ

)2

+ U(q)


− 1

4

∫ β

0

∫ β

0
dτ dτ ′ κ(τ − τ ′)[q(τ)− q(τ ′)]2, (4.1)

where the retarded interaction

κ(τ) = β−1
∑
n

Φn e
−iτωn , Φn = ω2

n

2

π

∫
dω ω−1[ω2 + ω2

n]−1F (ω) (4.2)

can be expressed as the sum over the Matsubara frequences ωn ≡ 2πnT . The oscillator bath
is described by the function F (ω), defined by Eq. (3.9) as the density of states of the bath
weighted with the coupling. The effective action SE written in the form (4.1) shows clearly
that the nonlocal in time part of the action depends on how fast the function q(τ) varies in
time. We emphasize that Eq. (4.1) formally holds even for q(τ) which are not necessarily
periodic in τ : the derivation was based only on the periodicity of the bath variables with a
period β = T−1.

In view of our former analysis and of the numerous experimental data on the tunnelling
decay in Josephson junctions, it is interesting to analyze the effect of dissipation in the
particular case when it is Ohmic, i.e. when

F (ω) = 2Γω exp(−ε ω), Φn = 2Γ |ωn|. (4.3)

Here, Γ is the friction coefficient (the dynamics of a system with the coupling (4.3) corre-
sponds to the real time Brownian motion with the friction force −2Γq̇), and ε is the cutoff
parameter which determines the fast time for a given system. For the Ohmic dissipation
model (4.3), it is straightforward to evaluate the retarded interaction function,

κ(τ) = − 2πΓβ−2

sin2(πτ/β)
. (4.4)
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On the whole, the nonlocal in time term in the Euclidean action (4.1) is positive, and we see
that is does not have any divergences at τ = τ ′ for smooth trajectories q(τ). The equation
of motion for the path q̄(τ) that provides an extremum to the action (4.1) is of the form

−d
2q̄

dτ 2
+ U ′(q̄) +

2πΓ

β2
P
∫ β

0
dτ ′

q̄(τ)− q̄(τ ′)
sin2(π(τ − τ ′)/β)

= 0, (4.5)

where the symbol P denotes that the principal value of the integral should be taken.
The major contribution to the action for the bounce-type solution q̄(τ) = Q(τ−τ0), where

τ0 is the position of the center of the bounce, comes from the range of comparatively small
time increments |τ−τ ′|/β. This contribution changes the asymptotics of the bounce solution
from exponential to a power law. Indeed, in the time domain β À |τ − τ0| À [ω0]−1/2, where
ω0 ≡ [U ′′(qst)]

1/2 is the frequency of the vibrations about the minimum qst of the potential
well, the system is close to this minimum, |q − qst| ¿ |qst − qtop|, where qtop is the position
of the top of the barrier, and the solution of Eq. (4.5) is asymptotically of the form

|q̄(τ)− qst| ∼ Γ

ω
3/2
0

|qtop − qst|
(τ − τ0)2

The interesting effects associated with the Ohmic dissipation are related to this long tail of
the bounce solution. They may be dramatically strong for not very weak coupling in the
situation of resonant tunnelling.

4.2 Instantons.

right
q

left
q

U(q)

-U(q) q

Fig. 4.1.

So far we have been considering only a single bounce
solution, and this was good enough for the prob-
lem of decay of a metastable state. The situation
is different if we are considering the resonant tun-
nelling: in this case the quantum tunneling lifts
the degeneracy, and the partition function depends
on the relative scale of the temperature and the tun-
nelling splitting (we assume both of them to be much
smaller than the energies of intrawell vibrations):

Z = e−E0/T
[
e∆/2T + e−∆/2T

]
, (4.6)

where E0 is the energy of the intrawell state in the
absence of the tunnelling, and ∆ is the tunnelling
splitting.

The partition function written in the form (4.6)
suggests that the path integral can be used to eval-
uate the tunneling splitting—this is similar to the
way we used the partition function to evaluate the
escape rate from a metastable state. However, in
the problem of the interwell tunnelling we do not
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expect the partition function Z to have an imaginary part, and we will not need to perform
the analytic continuation of the path integral. This simplification, however, does not come
free: the price is that we may no longer limit ourselves to the vicinity of a single extremal
trajectory.

Let us start with a simple problem of the tunnelling of a particle in a symmetrical double-
well potential U(q) = U(−q), isolated from a bath: the conventional solution to this problem
is given in L&L’s Quantum Mechanics. The partition function Z is given by the path integral

Z =
∫
dq0

∫ q(β)=q0

q(0)=q0
Dq(τ) exp(−SE[q]),

where we separated the integration over the end-point q0 = q(0) = q(β) of the periodic
trajectory. As we shall see, this notation will be convenient for the analysis of multy-
instanton solutions.

The action SE corresponds to the motion of a particle in the inverted potential −U(q),
and we count U(q) off from its value in the stable positions, U(±qst) = 0. As in the escape
problem, the main contribution to the partition function comes from the motion in the
vicinity of the potential minima, i.e., the maxima of the inverted potential −U . Clearly,
there must be a separate contribution from the vicinity of the left maximum, q = qleft and
that from the vicinity of the right one, q = qright ≡ −qleft. These contributions are equal by
symmetry, and we can consider only one of them and then double the answer. The solution
of the extremum equation

δSE
δq(τ)

= 0, (4.7)

localized in the vicinity of the point qleft, starting and ending at the point q0 which is also
close to qleft, can be written in the linear approximation

q(τ) ≈ qleft + (q0 − qleft)
[
e−ω0τ + e−ω0(β−τ)

]
, SE ≈ ω0(q0 − qleft)

2, (4.8)

where ω0 ≡ [U ′′(qst)]
1/2, and we assume that the temperature is small enough, ω0β À 1.

As before, in order to find the preexponent, we need to diagonalize the second variation
of the action SE. Because the position of the particle at the ends of the integration interval is
fixed, the corresponding eigenvalue problem is that with zero rather than periodic boundary
conditions, ∫

dτ ′
δ2SE

δq(τ)δq(τ ′)
q̃n(τ ′) = λ̃nq̃n(τ), q̃n(0) = q̃n(β) = 0. (4.9)

The corresponding eigenvalues

λ̃n = ω2
0 + n2π2T 2, n = 1, 2, 3, . . .

are independent of q0, and the integral over q0 can be immediately evaluated. The resulting
expression for the partition function in the single-level approximation is known,

Z0 =
∫
dq0 exp(−ω0 q

2
0) M̃

∞∏

n=1

(ω2
0 + (nπ/β)2)−1/2 ≈ exp

(
−1

2
βω0

)
, (4.10)
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where we intentionally ignored all excited levels in the well, in agreement with the approx-
imation (which is convenient but not entirely necessary) we made in Eq. (4.8), and the
assumed small temperature limit, ωβ À 1; the direct evaluation of the determinant is given
in the Feynman’s Quantum Mechanics. . . The factor M̃ defines the normalization of the
path integral, and, since we know the partition function Z0, its form can be derived from
Eq. (4.10). Note also, that Eq. (4.10) accounts only for the states of the particle in the
left well; it gives only a half of the partition function of the system in the absence of the
tunnelling.

left
q

right
q

τβ

q

τ2τ1

Fig. 4.2. A typical two-instanton solution. The
“width” of each instanton is much smaller then
the total time interval β.

A less trivial contribution to the par-
tition function at small temperatures T
comes from the solution that starts near
the left maximum of the inverted poten-
tial, goes to the other maximum, returns
after spending some time there, and then
possibly performs a few more excursions
of this sort, i.e., this solution consists of
the pairs of trajectories which are usu-
ally called a kink and an antikink. No-
tice that the action for a pair of kinks is
not proportional to the total time inter-
val β = T−1 as it would be for a solution
oscillating somewhere inside the well of
the inverted potential −U(q), with a pe-

riod ∼ |U ′′top|−1/2. Such kinks are called instantons.
As an exercise, consider the fluctuations around a single instanton solution, as shown in

Fig. 4.3. Clearly, this solution is not periodic in imaginary time and, therefore, the path
integral

Iinst =
∫ q(β)=qright

q(0)=qleft

Dq(τ) exp(−SE[q]), (4.11)

left
q

right
q

q

τ0 τβ

Fig. 4.3. A typical extremal trajectory for the
path integral (4.11).

taken over the paths that start at qleft for
τ = 0 and end at qright after time β does
not have a physical meaning of a parti-
tion function for some system. Never-
theless, this path integral will be impor-
tant for the analysis of multi-instanton
configuration. Within the steepest de-
scent method we seek the solution q̃(τ)
of the variational equation (4.7) with ze-
ro boundary conditions. Assuming that
the total time interval greatly exceeds
the characteristic reciprocal frequencies,

β À ω−1
0 , |U ′′top|−1/2,

the motion along the extremal trajec-
tory consists of a very slow exponential motion in a close vicinities of the maxima of the
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inverted potential −U(q) (it takes nearly all the time β), and a “true” motion between these
maxima that takes a time of the order of the reciprocal frequency of the intrawell vibrations.
The extremal trajectory can be approximated as

q̄(τ) ≈ Qinst(τ − τ0); Qinst(−∞) = qleft, Qinst(∞) = qright ≡ −qleft, (4.12)

where the function Qinst(τ − τ0) is an instanton (the term is used for the function q̄(τ) as
well). This solution has the shape of a kink centered at τ0, with a width ∼ |U ′′top|−1/2, and it
corresponds to the motion in the inverted potential with zero total energy,

dQinst

dτ
= [2U(Qinst)]

1/2 , Sinst = SE[Qinst] =
∫ qright

qleft

dq [2U(q)]1/2. (4.13)

In a simple-minded version of the steepest descent method the path integral (4.11) would
be given by the expression

Iinst = M̃
∏
n

Λ̃−1/2
n exp(−Sinst)

where Λ̃n are the eigenvalues of the linear problem

∫ β

0
dτ ′

δ2SE
δq(τ)δq(τ ′)

q̃n(τ ′) = Λ̃nq̃n(τ), q̃n(0) = q̃n(β) = 0. (4.9a)

However, just like in the case of the fluctuations around the bounce solution, not all eigen-
values Λ̃n are positive. Specifically, it is easy to see that the function

q̃0(τ) = A−1
0

dQinst(τ − τ0)

dτ
, A0 =



∫
dτ

(
dQinst(τ)

dτ

)2



1/2

(4.14)

is a normalized solution of the eigenvalue problem (4.9a) with zero eigenvalue, Λ̃0 = 0. The
proof is precisely the same as in the case of a bounce solution—we plug the function (4.14)
into Eq. (4.9a) and check that the integrand becomes a full ordinary derivative with respect
to the position of the instanton τ0 of the first functional derivative of the action SE, evaluated
at Qinst(τ − τ0). This functional derivative vanishes because the instanton solution satisfies
the extremum equation (4.7). The prescription for dealing with the zero eigenvalue is, again,
the same as in the case of the bounces, and we get, eventually

Iinst = Cinst(β) exp(−Sinst); Cinst(β) = M̃
A0

(2π)1/2
β
∞∏

n=1

Λ̃−1/2
n (4.15)

Unlike the eigenvalue problem (2.24) for the fluctuations in the vicinity of the bounce solu-
tion, the equation (4.9a) does not have negative eigenvalues. This follows from the fact that
the zero-eigenvalue solution (4.14) does not have nodes, which means that it is the ground
state of the instanton eigenvalue problem. Therefore, unlike the bounce which can be viewed
as a saddle-type extremum, an instanton provides a local minimum to the action. This is, of
course, in a perfect agreement with our expectation that the partition function for a two-well
potential has no imaginary part.
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4.3 Instanton gas.

When analyzing the escape problem, we argued that the vicinity of multi-bounce extremal
trajectories give an exponentially small contribution to the imaginary part of the partition
function, and that such trajectories can be safely ignored. For the problem of resonant
tunneling, however, Eq. (4.6) is non-linear in the tunneling amplitude ∆, and in order to
obtain the partition function in this form we need to evaluate the contributions to the
partition function from the solutions with an arbitrary number of instanton pairs. This is
easy to understand on physical grounds: the level degeneracy is, in some sence, a measure
of quantum mechanical delocalization between the wells; classically this implies that the
particle moves back and forth between the minima.

The extremal equation (4.7) with the boundary conditions q(0) = q(β) = q0 ≈ qleft has
solutions with an arbitrary number of the kink-antikink pairs at sufficiently small tempera-
tures. The simplest is the solution with one pair of instantons,

q̄(τ) = (q0 − qleft) [exp (−ω0τ) + exp (−ω0 (β − τ))] + q̄⇀↽(τ),

where
q̄⇀↽(τ) ≈ Qinst(τ − τ1)−Qinst(τ − τ2), SE[q̄⇀↽] = 2Sinst, (4.16)

and we assume that the distance between the instanton and the antiinstanton greatly exceeds
their widths, τ2 − τ1 À ω−1

0 , |U ′′top|−1/2.

left
q

τ int τ2τ1 τβ

q

q
0

q
rightq

int

Fig. 4.4. Two-instanton composite solution.
The integration over the fluctuations in the
vicinity of each instanton is performed inde-
pendently.

If we attempted to formulate the eigen-
value problem linearized about this solu-
tion directly, as we did previously for the
bounce solution or the single instanton so-
lution, we would discover two soft modes,
corresponding to the fact that the action
depends very weakly on the positions of
the instantons, as long as they are suffi-
ciently far from each other. The associ-
ated divergence can be eliminated by di-
viding the total time interval in two parts,
each of them containing a single instanton
or antiinstanton, as illustrated in Fig. 4.4.
Of course, to make this decomposition ex-
act, we need to integrate over all possible
values of the coordinate qint ≡ q(τint) at

the separation point τint, and we may write the path integral for the partition function as a
convolution

∫ q(β)=q0

q(0)=q0
Dq(τ) e−SE [0,β] =

∫
dqint

∫ q(τint)=qint

q(0)=q0
Dq(τ) e−SE [0,τint]

∫ q(β)=q0

q(τint)=qint

Dq(τ) e−SE [τint,β] ,

where the temporal arguments in SE indicate that the action is evaluated for the paths that
start and end at the corresponding instants of the imaginary time. If the moment τint is
chosen far enough from the centers of the instantons, |τ1,2− τint| À ω−1

0 , |U ′′top|−1/2, the main
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contribution to the partition function comes from the values of qint close to the bottom of
the right well, qright. The solution of Eq. (4.7) in the range 0 ≤ τ ≤ τint that satisfies the
boundary conditions q(0) = q0 ≈ qleft, q(τint) = qint ≈ qright is

q̄(τ) = (q0 − qleft) exp(−ω0τ) + (qint − qright) exp(−ω0(τint − τ)) +Qinst(τ − τ1), (4.17)

and the corresponding part of the Euclidean action is

SE[q̄; 0, τint] = Sinst +
1

2
ω0

[
(q0 − qleft)

2 + (qint − qright)
2
]
. (4.18)

To calculate the prefactor of the two-instanton contribution to the partition function, we
need to evaluate the determinant of the second functional derivative of the Euclidean action.
Now that we factorized the contributions to the partition function from different instantons,
the determinant is also factorized into two independent determinants. For the solution (4.17)
the associated eigenvalue problem is of the form (4.9a), with the integration limited to the
interval (0, τint) instead of the total interval (0, β). Therefore, the zero mode integration,
which can be rewritten as the integral over the instanton position τ1, will contribute a
multiple A0 τint/(2π)1/2. The non-singular integration over the remaining modes generates
the determinant of the second functional derivative of the Euclidean action, which can be
written as

det ′
δ2SE

δq(τ) δq(τ ′)

∣∣∣∣∣
q=q̄

≡
∞∏

n=1

Λ̃n(τint) ≡ C−2
r

∞∏

n=1

λ̃n(τint), (4.19)

where the prime means that zero eigenvalue is omitted, the coefficient

C−2
r =

∞∏

n=1

Λ̃n(τint)/
∞∏

n=1

λ̃n(τint),

and λ̃n(τint) and Λ̃n(τint) are the eigenvalues of the problems (4.9) and (4.9a) respectively,
with the boundaries set at τ = 0 and τ = τint. In the limit where τint is large compared with
the instanton width, the eigenvalue spectrum becomes quasicontinuous, and the coefficient
Cr has a finite limit independent of τint À ω−1

0 or the position of the instanton, as long as
the instanton does not too close to the boundaries of the interval. For the special case of
quartic potential the coefficient Cr is analyzed in more details in Appendix 4.A.

Using the partition function Eq. (4.10) in the absence of instantons to normalize the path
integral at the interval (0, τint), we can write the contribution of non-singular eigenvalues to
the prefactor as

M̃(τint)

[ ∞∏

n=1

Λ̃n(τint)

]−1/2

= Cr

(
ω0

π

)1/2

exp
(
−1

2
ω0τint

)
. (4.20)

Combining the obtained prefactor with the analogous expression evaluated for the interval
(τint, β), we notice that the separation point τint enters only through the intervals of positions
τ1, τ2 allowed for the two instantons. Adjusting the position of τint, we can place these
points anywhere within the interval (0, β), and, therefore, the total contribution Z1 of a
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kink-antikink pair to the partition function can be written as

Z1 =
∫ β

0
dτ2

∫ τ2

0
dτ1

(
Cr

A0

(2π)1/2
exp(−Sinst)

)2

exp
[
−1

2
ω0 (τint + (β − τint))

]

×ω0

π

∫
dq0

∫
dqint exp

(
−ω0(q0 − qleft)

2 − ω0(qint − qright)
2)
)

(4.21)

=

(
Cr

A0

(2π)1/2
exp(−Sinst)

)2
1

2
β2 exp

(
−1

2
ω0β

)
,

where we accounted for the cotribution to the exponent (4.18) and to the prefactor (4.20)
for each instanton. Clearly, the auxiliary instant τint drops out safely.

Similarly, it is easy to find the contribution from an arbitrary number of the instanton-
antiinstanton pairs,

Zn =

(
Cr

A0

(2π)1/2
exp(−Sinst)

)2n
1

(2n)!
β2n exp(−1

2
ω0β), (4.22)

and sum them up to obtain the total partition function

Z = 2 exp
(
−1

2
βω0

)
cosh

(
1

2
∆β

)
, ∆ = 2Cr

A0

(2π)1/2
exp(−Sinst), (4.23)

where the additional factor 2 comes from the trajectories that start in the vicinity of the right
minimum at τ = 0. Therefore, we have reproduced the conjectured form of the partition
function, and we see that the tunnelling splitting ∆ is indeed associated with the instantons
and it is given by the appropriate exponential.

4.4 Instanton gas in a system with Ohmic dissipation

We shall consider now the effect of dissipation on resonant tunnelling, and again we shall
limit ourselves to the model where dissipation is due to linear coupling of the system to a
phonon bath. Our starting point will be the equation for the Eucledian action (4.1). We
shall rewrite the interaction-induced term that describes the nonlocal in time self-action as:

Si =
1

2

∫ β

0

∫ β

0
dτ dτ ′ q(τ)q(τ ′)

d2Υ(τ − τ ′)
dτ dτ ′

≡ 1

2

∫ β

0

∫ β

0
dτ dτ ′

dq(τ)

dτ

dq(τ ′)
dτ ′

Υ(τ − τ ′), (4.24)

where the non-local dissipative coupling

Υ(τ) = β−1
∑

n 6=0

ω−2
n Φne

−iωnτ ,

is defined in terms of the amplitudes (4.1); we have used the fact that there is no zeroth
harmonic in this expansion, Φn=0 = 0, and that q(τ) is periodic: q(0) = q(β).

The analysis depends on the interrelation between the characteristic time scales on which
the functions q(τ), Υ(τ) vary. The most simple and the most interesting results arise in the
case where the bath is “slow”, i.e. the function Υ(τ) is smooth on the times ∼ ω−1

0 , |U ′′top|−1/2
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(it is clear that if the bath is “fast” it just follows the tunnelling system adiabatically and
nothing dramatic would be expected to happen). An important example of coupling to the
bath where the low-lying excitations play a substantial role is the coupling that provides
Ohmic dissipation. In this case

Υ(τ) = 2Γβ−1
∑

n6=0

|ωn|−1 e−iωnτ = 4Γβ−1
∑

n>0

Im
∫ τ

−i∞+τ
dτ ′ e−iωnτ

′
(4.25)

= −2Γ

π
ln
∣∣∣e−2πiτ/β − 1

∣∣∣ = −Γ

π
ln

(
4 sin2

(
πτ

β

))
≈ −2Γ

π
ln

( |τ |
τ̄

)
,

where we assumed |τ | ¿ β, and introduced an arbitrary constant under the logarithm using
the periodicity of the paths q(τ). The same result can be easily obtained directly from
Eq. (4.4). The approximation of the sine by its argument in Eq. (4.25) is based on the fact
that the derivatives dq/dτ in Eq. (4.24) are large in the range of the order of the duration of
an instanton, which is ∼ |U ′′top|−1/2 ¿ β. If we “coarsen” over the corresponding time scale,
the time-derivatives of the instanton solutions become just δ-functions,

dq̄/dτ = −2 |qleft|
∑

i

(−1)iδ(τ − τi),

where τi are the positions of the antiinstantons (for even is) and instantons (for odd is).
In writing the partition function in the instanton approximation we have to allow for

the fact that the “collisions” of the instantons have to be eliminated explicitly to avoid the
divergence in the retarded interaction (4.25) for τ = 0. The easiest way to do it “by hand”
is to write the partition function of the system (that of the system + the bath divided by
the partition function of the bath) as

Z = 2
∞∑

n=0

(
τ̄∆

2

)2n ∫ β

0

ds2n

τ̄

∫ s2n−τ̄

0

ds2n−1

τ̄
· · ·

∫ s2−τ̄

0

ds1

τ̄

× exp


2α

∑

i>j

(−1)i−j ln
(
si − sj
τ̄

)
 , α ≡ 4Γ|qleft|2/π. (4.26)

We have set the cutoff in the logarithms to be the same as that in the integrals, and we have
used the “bare” instanton solution to evaluate the correction due to the coupling. The latter
aproximation is correct provided the strength of the Ohmic coupling of the particle to the
bath is not too large so that the characteristic coupling constant α ¿ Sinst. The action of
the instanton determines the exponent in the tunneling splitting, Sinst À 1, and therefore
although the coupling is weak in some sense, the constant α may exceed unity. It is in this
case that the interesting features of the behavior of the system come into play.

Formally, Eq. (4.26) is of the form of the classical grand partition function for a Coulomb
gas of alternatively positively and negatively charged rods on a circle of circumference β.
The strength of the interaction is given by the parameter α. The parameter ∆τ̄ /2 can be
interpreted in terms of effective fugacity, ∆τ̄ /2 = exp(µ/T ∗). For finite temperatures T =
β−1 the behavior of the system would be expected to be quite simple: various configurations
have different energies, and there should be no singularities in a system of a finite length
β < ∞. However, in the limit T → 0 there may occur a phase transition into a degenerate
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state—the spontaneous symmetry breaking. In terms of the system we are considering the
degenerate state corresponds to localization of the particle in either of the potential wells
(in contrast to the situation of tunnelling where the ground state is nondegenerate).

The renormalization-group analysis shows that the transition occurs at α = 1; the corre-
sponding auxiliary problem was first considered by Anderson and Yuval who investigated the
Kondo problem with an anisotropic coupling; this problem looks quite different from the one
we have been considering! The similarity between these problems stems from the fact that
both systems have a large number of low-lying excitations. In the tunneling problem, the
long-range coupling for the auxiliary Coulomb gas arises because of the substantial contribu-
tion of the low-frequency modes of the bath into the kernel Υ(τ); similarly, the Kondo effect
arises because of the coupling of an impurity spin to the low-energy electron-hole excitations
in Fermi liquid.

4.5 Spin coupled to a thermal bath

So far we have been considering the problem of a dissipating mechanical particle in a symmet-
ric double-well potential, and we limited ourselves to low temperatures where the intrawell
vibrations are “frozen” and the high-energy excitations of the bath are frozen, too (coupling
to these excitations gives rise to a standard polaronic effect of the renormalization of the pa-
rameters of the system, which we assume to be done). In fact, the only “degree of freedom”
that the particle had was related to the tunnelling, and in this sence we studied a two-level
system. We would expect, therefore, that we can get similar results for a “true” two-level
system. The simplest one is just a spin.

We shall prescribe the values σz = 1 and σz = −1 to the particle localized in the left and
the right potential well, respectively. The tunnelling corresponds to the mixing of the two
states, and thus it may be described by the term 1

2
∆σx (obviously, the level splitting in this

case is ∆). In writing down the coupling to a bath we will allow for the fact that the wave
function of the particle in a potential well is localized inside the wells, and it is exponentially
small outside. Therefore it may be a good approximation to assume that the matrix elements
of the coupling to the thermal bath are diagonal in the localized state representation, i.e.,
only the σz-component of the spin is coupled to the bath.

The described linear coupling of the spin and a thermal bath can be summarized by the
Hamiltonian

H = H0 +Hb +Hi; (4.27)

H0 =
1

2
∆ σx; Hi =

1

2
σz
∑
µ

fµqµ +
1

8

∑
µ

f 2
µ/ω

2
µ; Hb =

1

2

∑
µ

(
p2
µ + ω2

µq
2
µ

)
.

To evaluate the partition function we shall use the operators rather than the path integral
technique. The main difference of the operator formalism is that the operators generally
do not commute with each other, and, in order to develop the expansion in powers of a
suitably chosen perturbation V , we need first to separate it from the rest of the Hamiltonian.
Generally, this can be done by writing

e−β(H′+V ) = e−βH
′
A(β),
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where the operator A(β) satisfies the differential equation

dA(τ)

dτ
= −eτH′ V e−τ(H′+V ) ≡ −V (τ)A(τ), A(0) = 1, (4.28)

and the time-dependent operator V (τ) is the perturbation operator in the interaction rep-
resentation,

V (τ) ≡ eH
′τ V e−H

′τ .

If this operator commutes with itself, [V (τ), V (τ ′)] = 0 for an arbitrary pair of moments τ
and τ ′, the solution of the operator equation (4.28) can be trivially found as an exponent.
If this is not so, we can still find the solution of the discretized version of Eq. (4.28) as a
product

A(τ) = lim
N→∞

[1− V (τN) ∆τ ] [1− V (τN−1) ∆τ ] . . . [1− V (τ1) ∆τ ] ,

where the time increment ∆τ ≡ τk − τk−1 = τ/N . This product has the property that the
operators at later time always stand to the left of those at earlier time; it can be rewritten
identically as a T -ordered exponent,

A(τ) = Tτ

{
exp−

∫ τ

0
V (τ) dτ

}
,

where the time-ordering operator

Tτ [A(τ1)B(τ2)] =

{
A(τ1)B(τ2), τ1 > τ2

B(τ2)A(τ1), τ2 > τ1
,

rearranges the operators that depend on the imaginary time from left to right in the decreas-
ing time order .

Choosing the Hamiltonian of the bath as the non-perturbed part of the Hamiltonian,
H ′ ≡ Hb, we can write the non-trivial part of the partition function as

Z =
(
1/Z(b)

)
Tr exp(−βH) =

(
1/Z(b)

)
exp

(
−β

8

∑
µ

f 2
µ/ω

2
µ

)
TrTτ

{
(4.29)

× exp

(
−∆

2

∫ β

0
σx(τ) dτ

) ∏
µ

exp

(
−β

2

(
p2
µ + ω2

µq
2
µ

))
exp

(
−fµ

2

∫ β

0
σz(τ) qµ(τ) dτ

)}
,

where Z(b) is the partition function of the bath in the absence of the coupling to the system.
Typically, the coupling coefficients fµ are small, |fµ| ¿ 1, they are inversely proportional to
the number of the degrees of freedom of the bath, and the exponentials of the terms ∝ fµ
in Eq. (4.29) can be expanded. Keeping the terms up to the second-order in this expansion,
and using the expression

N∏

µ=1

(1 + εµ) = exp
(∑

µ

εµ

)
, εµ ∼ N−1 ¿ 1,

after some algebra we obtain

Z = TrTτ

{
exp

(
−∆

2

∫ β

0
dτ σx(τ)− 1

4

∫ β

0
dτ1

∫ τ1

0
dτ2 σz(τ1)σz(τ2)κ(τ1 − τ2)

)}
, (4.30)
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where
κ(τ1 − τ2) =

∑
µ

f 2
µ

(
ω−1
µ δ(τ1 − τ2)− 〈〈q(τ1) q(τ2)〉〉

)
,

and the irreducible average 〈〈q1 q2〉〉 ≡ 〈q1 q2〉 − 〈q1〉 〈q2〉. Expressing the coordinates of the
oscillators in terms of the creation and annihilation operators,

qµ = (2ωµ)−1/2(aµ + a+
µ ),

1

2

(
p2
µ + ω2

µq
2
µ

)
= ωµ

(
a+
µ aµ +

1

2

)
,

it is easy to show that thus defined function κ(τ) is identical to that in Eq. (4.1). Clearly,
the motivation for the choice of the constant in the Hamiltonian (4.27) was to arrive at the
same form of the expression for the partition function Z as we had before in the problem of
a continuous system.

The described procedure is usually called the linked cluster approximation. It is clear
that the obtained expression (4.30) for the partition function is correct even if the thermal
bath is weakly interacting, as long as the coupling of the system to the individual degrees of
freedom is weak enough. For the particular realization of the bath as a collection of harmonic
oscillators, our result is actually exact, independently of the strength of the coupling fµ with
individual oscillators or the number of degrees of freedom in the bath. This can be proven
using the cumulant expansion formula,

〈
eA
〉

= e〈A〉+〈〈A
2〉〉/2!+〈〈A3〉〉/3!+...,

since the irreducible averages 〈〈q(τ1) . . . q(τn)〉〉 of the products of more then two oscillator’s
coordinates vanish.

The trace in Eq. (4.30) can be evaluated on the eigenfunctions of σz, and since the system
is symmetrical with respect to the “up” and “down” states, we can find the matrix element
of the operator in Eq. (4.30) on the state “down”, and then double the result. Because

σx = σ+ + σ−, σ± =
1

2
(σx ± iσy),

it is clear that the matrix element of the expansion of the exponent exp(aσx) on the functions
“down” contains only the sequences σ−σ+ . . . σ−σ+. In the absence of the coupling the
contribution from the 2n-th order term in the exponent of Eq. (4.30), evaluated on the
functions “down” has the familiar form

Zn =
(

∆τ̄

2

)2n ∫ β

0

ds2n

τ̄

∫ s2n

0

ds2n−1

τ̄
· · ·

∫ s2

0

ds1

τ̄
, (4.22′).

The evaluation of the term related to the interaction is easier if one notices that σ2
z = I and

rewrites

σz(τ1)σz(τ2)→ −1

2
[σz(τ1)− σz(τ2)]2 .

The matrix elements of the operator in the brackets differ from zero only when an operator
σ±(τi) (the “kink”) is inserted between the operators σz, i.e. if τ1 < τi < τ2. The further
demonstration of the equivalence of the kink and spin-flip models is absolutely straightfor-
ward (see Prob. 4.3 at p. 58), and the final answer for the partition function in the case of
Ohmic dissipation is of the form (4.26), with |qleft| = 1.

Our next step will be the evaluation of the kinetics of tunnelling in the presence of
dissipation—the problems of quantum diffusion and of small polarons.
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4.A Appendix. Coefficient C−2
r in Eq. (4.19)

Here we analyze the coefficient

Cr =
∞∏

n=1

(
λ̃n(τint)/Λ̃n(τint)

)1/2

which appeared in Eq. (4.19) as a part of the prefactor resulting from the integration over
the paths in the vicinity of the two-instanton solution.

The eigenvalues Λ̃n(τint) can be formally obtained by solving the Schrödinger-like equa-
tion (4.9a),

−d
2q̃n
dτ 2

+ 2V (τ) q̃n = Λ̃n q̃n,

with the effective potential
V (τ) ≡ U ′′(Qinst(τ)) (4.31)

determined by the instanton solution. This potential is different from a constant ω2
0 only

in a narrow range of the coordinate τ , and there may be only a limited number of bound
states localized in this region. The corresponding eigenvalues Λ̃bound

n (τint) belong to a discrete
spectrum, they do not depend on the size of the region τint or the position of the instanton.
Therefore, the product

∏
Λ̃bound
n (τint) is a number of the order of one, independent of τint.

Now we have to prove that the ratio of the infinite product of the remaining continu-
ous spectrum eigenvalues Λ̃cont

n (τint) and the infinite product of the eigenvalues λ̃n(τint) =
ω2

0 + (nπ/τint)
2 does not depend on τint. Away from the instanton position the effective

potential (4.31) vanishes, and the wave functions of continuous spectrum can be written as

q̃n(τ) = a1j exp(ipnτ) + a2j exp(−ipnτ),

where the subscript j = 1 indicates the amplitudes far to the left from the instanton, τ1−τ À
ω−1

0 , and j = 2 far to the right from the instanton, τ − τ1 À ω−1
0 ; again, we assume

ω0 ∼ |U ′′top|1/2. The coefficients aij are related by the transmission matrix,

ai1 = tij aj2, (4.32)

which describes the scattered and the transmitted amplitudes of a plane wave by the localized
potential. The quantized values of the momentum pn can be obtained using the boundary
conditions q̃n(0) = q̃n(τint) = 0,

exp(2ipnτint) =
t11 + t21

t12 + t22

≡ exp(2iθ(p)), ⇒ pn =
nπ + θ(pn)

τint

, n = 0,±1,±2, . . . (4.33)

so that the corresponding eigenvalues of the continuous spectrum

Λ̃cont
n (τint) = ω2

0 + p2
n.

This representation relies on the fact that the absolute value of the ratio of the combinations
of the matrix elements tij in Eq. (4.33) is equal to 1, which follows from the fact that the
Schrödinger equation (4.9a) is real, and therefore a complex conjugate solution is also a
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solution, with the same energy (see Prob. 4.2). Using Eq. (4.33) we can find the ratio of the
infinite products of the eigenvalues of quasicontinuous spectrum,

∏
Λ̃cont
n (τint)∏
λ̃n(τint)

≈ exp

[∑
n

p2
n − (nπ/τint)

2

ω2
0 + (nπ/τint)2

]
≈ exp

(
2

π

∫
dp

p θ(p)

ω2
0 + p2

)
,

which is obviously independent of τint.

Problems

xProblem 4.1 (page 103)
Using the usual Schrödinger equation, find the tunneling energy gap between symmetric and
antisymmetric states of a particle in a quartic two-well potential

U(q) = −1

2
Ω2 q2

(
1− λ q

2

q2
0

)
.

Assume the energy of the particle and other parameters of the problem are such that the
quasiclassic approximation applies near the middle of the barrier.

xProblem 4.2 (page 103)
Show that the matrix elements of the transmission matrix (4.32) obey the relationsip

|(t11 + t21)/(t12 + t22)| = 1.

xProblem 4.3 (page 103)
Evaluate the partition function of a spin linearly coupled to a phonon bath, with the Hamilto-
nian (4.27), and show that at low temperatures this formulation is equivalent to the instanton
formulation for a continuous system. For the case of Ohmic dissipation, find the coupling
between the spin flips mediated by the bath.



Lecture 5

Quantum kinetic equation

5.1 Relaxation of a spin coupled to a phonon bath

We have to relate the results of the instanton analy-

Fig. 5.1.

sis of tunnelling with dissipation to observable prop-
erties of a tunnelling system. A simple physical re-
alization of such system is a reorienting defect in a
cubic crystal. An example is a two-atomic molecule
replacing a host ion at the lattice cite of an alkile-
halide crystal; such molecules are usually oriented
along one of the symmetry axes, and, therefore, they
have several equivalent orientations within a cell.
The resonant tunnelling occurs between the corresponding states (hindered rotation, for
higher energies). Another example is the case of so-called off-center impurities: if the ionic
radius of an impurity ion is small, the ion often moves away from the lattice cite along one
of the symmetry axes, and then, again, it has equivalent positions within a cell, and the
resonant tunnelling between these positions may occur (the best known system of this sort
is KCl:Li+).

Experimentally, the dynamics of a tun-

U

∆

Fig. 5.2.

nelling centre can be investigated by mea-
suring its absorption spectrum. Because
of the tunnelling, the line(s) in the absorp-
tion spectrum appear at the frequency(ies)
equal to the tunnelling splitting ∆. By
applying an electric field, experimentalists
can make the orientations of the impurity
nonequivalent, and so they have control
over the frequencies. The corresponding
effect is sometimes called paraelectric res-
onance, by analogy with paramagnetic res-
onance (ESR).

Coupling of the tunnelling system to a bath broadens the spectral lines. It is straight-

59
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forward to analyse this broadening for weak enough coupling in the model of a spin linearly
coupled to a phonon bath that we have discussed before (the results can be immediately gen-
eralized to a system with several degenerate states, like an off-center ion in a cubic crystal).
The Hamiltonian we have considered was of the form:

H = H0 +Hb +Hi, H0 =
1

2
∆ σx, Hb =

1

2

∑
µ

(
p2
µ + ω2

µq
2
µ

)
,

Hi =
1

2
σz
∑
µ

fµqµ +
1

8

∑
µ

f 2
µ/ω

2
µ; (5.1)

The symmetric and the antisymmetric states of a two-well system correspond to the eigen-
states |m), m = ∓1 of the Pauli matrix, σx |m) = m |m). The coupling gives rise to the
transitions between the states. The width of the corresponding spectral line is determined
by the sum of the rates of the transitions “up” and “down”, which, in turn, are given by the
“golden rule”

W ≡ W↑ +W↓ = 2π
∑

m=±1

〈∣∣∣
(
m, {nµ}|Hi | −m, {n′µ}

)∣∣∣
2
δ(m∆−∑

µ

ωµ(n′µ − nµ))

〉
, (5.2)

W =
1

2
F (∆) coth (∆/2T ) , F (ω) =

π

2

∑
µ

(
f 2
µ/ωµ

)
δ(ω − ωµ).

∆

m=+1

m=-1

Fig. 5.3.

The averaging in Eq. (5.2) is performed over the thermal dis-
tribution of the vibrations of the bath (the state with a given
set {nµ} of the occupation numbers of the modes has the energy∑
µ ωµ(nµ + 1

2
)). In this approximation only the modes with the

energy equal to the distance ∆ between the levels contribute to
the transitions. Notice also that the dimension of the coupling
coefficients in the spin Hamiltonian (5.1) differs from that in the
coordinate representation, and so does the dimension of the density
of states of the bath weighted with the coupling, F (ω).

In the particular case of Ohmic dissipation the finction F (ω) is proportional to the
frequency ω, and

W = πα∆ coth
(

∆

2T

)
, (5.3)

where α ≡ F (ω)/2πω is the dimensionless coupling constant introduced in Sec. 4.4. When
deriving Eqs. (5.2), (5.3) we assumed that the coupling is weak. This means that the
broadening of the levels W is very much smaller than the distance ∆ between them. For
Ohmic dissipation, this requires the inequality α ¿ 1; i.e., we are to keep away from the
interesting region where the phase transition to a localized state may occur. But even for
small values of α, as it is seen from Eq. (5.3), the criterion W ¿ ∆ will be violated if the
temperature is high enough. For Ohmic dissipation this will happen for T >∼ T0 = ∆/πα.

In the range W ¿ ∆ the motion of the tunnelling system is simple: if we localize it
initially in one of the wells (i.e., σz(0) = ±1), it will perform underdamped oscillations
between the wells, at the frequency ∆, and, as we shall see in the next section, with the
decrement given by W/2. Correspondingly, the absorption spectrum of the system has a
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peak at the frequency ∆ with the halfwidth at the halfmaximum equal to W/2 (the famous
result by Weisskopf and Wigner). The questions that we have to answer are: What will
happen to the dynamics and to the absorption spectrum if the temperature is raised, or
if the coupling is not weak—what will replace the underdamped oscillations? What is the
role of other coupling mechanisms, including coupling to electron-hole pairs? What will
be the shape of the absorption spectrum if we have more than two levels, even for weak
coupling—does the above theory apply to a harmonic oscillator?

5.2 Quantum kinetic equation

The approach we shall use to answer the formulated questions is based on the quantum
kinetic equation (QKE). The kinetic equation is an approximation. But a good one, and
an intuitive one. QKE is formulated for the density operator of a system, ρ(t) (it is often
called—and we will often call it that way—the density matrix). The density matrix is a
quantum analog of the probability density distribution: it gives the distribution of a system
over the quantum states, the probability to find the system in a state with the wave function
|γ) is given by (γ|ρ|γ). The time evolution of the density matrix follows from its expansion
into the matrix elements on the eigenfunctions of the system |m):

(γ|ρ(t)|γ) =
∑

m,m′
(γ|m(t))ρmm′(m

′(t)|γ) ⇒ ρ(t) = e−iHtρ(0)eiHt,

where H is the Hamiltonian of the system. This implies that the equation for the density
matrix can be written in the form:

ρ̇ = i[ρ, H] (5.4)

The average value of any operator Â is expressed in terms of the density matrix as

〈Â(t)〉 = Tr [Â(t)ρ(0)] ≡ Tr [eiHtÂe−iHtρ(0)] = Tr [Â(0)ρ(t)],

therefore, the density operator provides the basic information about the evolution of the
observables (notice that the time dependence of ρ(t) is different from the time dependence
of the operators in the Heisenberg representation).

The problem is that we need the density operator for the system alone, whereas Eq. (5.4)
defines, in the general case of a system coupled to a bath, the time evolution of the density
matrix of the system + bath, ρsb. Somehow, we have to eliminate the infinite number of
bath’s degrees of freedom, and get an equation just for the density operator of the system
itself. This equation will be the quantum kinetic equation.

There are several ways to formulate QKE. We shall start with the simplest formulation.
Suppose we are interested in the problem of the dynamics of a spin coupled to a bath, and
we assume that at the initial instant of time t = 0 we know the state of the spin, i.e., we
know its density matrix ρ(0). We also assume that we know the state of the bath—the bath
is in a thermal equilibrium, its density matrix

ρb(0) ≡ ρeq
b = (1/Z(b)) exp(−β Hb), Z(b) = Trb exp(−βHb), (5.5)

where Trb means the trace over the variables of the bath. Of course, this is an approximation:
our assumptions imply that at t = 0 the density matrix of the system + bath is factorized.
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In other words, we assume that the coupling between the system and the bath is turned on
at t = 0. This makes sense provided the coupling is not very strong. We shall see later on
what are the actual criteria.

Once we know the initial conditions and the Hamiltonian of the system + bath—it may
be of the form (5.1), e.g.,—we can write down the density matrix of the system + bath,

ρsb(t) = e−i(H0+Hb+Hi)tρsb(0)ei(H0+Hb+Hi)t ≡ e−i(H0+Hb)tU(t)ρsb(0)U †(t)ei(H0+Hb)t,

U(t) = Tt exp
(
−i
∫ t

0
dt′Hi(t

′)
)
, Hi(t) = ei(H0+Hb)tHie

−i(H0+Hb)t, (5.6)

where Tt is the standard operator of chronological ordering. The quantity we are interested
in, the density matrix of the system without the bath, also called the reduced density matrix,
is the trace of the matrix ρsb(t) over the variables of the bath, and we will be evaluating it
in the interaction representation:

ρ(t) = e−iH0tρ̃(t)eiH0t, ρ̃(t) = Trb
[
U(t)ρsb(0)U †(t)

]
. (5.7)

The perturbative expansion of the density matrix is obtained by expanding the unitary
operators U(t), U †(t),

U(t) = 1− i
∫ t

0
dt1Hi(t1)−

∫ t

0
dt1

∫ t1

0
dt2Hi(t1)Hi(t2) + . . . (5.8)

Each term of this expansion contains some number of operators Hi on both sides from the
initial density matrix ρsb(0). We have to integrate over the positions of these operators,
keeping in mind their order, namely, that the terms with larger argument in the expansion
of U(t) are on the left, whereas in the expansion of U †(t) they are on the right.

t t1

t t3 t2 0

ρ(0)

Fig. 5.4.

Grafically, every term of the perturbation series can be repre-
sented as an appropriate number of dots placed at two horizontal
lines as shown in Fig. 5.4. The dots along the upper line represent
the terms from the expansion of U(t); they must be arranged in de-
creasing time order as indicated by the arrow. Then, after inserting
the initial density matrix ρ(0), follow the terms from the expansion

of U †(t), arranged with increasing time; these terms are represented by the dots along the
lower line. After this identifications, the subsequent derivation is very similar to the standard
Green’s function technique, just for a two-particle Green’s function.

For the coupling of the form (5.1) (which we assume to be weak at the moment), the
first-order term in the constructed expansion vanishes: the average values of the coordinates
of the bath qµ ≡ (2ωµ)−1/2(aµ+a†µ) are equal to zero in thermal equilibrium (the factor ρb(0)
in ρsb(0) that depends on the variables of the bath is just the equilibrium distribution). The
nonzero terms in the expansion of U(t), U †(t) are the ones that contain the pairs aµ(t)a†µ(t′)
with the same µ. Because the parameters fµ are small (they contain the factor N−1/2, where
N is the number of degrees of freedom of the bath), the Wick’s theorem is satisfied, and we
have to allow no more than one pair of such terms for each µ. We have three combinations:
a pair coming out of U(t), a pair from U †(t), and a pair from the cross-term. Defining the
equilibrium correlation function

φ(t) ≡ 〈q(t) q(0)〉 =
∑
µ

f 2
µ

2ωµ

[
n̄µe

iωµt + (n̄µ + 1)e−iωµt
]
, n̄µ =

[
eβωµ − 1

]−1
, (5.9)
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we obtain ρ̃(t) up to second order:

t2t1

t1 t2

t1 t2

Fig. 5.5.

ρ̃(2)(t) = ρ(0)

− 1

4

∫ t

0
dt1

∫ t1

0
dt2σz(t1)σz(t2)φ(t1 − t2)ρ(0)

− 1

4
ρ(0)

∫ t

0
dt1

∫ t1

0
dt2σz(t2)σz(t1)φ(t2 − t1)

+
1

4

∫ t

0
dt1σz(t1)ρ(0)

∫ t

0
dt2σz(t2)φ(t2 − t1). (5.10)

The time dependence of the operators σz(t) in the interaction represen-
tation is known,

σz(t) =
1

2
(σz(0) + iσy(0)) e−i∆t +

1

2
(σz(0)− iσy(0)) ei∆t

Before evaluating the integrals, let us notice that the density matrix ρ̃(t)

Fig. 5.6.

varies in time only because of the coupling, i.e., it varies over the charac-
teristic time of the order of the decay probability W given by Eq. (5.2),
and therefore the characteristic time in Eq. (5.10) is t ∼ W−1 À ∆−1.
On this time scale the integrands in Eq. (5.10) are rapidly oscillating
(or rapidly decaying) functions. The characteristic range of |t1− t2| that
contributes to the integrals (5.10) is given by the maximum,

tc = max (∆−1, tcor),

where tcor is the characteristic correlation time of the fluctuations in
the bath weighted with the coupling—this is the time over which the
function φ(t) decays.

The time tc determines the characteristic distance between the dots
connected into a pair. This distance is small compared to the total time
range, therefore, on the coarsened time scale the dots within a pair merge
together . This tells us immediately that in the fourth order the diagrams that have nested
pairs, intersecting lines, or just overlapping pairs are small—their contribution is of the order
of tc/t. So, if we are interested in the main contribution to the higher-order terms of the
expansion of U(t)ρ(0)U †(t), we have to keep only the diagrams that consist of pairs of the
dots arranged successively. But then we have a simple series, and we can easily evaluate the
sum of the diagrams.

It is convenient to write the emerging equation not for the density matrix ρ̃(t), which
depends on the density matrix ρ(0) ≡ ρ̃(0) of the initially prepared system, but for the
Green’s function G(t) defined as

ρ̃mm′(t) = Gnn′
mm′(t)ρnn′(0), Gnn′

mm′(0) = δmnδm′n′ . (5.11)
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In the following, the upper indices will be often suppressed, and that the two-particle function
G will enter the usual operator products in place of the density matrix ρmm′ . Graphically,
the sum of all diagrams can be represented as

= + + +

= +

(5.12)

Here the pair of bold lines correspond to G(t), whereas the pair of thin lines is G(0)(t),
the Green’s function in the absence of the coupling. The box is the polarization operator
Πnn′
ll′ (t, t1); the form of this operator, as well as the limits of the integration in t1 can be

understood by inspecting Eq. (5.10).

Taking the time-derivative of Eq. (5.12), and accounting for the fact that the internal
integration in Π requires t1− t2 ∼ tc ¿ t, we obtain the differential form of the equation for
the Green’s function

d

dt
G(t) = −1

4

∫ t

0
dtσz(t)σz(t1)φ(t− t1)G(t)− 1

4
G(t)

∫ t

0
dt1σz(t1)σz(t)φ(t1 − t) (5.13)

+
1

4

∫ t

0
dt1σz(t1)G(t)σz(t)φ(t− t1) +

1

4

∫ t

0
dt1σz(t)G(t)σz(t1)φ(t1 − t).

It is understood that only the slow-varying terms should be kept here; e.g., the terms oscillat-
ing as exp(±2i∆t) that come from the products of the operators σz should be dropped—they
do not contribute to the integrals in the original integral equation.

Eq. (5.13) is a conventional QKE for the system we are considering. Among other impor-
tant features, this equation is Markovian: the derivative of the operator G(t) at the instant
t is determined by the value G(t) at the same instant. Again, this is similar to what we
had in the classical theory. We have obtained this equation in the Born approximation—we
have allowed for the second-order terms in Hi only. This limitation can be avoided: the
approximation that we have done essentially is that the collisions are short, the dots are
grouped in pairs, and the time intervals between the collisions (between the pairs) are very
much longer than the distances between the dots within pairs.

An alternative form of the QKE is

d

dt
G(t) = −

∫ t

0
dt1 Trb {[Hi(t), [Hi(t1), G(t)ρeq

b ]]} (5.14)

This short equation describes a lot of phenomena!
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5.3 Kinetics of a two-state system weakly coupled to a

bath

To obtain the QKE for a spin linearly coupled to a thermal bath,

Hi =
1

2
σz
∑
µ

fµqµ,

in the explicit operator form we have to plug the expressions for the operators σz(t) into
Eq. (5.13), and perform the time integration. The typical “building blocks” are of the form

∫ t

0
dt1 exp [i (ω ±∆) (t− t1)] = πδ(ω ±∆) + iP (ω ±∆)−1, tÀ tc,

where the symbol P means that the principal value of the corresponding integral over ω
should be taken. We will also need standard identities for the Pauli matrices,

σ2
κ = 1 (κ = x, y, z), σ−σ+ =

1

2
(1− σx), [σ+, σ−] = σx, σ± =

1

2
(σz ∓ iσy),

and the equilibrium phonon correlator (5.9), which is convenient to express in terms of the
function F (ω),

φ(t) =
1

π

∫
dωF (ω)

[
n̄(ω)eiωt + (n̄(ω) + 1) e−iωt

]
.

The first term in the QKE, corresponding to the first term in Eq. (5.13), is

−1

4

∫ t

0
dt σz(t)σz(t1)φ(t− t1)G(t) = −1

8
F (∆)

[
coth

(
∆

2T

)
+ σx(t)

]
G(t) (5.15)

+
i

4π
P
∫
dωF (ω)

[
ω

ω2 −∆2
+ σx(t)

∆

ω2 −∆2
coth

(
ω

2T

)]
G(t).

The structure of the remaining terms is very similar to that of Eq. (5.15). The term where
both operators σz are on the right is just the Hermitian conjugate to Eq. (5.15). The two
terms where G(t) is inserted between the operators σz are Hermitian conjugate to each other.
The complete QKE for this system is

∂

∂t
G(t) = −1

2
WG(t)− 1

8
F (∆)[σx(t)G(t) +G(t)σx(t)]− i1

2
P [σx(t), G(t)]

+
1

2
F (∆) {n̄(∆)σ+(t)G(t)σ−(t) + (n̄(∆) + 1)σ−(t)G(t)σ+(t)} , (5.16)

where

W =
1

2
F (∆) coth

(
∆

2T

)
, P = −2P

∫
dωF (ω)

∆

ω2 −∆2
coth

(
ω

2T

)
. (5.17)

There are terms of the two types in the QKE (5.16), and this is typical for quantum kinetic
equations for weakly coupled systems:
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(i) the terms that are proportional to F (∆), the weighted density of states of the bath
at the frequency of the transitions. These terms describe the decay processes where
a transition between the states of the system is accompanied by birth or death of the
excitations in the medium. Those of them with the operators on the left or on the
right from G correspond to the transitions from a given state of the system due to
the scattering and determine the lifetime of the state. The others, with the operators
on the both sides of G, describe not just the processes that bring the system to a
given state (substantial for the diagonal matrix element of G), but they also allow for
the “interference” of the scattering processes. Indeed, we are considering the density
matrix ρmn which refers to two states of the system, m and n, and scattering event
involving the same phonon can occur in both states, so, we do have an interference
here.

(ii) The term ∝ P that corresponds to virtual processes. Virtual excitations “dress” the
system and renormalize its energy spectrum; the fact that we have just a renormal-
ization here follows from the comparison of the term ∝ P with the term −1

2
i∆[σx, ρ]

in the initial kinetic equation (prior to going to the interaction representation). It is
clear that the renormalization comes just to ∆ → ∆ + P . In the following discussion
this renormalization is assumed to have been done, and the term ∝ P is dropped.

U

|z-) |z+)

|x-)
|x+)

Fig. 5.7. Different states of the spin from the
viewpoint of the continuum system.

In order to appreciate the consequences
of the derived QKE, we first need to un-
derstand very clearly the meaning of the
different components of the density matrix

ρ =

(
ρ++ ρ+−
ρ−+ ρ−−

)
,

where the components are labeled in the
usual representation where σ̂z is diagonal.
For the tunneling system the probability to
find the spin in the position “up”, which is
characterized by the wavefunction |z+) =
(1, 0)t, is

P (z+) = (1, 0)

(
ρ++ ρ+−
ρ−+ ρ−−

) (
1
0

)
= ρ++.

The probability to find the spin pointing down is, of course,

P (z−) = ρ−− = 1− ρ++.

Similarly, the probability to find the spin aligned in x-direction, the state characterized by
the eigenfunction |x+) = (1/

√
2, 1/
√

2)t of the operator σ̂x, is

P (x+) =
1

2
(1, 1)

(
ρ++ ρ+−
ρ−+ ρ−−

) (
1
1

)
=

1

2
(1 + ρ+− + ρ−+).
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These simple expressions imply that the average

〈σ̂z〉 ≡ Tr {σ̂z ρ} = ρ++ − ρ−− = P (z+)− P (z−)

defines the assymetry of the state, while

〈σ̂x〉 ≡ Tr {σ̂x ρ} = ρ+− + ρ−+ = P (x+)− P (x−)

defines the population difference between the symmetric and the antisymmetric states of the
quantum well.

The quantum kinetic equation (5.16) was derived in the interaction representation, and
it does not account for the evolution associated with the bare system Hamiltonian H0. This
implies that the average of any operator O(t) evolves according to the expression

d

dt
〈O(t)〉 = −i〈[O(t), H0]〉+ Tr {O(t)Ġ(t)}, 〈O(t)〉 ≡ Tr {O(t)G(t)}. (5.18)

It is straightforward to see that Eq. (5.16) results in the following equations for the relaxation
of the difference in the populations of the excited and ground states, 〈σx(t)〉, and for the
off-diagonal matrix element 〈σ−(t)〉 ≡ 〈1

2
[σz(t) + iσy(t)]〉,

d

dt
〈σx(t)〉 = −W 〈σx(t)〉 − 1

2
F (∆),

d

dt
〈σ−(t)〉 = −

(
i∆ +

1

2
W
)
〈σ−(t)〉. (5.19)

Both equations look reasonable: earlier we evaluated W as a sum of the reciprocal lifetimes
of the system in the ground and excited states, and we noticed that the absorption spectrum
(whose shape is determined by the relaxation of the matrix element of the transition from
the ground to the excited state) has a halfwidth 1

2
W . The free term in the equation for

〈σx(t)〉 is necessary to establish the equilibrium Hibbs distribution. Indeed, in equilibrium
the system is characterised by non-zero average

〈σx〉 = P (x+)− P (x−) = −F (∆)

2W
= − tanh

(
∆

2T

)
=

exp(−∆/T )− 1

exp(−∆/T ) + 1
,

which is exactly the expected equilibrium population difference.

The explicit form of QKE is more complicated for more complicated systems. However,
for any system with a finite number of states the operator G(t) has a finite number of the
matrix elements Gmm′

nn′ (t), and the QKE has a form of a set of linear differential equations for
Gmm′
nn′ (t), which is quite straightforward to solve if the parameters are known. The situation is

more interesting for systems with an infinite number of levels, as, for example, a harmonic or
a weakly anharmonic oscillator. The first question here is how many parameters of relaxation
do we have? For a harmonic oscillator linearly coupled to a bath we would expect to have
one parameter (there was one parameter in the classical theory). The QKE in this case may
be solved in the explicit form by the generating function method, and the solution resolves
the “paradoxon” of the harmonic oscillator described in the problem 5.4 at p. 73.
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5.4 Quasielastic phonon scattering: diffusion vs tun-

nelling.

The derived QKE applies to an arbitrary two-level system weakly coupled to a bath, with
the coupling linear in phonon operators. The only point where we appealed to the fact
that we had in mind a tunnelling system was the discussion of the form of the interaction
Hamiltonian. It is straightforward to see that the results hold true if we allow for other terms
linear in aµ, a

+
µ , like σy(aµ + a+

µ ) (in this case we will have the function F (ω) renormalized)
or σx(aµ + a+

µ ) (to the second order of the perturbation theory, the corresponding processes
do not affect the slow-time kinetics of the system).

For a realistic tunnelling system it is interesting to investigate the case where the tun-
nelling splitting ∆ is smaller than the relaxation rate: intuitively, one may expect that by
making ∆ arbitrarily small we will not “switch off” the relaxation. On the other hand, if we
apply the above results to the case where the density of states of the bath weighted with cou-
pling F (ω) falls down faster than ω for small ω (which is usually true in the case of coupling
to a real phonon bath, but which is not so in the case of Ohmic dissipation, as we shall see
below) the effective coupling constant α∆ ≡ F (∆)/2π∆ will fall down with the decreasing
∆, i.e. the relaxation will be switching off. The physical reason for this behavior lies in the
fact that at ∆ = 0 both states |x±) evolve coherently in time; the scattering events (after the
renormalization of ∆ is accounted for) transfer the system between these two states without
destroying their coherence. Therefore, even at relatively high temperatures the quantum
tunneling is not suppressed, and the coupling of the system to the thermal bath cannot
change the spectrum.

U

|z-) |z+)

Fig. 5.8.

An extremely important mechanism of
relaxation for tunnelling systems coupled
to a phonon bath is the relaxation that
occurs when phonons are scattered by the
system, nearly elastically. The scattering
can be viewed as a random modulation of
the phase of the wave function. The phase
of an nth state in the absence of inter-
action is the argument of the exponential
exp(−iEnt+ iφn), with φn independent of
time. When a phonon is scattered by the
system, φn changes, which means that we
have a random process φn(t). Now, let us

consider the resonant tunnelling problem. Here, the wave functions of the states with the
same energy (in the absence of the tunnelling) are coherent in time, and, therefore, a small
perturbation (mixing of the states by the exponentially small tunnelling matrix element)
accumulates in time. The random modulation of the phase difference between the states
breaks their coherence, the interference of the states implied into the concept of resonant
tunnelling is no longer there, and thus the tunnelling it suppressed.

The simplest form of the interaction Hamiltonian that describes the quasielastic scatter-
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ing by phonons is

H
(sc)
i =

∑

µ,µ′

f̄µµ′

(ωµωµ′)1/2
a+
µ aµ′ +

1

2
σz
∑

µ,µ′

fµµ′

(ωµωµ′)1/2
a+
µ aµ′ , (5.20)

where a+
µ , aµ are the creation and annihilation operators of the µth phonon, and we have

allowed for the fact that the coupling to phonons is different in the two “intrawell” states
of the system that correspond to the eigenvalues σz = ±1. Clearly, the first term only
renormalizes the phonon spectrum, and we shall ignore this term in the following, assuming
such renormalization has been done.

The time dependence of all terms in the QKE due to H
(sc)
i , taken to the second order of

the perturbation theory, is the same as that of the term

−1

4
σz(t)

∫ t

0
dt1 σz(t1)φ(sc)(t− t1), φ(sc)(t) =

∑

µ,µ′

|fµµ′|2
ωµωµ′

n̄(ωµ)(n̄(ωµ′) + 1) exp [i (ωµ − ωµ′) t]

In evaluating the integral we shall assume at this point that the temperature greatly exceeds
the tunnelling splitting, T À ∆. It is the temperature that determines, in the important
case of coupling to acoustic phonons, the characteristic frequencies of the phonons that are
excited and thus can be scattered. For T À ∆ the characteristic phonon frequencies in the
integral above greatly exceed the tunnelling splitting ∆, and the time dependence of the
operators σz(t) can be ignored. On the whole, the integral for t À T−1 is equal just to
a constant. The real part of this constant (which corresponds to relaxation processes and
which is only substantial in the present problem) is −1

4
W (sc), where

W (sc) = π
∑

µ,µ′

|fµµ′|2
ωµωµ′

n̄(ωµ)(n̄(ωµ′) + 1)δ(ωµ − ωµ′) (5.21)

Clearly, the scattering is quasielastic: the energy of the scattered phonon is equal to that
of the incident one, and the probability of the event is proportional to the number of the
phonons “prepared” to be scattered n̄(ωµ) times the bosonic “emission” factor n̄(ωµ′) + 1.

The operator in the QKE that describes the scattering processes has the form

(
dG

dt

)(sc)

= −1

2
W (sc)G(t) +

1

2
W (sc)σz(t)G(t)σz(t), T À W (sc). (5.22)

The scattering processes themselves do not give rise to any relaxation of the populations
of the intrawell states, the difference in the populations 〈σz(t)〉 does not change because of
them directly. However, the scattering destroys the coherence of the states, and therefore
it affects the interwell transitions (that come into play via tunnelling) which in their turn
provide the relaxation of 〈σz(t)〉. The equations of motion for the average values of the
components of the spin that follow from (5.22) (in the neglect of the decay processes due to
the transitions between the tunnel-split states that we considered before) are of the form

d

dt
〈σ−〉 = −i∆〈σ−(t)〉 − 1

2
W (sc) (〈σ−〉 − 〈σ+〉) , d

dt
〈σx〉 = −W (sc)〈σx(t)〉. (5.23)
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The quantity 〈σx(t)〉 is the measure of the coherence of the intrawell wave functions, i.e. of
the eigenfunctions | ↑), | ↓) of the operator σz,

〈σx(t)〉 = 2ReG↑↓(t)

If there were no tunnelling and relaxation, the phase difference between the corresponding
up and down states would remain constant. Because of the phonon scattering, the coherence
is broken, the phase difference is modulated randomly, and the average 〈σx(t)〉 falls down
exponentially. This can be interpreted in terms of phase diffusion,

〈exp [i (φ↑(t)− φ↓(t))]〉 = exp(−W (sc)t)× exp [i (φ↑(0)− φ↓(0))] ,

where W (sc) is the phase diffusion coefficient,

〈[φ↑(t)− φ↓(t)]2〉 − [φ↑(0)− φ↓(0)]2 = 2W (sc)t.

The transport between the two wells is convenient to describe by two coupled real-valued
equations that follow from Eq. (5.23),

d

dt
〈σz〉 = ∆〈σy(t)〉, d

dt
〈σy〉 = −∆〈σz(t)〉 −W (sc)〈σy(t)〉, (5.24)

or an equivalent second-order differential equation for 〈σz(t)〉 alone,

d2

dt2
〈σz(t)〉+W (sc) d

dt
〈σz(t)〉+ ∆2 〈σz(t)〉 = 0. (5.25)

The general solution for 〈σz(t)〉 can be written in the form

〈σz(t)〉 = exp
(
−1

2
W (sc)t

) [
σz(0) cos ∆̃t+ ∆̃−1

(
σ̇z(0) +

1

2
W (sc)σz(0)

)
sin ∆̃t

]
, (5.26)

where the energy gap is renormalized solely because of the damping,

∆̃ =
[
∆2 − 1

4

(
W (sc)

)2
]1/2

.

It follows from this expression that for W (sc) < 2∆ the populations of the wells oscillate.
In the absence of the dissipation these oscillations persist, as the usual quantum-mechanical
oscillations are supposed to, and they decay if the dissipation is present.

An interesting situation arises in the case where the dissipation is strong compared to
the tunnelling,

W (sc) À ∆. (5.27)

It is easy to see from Eqs. (5.24)–(5.26) that the kinetics of the system in this regime is
characterized by two very different time scales. First, over the time ∼ 1/W (sc), the interwell
matrix elements of the density matrix 〈σx(t)〉, 〈σy(t)〉 decay down to their quasistationary
values, determined by a given 〈σz(t)〉. Then, over a much linger time ∼ ν−1

d , where

νd = ∆2/W (sc), (5.28)
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the populations of the wells relax to their equilibrium values,

〈σz(t)〉 ≈ e−νdt 〈σz(0)〉.
This relaxation, described by the overdamped form of Eq. (5.25), occurs because of the
tunnelling, of course. But this is the tunnelling in the situation of broken coherence, and
the relaxation time exceeds strongly both the “initial” relaxation time 1/W (sc), and the
reciprocal tunnelling splitting 1/∆.

To interpret the rate (5.28) we can think of it in terms of the transition probability as
given by the Fermi’s golden rule: the product of the squared absolute value of the matrix
element of the transition times the density of states. The transition matrix element that
mixes the states in the two wells is ∆, whereas the characteristic “density of states” (the
reciprocal bandwidth) is the lifetime 1/W (sc) within which the states become incoherent, so
we get just νd. When understood in such terms, it is clear that what we have here is not
a coherent tunnelling but hopping, or diffusion over the intrawell states, and νd is just the
diffusion coefficient.

The picture of hopping that replaces the coherent tunnelling in the range (5.27) applies
to systems with an arbitrary number of resonant states, including diffusion of impurities (or
muons) over the interstitial positions in crystals, or hopping of an off-center ion over its equiv-
alent orientations. If we limit ourselves to the tunneling between the nearest neighboring
sites (just for clarity), we can write the Hamiltonian in the form

H0 =
1

2
∆
∑
m

(
b+
m+1bm + b+

mbm+1

)
, Hi =

1

2

∑
m

b+
mbm

∑

µ,µ′

f
(m)
µµ′

(ωµωµ′)1/2
a+
µ aµ′ , (5.29)

where the operators b+
m, bm create and an-

U

-2 -1 0 1 2

Fig. 5.9.

nihilate the tunnelling (hopping) particle
at the site m, and ∆ is the tunnelling ma-
trix element.

For temperatures T À ∆ we have the
same picture of the on-site scattering of
the phonons by the particle as we had be-
fore, and in the neglect of the shift of the
energy level of the system due to the cou-
pling (5.29) (notice that here, as well as in the problem of a spin considered above, the shift
arises in the first order in Hi) the QKE has a simple form:

dG

dt
= −1

2

∑
m

wmmb
+
m(t)bm(t)G(t)− 1

2

∑
m

wmmG(t)b+
m(t)bm(t)

+
∑

mm′
wmm′b

+
m(t)bm(t)G(t)b+

m′(t)bm′(t), (5.30)

where the transition probability

wmm′ = πRe
∑

µ,µ′

f
(m)
µµ′

(
f

(m′)
µµ′

)∗

ωµωµ′
n̄(ωµ)(n̄(ωµ′) + 1)δ(ωµ − ωµ′)
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is evaluated in assumption that there is only one particle, b+
mbmb

+
m′bm′ = δmm′b

+
mbm. The

equations for the average values of the operators are:

d

dt
〈b+
m(t)bm(t)〉 = ∆ Im

〈(
b+
m(t)bm−1(t)− b+

m+1(t)bm(t)
)〉
, (5.31)

d

dt
〈b+
m(t)bm−1(t)〉 = −1

2
i∆

〈(
b+
m(t)bm(t)− b+

m−1(t)bm−1(t)
)〉
− 1

2
W (sc)〈b+

m(t)bm−1(t)〉+ . . .

where

W (sc) =
π

2

∑

µ,µ′

∣∣∣f (m)
µµ′ − f (m−1)

µµ′

∣∣∣
2

ωµωµ′
n̄(ωµ)(n̄(ωµ′) + 1)δ(ωµ − ωµ′), (5.32)

and the dots in Eq. (5.31) indicate the omitted terms which contain the averages 〈b+
m(t)bm′(t)〉

with |m−m′| ≥ 2. The parameter W (sc) is the diffusion coefficient for the phase difference
between the states m and m+ 1; this phase diffusion is caused by phonons scattered off the
system.

In the range of parameters (5.27), where the scattering rate exceeds the tunnelling rate,
the off-diagonal (intersite) averages in Eq. (5.31) are small and fast : they decay to their
quasistationary values (for given occupations of the states) over the time ∼ 1/W (sc), whereas
the occupations themselves vary over the time 1/νd, as we expected. These quasistationary
values are given by

〈b+
m(t)bm−1(t)〉 ≈ −i ∆

W (sc)

〈(
b+
m(t)bm(t)− b+

m−1(t)bm−1(t)
)〉

By plugging this expression into the equation (5.31) for the populations of the states we
arrive at the diffusion equation for the populations:

d

dt
〈b+
m(t)bm(t))〉 = νd

〈(
b+
m+1(t)bm+1(t) + b+

m−1(t)bm−1(t)− 2b+
m(t)bm(t)

)〉
(5.33)

with νd given by Eq. (5.28). The obtained Eq. (5.33) has a simple form of a diffusion
equation. We notice that this equation applies even in the situation of an infinite number of
equivalent sites, and is an alternative to the standard notion of the diffusion in the momentum
space. The latter occurs if the tunnelling is strong and the bandwidth ∆ greatly exceeds the
relaxation rate. In the opposite case we still have a diffusion, but in the coordinate space.
This process is sometimes called quantum diffusion, and it has been observed in various
experiments.

Problems

xProblem 5.1 (page 104)
Small polysterene spheres submerged into water are known to form crystals, for high enough
densities. Find the dispersion law for low-lying modes of a crystal formed by Brownian
particles. The result applies also, for T exceeding the Debye temperature, to the modes of a
2D Wigner crystal formed by electrons on helium surface: in contrast to Brownian particles
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electrons are light, and they are scatterred by low-frequency capillary waves (see Prob. 5.2
below).

xProblem 5.2 (page 104)
Derive the quantum kinetic equation for an electron in a semiconductor which is coupled to

acoustic phonons, with the Hamiltonian

H = H0 +Hb +Hi, H0 =
p2

2m
, Hb =

∑
q

ωqa
+
q aq, Hi =

∑
q

fqe
iqraq + h.c.

Assume that the temperature (the characteristic energy of an electron) is high—find what
it should exceed for (i) the quantum kinetic equation to apply, and (ii) for the scattering to
be quasielastic, i.e., for the change of the electron energy to be much less than the energy
itself.

xProblem 5.3 (page 106)
Derive the quantum kinetic equation for a harmonic oscillator linearly coupled to a thermal
bath, with the Hamiltonian

H0 =
1

2
(p2 + ω2

0q
2), Hi = q

∑
µ

fµqµ, Hb =
1

2

∑
µ

(p2
µ + ω2

µq
2
µ)

Assume the coupling to be weak, and the density of states of the bath weighted with coupling
to be smooth near ω0.

xProblem 5.4 (page 106)
For the harmonic oscillator from the previous problem, evaluate the total lifetime of the nth
level. What would the absorption spectrum of the oscillator for finite temperatures look
like if you considered the oscillator as a set of two-level systems (optical transitions occur
between the neighboring levels only)? Does the result agree with what you got for this model
before? What is wrong? This is the “paradoxon” of harmonic oscillator.

xProblem 5.5 (page 107)
Large polaron is a self-localized state of a conduction electron in a polar crystal: the electron
polarizes the crystal and gets localized in the potential well created by the polarization. The
total energy consists of the kinetic energy of the electron T = p2/2m (m is the effective
mass), the potential energy V (r) of the electron in the polarization potential, and the energy
of the polarization. The potential energy

V (r) = −e
∫
d3r1
∇ ·P(r1)

|r− r1| , D[ψ; r] = −e
∫
d3r1|ψ(r1)|2 r− r1

|r− r1|3 (5.34)

Here, P, D are the polarization and the electric displacement, respectively; ψ(r) is the
electron wave function. It is substantial that the “fast” motion of the localized electrons that
form a periodic potential is already incorporated into the effective mass of the conduction
electron, and the polarization in (1) is the “slow” part of the total polarization,

P(r) =
c

4π
D(r), c = ε−1

∞ − ε−1. (5.35)
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(ε∞, ε are high- and low-frequency dielectric constants). The full potential energy of the
electron and the polarized crystal is given by

W = −1

2

∫
d3r P(r) ·D(r) = − c

8π

∫
d3r D2(r) (5.36)

There is a sort of a virial theorem for the polaron in the ground state: all the energies are
multiples of the kinetic energy, T : −W : −E : −V = 1 : 2 : 3 : 4 (here, E = T + V is
the total electron energy). Prove this theorem (change r → kr in the wave function of the
ground state and allow for the fact that k = 1 provides the minimum to the total energy of
the system).

xProblem 5.6 (page 108)
Derive the quantum kinetic equation for a resonantly driven two-level system. Allow for two
types of relaxation processes: decay processes (the Hamiltonian Hi1), that correspond to the
transitions between the states with emission of a phonon, and the processes that correspond
to quasielastic scattering of phonons by the system (the Hamiltonian Hi2; this scattering
gives rise to random modulation of the phase difference between the states of the system).

H = H0 +Hb +Hi1 +Hi2 +HF , H0 =
1

2
ω0σz, Hb =

1

2

∑
µ

(
p2
µ + ω2

µq
2
µ

)
,

Hi1 =
1

2
σx
∑
µ

fµqµ, Hi2 =
1

2
σx
∑

µ,µ′
fµµ′qµqµ′

HF =
1

2
σxF cosωt, |ω − ω0| ¿ ω

(notice the difference in notations with what we had in Lecture 5.) In deriving the equation
keep second-order terms in Hi1,2, and first-order resonant terms in HF . Assume T ¿ ω0.
Solve the equation for the matrix elements of the density matrix in the stationary regime, and
find the dependence of the absorption coefficient on the field amplitude F . This dependence
describes what is called absorption saturation.

xProblem 5.7 (page 109)
Find the temperature dependence of the relaxation rate related to the quasielastic phonon
scattering in the former problem in the case of an impurity coupled to acoustic phonons.
This is the basic broadening mechanism of narrow (zero-phonon) spectral lines of impurities
in solids for not too low temperatures.



Lecture 6

Hopping of a strongly coupled system.

6.1 Qualitative arguments.

The kinetics of a tunnelling system coupled to a phonon bath is characterized by several
quantities that have the dimension of energy (or frequency):

tunnelling frequency phonon temperature two-phonon
splitting shift bandwidth scattering rate

∆ P t−1
cor T W (sc)

(the frequency shift due to the coupling to phonons was considered in Lecture 5). So far
the analysis was limited to the case of weak coupling, where the quantities P , W (sc) that
characterize the coupling are small, at least compared to the phonon bandwidth, i.e., to the
reciprocal time t−1

cor over which the correlations in the bath decay.1 In this case the coupling
linear in the phonon coordinates is not very substantial for the small tunnelling rate ∆,
provided the temperature is not too small and the density of states of the bath weighted
with coupling decays superlinearly as the frequency goes down to zero.

A qualitatively different physical situation arises in the case where coupling is not weak.
Generally speaking, both couplings that are linear and nonlinear in the phonon coordinates
may be strong, but usually the strength falls down quite fast with the increasing order of
the nonlinearity, and, therefore, we shall limit ourselves to a strong coupling linear in the
coordinates. We will first consider the kinetics of a two-state system (e.g., a system moving
in a double-well potential), and again we will be using the spin model to describe it. Let us
write the Hamiltonian of this model as

H = H0 +Hb +Hi, H0 =
1

2
∆ σx, Hb =

∑
µ

ωµa
+
µ aµ,

Hi =
1

2
σz
∑
µ

(2ωµ)−1/2
(
fµaµ + f ∗µa

+
µ

)
, (6.1)

1We shall see later on that tcor should be specified more carefully: we are interested in the correlations at
the frequencies that characterize the system and depend on the coupling to it, therefore for certain types of
coupling where low-frequency modes are important, like for Ohmic dissipation, tcor may be large for a broad
phonon band.

75
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where a+
µ , aµ are the phonon creation and annihilation operators.

The matrix element of the coupling Hamiltonian is different

Fig. 6.1. When adjusted
to the position of the
system, oscillators of the
thermal bath may shift
the position of the occu-
pied level and thus sup-
press the resonant tunnel-
ing.

depending on whether the system occupies the left or the right
well (the states |↑) or |↓), respectively): e.g., if the system is
a defect that has two equivalent orientations in an elementary
cell, then the different atoms are “more perturbed” when it
is in one or the other orientation. Once the phonon bath has
adjusted itself to the position of the system (the neighboring
atoms have shifted appropriately), the potential for the system
is changed, and it is no longer symmetrical: the level in the
empty well lies higher than in the occupied one. Resonant
tunnelling occurs when both the system and the bath switch
simultaneously.

The difference in the energies of the intrawell levels in the
absence of the tunnelling (∆ → 0) can be evaluated using a
simple perturbation theory. It is characterized by the quantity
Pst very similar to the Stocks shift in optics:

Pst =
1

2

∑
µ

(
f 2
µ/ω

2
µ

)
≡ 1

π

∫
dω ω−1F (ω) (6.2)

Strong coupling occurs when the level shift exceeds both the
tunnelling splitting (and thus the tunnelling is suppressed) and
the characteristic reciprocal correlation time of the bath:

Pst À ∆, t−1
cor (6.3)

The physical notion of the both inequalities is quite obvious: if the tunnelling splitting is
large than prior to the phonons will adjust themselves to the system in a given intrawell
state the system will have got smeared over the both wells; on the other hand, if the relevant
correlations in the bath decay very fast the bath will follow the system adiabatically as it
reorients, and again the effect of the shift will be invisible.

Further analysis depends crucially on temperature we are interested in. For T = 0 the
only way for the system to switch from one well to another is via bringing the whole phonon
configuration with it, and therefore there is tunnelling, but the tunnelling rate is exponen-
tially small since it contains the product of the overlap integrals for the wave functions of
all the phonons.

We shall consider the situation where T is high enough (but not too high, though). The
physical picture of the transitions between the intrawell states in this case is quite simple.
Thermal fluctiations in the bath give rise to the fluctuations of the potential in which the
system moves and thus of the interlevel spacing. These fluctuations have the characteristic
correlation time tcor and are Gaussian. The magnitude of the fluctuations of the level spacing
can be estimated if one notices that, for given expectation values of the phonon operators
āµ, ā

+
µ , the level shift is given by ∼ Re

∑
fµāµ, and therefore in the range of T where

the phonon fluctuations are classical the mean square fluctuations of the level spacing are
σ ∼ PstT . If T ¿ Pst (as we assume) the energies of the levels are strongly different for the
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most of the time. The probability for the levels to cross is given, for Gaussian fluctuations,
by exp(−P 2

st/2σ), i.e., it is of the activation type, with the exponent ∼ Pst/T . When the
levels are crossing there may occur a tunnelling transition, but then the levels are detuned
very fast and the system remains localized in a new state. It stays there until the next
appropriate large fluctuation occurs. On the whole the switching between the states is of
the type of hopping. The idea of hopping of this sort was put forward by Holstein and by
Yamashita and Kurosawa in the context of small polaron transport.

6.2 Small-polaron transformation.

The basic tool for the analysis of the transport in the case of strong coupling is the famous
small-polaron canonical transformation

S = exp

[
σz
∑
µ

(2ωµ)−3/2
(
fµaµ − f ∗µa+

µ

)]
, ãµ ≡ S+aµS = aµ − (2ωµ)−3/2σzf

∗
µ (6.4)

The transformed Hamiltonian is of the form

H̃ ≡ S+HS = H1 +Hb − 1

8

∑
µ

ω−2
µ |fµ|2 , (6.5)

H1 =
1

4
∆̂(σx + iσy) + h.c., ∆̂ = ∆ exp

[
−2

∑
µ

(2ωµ)−3/2
(
fµaµ − f ∗µa+

µ

)]
.

The idea of the transformation (6.4) is that it makes the Hamiltonian diagonal in the intrawell
representation: it adjusts the equilibrium positions of phonons (i.e., the positions of the
atoms surrounding the defects, or, more generally, the expectation values of aµ, a

+
µ ) to the

position of the system in each of the wells. But then, since these phonon positions are
different in different wells, the operator of the interwell transitions becomes an operator in
the space of phonon variables, not in the space of the variables of the system only.

If we were looking for the “coherent” tunnelling transitions where phonons are not created
or annihilated, we would have to evaluate the diagonal (in the phonon variables) matrix
element of the tunnelling operator,

〈∆̂〉 ≡ Trb ρb∆̂ = ∆e−Q, Q =
1

4

∑
µ

ω−3
µ |fµ|2 [2n̄(ωµ) + 1] , QÀ 1. (6.6)

The factor Q is the famous Debye-Waller factor which arises whenever there are transitions
between the states that correspond to different equilibrium positions of phonons. It follows
from the inequality (6.3) that the factor Q is parametrically large for strong coupling. The
rate of the coherent tunnelling is exponentially small, respectively, with the parametrically
large exponent. This rate falls down with the increasing temperature (in general case, there
is also an opposite effect of the fluctuational preparation of the barrier for a tunnelling system
by a fluctuating bath; we will not consider this effect in what follows).

For not too small T the transitions between the intrawell states occur via the hopping
mechanism described above. We may expect that since the duration of the transition is
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determined by the time over which the fluctuating intrawell levels remain nearly in resonance
whereas the transitions themselves occur very occasionally, a transition might play the role
of a scattering event from the point of view of kinetics, and for small enough ∆ the interval
between the “collisions” (switchings) will greatly exceed the duration of a collision. In this
case the quantum kinetic equation (QKE) would apply. However, now we have to consider
the Hamiltonian H1 as a perturbation, and we will neglect the coherent terms ∼ 〈∆̂〉 as given
by Eq. (6.6).2

If we skip the terms linear in H1, and allow for the second-order terms only, then the
QKE for the canonically transformed density matrix takes on the familiar form of Eq. (5.14)
of Lecture 6, with the only difference being that Hi(t) should be replaced by H1(t). The
“building block” for the kinetic equation is of the form

∫ t

0
dt′TrbH1(t)H1(t′) =

1

16
∆2 (σx + iσy) (σx − iσy)

∫ t

0
dt′ e−[ψ(0)−ψ(t−t′)] + h.c., (6.7)

ψ(t) =
1

2

∑
µ

ω−3
µ |fµ|2

[
n̄µe

iωµt + (n̄µ + 1) e−iωµt
]
,

In evaluating the integral (6.7) we have to allow for the fact that ψ(0) = 2Q À 1, and,
therefore, the major contribution to the integral comes from the range where t′ is close to
t—this is just what we need! The function ψ(t) has an extremum at t0 = −i/2T ; calculating
the integral with the steepest descent method we get the hopping rate

W (hop) =
1

8
∆2

∫ t

0
dt′ e−[ψ(0)−ψ(t−t′)] =

1

8
∆2 thop × exp(−Ehop/T ), (6.8)

where

Ehop =
1

2
T
∑
µ

|fµ|2
ω3
µ

tanh (ωµ/4T ) , thop = 2π1/2

[∑
µ

|fµ|2
ωµ sinh (ωµ/2T )

]−1/2

.

The time thop is the typical time interval that contributes to the integral over time, and,
therefore, it gives the characteristic duration of hopping event, an analogue of the duration of
the collision. Our analysis applies if this time interval is small compared to the characteristic
frequencies of the phonons that contribute to ψ(t),

thop ¿ tcor.

It is obvious from this inequality, in particular, that we are limited to the range of not too
low temperatures.

The QKE for the canonically transformed density matrix takes on the form

∂G̃

∂t
= −W (hop)

[
G̃(t)− 1

4
(σx + iσy) G̃(t) (σx − iσy)− 1

4
(σx − iσy) G̃(t) (σx + iσy)

]
, (6.9)

2A huge amount of work has been done to match the low-T transport of small polarons, that occurs via
coherent tunnelling of the system and the bath and is of the band-like diffusion, to the high-T hopping-type
transport, and not that the complete solution has been obtained in the closed form; however, the physics is
quite clear, and we will not go into the details of the behavior of the system in the crossover region.
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where tilde is used to show that the Green’s function (and the density matrix) have been sub-
ject to the small-polaron canonical transformation (6.4). The matrices (σx± iσy) raise/lower
the system to or from the state |↑), respectively. It is not surprising that, when written for
the diagonal matrix elements of G̃ (these matrix elements are not changed as a result of the
transformation (6.4)), Eq. (6.9) has the form of a balance equation,

∂n↑
∂t

= −W (hop) (n↑ − n↓) , ∂n↓
∂t

= −W (hop) (n↓ − n↑) .

Clearly, the system is hopping between the wells, i.e., between the states |↑) and |↓), and
the probability of hopping is given by W (hop).

The temperature dependence of the rate W (hop) is of the activation type for the tem-
peratures exceeding the phonon frequencies (i.e., the Debye temperature TD)—again, in
agreement with the qualitative arguments discussed above. For T > TD the activation en-
ergy Ehop is independent of T , and Ehop ∼ Pst, as expected. In real systems the activation
dependence of W (hop) often extends to the range of temperatures below TD.

6.3 Ohmic dissipation.

The above arguments should be taken with care in the case of Ohmic coupling to the bath,
such that

π

2

∑
µ

ω−1
µ |fµ|2 δ(ω − ωµ) = 2Γω

The high-T small polaron results do not change dramatically in this case: it is obvious
that the integrals that give the activation energy Ehop and the duration of the hopping thop

converge safely, and the main contribution to these integrals comes from the range of high
frequencies.

A different situation occurs for T = 0, and again, we are prepared from our instanton
experience that something unusual may happen here (e.g., localization for a strong enough
coupling—the phase transition in the instanton “liquid”). For Ohmic dissipation the Debye-
Waller factor Q (6.6) diverges logarithmically at low frequencies (there are no problems
at high frequencies: there is always a high-frequency cutoff imposed by the change of the
coupling, or the change of the density of states of the bath, or presence of higher energy levels
of the system, etc). The divergence of Q does not mean localization: it does not depend
on the coupling strength, e.g., and it would be strange if the localiztion happened for an
arbitrarily weak coupling. However, this divergence is a sort of the orthogonality catastrophe
introduced by Anderson: the overlap integral of the adiabatic intrawell wave functions is
equal to zero when the density of states weighted with coupling falls down slowly enough
with the decreasing energy of the low-lying excitations (phonons, in the present case).

An insight into the localization of a tunnelling system due to its coupling to a bath
can be gained and the critical value of the coupling parameter Γ can be obtained from the
following arguments: the factor exp(−Q) describes renormalization of the tunnelling matrix
elements due to phonons that follow the system adiabatically, and can adjust themselves
to the intrawell position before the system switches to another position. The frequencies
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of such phonons should exceed some quantity ω̄ which, in its turn, exceeds the tunnelling
splitting,

ω̄ = p∆, pÀ 1,

The adiabatically renormalized tunnelling matrix element is given by

∆′ = ∆ exp [−Q (ω̄)] , Q(ω̄) =
1

4

∑

ωµ≥ω̄
ω−3
µ |fµ|2 . (6.10)

After the tunneling splitting ∆ has been reduced according to Eq. (6.10), even slower modes
of the bath can adjust to the position of the system, and we can further reduce the minimal
cut-off frequency ω̄, find a new ∆′, further reduce ω̄, and so on, until at the end we arrive
at the self-consistent expression for the renormalized tunneling rate of the form

∆̄ = ∆ exp
[
−Q

(
p∆̄
)]

(6.11)

The solution of this equation in the case of Ohmic dissipation reads

∆̄ = ∆
(
p∆

ωcut

)α/(1−α)

, α =
1

π
Γ, (6.12)

where ωcut is the high-frequency cutoff frequency, e.g., the Debye frequency.
For the dimensionless coupling constant α < 1 the value of ∆̄ remains finite, but as α

approaches 1 it falls down to zero. This is an indication of the disappearance of tunnelling
for strong enough coupling in the case of Ohmic dissipation, even for zero temperature.

A physically interesting situation where Ohmic dissipation is relevant, and the orthogo-
nality catastrophe arises, is the situation of coupling to the electron-hole bath,

Hi =
1

2
σz
∑

k,k′
Vk k′a

+
k ak′ , Hb = vF

∑

k

(k − kF )a+
k ak. (6.13)

Here, a+
k , ak are electron creation and annihilation operators (the spin index has been

dropped); vF is the Fermi velocity, and kF is the Fermi momentum (the energy is counted
off from the Fermi surface). In the case of s-scattering by a tunnelling system with the wells
at the distance R away from each other, the matrix elements Vk k′ ∝ 1− exp (−i(k− k′)R).

The quantity that characterizes the renormalization of the tunnelling matrix elements
and the kinetics of the system coupled to the bath on the whole is, as we know, given by the
correlator

Ξ(ω) =
∫ ∞
−∞

dt 〈Hi(t)Hi(0)〉 eiωt. (6.14)

In the case of Ohmic coupling to a phonon bath for T = 0, and in the neglect of tunnelling
(the case of the utmost interest at the moment), this correlator is just equal to Γω. In the
case of coupling (6.13),

Ξ(ω) = Γelv
2
F

∫ 0

−∞
dk
∫ ∞

0
dk′δ [ω + vF (k − k′)] = Γel ω, Γel =

1

2
π|Vk k′|2ρ2

F , (6.15)

where the overbar means the average over the directions of momenta k, k′ on the Fermi
surface, k = k′ = kF , and ρF is the density of states on the Fermi surface.
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It follows from Eq. (6.15) that the density of states of the electron-hole bath weighted
with coupling is the same as in the case of Ohmic dissipation due to phonons, and all the
effects considered in the latter case arise in the model (6.13). This model is very general,
the only assumption is s-scattering of the electrons. This is one of the major reasons why
the model of Ohmic dissipation is so interesting and has attracted so much attention.
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Appendix A

Solutions to all exercises

xSolution 1.1 (p. 17)
Follow the standard variational procedure to find equations of motion. Substituting q −→
q + δq, one gets in the linear order by δq

0 = δR =
∫

[q̈ + 2Γq̇ + U ′(q)] [δq̈ + 2Γδq̇ + U ′′(q)δq] dt. (A.1)

Integrating by parts several times with boundary conditions δq = δq̇ = 0 both at t = 0 and
t = −∞ yields

d2L

dt2
− 2Γ

dL

dt
+ U ′′(q)L = 0 with L = q̈ + 2Γq̇ + U ′(q) (A.2)

The first integral of this non-linear equation (“Energy”) can be found by exactly the same
procedure as used for the second order Lagrange equations in classical mechanics. Namely,
multiplying Eq. (A.2) by q̇, after some transformations

0 =
d2L

dt2
q̇ − 2Γ

dL

dt
q̇ + U ′′(q)Lq̇

=
d

dt

(
q̇
dL

dt
− q̈L

)
+ L

...
q +

d

dt
(−2ΓLq̇) + 2ΓLq̈ + LU ′′(q)q̇

=
d

dt

(
q̇
dL

dt
− q̈L− 2ΓLq̇

)
+ L

dL

dt

=
d

dt

(
q̇
dL

dt
− q̈L− 2ΓLq̇ + L2/2

)
;

we see that the expression in parenthesis is a constant. The boundary conditions at t = −∞
restricts this constant to be zero, leaving us with the third order differential equation

q̇
dL

dt
− q̈L− 2ΓLq̇ + L2/2 = 0. (A.3)

Defining v = q̇/L, we note that v̇ = (q̈L− q̇L̇)/L2, and the above equation can be written as

L2
(
v̇ + 2Γv − 1

2

)
= 0.

83
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Since L = 0 obviously does not satisfy our boundary conditions, our equation is just

v̇ + 2Γv = 1/2

with the solution

v =
1 + C1e

−2Γt

4Γ
,

where C1 is yet another integration constant. Substituting back for q, we obtain

q̈ + 2Γ
(

1− 2

1 + C1e−2Γt

)
q̇ + U ′(q) = 0.

This equation is already of the desired second order, but it turns out that it is possible to
make further simplification as the initial conditions require C1 = 0. Indeed, for any non-zero
C1 the system has a positive friction at t = −∞ and, therefore, would never come out of the
equilibrium. If, however, C1 = 0, the equation is just

q̈ − 2Γq̇ + U ′(q) = 0. (A.4)

This is the equation of motion for the original system moving backward in time (check the
sign of the friction!). Clearly, this equation always has the required solution: reverting the
direction of time once again, we obtain the equation for a particle starting at t = −t0 with
q = q0 and p = −p0, with positive friction. Our experience tells us that the particle will
eventually end up in the bottom of the well with zero velocity. Moreover, we know that
there exists only one such solution!

After deriving the second-order equation of motion (A.4), it is easy to find the value of
the functional (1.8),

R =
∫

[q̈ + 2Γq̇ + U ′(q)] [q̈ + 2Γq̇ + U ′(q)] dt.

Adding and subtracting 0 = q̈ − 2Γq̇ + U ′(q) to the first and from the second multiples
respectively, one obtains

R =
∫

2 [q̈ + U ′(q)] 4Γq̇ dt = 8Γ
(
q̇2/2 + U(q)

)∣∣∣
t0

t=−∞ ,

or, finally,

R = 8Γ
(
p2/2 + U(q)− U(qst)

)
.

If we substitute this value in Eq. (1.4) and account for the relation (1.7), we obtain precisely
the Boltzmann distribution for the probability of finding the particle with a given total
energy. The fact that the trajectory of the most probable “uphill” motion, driven by the
bath fluctuations, coinsides with that of sliding back under the influence of the friction
force, is consistent with the principle of detailed equilibrium, which states that in thermal
equilibrium every process must have its counterprocess happening with equal rate.



85

xSolution 1.2 (p. 17)
The average of the product p(t)f(t) can be found by multiplying the expansion of Eq. (1.14)

p(t) ≈ p(t− δt)− δt [2Γp(t− δt) + U ′(q(t− δt))] +O(δt2) +
∫ t

t−δt
f(t′) dt′,

by f(t). In the r.h.s., the only contribution to the average will come from the last term, and
Eq. (1.3) leads directly to the intermediate result 〈f(t) p(t)〉 = D.

The averaged product of Eq. (1.5) and p(t) = q̇(t), which can be rewritten as

d

dt
〈E(t)〉+ 2Γ〈p2(t)〉 = 〈f(t) p(t)〉, E(t) ≡ p2

2
+ U(q(t)),

obviously determines the energy balance in the system. In the stationary regime the average
energy does not change, and we immediately obtain 2Γ 〈p2(t)〉 = D.

xSolution 1.3 (p. 17)
After separating the variables with the substitution

w(Q, t) =
∑

λ

Cλe
−λte−U(Q)/2Dφλ(Q),

we obtain the time-independent Schrödinger-like equation of the form

φ′′λ + [Eλ − V (Q)]φλ = 0, V (Q) =

(
U ′

2D

)2

− U ′′

2D
. (A.5)

Physically, the eigenvalue Eλ ≡ λ/2D determines

U

QQ1 Q2Q0

Fig. A.1.

the speed with which the particular density pro-
file is returning to the equilibrium. The function

φ0(Q) = Const exp (−U/2D)

obeys Eq. (A.5) with the eigenvalue E0 = 0; it
corresponds to the equilibrium Boltzmann prob-
ability distribution. This function has no nodes
and, therefore, it is the ground state solution
of the Schrödinger equation (A.5). This is, of
course, consistent with the statement that any
initial distribution must eventually come to the equilibrium one. In this problem we need
to find the smallest positive eigenvalue λ1 with the associated eigenfunction φ1(Q), corre-
sponding to the exponentially slow process of equilibration between the two wells.

To find a very small value E1 we will employ a special perturbation theory, ordinarily used
for finding the level-splitting associated with quantum-mechanical tunneling. Specifically, we
know that the two wavefunctions must obey the equations

0 = φ′′1 + [E1 − V (Q)]φ1, 0 = φ′′0 − V (Q)φ0.

We multiply the first equation by φ0 and the second one by φ1, and subtract the results

0 = φ0 φ
′′
1 − φ1 φ

′′
0 + E1φ1 φ0 = (φ0 φ

′
1 − φ1φ0)

′
+ E1φ1 φ0.
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Integrating over one of the wells, we obtain

E1

∫ Q

−∞
φ1(Q′)φ0(Q′) dQ′ = φ1(Q)φ′0(Q)− φ0(Q)φ′1(Q). (A.6)

Normally, we would find the approximate value of the energy from this expression using the
quasiclassical wavefunctions in the region between the wells. However, it is easy to check
that the effective potential V (Q) has a third minimum near the top of the original barrier
U(Q), and the quasiclassic approximation fails. We shall use a different way of finding an
approximate wavefunctions, utilizing our knowledge of the exact ground state function φ0,
and the fact that the eigenvalue λ1 is exponentially small. This approach is similar to that
used in deriving the Kramers solution.

The density equilibration within each well happens much faster than that between the
wells, and we expect the distribution inside each well to be very close to an (independent)
equlibrium. The approximate wavefunction can be found by connecting these quasiequi-
librium solutions using the general zero-energy solution of Eq. (A.5). In general, we can
write

φ1(x) =





A1φ0(Q), Q0 −QÀ L0,

φ0(Q)

{
A0 +B0

∫ Q

Q0

e[U(Q′)−U(Q0)]/DdQ′
}
, Q1 ¿ Q¿ Q2,

A2φ0(Q), Q−Q0 À L0,

where the characteristic length L0 is defined by the potential profile near the top of the
barrier, and the solution in the middle region provides a constant flow of particles. The
coefficients A1, A2 can be found from the normalization condition of φ1 and the required
orthogonality between φ1 and φ0 (which directly follows from Eq. (A.6) if we set Q = ∞),
while the coefficients A0, B0 must be chosen by matching the wavefunctions between the
regions. After some algebra Eq. (A.6) yields

λ1 =
D

M

{
N−1

1 +N−1
2

}
,

where

N1 ≈
∫ Q0

−∞
e−U(Q)/DdQ, N2 ≈

∫ ∞
Q0

e−U(Q)/DdQ, M ≈
∫ Q2

Q1

eU(Q)/DdQ.

Unlike the Kramers solution, the above expressions are valid for any form of the potential
U(Q) at small enough D. For the potential quadratic both near the bottoms of the wells
and the top of the barrier, the characteristic length is L2

0 = D/|U ′′0 |, and

λ1 =
1

2π
e−U0/D

√
|U ′′0 |

{√
U ′′1 e

U1/D +
√
U ′′2 e

U2/D
}
,

where the indices 0, 1, 2 correspond to the values in the points Q0, Q1, Q2 respectively.

xSolution 1.4 (p. 18)
This problem is a simpler version of Prob. 1.1; in this case

R =
∫
dt (2Γq̇ + U ′(q))2, q(−∞) = qst; q(t) = q.
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The Lagrange equation can be written as

2Γ
d

dt
[2Γq̇ + U ′(q)] = [2Γq̇ + U ′(q)] U ′′(q),

or, after some algebra
4Γ2q̈ − U ′(q)U ′′(q) = 0.

Multiplying this expression by q̇, we notice that the obtained equation is the total time
derivative; therefore

2Γ2(q̇)2 − [U ′(q)]2/2 = Const.

To satisfy the condition at t = −∞ the arbitrary constant must vanish, Const = 0, and the
equation of motion along the extremal path becomes

2Γq̇ = U ′(q). (A.7)

Here the positive sign was chosen to enable the particle to go out of the stable equilib-
rium position. The obtained equation of motion describes an overdamped particle moving
“backward” in time. The value of the functional R along this trajectory is

R =
∫ t

−∞
dt (4Γq̇) 2U ′(q) = 8Γ [U(q)− U(qst)] .

xSolution 1.5 (p. 18)
As usual, the extremal solution gives the transition probability with an exponential accu-
racy. The preexponent can be evaluated by accounting for quadratic fluctuations around the
saddle-point solution. Since we did not calculate the corresponding functional determinant,
we would have exceeded the accuracy of the method by including the Jacobian in the optimal
path functional.

The complete path integral over the particle’s trajectory q(t), however, must include
the Jacobian of the transformation from f(t) to q(t). This functional determinant can be
found by writing the equation of motion (1.7) linearized near the extremal solution q0(t) =
q(t)− δq(t) in the finite difference form

2Γ

∆t
(δqi+1 − δqi) + U ′′(q0(ti))δqi = f(ti), (A.8)

with the time interval ∆t = ti+1 − ti. The determinant of the corresponding matrix is

∂[δq1, . . . , δqN−1]

∂[δf1, . . . , δfN−1]
=

N−1∏

i=1

(
2Γ

∆t
+ U ′′[q0(ti)]

)
≈
(

2Γ

∆t

)N−1

exp

{
1

2Γ

∑

i

∆t U ′′[q0(ti)]

}
.

In the limit ∆t→ 0 the sum becomes an integral, and, up to an overall constant, the required
Jacobian of the transformation from f(t) to q(t) can be written as

∂[δf(t)]

∂[q(t)]
= exp

{
− 1

2Γ

∫
U ′′[q(t)] dt

}
.

This implies that the probability distribution for the trajectories of an overdamped particle
in the potential U(q) is given by the following path integral

P [q(t)] ∼
∫
D[q(t)] e−R/4D e−(1/2Γ)

∫
U ′′[q(t)] dt,

where R is defined by Eq. (1.8).
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xSolution 1.6 (p. 18)
In this problem we just need to perform the momentum integration of the Kramers solu-
tion (1.20). After integrating by parts the total current over the top of the barrier is

j =
∫ ∞
−∞

pw(p, q)dp = λT
∫ ∞
−∞

dp exp

[
− p

2

2T

(
1 +

λΩ2

2Γ

)]
=
T λ

Ω3

√
4πλΓT ,

where we set and arbitrary constant to one, and used the relationship λ(λΩ2 + 2Γ) = 1.
Similarly, the right-going current at q = 0

j+ = j − j− =
∫ ∞

0
pw(p, q)dp

= T
∫ ∞

0
dξ exp− Ω2ξ2

4λΓT
+ λT

∫ ∞
0

dp exp

[
− p

2

2T

(
1 +

λΩ2

2Γ

)]

=
j

2

(
1 +

1

λΩ

)
.

As a result, the ratio j+/j− = (1 + λΩ)/(1− λΩ).

xSolution 1.7 (p. 18)
WKB-approach. The potential is assumed to be smooth enough, so that the Schrödinger
equation

ψ′′ +
2m

h̄2 (E − U(q))ψ = 0 (A.9)

iv

U(q)

b c

q

a

i ii iii

Fig. A.2.

can be solved approximately,

ψ(q) =
∑

±

C±√
|k|
e±i

∫
k dq, (A.10)

where k2 = 2m(E − U)/h̄2. This solution
is correct as long as

k′′

k
∼
(
k′

k

)2

¿ k2; (A.11)

it definitely fails in the vicinity of the turning points of the classical motion (these regions
are circled in Fig. A.2). In order to connect the wavefunctions found in different regions, we
need to continue these solutions analytically beyond the turning points.

In the region (i) the wavenumber k is purely imaginary, and the solution decays to the
left exponentially,

ψ(i) =
C0√
|k|

exp
∫ q

a
k dx

In the vicinity of the turning point a, but far enough from it so that Eq. (A.11) is still
satisfied, we expand

−k2 =
2m

h̄2 (U(q)− E) =
2mU ′(a)

h̄2 (q − a) + . . .
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Denoting α2 = 2mU ′(a)/h̄2, we can write after an explicit integration in the exponent

ii

q=a

i

Fig. A.3.

ψ(i) ' C0

α
√
q − a exp−2α

3
(a− q)3/2.

The immediate vicinity of the turning point a can be avoided by
moving around it in the complex plane where the WKB approxima-

tion holds. Moving above the point q = a we obtain

(a− x)→ (x− a)e−iπ, (a− x)3/2 → (x− a)3/2e−i3π/2,

ψ(i) → C0

α
√
q − a exp

[
iπ/4 +

2iα

3
(a− q)3/2

]
,

whereas moving below this point

ψ(i) −→ C0

α
√
q − a exp

[
−iπ/4− 2iα

3
(a− q)3/2

]
.

These are precisely the two solutions of Eq. (A.9) in the region (ii). Each time the analytic
continuation gives only one part of the solution; the other part is lost, because, compared
to the terms we keep, it is exponentially small off the real axis. The correct solution in the
region (ii) is

ψ(ii) =
2C0√
|k|

cos
(
π/4 +

∫ x

a
k(x)dx

)
. (A.12)

Instead of doing complicated transformations in the vicinity of the right edge of the well,
let us start over again with the outgoing flow of the particles in the region (iv),

ψ(iv) =
C1√
|k|

exp i
∫ x

a
k(x)dx.

Going around the turning point in the complex plane as before, it is easy to see that this
single solution transforms to the sum of two exponents,

ψ(iii) =
C1√
|k|

(
e−iπ/4+

∫ x
c
|k|dx + eiπ/4−

∫ x
c
|k|dx

)
.

Close to the left edge of the barrier the first term becomes exponentially bigger then the
second one, and we may discard the second term. Therefore, the corresponding solution
inside the well is

ψ(ii) =
2C1√
|k|

cos

(
−π/4 +

∫ b

x
k(x) dx

)
, (A.13)

and in order for Eqs. (A.12) and (A.13) match each other, we require

C0 = C1, and − π

2
+
∫ b

a
k(x) dx = nπ,

which is the usual Bohr-Sommerfeld quantization condition.
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The lifetime is defined as the ratio of a probability

W =
∫ b

a
|ψ|2 ≈ h̄|C0|22

∫ b

a

dx√
2m(E − U)

≡ h̄|C0|2 T
m

to find the particle inside the well, and the current out of the well,

I =
h̄

2mi

(
ψ∗iv

d

dx
ψiv − ψiv

d

dx
ψ∗iv

)
=
h̄|C0|2
m

exp−2
∫ c

b
|k(x)| dx.

Therefore the lifetime is simply

τ = T/D,

where T = 2
∫ b
a dx[2(E − U)/m]−1/2 is the classical period of oscillations of a particle with

energy E in the potential U(x), and

D = exp−2

h̄

∫ c

b

√
2m(U − E) dx

is the transparency of the barrier.

Even though we used the quasiclassical approximation to find the wavefunction, the
obtained answer is quite accurate for all states. For example, the lifetime of the ground state
in a nearly harmonic potential well is

τ =
T

D
√
π
,

which is only
√
π ≈ 1.7 smaller then our WKB result.

xSolution 1.8 (p. 18)

The non-local term L[q(t)] can be cast in the desired form after integrating Eq. (1.26) by
parts,

L[q(t)] = 2
∫ t

0
q̇(t′)κ(t− t′) dt′ + 2κ(t) q(0), (A.14)

where

κ(t) =
1

π

∫ ∞
0

dω

ω
F (ω) cos(ωt).

This function decays with the characteristic time tc ∼ ω−1
c defined in Sec. 1.B; after suffi-

ciently long time tÀ tc the term with initial conditions in Eq. (A.14) can be dropped.

Averaging the random force f(t) defined by Eq. (1.25) over the initial conditions, we
obtain Eq. (1.30). With the definition (1.27) we finally obtain

〈f(t)f(t′)〉 = T
2

π

∫ dω

ω
F (ω) = 2T κ(t− t′).

This is the classical version of the fluctuation-dissipation theorem for the considered system.
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xSolution 1.9 (p. 18)
In this problem we essentially have to rewrite Sec. 1.B, using non-commuting operators as
the Hamiltonian variables. Begin with the Hamiltonian (1.22) modified for the quantum
oscillator case

H = H0 +Hb +Hi, H0 = ω0

(
a†a+

1

2

)
, Hb =

1

2

∑
µ

ωµ

(
b†µbµ +

1

2

)
,

Hi =
∑
µ

(
fµ q qµ +

1

2
(fµ/ωµ)2q2

)
, where q =

a+ a†√
2ω0

, qµ =
bµ + b†µ√

2ωµ
.

The Heisenberg equations of motion for the oscillator operators are

−iȧ† = ω0 a
† +

1√
2ω0

∑
µ

(
fµ qµ +

f 2
µ

ω2
µ

q

)
, (A.15)

−iḃ†µ = ωµ b
†
µ +

fµ√
2ωµ

q. (A.16)

The self-consistent equation for the operators a, a† can be obtained by substituting the
solution of the second equation,

b†µ = b†µ0e
iωµt +

i fµ√
2ω0

∫ t

0
q(t− τ)eiωµτdτ ,

in Eq. (A.15). We obtain, in perfect analogy with Eq. (1.35),

−iȧ† = ω0 a
† − 1√

2ω0

{L[q(t)] + f(t)} ,

where L[q(t)] is given exactly by Eq. (1.26) with the coupling density of states (1.27), and
the operator of the environmental force

f(t) = −∑
µ

fµ√
2ωµ

(
b†µ0 e

iωµt + bµ0 e
−iωµt

)
.

By introducing the slow variables a†(t)→ a†(t) exp iω0t, we obtain the equations of motion
that look exactly like Eq. (1.35). Therefore, we can perform the expansion (1.36) and,
keeping only the resonant terms in the limit τ → ∞, obtain the quantum form of the
Langevin equations

ȧ† = −a† Γ + ia†P − f̃(t), (A.17)

where Γ and P are given by Eqs (1.38), and the slow part of the random force

f̃(t) = i
∑
µ

fµ
2
√
ω0ωµ

bµ0 e
i(ω0−ωµ) t.

The corresponding correlation function

〈
f̃ †(t) f̃(t′)

〉
=

1

2ω0

∑
µ

f 2
µ

2ωµ
ei(ω0−ωµ) (t−t′) 〈b†µ bµ

〉
=

1

2πω0

∫
dωF (ω)nω e

i(ω0−ω) (t−t′), (A.18)
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where nω =
(
eβω − 1

)−1
is the usual bosonic occupation number. The correlator (A.18) is

essentially non-zero only in the vicinity of t = t′; in the coarsened time
∫
ei(ω−ω0) t dt = 2πδ(ω − ω0),

which leads to 〈
f̃ †(t) f̃(t′)

〉
= 2Γnω0 δ(t− t′). (A.19)

Similarly, the other correlator
〈
f̃(t) f̃ †(t′)

〉
= 2Γ (nω0 + 1) δ(t− t′). (A.20)

The solution of the quantum Langevin equation (A.17) and its conjugate can be written as

a†(t) = a†0 e
−z∗t +

∫ t

0
f̃ †(τ) e−z

∗(t−τ) dτ, a(t) = a0 e
−zt +

∫ t

0
f̃(τ) e−z(t−τ) dτ, z ≡ Γ + iP .

This implies the averages
〈
a†(t)

〉
=
〈
a†0
〉
e−z

∗ t, 〈a(t)〉 = 〈a0〉 e−z t, (A.21)
〈
a†(t) a(t)

〉
=
〈
a†0 a0

〉
e−2Γ t + nω0

(
1− e−2Γt

)
→ nω0 , t→∞ (A.22)

and, in generall, for n ≥ m,

〈
a†
n
am
〉

=
m∑

k=1

n!m!

k! (n− k)! (m− k)!

〈
a†0
n−k

am−k0 e−(n+m−2k) Γ t+i(n−m)P t
〉
nkω0

(
1− e−2Γ t

)k
.

Clearly, in the stationary case, the averages do not resemble those for an oscillator. Instead,
the Wick theorem is satisfied,

〈
a†
n
(t) am(t)

〉
t→∞
= m! δnm (2Γnω0)k .

xSolution 1.10 (p. 18)
This is a linear dissipative system; the Langevin equation is

C
R

L

Fig. A.4.

L Q̈+R Q̇+
Q

C
= E(t),

where L is the inductance, C is the capacitance and R is the
total resistance of the RCL cirquit, and E(t) is the e.m.f. of the
thermal noise. It is possible to solve this problem directly using the
results of the previous one. Here we give an alternative solution,
based only on the knowledge of the thermal averages for a weakly

dissipative oscillator, and the assumption that thermal e.m.f. generated on the resistor is
independent of the presence of other elements, so that the weakly-dissipative oscillator works
as the spectrum analyzer.

The average thermal energy in the cirquit,

L 〈I2〉
2

=
〈Q2〉
2C

=
h̄ω0

2

(
nω0 +

1

2

)
, (A.23)
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is sustained by the fluctuations of the thermal e.m.f. with the correlator

〈EωEω′〉 = A(ω) δ(ω + ω′),

where A(ω) is so far an unknown function. Assuming this function varies slowly at the scale
of Γ, the equilibrium energy (A.23) can be written as

∫ ∞
−∞

dω

2π

〈|Qω|2〉
2C

=
1

2L2C

∫ ∞
−∞

dω

2π

A(ω)

(ω2
0 − ω2)2 + 4Γ2ω2

≈ A(ω0)

2L2C

1

4Γω2
0

=
A(ω0)

4R
,

where Γ = R/2L and ω2
0 = (LC)−1. Comparing this result with Eq. (A.23), we obtain

A(ω) = Rω (2nω + 1).

This is the quantum version of the fluctuation-dissipation theorem for this system. In the
classical limit h̄ω ¿ T we, of course, recover the usual form A(ω)→ 2RT .
Alternative solution Defining the canonical parameters 2Γ ≡ R/L, ω2

0 = (LC)−1, the
coordinate q = Q/

√
C and the force f =

√
CE/L, we can rewrite this equation in the

canonical Langevin form
q̈ + 2Γq̇ + ω2

0q = f(t),

with 〈f(t) f(t′)〉 = 2ΓT δ(t − t′). The corresponding quantum Langevin equations can be
written as Eq. (A.17) with P = 0. The operator of the environmental force f(t) expressed
in terms of operators f̃ , f̃ † is

f(t) =

√
ω0

2

[
f̃ †(t) + f̃(t)

]
.

With these definitions, and using the Ohmic form (1.28) of the function F (ω), the power spec-
trum of the fluctuations of the random force can be obtained from the correlators Eq. (A.18)
and its counterpart for 〈f̃(t) f̃ †(t′)〉.

xSolution 2.1 (p. 32)
The equations of motion for pair operators are obtained by commuting them with the Hamil-
tonian,

−iψ̇l = [H,ψl] = −t ψr + 2eV ψl, . . .

The pair tunneling current can be written as

I

2e
=

d

dt

(
ψ†l ψl

)
= i

[
H,ψ†l ψl

]
= it

(
ψ†r ψl − ψ†l ψr

)
.

Introducing the classical degrees of freedom,

ψl,r = n
1/2
l,r exp(iφl,r), nl ≈ nr ≡ n0, φr = φl + θ, (A.24)

we obtain the Josephson current

I = 2i e n0 t
[
ei(φl−φr) − c.c.

]
= −4n0 e t sin θ.
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Similarly, the phase evolution equation

θ̇ = 2eV

is derived from the definitions (A.24) by taking a difference of the following equations

ψ̇†lψl − ψ†l ψ̇l = −2iφ̇l nl = it
(
ψ†rψl + ψ†lψr

)
− 2ieV ψ†lψl,

ψ̇†rψr − ψ†rψ̇r = −2iφ̇r nr = it
(
ψ†rψl + ψ†lψr

)
+ 2ieV ψ†rψr.

For the cirquit shown in Fig. A.5, I1 = C V̇ , I2 = V/R,

R V
C

I1 I2 I

Fig. A.5.

and the total current

I = I1 + I2 = C V̇ + V/R,

or, in terms of the phase difference θ,

θ̈ + 2β θ̇ + ω2
0 sin θ = 0,

where 2β ≡ (RC)−1, ω2
0 ≡ 8n0 e

2 t/C. The Langevin equa-
tion for this system can be obtained by adding the e.m.f. of the Nyquist noise generated on
the resistor (See Prob. 1.10 at p. 18).

xSolution 2.2 (p. 32)
Let us measure the energy E down from the top of the barrier. Then Eq. (2.4) becomes

W = Z−1
∫ ∆U

0
dE exp(−2S(E) + E/T ), (2.4′)

where the tunneling action

S[E] =
∫ E

0
τp(E) dE.

is expressed in terms of the period τp(E) of oscillations in the inverted potential. If this
period is a linear function of energy, τp(E) = τp(0) + τ ′p(0)E, then

W (E) ≈ Z−1 e−∆U/T
∫ ∞

0
dE exp

[
(T−1 − T−1

0 )E − E2/τ ′p(0)
]

= A(T ) e−R(T ),

where the exponent

R(T ) =
∆U

T
− 1

4τ ′p(0)
(T−1 − T−1

0 )2.

pτ

E

T0
-1

T1
-1

Fig. A.6.

Similarly, if the period has a non-monotonic form,

τp(E) = τp(0)− |τ ′p(0)|E + τ ′′p (E)E2/2,

as illustrated in Fig. A.6, the extremum equation τp(E) = T−1

has two solutions in the region of temperatures

1

τp(0)
≡ T0 < T < T1 ≡ 1

τmin

.
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In this case the escape exponent will be determined by the
minimum of the action, which can be reached either in the endpoint E = 0 or in one of the
roots

E± =
|τ ′p(0)| ±

√
[τ ′p(0)]2 + 2(T−1 − T−1

0 )

τ ′′p (0)

of the extremum equation. This situation, which is characterized by competition between
different minima, is somewhat analogous to first order phase transitions. Conversely, the
analogy to to second-order phase transitions can be drawn in the usual case, where the
fluctuations in the vicinity of the bounce solution diverge (see Sec. 3.1) as the temperature
approaches the crossover.

xSolution 2.3 (p. 32)
The bounce solution corresponds to the motion of a particle in the inverted potential with
zero energy,

1

2
q̇2 − U(q) =

1

2
q̇2 − 1

2
q2 +

1

4
q4 = 0, (A.25)

which can be integrated as usual,

(τ − τ0) =
∫ dq√

q2 − q4/2
=

{
q =
√

2 sinα

dq =
√

2 cosα dα

}
= −

∫ dα

sinα
= ln

∣∣∣∣tan
α

2

∣∣∣∣ ,

with the result

q =
√

2 sinα = ±
√

2

cosh(τ − τ0)
.

The corresponding action

S[q] =
∫ (

q̇2

2
+ U(q)

)
dτ = 2

∫ √2

0
dq
√

2U(q) = 2
∫ √2

0
dq q

√
1− q2/2 =

4

3
,

where we used the energy equation (A.25) to express the time differential dτ = dq/
√

2U .

xSolution 2.4 (p. 32)
We need to evaluate the prefactor

C =
A1

(2π)1/2




det

(
− d2

dτ 2
+ 1− 3q2

)

q=0∣∣∣∣∣∣
det′

(
− d2

dτ 2
+ 1− 3q2

)

q=Q(τ)

∣∣∣∣∣∣




1/2

, (2.28′)

for the bounce solution Q(τ) =
√

2/ cosh τ found in the previous problem. Here the zero
mode normalization term

A1
(2.23)
=

{∫ ∞
−∞

dτ
[
Q̇(τ − τ0)

]2}1/2

=
{∫

dτ
[
1

2
Q̇2 + U(Q)

]} 1
2

=
2√
3
.
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The numerator of Eq. (2.28′) is trivial,

∆0 ≡ det

(
− d2

dτ 2
+ 1− 3q2

)

q=0

=
∞∏

n=1

(
1 + 4π2β2n2

)
,

but we have to work much harder to find the denominator.
We need to find all eigenvalues Λn and the corresponding eigenfunctions qn(τ) for the

equation

−q̈n + (1− 3Q2) qn = Λ qn,

with the boundary conditions q(−β/2) = q(β/2), q̇(−β/2) = q̇(β/2) in the limit of large
β →∞ . After the transformation tanh τ = ξ, q(τ) = φ(ξ) the differential equation acquires
a hypergeometric form,

d

dξ

[
(1− ξ2)

dφ

dξ

]
+

[
2Λ

1− ξ2
+ 6

]
φ = 0,

with the solution [See L&L III, §23, Prob. 5]

φ = (1− ξ2)ε/2 F [ε− 2, ε+ 3, ε+ 1, (1− ξ)/2],

where

F (α, β, γ, z) = 1 +
αβ

γ

z

1!
+
α (α + 1)β (β + 1)

γ (γ + 1)

z2

2!
+ · · · ,

with s = 2 and ε =
√

1− Λ.
Using the property [L&L III, Eq. (E.5)]

F (α, β, γ, z) = (1− z)−α F
(
α, γ − β, γ, z

z − 1

)

= (1− z)2−ε F

(
ε− 2,−2, ε+ 1,−1− ξ

1 + ξ

)
,

we obtain

φ = Const
e−ετ

(1 + e−2τ )2 F (ε− 2,−2, ε+ 1,−e−2x)

= Const
e−ετ

(1 + e−2τ )2

{
1 +

(ε− 2)(−2)

ε+ 1

(−e−2τ )

1!
+

(ε− 1)(ε− 2)(−2)(−1)

(ε+ 1)(ε+ 2)

e−4τ

2!
+ . . .

}

= Const
e−ετ

(1 + e−2τ )2

{
1 +

2(ε− 2)

ε+ 1
e−2τ +

(2− ε)(1− ε)
(2 + ε)(1 + ε)

e−4τ

}

This wavefunction is obviously zero at τ → +∞, and it also vanishes at τ → −∞ if the
term ∼ e−4τ is absent, therefore ε = 1 or ε = 2 are the only allowed values. The value ε = 1
corresponds to Λ1 = 0 and the wavefunction ψ1 = sinh τ/ cosh2 τ—this is the solution we
already know. Similarly, for ε = 2, we obtain Λ0 = 2E + 1 = −3 and ψ0 = 1/ cosh2 τ .
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For Λ > 1, the parameter ε =
√

1− Λ ≡ ik is purely imaginary. Our solution becomes

ψ(τ) =
e−i k τ

(1 + e−2τ )2

{
1 +

2(ik − 2)

1 + ik
e−2τ +

2− ik
2 + ik

1− ik
1 + ik

e−4τ

}

=





e−ikτ , τ → +∞,
2− ik
2 + ik

1− ik
1 + ik

e−ikτ , τ → −∞.

Clearly, this potential does not scatter linear waves. We can meet the periodicity require-
ments by demanding

2− ik
2 + ik

1− ik
1 + ik

ei k β = e−2π i n, n = 0,±1,±2, . . .

This is equivalent to β kn = 2π n + δ(kn), where δ(k) = 2 arctan(k) + 2 arctan(k/2) is the
phase shift associated with the potential well. Obviously, Λn = 1 + k2

n, and we now have
everything to compute the determinant

∣∣∣∣∣
∆0

∆′1

∣∣∣∣∣

1
2

=
1√
3

∞∏

n=1

(
1 + 4n2π2 T 2

)

∞∏

n=1

(
1 + [2πn+ δ(kn)]2 T 2

)

≈ 1√
3

exp

{
1

π

∫ ∞
0

k (2π − δ(k)) dk

k2 + 1

}
,

where the approximation of the sum by the integral is valid because only large values n ∼ β
contribute to this sum.

Performing the integration, we obtain the prefactor associated with the bounce solution,

C1 =
2

3
√

2π
exp(ln 6) =

4√
2π
.

The full prefactor for the tunneling rate is twice as large, because there exists another,
symmetric classical solution q̄(τ) = −Q0(τ), responsible for the particles escaping to the
left. Therefore, the tunneling rate from the quartic potential well (2.36) can be written as

W =
8√
2πh̄

exp (−4/3h̄) ,

where the Planck constant h̄ was restored to provide a small parameter for the quasiclassical
expansion.

xSolution 2.5 (p. 33)
In the lowest order in powers of the coupling to the thermal bath, we can neglect any
corrections to the bounce solution

Q(τ − τ0) = β
∑
n

Qne
iωn(τ−τ0), ωn = 2π nT.
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Since Q(τ) is real, Qn = Q∗−n. Let us write the correction to the Euclidean action

∆SE =
∑
µ

∫ β

0
dτ



(
dqµ
dτ

)2

+ ω2
µq

2
µ + fµ q qµ +

f 2
µ

2ω2
µ

q2




=
β

2

∑
n,µ

(ω2
n + ω2

µ)

∣∣∣∣∣qµ,n +
fµqn

ω2
n + ω2

µ

∣∣∣∣∣
2

+
β

2

∑
n,µ

f 2
µ

(
1

ω2
µ

− 1

ω2
n + ω2

µ

)
|qn|2.

The first term contributes to the partition function of the non-perturbed phonon bath, while
the second term constitutes the correction to the exponent of the tunneling probability,

∆SE =
β

2

∑
n,µ

|Qn|2 f 2
µ

(
1

ω2
µ

− 1

ω2
n + ω2

µ

)
> 0. (A.26)

Note, that this is just a different form of the correction in Eq. (3.7) with the coefficients (3.9).
The correction to the Euclidean effective action is obviously positive, and we conclude that,
in the lowest order approximation, the thermal bath coupling suppresses the quantum tun-
neling.

xSolution 3.1 (p. 41)
The classical partition function is given by the integral

Z =
∫
e−β H(p,q) dp dq =

√
2πT

∫
e−β U(q) dq,

where H(p, q) = p2/2 + U(q) is the classical Hamiltonian of the particle. For negative
λ = −|λ|, the potential energy is positive only in the regions

| arg q − nπ/2| < π/4, n = 0, 1, 2, 3,

which are shaded in Fig. A.7, and the integration along the real axis q formally diverges. The
integration can converge only if the integration contour begins and ends in shaded regions.

q’

q’’
q

Fig. A.7.

To evaluate the imaginary part of the partition
function, we have to do the analytic continuation as
explained in Sec. 2.4. Introduce the continuously vary-
ing λ = |λ| eiφ. As φ changes from zero to π, in order
to preserve the convergence of the integral, the integra-
tion contour which originally was aligned with the real
axis is gradually deformed into the dashed line. The
saddle-point integration the contour shown with the
solid line, which passes through the extremum points
q± = ±|λ|−1/2 of the potential energy, gives the imag-
inary part of the partition function

ImZ =
2π T

Ω
exp(−β∆U),

where Ω2 ≡ |U ′′(q±)| = 2, and ∆U ≡ U(q±)−U(0) = 1/4λ. The contribution of each saddle
point to the imaginary part of the free energy is, therefore,

β ImF± ≈ ImZ

Z
=

ω

2Ω
e−β∆U .
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The relationship (3.3) can be obtained by comparing this result with the Kramers escape
rate (1.21), which at Γ = 0 gives

W± = (ω/2π) exp(−β∆U) = (T0/T ) 2 ImF±,

with T0 = Ω/2π. The total escape rate is, of course, twice as large, because we need to
add the contributions of both stationary points, which reflects the fact that the particle can
escape in either direction.

xSolution 3.2 (p. 41)
Start with Eq. (3.10) where the function

κ(τ) = β−1
∑
n

Φne
−iωnτ ,

and the coefficients are given by Eq. (3.9) [See also Prob. 2.5 at p. 33]. Because Φn=0 = 0,
∫ β

0
κ(τ − τ ′) dτ = 0,

the action does not change after the addition of the quantity

0 = −1

4

∫ β

0
dτ
∫ β

0
dτ ′κ(τ − τ ′) [q2(τ) + q2(τ ′)].

Therefore, the non-local term can be written as

∆SE = −1

4

∫ β

0
dτ
∫ β

0
dτ ′ κ(τ − τ ′) [q(τ)− q(τ ′)]2. (A.27)

The dependence of the function κ(τ − τ ′) on the imaginary time τ is determined by the sum

A(ω, τ) =
∑
n

ω2
n

ω2
n + ω2

e−iωnτ ,

which is convenient to transform using the Poisson summation formula,

A(ω, τ) =
1

2π

∑
m

∫
dν

[
1− ω2

ω2 + ν2

]
eiν(τ−mβ) =

∑
m

δ(τ −mβ)− |ω|
2
e−|ω(τ−mβ)|.

Eq. (A.27) becomes

∆SE = − 1

2π

∫ β

0
dτ
∫ β

0
dτ ′[q(τ)− q(τ ′)]2∑

m

∫ ∞
0

dω

ω
F (ω)

{
δ(τ−τ ′−mβ)− ω

2
e−ω |τ−τ

′−mβ|
}
.

The term with δ-function vanishes because of the periodicity of q(τ), while the remaining
part can be transformed by changing τ → τ −mβ in the m’th term, so that the summation
over m is replaced by extending the integration interval in τ ,

∆SE =
1

2

∫ ∞
−∞

dτ
∫ β

0
dτ ′[q(τ)− q(τ ′)]2 1

2π

∫
dωF (ω) e−ω|τ−τ

′|

︸ ︷︷ ︸
α(τ − τ ′)

.

This is the expression we needed to prove. For the special case of Ohmic dissipation, F (ω) =
2Γω e−εω, ε→ +0, and we easily obtain

α(τ) =
Γ

π

∫ ∞
0

dω ω e−εω+ω|τ−τ ′| =
Γ

π

1

(ε+ |τ − τ ′|)2

ε→0
=

Γ

π(τ − τ ′)2
.

As promiced, the non-local coupling function has a long-range tail.
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xSolution 3.3 (p. 41)
Suggested solution
Use the action in the form (3.7), with no kinetic energy term, and

Φn =
2ω2

n

π

∫ ∞
0

dω

ω

F (ω)

ω2 + ω2
n

=

(
Ohmic

F (ω) = 2Γω

)
=

4Γω2
n

π

∫ ∞
0

dω

ω2 + ω2
n

= 2Γ |ωn|,

which corresponds to the Ohmic dissipation case,

SE =
∫ β

0
U(q) dτ + β Γ

∑
n

|ωn| qn q−n, U(q) = 3U0

(
q

q0

)2 (
1− 2q

3q0

)
. (A.28)

Using the Fourrier expansion q(τ) =
∑
n an exp(iωnτ), we can write the equations of motion

in the form

s qm + |ωm| qm =
s

qm

∑

l

qm−l ql, where s ≡ 3U0

Γ q2
0

. (A.29)

This is an infinite set of quadratic algebraic equations, which is, of course, impossible to
solve in general. Luckily, the form of the solution can be guessed as qm = A exp(−B |m|),
and the convolution in the r.h.s. of Eq. (A.29) can be evaluated as

(q2)m ≡
∑

l

qm−l ql = |A|2 e−B |m| (|m| + cothB) = A |m| qm + Aqm cothB.

The coefficients here can be mached with those in Eq. (A.29), with the result

2q0 = A cothB, cothB =
β s

2π
. (A.30)

The partition function can be evaluated after some more algebra,

SE = 2Γβ
∑

m≥0

(s+ ωm) |qm|2 − Γ β s

3q0

∞∑

m=−∞
q−m(q2)m

=
2Γ β

3

∑

m≥0

(ωm + s) |qm|2 = 4π Γ q2
0


1− 1

3

(
2π

β s

)2



= 4π
(
Γ q2

0

) [
1− 4π2

27

T 2

U2
0

(
Γ q2

0

)2
]
.

Alternative solution
We had to use the Fourrier representation of the extremum equation for the Euclidean
action functional (A.28) because the dissipative term is non-local in the time representation.
Here we shall write a differential equation for q(τ), by using a trick similar to the Wiener-
Hopff method of solving ordinary differential equations. Let us decompose the function
q(τ) = q+(τ) + q−(τ), where

q+(τ) =
∑
n

′qn eiωnτ ≡ q0

2
+
∑

n>0

qn e
iωnτ ,
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is the part of the function q(τ) analytic in the upper half-plane of complex τ , and q− ≡ q∗+
as follows from the reality of q(τ). Now the effective action (A.28) can be written in a
completely local form,

SE = 2Γ
∫ β

0

{
−i q∗+

∂q+

∂τ
+ s |q+|2 − 3 s

2q0

q3

}
dτ . (A.31)

Performing the variation over q− = q∗+, we obtain an integro-differential equation

−idq+

dτ
+ s q+ =

s

2q0

(q2)+, (A.32)

with the integration hidden in the r.h.s.: (q2)+ denotes the part of the function q2 which is
analytic in the upper half plane of comlex τ .

Let us assume that the function q+(τ) has only power-like singularities,

q+(τ) = C0 (τ − τ0)α, τ → τ0 ≡ τ ′0 − iτ ′′0 .

By construnction, these singularities can only be below the real axis, τ ′′0 > 0. For negative α
the most singular part of (q2)+ is (q+)2, and, writing the equation for q+ near the singularity,
by power counting it is easy to conclude that the only possibility is α = −1, i.e. q+(τ) may
have only single poles and no other singularities.

Generally, at zero temperature, β = ∞, the obtained variational equations admit solu-
tions with different number of poles,

q+(τ) =
N∑

k=1

Ck
τ − τk .

For such functions, it is easy to calculate the quantity (q2)+ by expanding the square into
irreducible fractions, and discarding the terms with singularities in the wrong half of the
complex plane. The simplest is the function with only one pole, N = 1, which corresponds
to the usual bounce solution. For this case, the variational equation has the form

iC1

s (τ − τ1)2
+

C1

τ − τ1

=
1

2q0

[
C2

1

(τ − τ1)2
+

2C1 C
∗
1

(τ − τ1)(τ1 − τ ∗1 )

]
,

and we immediately obtain

C1 =
2iq0

s
, τ ′′1 =

1

s

The position of the single pole is defined uniquely, up to a translation along the real axis.
As a result, the overdamped bounce solution at zero temperature can be written as

q(τ) =
8q0

1 + 4s2 (τ − τ ′0)2
,

and the corresponding action evaluates to SE = 4π q2
0Γ.
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At non-zero temperatures the construction is similar, but we have to account for the
periodicity of the functions q±(τ). The simplest periodic solution of variational equations
has a single pole per period,

q+(τ) =
∑

k

C

τ − τ0 − βk = π C T cot[(τ − τ0)π T ], q(τ) = 2 Re q+(τ), (A.33)

and in the vicinity of the point τk ≡ τ0 + β k we obtain the equation

iC

s (τ − τk)2
+

C

τ − τk =
1

2q0

[
C2

(τ − τk)2
+

2π i T |C|2 coth(2π T τ ′′0 )

(τ − τk)

]
,

which implies

C =
2iq0

s
, tanh(2π τ ′′0 T ) =

2π T

s
.

Of course, these relations are equivalent to Eqs. (A.30). However, the easiest way to calculate
the corresponding action is by performing the Fourrier representation. Therefore, the only
advantage of this more complicated approach is that we managed to solve the extremum
equations directly, and thus eliminated the “guessing” part of the solution.

xSolution 3.4 (p. 41)
It is important that the coupling Hi is linear in the variables of the bath, so that we can
integrate out its degrees of freedom. The functions q(τ) and fµ(q(τ)) are periodic with the
period β. Denoting

φµn = β−1
∫ β

0
fµ(q(τ)) e−iωnτ dτ,

where ωn are the usual Matsubara frequencies, we can write the part of the Euclidean action
depending on the coordinates of phonons

SE =
β

2

∑
n,µ

{
(ω2

µ + ω2
n) |qµn|2 + φµn q

µ
−n + φµ−n q

µ
n

}

=
β

2

∑
n,µ

(ω2
µ + ω2

n)

∣∣∣∣∣q
µ
n +

φµn
ω2
µ + ω2

n

∣∣∣∣∣
2

− β

2

∑
n,µ

φµn
1

ω2
n + ω2

µ

φµ−n.

After the shift of the oscillator coordinates, the first term evaluates to the non-perturbed
action of the bath. The effect of the thermal bath on the system is entirely due to the second
term, which can be written as

δS[q] = −1

2

∫ β

0
dτ
∫ β

0
dτ ′

∑
µ

fµ(q(τ)) fµ(q(τ ′))αµ(τ − τ ′),

where

αµ(τ) ≡ β−1
∑
n

eiωnτ

ω2
n + ω2

µ

=
e−ωµτ + e−ωµ(β−τ)

2ωµ (1− e−ωµβ)
.

Note that this coupling does not vanish at τ = 0; in addition to the dissipation induced by
the bath it accounts for the renormalization of the potential U(q).
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xSolution 4.1 (p. 58)
See L&L “Quantum Mechanics”.

xSolution 4.2 (p. 58)
Consider the wavefunction which is equivalent to a plane wave φ(τ) = eik τ in the asymptotic
region τ → +∞. The asymptotic form of this solution in the region τ → −∞ can be
obtained with the scattering matrix tij, which relates the amplitudes of the waves far from
the potential barrier, ai1 = tij aj2, so that

φ(τ) = t11 e
ik τ + t21 e

−ik τ , τ → −∞
Since the potential is real, the complex-conjugate function φ∗(τ) is also a solution,

φ∗(τ) =

{
e−ik τ , τ → +∞,
t∗11 e

−ik τ + t∗21 e
ik τ , τ → −∞.

On the other hand, we can use the transmission matrix to find the τ → −∞ asymptotics of
the same solution as

φ∗(τ) = t12 e
ik τ + t22 e

−ik τ , τ → −∞.
The two forms of the same asymptotic must be equal, which implies

t12 = t∗21, t22 = t∗11, and, therefore,
∣∣∣∣
t11 + t21

t12 + t22

∣∣∣∣ =

∣∣∣∣∣
t11 + t21

t∗11 + t∗21

∣∣∣∣∣ = 1.

xSolution 4.3 (p. 58)
Rewrite the partition function (4.30) in the form

Z = TrTτ

{
exp

(
−∆

2

∫ β

0
σx(τ) dτ +

1

8

∫ β

0
dτ ′

∫ τ ′

0
dτ ′′ κ(τ ′ − τ ′′) [σz(τ

′)− σz(τ ′′)]2
)}

,

where κ(τ) is given by Eq. (4.2), or Eq. (4.4) for the special case of Ohmic dissipation.
Expanding this expression in powers of ∆, we insert the spin flip operators at different
moments of imaginary time τk. These operators affect the value of the integrand in the
second term in the exponent, which becomes a piecewise continuous function with values 0
or 4κ(τ ′ − τ ′′) depending on the number of spin flips inserted between the moments τ ′ and
τ ′′. Because of the trace, only an even number of spin flips is allowed every term of this
expansion, and the exponent of the 2n-th term can be written as

1

2

(∫ τ2

τ1
dτ ′

∫ τ1

0
dτ ′′ +

∫ τ3

τ2
dτ ′

∫ τ2

τ1
dτ ′′ +

∫ τ4

τ3
dτ ′

∫ τ1

0
dτ ′′ +

∫ τ4

τ3
dτ ′

∫ τ3

τ2
dτ ′′ + . . .

)
κ(τ ′ − τ ′′).

Defining

γ(τ1 − τ2) ≡
∫ τ1

0
dτ ′

∫ τ2

0
dτ ′′ κ(τ ′ − τ ′′) τ̄¿|∆τ |¿β

= −Γ

π
ln |τ1 − τ2|+ Const,

where τ̄ is some high-frequency cut-off, we can rewrite the sum of integrals as

Γ

π

∑

i>j

(−1)i−j ln
∣∣∣∣
τi − τj
τ̄

∣∣∣∣ ,
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where the contribution of the end points τ = 0, β cancel because of the periodicity of the
function γ(τ), and the self-interaction terms contribute to the definition of the cut-off time
τ̄ . The partition function becomes

Z = 2
∑

n≥0

(
∆τ̄

2

)2n ∫ β

0

dτ2n

τ̄

∫ τ2n

0

dτ2n−1

τ̄
. . .
∫ τ2

0

dτ1

τ̄
exp



2α

∑

i>j

(−1)i−j ln
∣∣∣∣
τi − τj
τ̄

∣∣∣∣



 ,

where α ≡ Γ/π and the overall factor 2 is due to the trace over the spin values. Comparing
this expression with Eq. (4.26), we conclude that, indeed, the spin system is equivalent to a
continuous two-level system with qleft = 1/2.

xSolution 5.1 (p. 72)
Without going into complicated matters of the inter-particle forces, let us assume the par-
ticles in a crystal interact by a pairwise potential, quadratic near the minimum at some
distance a, and short-range enough so that we can restrict ourselves to the nearest-neighbor
coupling. The energy assocuated with small displacements from the equilibrium position a
is

δr U ≡ U(|a + r|)− U(a) =
mω2

0

2
(|a + r| − a)2 ≈ mω2

0

2
(â · r)2, â ≡ a

a
.

Therefore, the equation for the displacement ri of i-th particle in the crystal can be written
as

r̈i + ηṙi = −ω2
0

∑

j

(ri − rj · âj) âj,

where the summation is performed over the nearest neighbors of the chosen particle, and η
is the coefficient of viscous friction.

For an infinite uniform crystal the solutions of this infinite system of linear differential
equations are plane waves, rj = uk exp(ik ·aj − iωt), where the frequency ω, the momentum
k and the amplitude uk satisfy the equation

−ω2 uk − iω η uk + ω2
0

∑

j

(
1− eik·aj

)
âj (âj · uk) = 0.

In the absence of the dissipation the low-lying modes of this equation are characterized by
the sound speed s, ωk = s k; for the solid in d dimensions there are exactly d different sound
modes. The corresponding dispersion equation for the dissipative modes can be written as

−ω2 − iη ω + s2 k2 = 0.

For s k ¿ η the corresponding frequences are ω+ ≈ iη, ω− ≈ 2is2 k2/η. There are exactly
two overdamped modes for each original sound mode. However, only one of these modes is
a true Goldstone mode: the mode ω− which describes the diffusion. The presence of such
mode is granted by the translational invariance.

xSolution 5.2 (p. 73)
Let us begin with Eq. (5.14), which is applicable for long enough times,

t−1 ∼ W ¿ t−1
corr. ∼ min(T, TD),
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where TD is the Debye temperature associated with the bath. After some algebra one
can show that the interaction Hamiltonian in the interaction representation is given by the
expression

Hi(t) ≡ eit(H0+Hb)Hi e
−it(H0+Hb) =

∑
q

fq e
iqr eit∆

+
p + h.c. =

∑
q

fq e
it∆−p eiqr + h.c.,

where ∆+
p = εp+q− εp−ωq, ∆−p = εp− εp−q−ωq, and εp ≡ p2/2m. Now it is easy to evaluate

the phonon average of the double commutator in Eq. (5.14), with the result

−dG
dt

=
∑
q

|fq|2
∫ t

0
dt′
{
ei(t−t

′)∆−p G(nq + 1) + nqGe
i(t−t′)∆+

p − nq eit∆
−
p eiqrGe−iqr e−it

′∆−p

−(nq + 1) e−it∆
+
p e−iqrGeiqr eit

′∆−p
}

+ h.c.,

where the density matrix is, of course, Hermitian, G† = G. In the derived expression the
exponent eiqr serves as the momentum boost operator; taking the matrix elements between
the states with momenta p and p′, we get

−dρ̃p,p′

dt
=
∑
q

|fq|2
∫ t

0
dt′

×
{[

(nq + 1)
(
ei(t−t

′)∆−p + e
−i(t−t′)∆−

p′
)

+ nq

(
e
i(t−t′)∆+

p′ + e−i(t−t
′)∆+

p

)]
ρ̃p,p′

−nq
[
e
it∆−p −it′∆−p′ + (t↔ t′)

]
ρ̃p−q,p′−q − (nq + 1)

[
e
it′∆+

p′−it∆
+
p + (t↔ t′)

]
ρ̃p+q,p′+q

}
.

Ignoring the principal value parts generated by the time integration (as before, these terms
renormalize the kinetic energy of the particle), we obtain the final form of the quantum
kinetic equation for the particle in a thermal bath

−dρ̃p,p′

dt
= Wρ̃p,p′ − π

∑
q

|fq|2 nq eitq(p−p′)/m
[
δ(∆−p′) + δ(∆−p )

]
ρ̃p−q,p′−q

−π∑
q

|fq|2 (nq + 1) e−itq(p−p′)/m
[
δ(∆+

p ) + δ(∆+
p′)
]
ρ̃p+q,p′+q,

W = π
∑
q

|fq|2
{
nq
[
δ(∆+

p ) + δ(∆+
p′)
]

+ (nq + 1)
[
δ(∆−p′) + δ(∆−p )

]}
. (A.34)

The usual (quasiclassical) kinetic equation can be obtained from the derived quantum
kinetic equation by defining the Wigner distribution function

f(p, r) =
∫
eikr ρ̂p+k/2,p−k/2

dk

(2π)d
, ρ̂ = e−itH0 ρ̃eitH0 . (A.35)

It is easy to check that this function gives correct averages for any operator depending
either on momenta or on coordinates. However, unlike the classical distribution function,
the function (A.35) may have complex values, and it preserves complete information about
the quantum correlations.
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Ignoring a small difference between p and p′ in the arguments of δ-functions (which
amounts to suppressing the quantum interference of the scattered particles), from Eq. (A.34)
it is easy to obtain the usual form of kinetic equation,

∂fp,r
∂t

+
p

m

∂fp,r
∂r

= −W fp,r + 2π
∑
q

|fq|2
[
(nq + 1) fp+q,r δ(∆

+
p ) + nq fp−q,r δ(∆

−
p )
]
.

The second term in the l.h.s. comes from the commutator with the bare Hamiltonian.

The quasielastic scattering approximation works if the phonon frequency ωq = q s ≤
min(T, TD), where s is the sound speed, is much smaller then a typical electron’s energy,
p2/m ∼ max(T, εF ). It always works for degenerate electrons, T <∼ εF , at the temperatures
much below the Debye temperature, T ¿ TD, and for non-degenerate electrons if T À TD.
This approximation can also work for degenerate electrons above the Debye temperature (in
this case electrons’ momenta are of the same order of magnitude as those of phonons) if
qs ∼ ps¿ p2/m, or ms2 ¿ εF ∼ mv2

F .

xSolution 5.3 (p. 73)

See the following problem for the treatment in terms of quantum Langevin equation; the
QKE description is not ready yet.

xSolution 5.4 (p. 73)

First, let us find the correct absorption spectrum of the system. Ignoring the double fre-
quency terms, the coupling to the external field is

HE = E eiωt a(t) + h.c.,

and in the lowest order approximation the absorption rate is given by the Fermi’s golden
rule

W = 2π |E|2
{

[a†(t) a(t′)]ω + [a(t) a†(t′)]ω
}
,

where the averaging is peformed over the equilibrium state of the bath. The equilibrium
evolution of the system is governed by the quantum Langevin equations (See Prob. 1.9 at
p. 18), with the solution

a†(t) = eiω0t
{
a†0 e

−z∗t +
∫ t

0
f̃ †(t′) e−z

∗(t−t′) dt′
}
,

where z∗ = Γ− iP is the combination of the line broadening Γ and the oscillator frequency
shift P associated with the bath coupling, and f̃(t) is the quantum operator of the random
force with the correlators

〈
f̃ †(t) f(t′)

〉
= 2Γnω0δ(t− t′),

〈
f̃(t) f †(t′)

〉
= 2Γ (nω0 + 1) δ(t− t′).

Now it is easy to find the correct absorption probability,

W = 2π |E|2 Γ coth(βω0/2)

Γ2 + (ω − ω0)2
, Γ ≡ F (ω0)/2ω0.
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The decay rate associated with m-th oscillator level can be found considering the operator
Hi = q

∑
µ fµqµ as a perturbation to the oscillator H0 = ω0(a†a+ 1/2) in m-th excited state.

We have

Γm = 2π
∑
µ

|fµ|2 δ(ω0 − ωµ)





(a†a)m
2ω0

bµb
†
µ

2ωµ
+

(aa†)m
2ω0

b†µbµ
2ωµ





= 2Γ {m (nω0 + 1) + (m+ 1)nω0} , Γ =
F (ω0)

2ω0

. (A.36)

An obviously wrong result for the absorption spectrum of the system can be obtained by
considering the oscillator as a collection of two-level systems with an appropriate equilibrium
population and the transition rate (A.36). We have

W = 2π |E|2
∞∑

m=0

Γm e
−βmω0 (1 + e−βω0)

Γ2
m + (ω − ω0)2

(WRONG!).

The problem with this approach is, obviously, that it ignores the correlations between the
levels of the oscillator other than neighboring; these correlations are important because
the spectrum is equidistant and all states evolve with commensurate frequencies. Note,
however, that in the limit of small temperatures the higher excited states are not populated,
correlations between them vanish, and the approximation of the oscillator in terms of a
two-level system is basically correct.

xSolution 5.5 (p. 73)
The localized electron obeys the following non-linear Schrödinger equation

−1

2
∇2ψ + ψV[ψ](r) = Eψ.

The electron’s potential energy can be integrated by parts,

V =
∫
|ψ(r1)|2 V[ψ](r) d3r1 = −e

∫
|ψ(r1)|2 d3r1

|r− r1|(∇ ·P(r)) d3r

= e
∫
|ψ(r1)|2d3r1

r− r1

|r− r1| ·P(r)d3r = −
∫
d3rD(r) ·P(r) ≡ 2W,

which proves the relationship V = 2W .
The potential energy entering the Schrödinger equation can be written as a variational

derivative,

V[ψ](r) =
1

2

δ

δψ∗
V =

δ

δψ∗
W,

which implies that the ground state solution ψ1(r) of the Schrödinger equation minimizes
the functional

E =
∫ {

1

2
(∇ψ)2 + |ψ(r)|2 V[ψ](r)

}
d3r = T +W.

Let us consider the scaled wavefunction ψk(r) ≡ k3/2ψ1(kr). Clearly, the associated kinetic
energy is Tk = k2 T , and the Coulomb potential energy is Wk = kW . The functional

Ek = k2 T + kW
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must have a minimum at k = 1, which implies W = −2T . Therefore, −V = 2(−W ) = 4T ,
and the total energy E = T + V = −3T , and we can write the “long” fraction

T : −W : −E : −V = 1 : 2 : 3 : 4.

xSolution 5.6 (p. 74)
Begin by writing the interaction Hamiltonian in the interaction representation. The terms
Hi1 and Hi2 are transformed as discussed in Sec. 5.2 and Sec. 5.4 respectively, while the
Hamiltonian HF responsible for the interaction with the external field can be written as

HF (t) =
F

2
[σ+(t) + σ− (t)] cos(ωt), σ±(t) = e∓iω0t (σx ± iσy)/2.

In the lowest order the r.h.s. of the quantum kinetic equation can be written as a sum of
independent terms due to different processes defined by the interaction Hamiltonian,

dG

dt
=

(
dG

dt

)

i1

+

(
dG

dt

)

i2

+

(
dG

dt

)

F

,

(
dG

dt

)

F

= −i [HF (t), G(t)]

The remaining two terms were considered before, they are particularly simple at high tem-
peratures, T À ω0,

(
dG

dt

)

i1

= −W
2

[G(t)− σ+(t)G(t)σ−(t)− σ−(t)G(t)σ+(t)] ,

(
dG

dt

)

i2

= −W
(sc)

2
[G(t)− σx(t)G(t)σx(t)] ,

with W and W (sc) being the probabilities associated with the phonon emission and quasielas-
tic scattering as defined by Eqs. (5.17) and (5.21) respectively. The corresponding evolution
equations for the averages 〈σz〉, 〈σ±〉 are easily obtained using Eq. (5.18),

[
d

dt
+W +W (sc)

]
〈σz〉 = −iF [σ+(t)− σ−(t)] cos(ωt), (A.37)

[
d

dt
+ iω0 +

W +W (sc)

2

]
〈σ+〉 =

W (sc)

2
〈σ−〉 − iF

2
〈σz〉 cos(ωt), (A.38)

At lower temperatures the zero mode oscillations can no longer be ignored, and we have
to restore a few more additional terms in the r.h.s. of the kinetic equation. For the evolution
equations (A.37), (A.38), it is easy to guess the form of additional terms from the known
equilibrium solution of the QKE

ρeq =
1

2
[1− σz tanh (βω0/2)] ,

which implies that the averages

〈σz〉eq = − tanh(βω0/2), 〈σ±〉eq = 0.
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Such values can be obtained by adding a term −(W + W (sc)) tanh(βω0/2) to the r.h.s. of
Eq. (A.37); of course, the same result can be obtained by a direct calculation. For a two-
level system, the density matrix has only three independent parameters, and it is uniquely
determined by the averages 〈σµ〉. Now that we have a complete set of equations for these
averages, it is straighforward to find their time-dependence, and then restore the time-
dependence of the density matrix.

To solve the evolution equations for 〈σµ(t)〉, we separate the real and imaginary parts of
Eq. (A.38),

d

dt
〈σx〉 − ω0 〈σy〉+

W

2
〈σx〉 = 0,

d

dt
〈σy〉+ ω0 〈σx〉+

W + 2W (sc)

2
〈σx〉 = −F

2
〈σz〉 cos(ωt),

express the average 〈σy〉 in terms of 〈σz〉, and substitute the result into the corrected
Eq. (A.37). In the resonant approximation, and with an additional assumption that all
kinetic coefficients are small, W, W (sc) ¿ ω0, we obtain

d

dt
〈σz〉+ Γ〈σz〉+

Γ

16

|F |2
∆2 + Γ2/4

〈σz〉 = −Γ tanh(βω0/2),

where the total linewidth Γ ≡ W +W (sc) and frequency mismatch ∆ ≡ ω0−ω. The derived
equation describes the evolution of the population difference between the levels; the term
proportional to the field intensity |F |2 is proportional to the radiation absorption rate. The
radiation with large enough intensity greatly enhances the interlevel transition rate, thus
reducing the population difference 〈σz〉. As a result, the processes of radiation emission and
absorption compensate each other, and the absorption rate saturates at exactly one half of
its zero-temperature value.

xSolution 5.7 (p. 74)

In this problem we just have to evaluate the scattering probability (5.21) for the case of
phonons coupled to a bistable impurity. Typically, one can expect that shifting the impurity
can modify the local potential, which would modify one or more pairwise elasticity constants,
or an effective mass localized in the given lattice cell. This implies that the coupling coef-
ficients fkk′ , where k is the momentum of acoustic phonons, will be typically proportional
to the square of the momentum, fkk′ ∼ α k2. As a result, the expression (5.21) can be
astimated as following

W (sc) ∼ π α2
∫ d3k

(2π)3

∫ d3k′

(2π)3

k4

ωkωk′
n̄(ωk)(n̄(ωk′) + 1) δ(ωk − ωk′).

At small temperatures, the momentum integration can be extended to infinity, and, after
introducing the dimensional momentum q = sk/T , the scattering probability acquires the
form

W (sc) ∼ π α2

16π3

T 7

s10

∫ ∞
0

q6 dq

sinh2(q/2)
∼ α2 T 7

s10
, T ¿ TD.
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At larger temperatures the cutoff at the Debye momentum kD comes into play, and the
scattering probability crosses over to a much slower quadratic temperature dependence

W (sc) ∼ π α2T 2

s5 a5
∼ α2T 2

a5s5
, T À TD,

where a ∼ π/kD is the typical lattice spacing. It is now clear that the scattering can be an
important mechanism only at sufficiently high temperatures.


