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ABSTRACT: We demonstrate that a quiet state and large-amplitude
self-sustained oscillations can coexist in a carbon nanotube subject to
time-independent drive. A feature of the bistability is that it would be
hysteresis free in the absence of noise, and the oscillatory state would
not be seen. It is revealed by random switching between the stable
states, which we observe in the time domain. We attribute the
switching to fluctuations in the system and show that it displays
Poisson statistics. We propose a minimalistic model that relates the
emergence of the bistability to a nonmonotonic variation of nonlinear
friction with the vibration amplitude. This new type of dynamical
regime and the means to reveal it are generic and are of interest for
various mesoscopic vibrational systems.
KEYWORDS: carbon nanotube, self-oscillations, hysteresis-free bistability, stochastic switching, nonlinear friction

Nanoelectro-mechanical systems (NEMS) provide a
means for studying physics away from thermal

equilibrium in a well-characterized setting.1 An important
group of nonequilibrium phenomena originates from the
interplay between nonlinearity and fluctuations in driven
systems, which can modify the frequency stability,2−6 the
power spectrum,7,8 lead to spectral broadening,9 and thermal
noise squeezing.8,10,11 The interplay is most nontrivial when a
nonequilibrium system is brought into a regime where it
exhibits bistability. Here, fluctuations, even if weak on average,
can cause interstate transitions and are ultimately responsible
for the distribution of a system over the stable states.1 Much
work on studying these effects and the emerging scaling12,13

has been carried out on nano- and micromechanical resonators
driven by an external resonant force or modulated parametri-
cally.7,14−23 A mechanism that leads to the onset of bistability
in NEMS without periodic driving was suggested in ref24 and
such bistability was observed in a carbon nanotube (CNT).25

In almost all bistable mesoscopic vibrational systems, the
vibrations could be brought to one of the stable states by
smoothly changing a control parameter, for example, the
driving force. As a result of the change, at some critical
parameter value, the bifurcation point, one of the stable states
would lose stability, and the system would switch to another
stable state. Such behavior is usually accompanied by
hysteresis: in a parameter range between bifurcation points
the state of the system depends on the history of the parameter
change. In all works on NEMS thus far hysteresis was used to
reveal the bistability.
In this paper, we report the observation of a hysteresis-free

bistability in a nanomechanical system. Such bistability means

that, as the control parameter is changed back and forth, the
system remains in the quiet state. The very presence of another
stable state is revealed by fluctuations that cause interstate
transitions. In our system, coexisting are the quiet state and the
state of large-amplitude self-sustained oscillations of the lowest
mode of a CNT driven by a time-independent source-drain
voltage, see Figure 1. The large-amplitude oscillatory state was
already identified in ref 26. It is important that the mode
experiences fluctuations. We reveal that the system is actually
bistable by examining the fluctuation statistics. In distinction
from the more conventional scenario, the large-amplitude
oscillatory state emerges as the source-drain voltage is
increased, and when it emerges, it is already well separated
from the quiet state in phase space. Then, as the source-drain
voltage is further changed, the vibrational state is observed to
lose stability. There is no hysteresis when the bifurcation
parameter is moved back and forth. In terms of the bifurcation
theory,27 the emerging and disappearing stable states are
associated with an “isola”: an isolated branch of an equilibrium
state of a noise-free system.
The experiment is done using clamped−clamped CNTs

grown by chemical vapor deposition across two metallic
contact electrodes.28 The measurements are performed at
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cryogenic temperature (70mK) by applying a voltage bias to
the source (Vsd) and to the gate electrode (Vg) which is placed
beneath the CNT. The current from the drain electrode is
measured by using a RLC resonant circuit and a low-
temperature HEMT amplifier, see Figure 1(a). The read-out
signal is obtained by measuring the current noise spectrum,
which is converted to the nanotube displacement.26 The same
calibration is used to obtain the quadratures of the motion
(X,Y) from the lock-in measurements. The scaled vibration

amplitude is = +R X Y2 2 .
When sweeping up the source-drain voltage Vsd at Vg =

−616 mV, there occurs a sudden jump up in the displacement
R for Vsd ≈ 0.2 mV followed by a jump down at Vsd ≈ 0.4 mV,
see highlighted region of Figure 1(b). The change of the
nanotube motion with Vsd in Figure 1(b) does not resemble
that of a vibrational system undergoing a supercritical Hopf
bifurcation, whose signature is a smooth monotonic increment
of the oscillation amplitude and loss of stability of the quiet
state.29 The instability is observed over a narrow range of gate
voltage Vg but reappears periodically in Vg with a period
corresponding to adding four electrons to the nanotube. The
periodicity is consistent with the SU(4) symmetry of the
CNT.26

In the (X,Y) space at Vsd = 0.35 mV we recognize a highly
populated doughnut-like region centered at a nonzero mean
amplitude that encircles the thermal motion about the origin of
the quadrature space. This region suggests the presence of an
oscillatory state, see Figure 1(c). The time trace of the motion
(Figure 1(d)) and the normalized histogram of the amplitude
R in Figure 1(e) further support the notion that the system has
two different dynamical states. While distinct peaks in the
amplitude distribution may serve as a signature of coexisting
states, a double-peak pattern can also arise in various other
dynamical phenomena such as intermittent chaos or bursting

oscillations.30 A careful analysis is required to differentiate
bistability from aperiodic dynamical behaviors.
To understand the nature of the observed dynamics, we

perform statistical analysis on the time-domain data of Figure
1(d). This data set has not been presented in the earlier
work.26 We assume that our system has two stable states,
namely a zero-amplitude, i.e. a quite state, and a self-sustained
oscillatory state, which has a large amplitude compared to the
root-mean-square amplitude fluctuations.31−34 We investigate
whether noise induces stochastic transitions between the stable
states, analogous to the noise-induced interwell hopping of a
damped particle in a double-well potential, see Figure 2(a),
cf.;35 such hopping underlies stochastic resonance.36,37 The
difference in our case is that here one of the stable states is a
static equilibrium point, whereas the other is a state of self-
sustained vibrations.
Noise-induced switching is well-defined if the switching rate

is much smaller than the relaxation rate. A noise-driven system
then spends most of the time fluctuating about one of its stable
states. The characteristic correlation time tr of these
fluctuations is the dynamical relaxation time or the correlation
time of the noise. Occasionally there occur large outbursts of
noise that lead to switching between the states. The typical
time between such outbursts is much larger than tr, whereas
the duration of the switching event itself is comparable to tr.
Therefore, the switching events are expected to be
uncorrelated and described by the Poissonian statistics.
In order to detect interstate switching events, one would

need to set a threshold, which is related to but does not
coincide with the basin boundary of the two states. For a
particle in a double-well potential, reaching the barrier top
does not necessarily lead to switching, as the system can go
back to the initially occupied well. Even in the simplest case of
fluctuations induced by white noise, to find the switching rate
one has to set up a threshold sufficiently far beyond the barrier

Figure 1. (a) CNT-based electromechanical oscillator and measurement schematic. The CNT has a length of ≈1.5 μm and a radius of ≈1 nm
(scanning electron microscope image in the bottom left panel). Voltages Vsd and Vg are applied to electrodes S and Gate, respectively. The drain
electrode D is connected to an RLC resonator ( f RLC = 1.27 MHz). The displacement spectral density is shown in the bottom right panel. (b) The

root-mean-square nanotube displacement from the origin R2 as a function of the source-drain voltage Vsd for Vg = −616 mV; R2 is obtained
from spectral noise measurements for all the data points except for Vsd = 0.35 mV (dashed line). The latter is obtained by recording the time
evolution of the displacement amplitude at the mode antinode. (c) The measured two quadratures X and Y of the motion on the (X, Y)-plane at
this Vsd. (d) Fluctuations of the amplitude = +R X Y2 2 in time for the same Vsd. (e) Amplitude histogram, normalized with respect to the total
number of observations.
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top with respect to the initially occupied state, as has been
known since the classical work of Kramers.38 It is clear from
the above arguments that the thresholds for transitions
between different states should not coincide, cf.39 Hence, we
introduce two amplitude thresholds, RL and RH, see Figure
2(a). If the system was fluctuating about R = 0 and its
trajectory crossed RH, we assume that it has switched to the
large-amplitude state. On the other hand, if the system was
fluctuating about the large-amplitude state and its trajectory
R(t) crossed RL, it has switched to the R = 0 state. With the
above definition, the dwell (residence) times τup and τdown are
the times spent in the zero- and large-amplitude states,
respectively, before the system switches. The time intervals τup
and τdown are shown in Figure 2(b) by the red and blue thick
bars, respectively. The region between RH and RL contains the
separatrix. The experimental data do not allow us to find it.
Figures 2(c) and 2(d) show the distribution of the dwell

times τup and τdown. The transitions between the states are well
described by a Poisson process, and the distribution of the
dwell times is close to exponential,

= < >P e( )
1 /

(1)

This is the central argument in support of the coexistence of
two stable states in our system. We use eq 1 to fit the
experimental data and find that the dwell times are
approximately the same for the chosen parameters, with τup
≈ τdown ≈ 21 ms. The fit is only mildly influenced by the bin
size, see Figure 2(e). These dwell times are much larger than
the relaxation time tr of the nanotube, which can be inferred
from duration of the switching events themselves: in Figure
2(b) the trajectories leading to transitions are essentially
vertical. The detailed data indicates that tr ∼ 1−3 ms, as
illustrated in Figure 2(f) by the average time ⟨τs⟩ spent in
between the two thresholds.
Another important argument in support of the bistability is

seen from Figure 2(f). In this figure we plot the dwell times
over a broad range of mean threshold values and separations.
The results do not change. This demonstrates the reliability
and stability of the two-threshold approach and confirms the
presence of noise-induced hopping between two metastable
states. The stochastic analysis conducted on an additional
temporal data set, corresponding to Vsd = 0.25 mV, also aligns
with these findings (see Supporting Information S140).
The bistable dynamics observed in Figure 2 ultimately

comes from the source-drain voltage Vsd, which pumps energy
into the system. The onset of self-sustained vibrations due to
energy pumping is often associated with the friction coefficient
becoming negative, which makes the quiet state unstable. In
contrast, in our system the quiet state remains stable. This can
be understood if the friction coefficient becomes negative in a
certain range of sufficiently large vibration amplitude. The
dependence of the friction coefficient on amplitude is called
nonlinear friction. Such friction is well-known in nano-
mechanics.1,41 Usually it leads to a faster decay of vibrations
with the increasing amplitude, that is, the coefficient of
nonlinear friction is positive, although there has been also
observed slowing down of the decay with the increasing
amplitude.42

There are several possible causes of nonlinear friction in our
system. One of them is the electron-vibrational coupling. As
electrons hop between the leads and the nanoresonator, they
exchange energy with the mode. This leads to decay or
excitation of the vibrations, i.e., to positive or negative friction,
see24,43−47 and references therein. The analyses in these papers
refer to the limit of strong Coulomb blockade. Negative
nonlinear friction resulted from the dependence of the
tunneling on the vibration amplitude.24,45 This dependence
should occur in our system, too, even though the Coulomb gap
is moderately hard. One can picture this dependence as
coming from the change of the transmission of the tunneling
barrier due to the strain induced by the CNT displacement.48

In the basic model of the effect of vibrations on tunneling49

the vibration-induced change of the tunneling exponent is
Ctunq/λtun, where q is the mode coordinate and λtun is the
electron tunneling length. In the measurements presented in
this work, the tunnel barriers are defined in the clamping areas
at the interface between the nanotube and the metal
electrodes. For tunneling onto/from a CNT, the coefficient
Ctun depends on the structure of this interface, which is not
well characterized, and therefore it cannot be found
quantitatively. However, the ratio q/λtun itself is ≳ 10 for the
observed limit cycle radius and λtun ∼ 3−4 Å. This suggests

Figure 2. (a) A double-well potential, illustrating bistable dynamics
using a ball-in-a-cup analogy. The minima are associated with the
stable state of self-sustained vibrations and the zero-amplitude state of
the CNT. Noise-induced transitions to the large-amplitude (zero-
amplitude) states are considered to occur once the vibration
amplitude crosses the threshold RH(RL). (b) A sample of the time
evolution of the vibration amplitude (Vsd = 0.35 mV). Blue/red bars
indicate the chosen switching thresholds with RH − RL = 0.35 nm,
(RH + RL)/2 = 0.7 nm. The magenta bar indicates the region between
RH and RL. (c, d) Dwell (residence) time distributions (bin size 9 ms)
for the large-amplitude state [panel (c)] and the zero-amplitude state
[panel (d)]. A Poisson distribution (eq 1) is fitted to the data. It gives
averaged dwell times of ⟨τdown⟩ = 0.021 s and ⟨τup⟩ = 0.021 s. (e)
Influence of the bin size on the average dwell times in panels c and d.
(f) Average dwell times for varying thresholds RL and RH. The average
time ⟨τs⟩ is the time spent in between the two thresholds.
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that the friction that results from the modulation of the
tunneling barrier can be significantly nonlinear. It can be
negative in the range of Vsd where the energy transfer to the
mode exceeds the energy drain from the mode. The amplitude
dependence of the friction is affected also by the polaronic
effect: because of the gate voltage, electrons exert force on the
mode that depends on the number of electrons on the CNT,
which itself depends on the CNT displacement. This force
leads to vibration decay, for strong Coulomb blockade.46

Another source of negative nonlinear friction, a retarded
backaction from the circuit, is discussed in the SI Sec. S2.40

Here, a quantitative theory requires the knowledge of the
nonlinear dependence of the conductance on the vibration
amplitude, which itself requires full characterization of the
clamping area. However, the magnitude of this nonlinear
friction force compared to the linear one is proportional to the
square of the ratio of the displacement amplitude to the
distance to the gate electrode and thus relatively small.
The above arguments show that the situation with nonlinear

friction is no different from linear friction, which comes from
several possible mechanisms. Therefore, to describe the central
experimental observation, the onset and collapse of self-
sustained vibrations, we use a minimalistic model. A major
feature of this model is the absence of delay in the friction
force, in the rotating frame. This is a consequence of the
smoothness of the density of states of the electrons and
thermal acoustic phonons involved in the mode decay
processes, cf.1

Since the vibration frequency is much higher than all other
rates and frequencies in the system, the vibrations can be
described in the rotating frame using a complex vibration
amplitude z(t) = Cz[q + i(p/mω0)] exp(iω0t), where q and p
are the mode coordinate and momentum, m is its effective
mass, ω0 is the eigenfrequency and Cz is a scaling parameter. In
the rotating wave approximation (RWA) the equation of
motion (see Sec. S3 of the Supporting Information40) reads

= [ + | | + | | ]z i z z z( )Dnlf
2 4

(2)

Here Γ and γnlf are the coefficients of linear and nonlinear
friction, whereas γD is the Duffing nonlinearity. The RWA
applies provided | | | |z z0 . The right-hand side of eq 2 is our
minimalistic model of nonlinear friction: it is an expansion in z,
valid when the vibration amplitude is comparatively small, so
that the decay rate and the change of the vibration frequency
are ≪ ω0. The term ∝|z|4z describes quintic nonlinear friction,
cf.50 It must be taken into account where the conventional
friction coefficients Γ and γnlf become small. A simple
microscopic model of such friction is provided in Supporting
Information S4.40 In distinction from the conventional analysis
of the onset of self-oscillations, which uses the model (2)
without the quintic term, to describe the experiment we have
to assume that the parameter Γ remains positive, and it is γnlf
that is the bifurcation parameter that changes sign.
We rewrite eq 2 in polar coordinates by setting z(t) = R(t)

eiθ(t), where R and θ are the vibration amplitude and the “slow”
part of the vibration phase. From eq 2

= =R f R R, Dnlf
2

(3)

with the coefficient of nonlinear friction being

= + +f R Rnlf nlf
2 4

(4)

For Γ > 0 the quiet state R = 0 is stable. If Γ becomes negative,
the state R = 0 becomes unstable, and for γnlf > 0 there emerges
a stable limit cycle with radius | |( / )nlf

1/2 (supercritical
Hopf bifurcation). If Γ is positive but γnlf becomes negative,
there emerges an unstable limit cycle with radius | |( / )nlf

1/2

(subcritical Hopf bifurcation).
The term R4 in f nlf leads to the onset of a stable limit cycle

for γnlf < 0 and Γ > 0 along with an unstable one. The radii of
the cycles as given by the condition f nlf = 0 are

= [ ± ]±R
1
2

4nlf nlf
2 1/2

(5)

For −γnlf > 2Γ1/2 the cycle with the radius R+ is stable, whereas
the cycle with the radius R− is unstable. At γnlf = −2Γ1/2 the
two cycles merge and annihilate one another in a saddle-node
bifurcation. For smaller |γnlf|/2Γ1/2 they disappear.
We now relate model (2) to the experiment. The values of Γ

and γnlf change with the control parameter Vsd. In particular, Γ
decreases as we approach the bistability region in Figure
1(b).26 The key observations are (i) a stable zero-amplitude
state and a stable limit cycle coexist in a certain parameter
range, (ii) the zero-amplitude state is stable not only outside,
but also inside this range, and (iii) the limit cycle is excited and
collapses with the varying parameters while still having a large
amplitude. This scenario is qualitatively different from the
standard subcritical Hopf bifurcation that is accompanied by
hysteresis.
A minimalistic picture that describes the experiment is that,

as the source-drain voltage Vsd varies, there first occurs a
saddle-node bifurcation at −γnlf = 2Γ1/2. At this bifurcation
there emerge the stable and unstable limit cycle with
amplitudes R±. As Vsd varies further, these limit cycles merge
together and disappear via another saddle-node bifurcation.
This is illustrated in Figure 3.

Figure 3. (Upper panel) Steady-state solutions as a function of the
bifurcation parameter λ. In our nanomechanical resonator λ is a
function of Vsd. Solid/dashed lines are stable (R+)/unstable (R−)
solution branches. The isola emerges as a result of nonmonotonic
nonlinear damping. (Lower panel) Sketches of the phase portrait of
the vibration radius. (i) The radial phase portrait for λ below and
above the isola bifurcation point. The solid dot is a stable solution.
(ii) The saddle-node bifurcation (SN) at a finite vibration radius,
indicating the onset of an isola. (iii) Bistable region with coexisting
zero and large amplitude states. The open circle is an unstable
solution, which corresponds to an unstable limit cycle. The arrows in
panels (i), (ii), and (iii) indicate the dynamical flow.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.4c06618
Nano Lett. 2025, 25, 8443−8449

8446

https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c06618/suppl_file/nl4c06618_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c06618/suppl_file/nl4c06618_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c06618/suppl_file/nl4c06618_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.4c06618/suppl_file/nl4c06618_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06618?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06618?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06618?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06618?fig=fig3&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.4c06618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To link the above phenomenology to eqs 3 and 4, we should
consider how the parameters of these equations depend on Vsd.
A major factor is the Vsd-dependence of γnlf, since this
parameter becomes negative and, moreover, exceeds 2Γ1/2 in
the absolute value. It should be noted that the linear friction
coefficient Γ also depends on Vsd, as reported in.

26 Overall, γnlf
should be nonmonotonic as a function of Vsd to allow for both
the onset and the disappearance of the bistability with the
increasing Vsd. The analysis simplifies for the gate voltage Vg
where the range of Vsd in which the zero-amplitude state
coexists with the vibrational state is narrow. In this case one
can approximate

+ =V V V V V V( ) 2 ( ) ( )( )B Bnlf sd sd
(1)

sd sd
(2)

(6)

Here, the parameter η > 0 is a scaling parameter and VB
(1,2) are

the bifurcational values of Vsd. The CNT shows bistabilty in
the range VB

(2) < Vsd < VB
(1).

The quadratic dependence of γnlf and the corresponding
dependence of R+ on Vsd provide an insight into our
observations, but do not fully describe the evolution of the
dynamics within the instability region. The complicated
dependence of R+ on Vsd can have several causes, including
defects in the CNT that lead to a nonuniform electron density,
as well as the interplay of the Kondo effect and the Coulomb
blockade, which depend on the bias and the gate voltage, thus
modifying the tunneling and the polaronic effect and ultimately
the friction force. In Figure 4 we show that the complex
behavior of the vibration amplitude within the instability
region can be effectively captured by considering a non-
monotonic dependence of the nonlinear friction force on the

source-drain voltage. Given that the dependence of the root-
mean-square vibration amplitude R2 1/2 on Vsd in Figure 1(b)
resembles an inverted quartic parabola, we describe the
dynamics within the bistability region by a constant linear
friction and a 5-parameter nonlinear friction, γnlf=∑n = 0

4 (γnVsd
n ).

To numerically obtain the parameters that match the
experiment we positioned the saddle-node points of the isola
at the boundaries of the instability region observed
experimentally and constrained the amplitude of the self-

oscillations to match the measured R2 values.
We plot in Figure 4(a) the evolution of the amplitude

variance as a function of Vsd by simulating the stochastic
dynamics of eq 2 in the quadrature space, in which each
quadrature is affected by an independent random Wiener
process (See Sec. S5 of the Supporting Information40 for more
details). The noise, which is white in the slow time

| | R, ( )1
nlf

2 1, comes from different intrinsic sources,
such as hopping of the electrons on and off the CNT and
creation and annihilation of thermal phonons nonlinearly
coupled to the mode. In the phase-space of the two
quadratures (X,Y) the trajectories fluctuate about a circle
with radius R2 1/2 or about the quiet state R=0, switching
between them, see Figure 4(b) and (c). Respectively, the
stationary probability distribution of R(t) displays two peaks,
as seen in Figure 4(d).
We emphasize that the nonmonotonic dependence of the

nonlinear friction parameter γnlf on Vsd, with γnlf being negative
in a certain range of Vsd, is critical for the emergence of the
isola and the hysteresis-free bistability. At the same time,
fluctuations in the system are crucial for revealing the
bistability.
Although isolas in multistable systems have attracted much

attention theoretically,51−54 their experimental demonstrations
have almost exclusively been limited to macroscale systems
under periodic driving.55−57 In mesoscopic systems, the only
reported observation of isolas involves forced vibrations of a
nonlinear microresonator with coupled vibrational modes.58 In
nanomechanis, isolas have not been observed. Here, we
demonstrate the existence of an isolated vibrational state in a
nanomechanical system subject to a time-independent drive.
Specifically, we show that driving a carbon nanotube by a dc
source-drain voltage Vsd leads to the onset of bistability, in
which a stable quiet state coexists with periodic self-sustained
vibrations. We show that the bistability is nonhysteretic:
varying the control parameter would not lead to switching
between the branches of the stable states. We also provide a
minimalistic phenomenological model that describes the effect
and indicate the mechanisms that can underlie this model.
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Figure 4. Numerical simulations of the fluctuation dynamics of the
nanotube. (a) The standard deviation of the nanotube displacement

R2 as a function of the source-drain voltage Vsd. Each point is the
average of ten simulations. The stochastic dynamics is characterized
for one simulation at Vsd = 0.35 mV (dashed line) in panels (b−d).
(b) The phase space of the two quadratures of the motion (X,Y). (c)
Fluctuations of the amplitude = +R X Y2 2 in time. (d) The
amplitude histogram of the time trace of panel (c) normalized with
respect to the total number of observations. Details of the simulations
of the stochastic dynamics of the nanotube are provided in Sec. S5 of
the Supporting Information.40
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S1. Additional data on stochastic switching in the car-

bon nanotube

In order to demonstrate the repeatability of switching behavior within the bistable region,

here we analyze an additional dataset (Vsd =0.25mV and Vg =−616mV). The findings from

this supplementary data shown in Fig. S1 are consistent with our results at Vsd =0.35mV

and Vg =−616mV (Fig. 2 of the main manuscript). To summarize, we report: i) comparable

shape of the dwell (residence) time distributions (panels c-d); ii) mild influence of the bin
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size on the statistics and iii) dwell times unchanged over a broad range of mean threshold

values and separations.

zero 
amplitude

state

LR

large 
amplitude

state
HR

τup

τdown

(a) (b)

(c) (e) (f )(d)

Fig. S1: (a) Sketch of a bistable potential. The minima are associated with the stable states of
self-sustained vibrations and the zero-amplitude state of the CNT. Noise-induced transitions to
the large-amplitude(zero-amplitude) states are considered to occur once the vibration amplitude
crosses the threshold RH(RL). (b) A sample of the time evolution of the vibration amplitude
(Vsd =0.25mV). Blue/red bars indicate the chosen switching thresholds with RH -RL=0.7nm,
(RH+RL)/2=1.4nm. The magenta bar indicates the region between RH and RL. (c)-(d) Dwell
(residence) time distributions (bin size 10 ms) for the large-amplitude state [panel (c)] and the
zero-amplitude state [panel (d)]. A Poisson distribution (Eq. 1 of the main manuscript) is fitted to
the data. It gives averaged dwell times of < τdown >= 0.022 s and < τup >= 0.018 s. (e) Influence
of the bin size on the average dwell times in panels d and e. (f) Average dwell times for varying
thresholds RL and RH . The average time < τs > is the time spent in between the two thresholds.

S2. Electrothermal backaction

A possible mechanism of nonlinear friction is the electrothermal backaction due to circuit

retardation. The mechanism can be viewed as follows. The nanotube displacement δz affects

the charge on the nanotube and thus influences the nanotube conductance G. The change

of the conductance δG can be expanded in a series in δz. In turn, the conductance change

induces variations in the power dissipated by the current flowing through the nanotube.

Through the Joule effect, the change in power δP leads to a temperature change δT. This

change can be also expanded in a series in δP . Importantly, the temperature change modifies

2



the mechanical tension δTmech. To the leading order δTmech ∝ δT. The change of the tension

shifts the resonance frequency δω, thereby affecting the nanotube displacement δz.

This backaction mechanism is mediated by the circuit, which determines the current

through the nanowire. The presence of capacitance in the circuit brings delay into the back-

action, giving rise to an effective friction force. The friction force can be negative. This

was shown for the linear component of the friction force in Ref.1 The nonlinear contribution,

arising from higher-order terms in the expansions mentioned above, is comparatively weaker.

Roughly, the magnitude of the nonlinear friction force compared to the linear one is propor-

tional to the square of the ratio of the displacement amplitude δz to the distance to the gate

electrode zg. The corresponding nonlinear friction may still be important, as it “competes”

with the generally weak nonlinear friction caused by the intrinsic mechanical nonlinearity of

the nanotube. But overall, because of the aforementioned smallness, we expect the nonlinear

friction due to the electrothermal backaction to be weaker than the nonlinear friction arising

from the backaction, which is due to the effect of the vibrations on electron tunneling.

S3. Rotating wave approximation

This section details the derivation of Eq. 2 from the main manuscript. We assume that the

mode coordinate q(t) of the nanotube is described by the single-degree-of-freedom model

q̈ + ω0
2q +

(
2Γ + γ̃nlfq

2 + Γqq
4
)
q̇ + γ̃Dq

3 = 0, (S1)

where the overdot stands for derivative with respect to time t. Furthermore, ω0 is the

radial natural frequency, Γ̃, γ̃nlf , Γq are the linear, quadratic and quintic friction coefficients,

respectively. Equation (S1) includes a cubic nonlinear stiffness through the Duffing coefficient

γ̃D, that is associated with the geometric nonlinearity emerging due to the high mechanical

compliance of the CNT. Next we transform Eq. (S1) from the fast-oscillating coordinate

q(t) to slow-time variables. To that end, we utilize the complex amplitude z̃(t) = [q +

3



i(p/mω0)] exp(iω0t) and its complex conjugate z̃∗. Here q and p are the mode coordinate

and momentum, m the effective mass, ω0 is the eigenfrequency. The slow-dynamics in the

rotating wave approximation (RWA),2 is q(t) =
1

2
(z̃(t) exp (−iω0t) + z̃∗(t) exp (iω0t)). We

apply the method of averaging to eliminate the fast dynamics, yielding the equation for the

complex amplitude z̃ as follows

˙̃z = −Γz̃ +

(
3iγ̃D
8ω0

− γ̃nlf
8

)
z̃2z̃∗ − Γq

16
z̃3z̃∗2. (S2)

Now, we introduce the scaling parameters Cz for the mode, that is z = Cz z̃.

The coefficients of Eq. (S2) are rescaled as γD =
3γ̃D

8ω0C2
z

, γnlf =
γ̃nlf
8C2

z

, and C4
z =

Γq

16
to

obtain Eq. 2 in the main manuscript

ż = −
[
Γ + (γnlf − iγD)|z|2 + |z|4

]
z. (S3)

S4. Quintic nonlinear friction

A simple microscopic mechanism of quintic nonlinear friction used in the main text and

described by the term ∝ Γq in Eq. (S2) is the coupling to a bath described by the Hamiltonian

Hq = q3hb (S4)

Here hb is a function of the bath variables. To the lowest order in this coupling, the reaction

of the bath on the vibrations can be described by the standard linear response theory,

⟨δhb(t)⟩ = −
∫ ∞

0

dt′Xb(t
′)q3(t− t′) (S5)

where Xb(t) is the susceptibility of the bath.

It is seen from Eq. (S4) that the reaction (S5) leads to the backaction force from the
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bath on the mode of the form Fq = −3q2(t) ⟨δhb(t)⟩. To calculate Fq(t), one can substitute

expression (S3) for x(t) into the equation for ⟨δhb(t)⟩. If the Fourier transform

χb(ω) =

∫ ∞

0

dteiωtXb(t)

is smooth near frequency 3ω0, one can then replace in Eq. (S5) z(t− t′) and z∗(t− t′) with

z(t) and z(t′), respectively [cf.2,3]. One then obtaines Eq. (S2) for ż with the coefficient of

quintic nonlinear friction Γq of the form

Γq =
3

2mω0

Imχb(3ω0) (S6)

We note that the coupling (S4) also leads to a quintic nonlinear restoring force, which would

be described by the term ∝ |z|4z in Eq. 2 of the main manuscript. However, this term does

not lead to qualitatively new results compared to the Duffing nonlinearity in the range of

amplitudes we consider. The quintic nonlinear friction is needed because the coefficients

of linear and standard nonlinear friction Γ and γnlf are small in the absolute values in the

region of coexistence of the quiet state and the state of self-sustained vibrations. We also

note that quintic nonlinear friction can come from lower-order in x nonlinear coupling to the

bath taken to a higher order of the perturbation theory and from a nonlinear response of

the bath to such coupling.

In quantum terms, the terms in the considered coupling that are responsible for the

quintic nonlinear friction have the form Hq = (ℏ/2mω0)
3/2(a3 + a†3)hq, where a and a†

are the ladder operators of the oscillator. They describe relaxation processes in which the

oscillator goes over 3 energy levels with the energy ≈ 3ℏω0 transferred to the thermal bath,

as indicated in the main text.
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S5. Stochastic dynamics of the nanotube

In this section, we detail out the numerical simulations of the fluctuation dynamics of the

nanotube, as presented in Fig. 4 of the manuscript. Our objective is to replicate the exper-

imental findings and qualitatively match the evolution of the slow dynamics (see Fig. 1 in

the main text). To that end, we simulate the quadratures (X,Y) that correspond to the real

and imaginary part of z as governed by Eq. (S3) (cf. Eq. 2 of the main manuscript). By

separating the imaginary and real components, we obtain the dimensionless equations:


Ẋ = −

(
ΓX + (γnlfX+ γDY)

(
X2 +Y2

)
+X

(
X2 +Y2

)2)

Ẏ = −
(
ΓY + (γnlfY− γDX)

(
X2 +Y2

)
+Y

(
X2 +Y2

)2)
(S7)

As the central point of our work is that the hysteresis-free bistability is revealed through the

presence of noise, we focus on the stochastic dynamics. To that end, we incorporate noise

into the above equations of motion and write stochastic differential equations:


dX = −

(
ΓX + (γnlfX+ γDY)

(
X2 +Y2

)
+X

(
X2 +Y2

)2)
dt+ σdW1

dY = −
(
ΓY + (γnlfY− γDX)

(
X2 +Y2

)
+Y

(
X2 +Y2

)2)
dt+ σdW2

(S8)

in whichW1(t) andW2(t) are independent Wiener processes. These processes are constructed

as normally distributed random variables with a mean of zero and a variance of dt. The

asymptotic independence of these processes in the rotating frame can be traced back to the

untranslated work of Bogoliubov done in 1940s, see also.2

To capture the complex variability of the amplitude observed within the instability region

(Fig. 1(a) of the main text), we expand γnlf =
∑4

n=0 γnV
n
sd. The values of γn are determined
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by solving the steady state dynamics of Eq. (S3), ż = 0, such that the nontrivial solution,

i.e. the amplitude of the self-oscillatory state, matches the experimental datapoints. This

is done by building a system of algebraic equations in the γn coefficients while imposing

constraints to the vibration amplitude
√

X2 +Y2. Following the experimental observation,

we adjust the isolated branch such that the saddle node bifurcation points, responsible for

the initialization and termination of the isola, align with the boundaries of the instability

region, i.e. Vsd =0.2 and 0.4 mV. We determine the higher-order coefficients of γnlf in Table 1.

Additionally, to mimic the complex behavior of the vibration amplitude within the bistable

Table 1: Coefficients for the higher-order quadratic non-monotonic damping coefficient.

γ0 γ1 γ2 γ3 γ4

2336.517 -31737.724 157406.651 -339858.316 270446.292

region, as shown in Fig. 4 of the main manuscript, we employ the coefficients Γ = 1.25 and

γD = 0.2. The system in Eq. (S8) with the set parameters is numerically integrated using the

Euler-Maruyama method with σ = 0.6, to obtain a long-time realization (t = 106 steps with

dt = 0.005) of the stochastic dynamics of the nanotube. The result of the time integration

is what is shown in Fig. 4 of the main text where we study vibrational bistability revealed

by noise (scaling parameter Cz = 1nm−1s−1/4).
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