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Effect of hole-strain coupling on the eigenmodes of semiconductor-based nanomechanical systems
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Electron-phonon coupling can strongly affect the eigenmodes of nano- and micromechanical resonators. We
study the effect of the coupling for p-doped semiconductor resonators. We show that the backaction from the
strain-induced redistribution of the holes between and within the energy bands can lead to a nonmonotonic
dependence of the modes’ eigenfrequencies on temperature and to a strong mode nonlinearity that also nonmono-
tonically depends on temperature. Unexpectedly, we find that the nonlinearity can nonmonotonically depend on
the hole density. We also briefly discuss the effect of the coupling to holes on the modes’ decay rates. The results
are compared with the experiment.
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I. INTRODUCTION

Doping with donors and acceptors is a conventional way to
control bulk properties of semiconductors. Besides changing
the electron transport, doping also affects vibrational prop-
erties, primarily due to the electron-phonon coupling. In the
pioneering papers [1], Keyes showed that the coupling leads to
a significant change in the elasticity parameters of germanium
and silicon. The effect is ultimately related to the strain-
induced breaking of the crystal’s cubic symmetry, which leads
to changes in the electron and hole-band structures and, con-
sequently, the free energy of the electron and hole systems.
The change in the elasticity parameters can be thought of as
the backaction from the electrons and holes. In the previous
theoretical studies the analysis was focused on bulk crystals,
and for acceptor-doped crystals [1–6] the temperature and
acceptor density dependence of the sound velocity was con-
sidered. The dependence of the sound velocity on pressure,
which is determined by the cubic vibrational nonlinearity, was
addressed as well [7].

New developments occurred when semiconductor crystals
began to be used as micro- and nanoscale mechanical res-
onators [8,9]; see Refs. [10–13] for reviews. Here, doping
leads to a change in the eigenfrequencies of the vibra-
tional modes and the temperature and density dependence
of these eigenfrequencies [14]. Moreover, it also affects the
nonlinearity-induced dependence of the eigenfrequency on
the vibration amplitude [15–17].

Understanding these effects and developing means for de-
scribing them is of significant interest. It is also important
for numerous applications of nano- and micromechanical res-
onators that rely on the eigenfrequency remaining almost
constant in a broad range of vibration amplitudes and tem-
peratures.

In this paper, we study the effect of hole-strain coupling on
the eigenmodes of micro- or nanoelectromechanical systems
(MEMS or NEMS) based on cubic symmetry semiconductors.
We consider p-doped crystals where, in the energy range
of interest, the valence bands consist of light and heavy
holes bands and a split-off band, as in Si, Ge, and A3B5

semiconductors. A major effect of strain is the redistribution
of holes between the intraband states and between the bands.
It can be described analytically, with the account taken of band
warping, if the hole density is not too high, so that the split-off
band remains empty. The results give the density-dependent
hole contribution to the temperature dependence of the mode
eigenfrequencies. They also provide the dependence of the
eigenfrequencies on the vibration amplitude. The analysis of
the full three-band model can be done numerically, and here,
besides the theory of the underlying nonlinearity, we extend
and modify the numerical results of Ref. [6] to describe the
temperature and density dependencies of the eigenfrequencies
of several modes usually studied in the experiment.

The analysis of linear and nonlinear effects of hole-strain
coupling on the eigenmodes differs significantly from that of
electron-strain coupling in multivalley semiconductors like Si
and Ge [18]. There, the major effect came from the strain-
induced lifting of the valley degeneracy and the resulting
redistribution of the electrons between the valleys [1]; it
turned out, however, that, for Si, another major contribution
came from the effect of strain on the band crossing [19–21].
The problem of the hole-strain coupling is more complicated,
in some sense, as it involves taking into account the strongly
nonparabolic dispersion law of the holes. We develop a fairly
general formulation that applies both where the problem can
be addressed analytically or a numerical analysis is required.

Another important effect of doping and the hole-strain
coupling is the change of the mode decay rates. The frequen-
cies of the typically studied eigenmodes are relatively low,
�109 Hz. An important decay mechanism of such modes is
the Akhiezer damping [22]; cf. Refs. [13,23,24]. It is con-
trolled by thermal phonons. The change of the lifetime of
thermal phonons due to doping directly affects the decay rate
of the eigenmodes. The full analysis of the effect requires a
detailed study of the phonon dispersion law and scattering
rates as well as the nonlinear coupling of thermal phonons
to each other and to the low-frequency eigenmodes. We use
a simple phenomenological model of the Akhiezer damping
to obtain an estimate of the effect and to reveal possible
consequences of doping on the mode decay.
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In Sec. II we relate the problem of the coupling-induced
change of the eigenfrequency and the nonlinearity of a mode
of a micro- or nanomechanical resonator to the change of the
energy and the free energy of the holes. Section III provides
analytical expressions for the coupling-induced change of the
linear elasticity tensor within the two-band approximation of
the hole dispersion law, with the account taken of the band
warping. It also provides numerical results for the tempera-
ture dependence of the mode eigenfrequencies for p-doped
GaAs resonators. In Sec. IV we consider the doping-induced
correction to the dependence of the vibration frequency on the
amplitude in the two-band approximation and provide numer-
ical results on the temperature dependence of the nonlinearity
for GaAs-based resonators. Section V provides the results for
the three-band model. In this section, we describe an efficient
numerical algorithm that allows us to find the effect of the
coupling on the parameters of an eigenmode and present
numerical results on the temperature dependence of several
eigenmodes of Si-based resonators and the temperature and
hole density dependence of the mode nonlinearity. Section VI
gives estimates of the direct hole-induced decay rate of eigen-
modes and discusses possible effects of the coupling on their
Akhiezer damping rates. In Sec. VII we summarize the results
and highlight the implications of this paper. Appendices A–D
provide details of the calculations.

II. COUPLING OF HOLES TO LOW-FREQUENCY
VIBRATIONAL MODES

The typical size of crystalline plates or beams used as nano-
and micromechanical resonators ranges from submicron to
several hundred microns. Therefore, the vibration periods of
low-lying eigenmodes are in the range 10−9–10−6 s. They are
much longer than the reciprocal Maxwell relaxation time and
the hole thermalization time, which are �10−11 s for hole
densities �1016 cm−3 and room temperatures. The strain from
eigenmode vibrations can be thus assumed quasi-static in the
analysis of the hole dynamics. Then the holes in different
bands have the same strain-modulated chemical potential μ

and the same temperature. They are described by the density
of the grand thermodynamic potential

�ν (r) = −2kBT
∫

d3k
(2π )3

log[1 + e(μ−eφ(r)−Eν (k))/kBT ].

(1)

The subscript ν enumerates the hole energy bands, r is the
spatial coordinate, and φ(r) is the electrostatic potential; the
factor 2 comes from the spin degeneracy. We consider two-
and three-band models.

The hole energy Eν (k) depends on strain and thus also
on r. For the hole densities of interest and for not too low
temperatures, the major contribution to �ν comes from the
wave vectors k where strain-induced corrections to Eν (k) are
a perturbation. In this case we can expand Eν in a series in the
strain tensor ε̂,

Eν (k) = E (0)
ν +

∑
n=1

E (n)
ν (k, ε̂). (2)

Here and below we use a superscript to show the order of the
corresponding term in ε̂. Respectively, the functions E (n)

ν in
Eq. (2) scale as ‖ε̂‖n. They can be written in the form

E (n)
ν (k, ε̂) = 1

n!
Û (n)

ν (k) · ε̂n. (3)

The tensor Û (n)
ν here is independent of strain and is contracted

with the tensor product of n second-rank tensors ε̂. The pow-
ers ε̂n are defined recursively as

ε̂n = ε̂ ⊗ ε̂n−1, ε̂0 = Î. (4)

The tensors Û (n)
ν can be calculated from the full Hamiltonian

of the holes Ĥ (k, ε̂) using a direct perturbation theory. Below
we will consider either the two-band approximation, in which
one takes into account only light and heavy-hole bands, or the
three-band approximation, which includes the split-off band.
In both cases the effect of the strain is taken into account by
adding linear in ε̂ term to the unperturbed Hamiltonian, with
proper symmetry. The full Hamiltonian constructed this way,

Ĥ (k, ε̂) = Ĥ (0)(k) + Ĥi · ε̂,

is sometimes called the Luttinger-Kohn-Bir-Pikus Hamilto-
nian [25], see Appendix C. The operators Ĥ (0) and Ĥi are
independent of coordinates. The matrix Ĥ (0) is bilinear in
the components of k, while Ĥi is independent of k, but both
Ĥ (0) and Ĥi have a similar structure, which is dictated by
the symmetry. The tensors ε̂ are determined by the phononic
displacement field. In the analysis of the direct effect of the
coupling to holes on the eigenmodes the typical scale of the
coordinate dependence of ε̂ is the size of the crystal.

Generally, the corrections to the energy E (n)
ν can be found

by a standard direct perturbation theory. We use this approach
for the model where the split-off band is disregarded. For
the 6 × 6 Hamiltonian that takes this band into account, for
numerical reasons, we use a different approach, see Sec. V A.

To describe the mode frequency shift and the quartic non-
linearity we need to find E (n)

ν for n = 1, .., 4. The perturbation
theory for E (n)

ν diverges for k → 0, where the splitting of the
light- and heavy-hope bands goes to zero. However, the range
of k where the perturbation theory fails makes a negligible
contribution to the parameters we are studying, and moreover,
the diverging terms cancel each other in the expressions for
the observables we are interested in. We show this analytically
in Appendix B for the model where the split-off band is
disregarded, and we show this numerically where we take into
account the split-off band.

A. Free energy of the hole gas

Equations (1) and (2) allow one to calculate the hole
free energy F = ∫

drF (r) in the presence of strain, F (r) =∑
ν �ν (r) + (μ − eφ(r))nh, where nh is the local hole den-

sity. The strain-induced change �F (r; ε̂) of the free-energy
density can be also expanded in a series in the powers of the
strain tensor ε̂,

�F (r; ε̂) =
∑
n=1

�F (n), �F (n) = 1

n!
�̂(n) · ε̂n, (5)

where �̂(n) is a tensor of rank 2n, and we again use central dot
to indicate contraction with the 2n-rank tensor ε̂n. The tensors
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�̂(n) are determined by the tensors Û (m)
ν in the expansion of

the band energy in ε̂ with m � n. They are independent of
k and of the coordinates in a spatially uniform crystal. They
are symmetric, since ε̂ is a symmetric tensor and �F (r) is
an invariant. The number of independent components of the
tensors �̂(n) in a cubic crystal for different ranks 2n is well-
known; cf. Refs. [26,27].

The hole-induced change of the mode eigenfrequencies
is described by the tensor �̂(2), which gives the change of
the elastic constants of the crystal [28]. The leading-order
terms in the dependence of the vibration frequency on the
amplitude are determined by the quartic nonlinearity in ε̂, i.e.,
by the components �̂(4). There is also a contribution to this
dependence coming from the terms �̂(3) in the second order
of the perturbation theory, but as we show, it is comparatively
small for the systems of interest.

In the previous work on the effect of the hole-strain cou-
pling [1–7], the analysis was done assuming electroneutrality
and setting the potential φ(r) = 0. This is a good approxima-
tion for large values of the deformation potential parameters
of the hole-strain coupling compared to μ and kBT and for a
small Thomas-Fermi screening length. It allows for the effect
of hole redistribution between the light- and heavy-hole bands
and disregards the hole density change. We use this approx-
imation in the present paper. The role of the strain-induced
change of the acceptor and hole densities, the effect of the
spatial nonuniformity of doping, and other geometric effects
will be analyzed in a separate paper.

To calculate the tensors �̂(n) it is convenient to write the
chemical potential as a series

μ = μ(0) +
∑
n=1

μ(n)(ε̂), μ(n) = 1

n!
M̂ (n) · ε̂n

and then expand �ν (r) in
∑

n=1(μ(n) − E (n)
ν ). Here μ(0) is the

chemical potential in the absence of strain. The components
μ(n) are found from the condition

− ∂

∂μ

∑
ν

�ν = nh, (6)

where nh is the unperturbed hole density. This condition
means that, in the expansion of ∂μ

∑
ν �ν , the terms ∝ε̂m with

m � 1 should be equal to zero.
From the first-order perturbation theory

μ(1) = atr ε̂, �F (1) = �̂(1) · ε̂ = anhtr ε̂. (7)

Here a = D−1
H tr Ĥi; DH is the dimension of the Hamiltonian,

DH = 4 and 6 for the two- and three-band models, respec-
tively. The proportionality of μ(1) and �F (1) to tr ε̂ is just a
consequence of the symmetry, as tr ε̂ is the only linear in ε̂

scalar in a cubic crystal, see Appendix A for more details.
The expressions for μ(n) and �̂(n) with n > 1 in terms of E (m)

ν

with m � n are also given in Appendix A.
Equation (7) for �F (1) describes the isotropic stress that

results from the hole-strain coupling. The stress is compen-
sated by the change of the volume of the crystal due to doping.
This is similar to a linear in ε̂ term in the free energy of
the host crystal, which is proportional to the change of tem-
perature and describes thermal expansion [28]. The volume
changes also because of the very fact of doping, as the size

of the substitutional atoms (acceptors) differs from the size of
the host atoms. However, for a low dopant density, the change
should be proportional to this density and thus be small. The
nonlinear in ε̂ effect of the hole-strain coupling leads to a
stronger effect on the mode frequencies. This is due to the
large ratio of the coupling energy to the hole kinetic energy
and, consequently, a large change of the statistical distribution
of the holes by strain which, in turn, affects the strain.

An advantageous feature of the representation (2)–(5) for
the analysis of the effect of the hole-strain coupling is that
the free-energy increment (5) can be calculated directly for
a given eigenmode κ as a function of its amplitude Aκ . It
is convenient to represent the displacement field of the mode
κ as Aκuκ (r). Here uκ (r) is the dimensionless vector that
describes the spatial profile of the mode κ and is normalized
to the volume V of the resonator,∫

d3r u2
κ

= V.

The time-dependent field is Aκuκ (r) cos ωκt , where ωκ is the
mode eigenfrequency. The strain ε̂ created by the mode has
the form

ε̂ = Aκ ε̂κ cos ωκt, (εκ )i j = 1

2

[
∂ (uκ )i

∂x j
+ ∂ (uκ ) j

∂xi

]
. (8)

The subscripts i, j run over the coordinate axes x, y, z; here
and below we choose these axes along the 〈100〉 crystalline
axes.

Replacing ε̂ with Aκ ε̂κ cos ωκt determines the “instan-
taneous” change of the hole energy E (n)

ν (k, ε̂) and the free
energy �F (r; ε̂) due to the mode κ. Disregarding delay is
justified for low-frequency eigenmodes, since the associated
strain is adiabatically followed by the holes, as explained
above. In turn, the change of �F calculated this way deter-
mines the change of the eigenfrequency of the mode κ and
the mode nonlinearity due to the hole-strain coupling.

III. MODE EIGENFREQUENCIES IN THE TWO-BAND
APPROXIMATION

It is seen from Eqs. (1)–(5) that the effect of the hole-strain
coupling on the mode eigenfrequencies, which is described by
the tensors �̂(2), depends on the hole density and temperature.
For the typical hole densities, the doping-induced change of
the eigenfrequencies is small. However, it can be compara-
ble to the “intrinsic” temperature-dependent eigenfrequency
change due to the lattice nonlinearity, i.e., the change in the
absence of doping. The overall temperature dependence of
the mode eigenfrequency is a sum of the terms that come from
the doping and the lattice nonlinearity.

A. Estimate of the mode frequency change

It is useful to have an estimate of the effect. The value of
�̂(2) · ε̂2 is determined by the strain-induced change of the
hole energies E (2)

ν multiplied by the hole density nh. The char-
acteristic value of E (2)

ν can be estimated from the second-order
perturbation theory in the hole-strain coupling. If the charac-
teristic coupling constant (the characteristic parameter of the
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deformation potential) is D, then the conventional estimate is

E (2)
ν ∼ (D2/Ekin )‖ε̂‖2,

where Ekin is the typical hole kinetic energy, which varies
from μ0 for the strongly degenerate hole gas to kBT for the
nondegenerate gas.

For the strain given by Eq. (8), we have ‖ε̂‖2 ∼ A2
κ
/L2

where L is the typical size on which the mode displacement
uκ varies; this can be the length of the crystal, for an ex-
tensional mode, or the size of the square-shape crystal, for
a Lamé mode. Therefore, to the second order in ε̂, the overall
change of the free energy F (2)

κ
for the mode κ is

F (2)
κ

∼ (D2/Ekin )V nhA2
κ

/
L2,

where V is the volume of the crystal.
This change has to be compared with the typical energy of

the mode in the absence of the coupling to holes,

Mω2
κ

A2
κ

∼ ρVA2
κ
v2

s

/
L2,

where M is the mass of the crystal, ρ is the crystal density,
and vs is the sound velocity.

The ratio

ζ = F (2)
κ

/(
Mω2

κ
A2
κ

) ∼ (D2/Ekin )nh/ρv2
s (9)

determines the coupling strength. For typical D ∼ 3 eV, nh ∼
1019 cm−3, Ekin ∼ 0.03 eV, ρ ∼ 3 g/cm3, and vs ∼ 5 × 105

cm/s we obtain ζ ∼ 0.006. The value of ζ also provides
an estimate of the change of the mode frequency due to
the coupling to holes, �ωκ ∼ ζωκ . Even though the fre-
quency change is small, it can have a profound temperature
dependence. This is important for various applications of me-
chanical resonators; cf. Refs. [10,14].

By construction, the nth-order tensor �̂(n) in the ex-
pansion of the free energy (5) scales as D(D/Ekin )

n−1
.

Therefore, ‖�̂(n)‖ increases fast with the increasing order n.
This is why the hole-strain coupling makes a major contri-
bution to the mode nonlinearity. For the same reason, the
leading-order contribution to the nth-order term in the dis-
placement u in the expression for �F comes from the term
[(∂ui/∂x j ) + (∂u j/∂xi )]/2 in εi j , whereas the nonlinear term
(∂uk/∂xi )(∂uk/∂x j ) in εi j can be disregarded, as it was done
in Eq. (8).

B. Two-band energy spectrum

For not too large hole densities and not too high temper-
atures, the split-off band is empty, and it is sufficient to take
into account the bands of light and heavy holes only. Then the
subscript ν in Eqs. (1) and (2) takes on values 0 and 1, which
we relate to the light- and heavy-hole bands, respectively. The
hole dispersion law with the account taken of the hole-strain
coupling is known in the explicit form for this case [19,29].
This allows obtaining expressions for the corrections to the
frequencies of eigenmodes in the form of simple integrals.

The energy dispersion law in the absence of hole-strain
coupling is E (0)

ν (k) = Ak2 + (−1)νE (k), where

E (k) =
⎛⎝B2k4 + 1

2
C2

∑
i 	= j

k2
i k2

j

⎞⎠1/2

. (10)

Parameter C in this expression characterizes the warping of
the energy surfaces.

In the deformation potential approximation the dispersion
law becomes

Eν (k) = Ak2 + atrε̂ + (−1)ν (E2(k) + 
(1) + 
(2) )1/2,


(1) = Bb

(
3
∑

i

k2
i εii − k2trε̂

)
+ Dd

∑
i 	= j

kik jεi j,


(2) =
∑
i 	= j

[
b2

4
(εii − ε j j )

2 + d2

2
ε2

i j

]
, (11)

where the superscripts 1 and 2 refer to the terms that are linear
and quadratic in ε̂, respectively.

The parameters a, b, and d in Eq. (11) are the deforma-
tion potential parameters. They determine the strength of the
hole-strain coupling and, typically, are in the range of a few
electron volts, much larger than the chemical potential and
kBT . An important feature of the two-band approximation
is that, as seen from Eq. (11), the band splitting by strain
is “antisymmetric”: the light and heavy-hole bands shift in
opposite directions by the same amount, for a given strain.

C. Analytical expressions

Equation (11) for Eν allows one to find the components
E (n)

ν in the series (3) simply by expanding Eν in 
(1) and 
(2).
The first- and second-order terms in ε̂ are

E (1)
ν (k, ε̂) = atr ε̂ + (−1)ν
(1)/2E (k),

E (2)
ν (k, ε̂) = (−1)ν

(

(2)

2E (k)
− 
(1)2

8E (k)3

)
. (12)

To find �̂(2), one has to find the terms up to the second
order in ε̂ in �ν and μ. The expressions that relate �ν and
μ to E (n)

ν are given in Appendix A. The calculation for the
two-band model is facilitated by the relation∫

d3k
[

(1)(k, ε̂)

E (k)

]
f
(
E (0)

ν , μ(0)
) = 0,

f (Eν, μ) = {exp [(Eν − μ)/kBT ] + 1}−1, (13)

that follows from the symmetry arguments. This relation
shows, in particular, that �(1)

ν = 0 and leads to Eqs. (7) for
μ(1) and �F (1); Eqs. (7) imply that �̂

(1)
i j = anhδi j .

A straightforward calculation of �̂(2) based on the results
of Appendix A gives

�
(2)
1111 = −2�

(2)
1122 = 4

∑
ν

∫
d3k

(2π )3

{
(−1)ν fν

[
b2

2E (k)
− B2b2

(
9k4

x − k4
)

8E (k)3

]
− f ′

ν

B2b2
(
9k4

x − k4
)

8E (k)2

}
(14)
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and

�
(2)
1212 =

∑
ν

∫
d3k

(2π )3

{
(−1)ν fν

[
d2

2E (k)
− D2d2k2

x k2
y

2E (k)3

]

− f ′
ν

D2d2k2
x k2

y

2E (k)2

}
. (15)

Here and in the following, we use the notation

fν ≡ f
(
E (0)

ν , μ(0)
)
, f ′

ν ≡ ∂ fν/∂μ(0)

and use the appropriate number of primes to denote higher-
order derivatives of the Fermi distribution function fν with
respect to μ(0) (cf. Appendix A). In often used Voigt notation,
�

(2)
1111 = c(h)

11 , �
(2)
1122 = c(h)

12 , and �
(2)
1212 = 2c(h)

44 , where c(h)
i j are

the doping-induced terms in the corresponding elasticity pa-
rameters. We note that, generally, there are three independent
components of the linear elasticity tensor in a cubic crystal,
but the hole-induced renormalization of this tensor �̂(2) has
only two parameters.

Equations (14) and (15) provide an analytical solution of
the problem of free energy of holes in the presence of strain
with the account taken of the warping of the energy surfaces
and of the associated change of the elasticity parameters. In
contrast to the previous analysis [2], where the warping was
disregarded, the integrals over k cannot be evaluated in the
explicit form. Since E (k) ∝ k2, the integrals converge at small
k, whereas at large k the convergence is guaranteed by the
exponential falloff of fν .

In the density range where μ(0) � kBT , the parameters
�̂(2) scale as n1/3

h . The dependence of �̂(2) on the hole den-
sity and on the temperature becomes fairly complicated in
the most interesting range of doping and temperatures where
μ(0)/kBT ∼ 1. This is due to the complicated form of the
k-dependent factors in Eqs. (14) and (15). Therefore, further
analysis requires numerical calculations. However, the cal-
culations are straightforward given the explicit form of the
expressions for the doping-induced change of the elasticity
parameters.

D. Numerical results

In this section, we use Eqs. (14) and (15) to describe
the coupling-induced dependence of the eigenfrequencies of
NEMS and MEMS modes on temperature and hole density.
The numerical integration over k is done using the standard
Mathematica package. We provide results for the Lamé and
extensional modes, as such modes are frequently studied in
the experiments [24,31,32].

For the Lamé modes in square plates cut out along 〈100〉
and 〈110〉 axes the dependence of the eigenfrequencies on the
elastic constants (in Voigt notation) is, respectively,

ωL,〈100〉 ∝ CL,〈100〉(T ) = √
c11 − c12,

ωL,〈110〉 ∝ CL,〈110〉(T ) = √
c44. (16)

For a long narrow beam cut along 〈100〉 axis with the sides
parallel to (100) planes the eigenfrequency of the extensional

mode scales as

ωe,〈100〉 ∝ Ce,〈100〉(T )

=
√[

c11(c11 + c12) − 2c2
12

]/
(c11 + c12),

whereas for an extensional mode along 〈110〉 axis, with the
beam sides parallel to the (001) and (11̄0) planes,

ωe,〈110〉 ∝ Ce,〈110〉(T ) =
√

c44
[
c11(c11 + c12) − 2c2

12

]
c11(c11 + c12 + 2c44) − 2c2

12

;

cf. Ref. [33]. The combinations Ce,〈100〉 and Ce,〈110〉 also
determine the temperature dependence of the hole-induced
corrections to the frequencies of flexural modes of the appro-
priately oriented beams, since these frequencies depend on the
flexural rigidity which, in turn, depends on the Young modulus
[28].

The two-band model considered in this section applies in
an appreciable range of densities and temperatures to res-
onators made out of Ge and III–V semiconductors, in which
the spin-orbit splitting of the valence band is comparatively
large. In contrast, in silicon the spin-orbit splitting is small
and the applicability of the two-band model is limited to very
small hole densities and low temperatures.

Here, we present results for GaAs-based micromechanical
resonators. Such resonators are widely used for sensing forces
of various natures, from biomolecular to magnetic, as well
as in accelerometers and other devices. They are advanta-
geous in several respects [11]. In particular, because GaAs is
piezoelectric, mechanical vibrations can be directly controlled
and measured through strain-voltage transduction. Besides
applications, GaAs-based NEMS and MEMS are also broadly
used in fundamental studies; cf. Refs. [11,34] and references
therein.

In Fig. 1 we show the temperature dependence of the rel-
ative linear frequency shifts of different eigenmodes of GaAs
resonators in the two-band approximation for the hole den-
sity nh = 2.0 × 1019 cm−3. Plotted is the relative increment
�(h)

κ
of the eigenfrequency ωκ (T ) counted off from the value

ωκ (T0) at a certain reference temperature T0:

�(h)
κ

= ωκ (T ) − ωκ (T0)

ωκ (T0)
= Cκ (T ) − Cκ (T0)

Cκ (T0)
. (17)

We used the values of the elasticity parameters ci j in the
absence of doping provided in Ref. [35] and the valence band
parameters given in Ref. [36]. In calculating �(h)

κ
we added

together the frequency changes due to the doping-induced
change of the elasticity parameters described by Eqs. (14) and
(15) and to the temperature dependence of these parameters
due to the intrinsic nonlinearity of the crystal. The effect of
the intrinsic nonlinearity was measured for different levels of
n-type doping [37,38] and was found to weakly depend on
such doping [30].

Figure 1 shows that p-type doping does affect the tem-
perature dependence of the elastic constants, but the effect
is comparatively small. The dependence of the mode eigen-
frequencies on T remains monotonic and is close to linear
even for a comparatively large doping. We did calculations
for several other densities nh, with nh in the range of 1018–
1020 cm−3; the doping-induced change of the parameters is
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FIG. 1. Temperature dependence of the relative linear frequency shifts �(h)
κ

= [ω
κ

(T ) − ω
κ

(T0)]/ω
κ

(T0) for (a) Lamé modes and
(b) extensional modes in GaAs-based NEMS or MEMS at nh = 2.0 × 1019 cm−3. The reference temperature is T0 = 250 K. The insets show
the results for undoped GaAs. The data on the temperature dependence of the intrinsic second-order elastic constants in GaAs is taken from
Ref. [30].

linear in nh in this range and the dependence on T remains
close to linear. As we will see, the results for Si are qualita-
tively different.

IV. NONLINEARITY IN THE TWO-BAND
APPROXIMATION

An important characteristic of the eigenmodes in nano-
and micromechanical resonators is their nonlinearity. Because
of the nonlinearity, the vibration frequency depends on the
vibration amplitude Aκ [39]. This has several profound conse-
quences. One of them is that fluctuations of the amplitude, in
particular those due to thermal noise, lead to frequency fluctu-
ations and broadening of the power spectrum, see Ref. [40].
Such broadening has been seen in various types of nano-
and micromechanical systems [41–48], see Ref. [13] for a
review. Another important consequence is that the nonlinear
frequency change limits the amplitude range used in the de-
vices that rely on frequency stability.

The hole-strain coupling can significantly modify the mode
nonlinearity. This was indicated already in Ref. [1]. The effect
is a consequence of the large ratio of the deformation potential
parameter D to the typical hole kinetic energy Ekin; for the
two-band model considered here D = max(b, d ). We recall
that the parameters �̂(n) of the power series of the free energy
in ε̂, Eq. (5), scale as �̂(n) ∝ D(D/Ekin )

n−1
. In many semicon-

ductors D/Ekin � 102 for the hole densities 1017–1019 cm−3

and room temperatures. Therefore, ‖�̂(n)‖ are quickly increas-
ing with the increasing n, as mentioned earlier.

For not too large amplitudes Aκ , the hole-induced term in
the dependence of the frequency ωκ of the mode κ on its
amplitude Aκ has the form

δωκ = 3γ (h)
κ

8Mωκ

A2
κ
.

Here γ (h)
κ

is the hole contribution to the parameter of quartic
(Duffing, or equivalently, Kerr) nonlinearity of the potential
energy of the mode. In terms of the normal coordinate Qκ of
the mode, this potential energy, with the account taken of the
quartic nonlinearity, is 1

2 Mω2
κ

Q2
κ

+ 1
4γ (h)

κ
Q4

κ
. The parameter

γ (h)
κ

is determined by the quartic term �F (4) in the free energy
with respect to the normalized lattice displacement field uκ (r)

that describes the spatial profile of mode κ,

γ (h)
κ

= 4
∫

dr �F (4)
κ

(r)

≡ 1

6

∫
dr�̂(4) · ε̂κ ⊗ ε̂κ ⊗ ε̂κ ⊗ ε̂κ, (18)

where the strain tensor ε̂κ for mode κ is defined in Eq. (8).
Generally speaking, γ (h)

κ
has a contribution from the square

of the terms ∝�̂(3). This contribution can be separated into
two parts. One part comes from the “self-action” of the mode
mediated by the coupling to holes. Such self-action gives a
term 1

3βκQ3
κ

in the mode potential energy, with βκ ∝ ‖�̂(3)‖.
The contribution of this term to γ (h)

κ
is ∝ β2

κ
/Mω2

κ
[39] and

thus is ∼ζγ (h)
κ

, where ζ is given by Eq. (9). Since ζ � 1 in
the systems we consider, it can be disregarded. The second
part comes from the hole-induced nonlinear coupling of the
considered mode to other modes. It has the same smallness;
however, it can contribute to the decay rate of the mode, as
discussed in Sec. VI.

The value of �F (4)
κ

is obtained by expanding �ν and μ

to the fourth and the third order in ε̂, respectively. Such ex-
pansion is given in Appendix A. The general expressions can
be further simplified because of the structure of E (1)

ν in the
two-band approximation, see Eq. (12). In particular, the term
∝μ(3) drops out from the expression for �F (4)

κ
. Therefore, it

is sufficient to find only μ(2).
It is seen from the explicit expression for the hole energy

in the presence of strain Eν (k), Eq. (11), that the expansion in
ε̂ is an expansion in ε̂/k2. For small wave numbers k, the indi-
vidual terms in the integrals over k, which give �F (4), diverge
as k−6, k−4, and k−2. However, as shown in Appendix B, the
diverging terms cancel each other in the full expression for
�F (4)

κ
, so that �F (4)

κ
is free from divergences.

We illustrate the effect of the coupling-induced nonlinear-
ity for the Lamé modes in GaAs square plates with side L
and thickness h. The doping-related nonlinearity parameter
γ (h)
κ

is related in a simple way to the fourth-order elasticity
parameters [18]. For plates cut out along 〈100〉 and 〈110〉
crystal symmetry axes

γL,〈100〉 =
(

27π4h

32L2

)
c(h)

1111
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FIG. 2. Temperature dependence of the scaled relative nonlinear
frequency shifts δω

κ
/ω

κ
η2
κ

for 〈100〉 and 〈110〉 Lamé modes in a
square single-crystal GaAs resonator for the hole density nh = 2.0 ×
1019 cm−3.

and

γL,〈110〉 =
(

3π4h

2L2

)
c(h)

4444.

Here, c(h)
1111 and c(h)

4444 are the doping-related corrections to the
nonlinear elasticity coefficients in Voigt notation.

It is convenient to scale the vibration amplitude Aκ by the
resonator size, which is the characteristic wavelength of the
mode, Aκ = ηκL. The dimensionless parameter

ℵκ = δωκ

ωκη2
κ

= 3γ (h)
κ

L2

8Mω2
κ

, (19)

which depends only on the second- and fourth-order elastic-
ity coefficients, characterizes the relative nonlinear frequency
shift [18]. In Fig. 2 we show the temperature dependence of
this parameter for the Lamé modes in two differently oriented
resonators. The temperature dependence of the doping-related
terms c(h)

1111 and c(h)
4444 is calculated in the two-band approxi-

mation using Eq. (A6). The results refer to the hole density
nh = 2.0 × 1019 cm−3. For this density, the ratio μ0/kBT
varies from ≈4.4 at 100 K to ≈1.3 at 250 K to ≈0.27 at 400 K.

The nonlinear frequency shift shown in Fig. 2 is a non-
monotonic function of temperature. This is a consequence of
the structure of Eq. (A6) for the correction to the free energy
�F (4) that gives γ (h)

κ
. This correction is a sum of the contri-

butions from the integrals over k of corrections to the hole
energy E (n)

ν (k), up to quartic order in ε̂ (i.e., n = 1, . . . , 4),
weighted by the Fermi distribution fν and its first, second,
and third derivatives. For μ0/kBT � 1, where the hole gas
is strongly degenerate, the leading-order contributions come
from the terms that contain fν and f ′

ν . An important feature
of the two-band model is that the hole-energy corrections for
the different bands, E (n)

0 (k) and E (n)
1 (k), have opposite signs.

As a result, the linear in E (n)
ν terms, which are ∝ E (4)

ν and
are weighed by fν , partly compensate each other. Therefore,
ℵκ ∝ γ (h)

κ
is comparatively small. With the increasing T ,

there is an increasing contribution to �F (4) from the terms
quadratic in E (n)

ν , which are weighted by the derivatives of fν
with respect to μ0. As a result, γ (h)

κ
increases. However, at

high temperatures, γ (h)
κ

should decrease with the increasing

T . This is because the characteristic E (n)
ν (k) for holes with

thermal wave vectors kth is ∝(D‖ε̂‖/kBT )n when kBT � |μ0|.

V. EFFECT OF THE SPLIT-OFF BAND

The two-band model may be insufficient to describe the
effects of doping at large hole densities and high tempera-
tures. A better approximation is provided by the three-band
model, which takes into account the split-off band along with
the bands of light and heavy holes [49]. This is particularly
important for silicon, where the spin-orbit coupling is rela-
tively weak. The three-band model in the presence of strain is
well described by the broadly used Luttinger-Kohn-Bir-Pikus
Hamiltonian [19].

For completeness, we provide this Hamiltonian in Ap-
pendix C. Its form is dictated by the symmetry of the crystal.
It is a 6 × 6 matrix, a sum of the Hamiltonian in the absence
of strain Ĥ (0)(k) and the coupling Hamiltonian Ĥi · ε̂, which
is linear in strain. The eigenvalues of the Hamiltonian Eν (k, ε̂)
are doubly degenerate due to spin. There are three eigen-
values for each k. The energy branches are enumerated by
ν = 0, 1, 2, corresponding to the light-hole, heavy-hole, and
split-off bands.

A. Numerical method

To describe the effect of the hole-strain coupling in the
three-band model we use the general formalism developed for
the two-band approximation in Secs. III and IV. Implement-
ing this formalism requires finding the energies Eν (k, ε̂) and
expanding them in powers of ε̂. The expansion coefficients
E (n)

ν (k) can be then used to calculate the series expansion of
the free energy in ε̂; the corresponding expressions are given
in Appendix A. However, finding the eigenvalues Eν (k, ε̂)
of the 6 × 6 Hamiltonian is analytically intractable. There-
fore, we numerically evaluated Eν (k, ε̂) and then found its
expansion in ε̂. The integration over k in Eqs. (A2)–(A6) was
replaced by summation over a three-dimensional uniformly
meshed grid in the k space. The exponential falloff of the in-
tegrands at large k allowed us to limit the integration domain,
and the independence of the large-k cutoff was tested.

A conventional way of calculating the expansion coef-
ficients E (n)

ν (k) is based on the perturbation theory [26].
However, it requires finding not only eigenvalues, but also
eigenvectors of the operator Ĥ (0)(k) for each k. Calculat-
ing the eigenvectors and then the matrix elements to the
fourth order of the perturbation theory in Ĥi · ε̂ is numerically
demanding.

Since we are interested in the energy changes for specific
eigenmodes, we could use a different approach. For each k
on the grid we calculated Eν (k, ε̂) for ε̂ = 0 and then for
discretized values of the strain tensor for a given mode κ,
i.e., for ε̂ = ±ε̂κ , ±2ε̂κ , . . . . Then we used the standard
finite-difference formulas [50] or nth-degree-polynomial in-
terpolation to extract the expansion coefficients in the power
series

∑
n Û (n)

ν (k) · ε̂n
κ
/n! for Eν (k, ε̂κ ); see Eq. (3). We tested

that both approaches gave the same result, to high accuracy
and that the result was independent of the step of discretiza-
tion in ε̂κ . The values of E (n)

ν (k) found this way for each k
were then used to find the free energy for strain ε̂κ . The results
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allowed us to evaluate the effect of the coupling to holes on the
corresponding eigenmodes of a resonator.

The coupling-induced corrections to the elasticity param-
eters that determine the eigenfrequencies of the Lamé modes
were presented earlier in Ref. [6]. Our results agree with the
results on the parameter c(h)

11 − c(h)
12 , which determines ωL,〈100〉.

For c(h)
44 , which determines ωL,〈110〉, the difference is close to

25%. Most likely, it comes from a more recent value [36]
of the deformation potential parameter Du that we are using;
this parameter strongly affects c(h)

44 . In contrast to Ref. [6], we
limited our analysis to not too low densities nh and not too low
temperatures, where all acceptors are ionized. This is required
to make the hole density independent of temperature, so that
it is a well-controlled parameter. Indeed, the Thomas-Fermi
screening length [(4πe2/εSi)∂nh/∂μ0]−1/2 is �1 nm in Si at
nh = 2.0 × 1019 cm−3 and T = 300 K. Given that the Bohr
radius is �2 nm and the acceptor ionization energy is about
0.05 eV [51,52], it is a good approximation to assume that
all acceptors are ionized for such nh and T . However, this
assumption does not work in the range nh = 1017 cm−3 and
T = 100 K, which was included in the analysis of Ref. [6].
Other important distinctions from [6] are that, besides the
Lamé modes, we consider extensional modes and, in the first
place, study the mode nonlinearity.

B. Mode eigenfrequencies

Figure 3 shows the scaled temperature dependence of the
eigenfrequencies for several modes of p-doped Si resonators.
We recall that the parameter �(h)

κ
, which is defined in Eq. (17),

shows the relative frequency change compared to the fre-
quency value at a certain temperature T0, which we chose to
be 250 K. The presented frequency change includes both the
change due to the intrinsic nonlinearity of the crystal (we used
the data given in Ref. [35]) and the doping-induced correc-
tions to the second-order elastic constants that we found. The
incorporation of the effect of intrinsic nonlinearity is another
distinction from the analysis in Ref. [6]. This inclusion is
necessary for a comparison of the theory and experiment.

A remarkable feature of the plots in Fig. 3 is that the
temperature dependence of the frequencies of all modes we
studied is nonmonotonic. This is a result of the competition
between the intrinsic and doping-induced frequency shifts. In
an undoped crystal, the elasticity parameters, and thus �(h)

κ
,

decrease with temperature in the shown temperature range. In
contrast, the coupling to holes leads to an increase of �(h)

κ
due

to the way this parameter is constructed: the doping-induced
correction to the elasticity parameters is negative, but it de-
creases in the absolute value with the increasing temperature.
The possibility of the decrease of the magnitude of the doping-
induced correction with rising temperature is clear already
from the formal estimate of the coupling effect as ‖�̂(2)‖ ∝
D2/Ekin, since Ekin ∼ max(μ0, kBT ). For higher tempera-
tures, where the effect of the coupling is weak, �(h)

κ
decreases

with the increasing T , as it does in an undoped crystal.
For the density nh = 2.0 × 1019 cm−3 in Fig. 3(a) the ratio

μ0/kBT decreases with the increasing temperature from 3.1
for T = 100 K to 0.33 for T = 250 K to −0.67 for T =
400 K. For the same temperature values, at the density nh =
1.0 × 1020 cm−3 in Fig. 3(b) the ratio μ0/kBT decreases from

FIG. 3. Temperature dependence of the relative eigenfrequency
shifts �(h)

κ
= [ω

κ
(T ) − ω

κ
(T0)]/ω

κ
(T0 ) for several eigenmodes in

Si-based resonators. The reference temperature is T0 = 250 K. The
values of �(h)

κ
are sums of the contributions from the intrinsic non-

linearity of the elastic constants [35] and from the coupling to holes.
The plots (a) and (b) refer to the hole densities nh = 2.0 × 1019 cm−3

and nh = 1.0 × 1020 cm−3. The solid curves are calculated using the
three-band model. The dashed lines in panel (a) show the result of
the two-band approximation.

8.0 to 2.9 to 1.4. It is this difference between the values of
μ0/kBT that lies at the root of the difference in the temperature
dependence of the eigenfrequencies in Figs. 3(a) and 3(b).
Overall, the coupling-induced frequency change is a nontrivial
function of the hole density. More details on the origin of this
effect are provided in Sec. V D and in Appendix D.

It is instructive to compare the three-bands results with the
ones obtained in the two-band approximation. The two-band
results for the 〈100〉 and 〈110〉 Lamé modes are shown with
dashed blue and yellow lines in Fig. 3(a). The significant
difference between the two- and three-band results indicates
the important role of the split-off band.

C. Comparison with the experiment

In Fig. 4, we compare the theory with the experimental
results [31] on the mode eigenfrequencies in Si MEMS for
nh = 1.4 × 1020 cm−3. The theoretical calculations are done
for the three-band model. The hole-hole interaction is disre-
garded, which is justified for such a high hole density. Overall,
the theory and the measured temperature dependence of the
mode eigenfrequencies are in good agreement.
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FIG. 4. Temperature dependence of the relative linear frequency
shifts �(h)

κ
= [ω

κ
(T ) − ω

κ
(T0)]/ω

κ
(T0) for different modes in Si

MEMS for nh = 1.4 × 1020 cm−3 and T0 = 298 K. The solid curves
show the results that account only for the T -dependence of the elas-
ticity constants, as in Fig. 3. The dashed curves show the results that
additionally take into account thermal expansion using the interpo-
lating expression in Ref. [53]. The empty circles are the experimental
data [31] for the corresponding modes.

A plausible cause of the small discrepancy between the
theory and the experiment is the dependence of thermal
expansion on doping. To illustrate the effect of thermal ex-
pansion, in Fig. 4 we present two theoretical results for each
mode. The first result refers to the approximation in which
the temperature dependence of the eigenfrequencies is due
to the temperature dependence of the elastic constants only.
The second one is obtained by taking into account thermal
expansion of the resonator. To describe the latter effect we
employed the results of Refs. [53,54], following Ref. [31].
These results refer to high-purity silicon. However, p-doping
should affect thermal expansion, as seen already from the
linear in ε̂ term in the free energy, Eq. (7).

Further comparison with the experiment provides ad-
ditional evidence of the effect of p-doping on thermal
expansion. Our calculations show that increasing the hole
density in Si beyond 1.0 × 1020 cm−3 results in a slight sup-
pression of the temperature dependence of the doping-induced
corrections to the parameters of linear elasticity. This is de-
spite the magnitude of these corrections becoming larger with
the increasing nh; for example, ‖�̂(2)‖ ∼ nh(D2/μ0) ∝ n1/3

h ,
for a strongly degenerate hole gas. However, the temperature
dependences observed in Ref. [31] for nh = 1.4 × 1020 cm−3

and nh = 1.7 × 1020 cm−3 are very similar. We emphasize,
however, that as seen from Fig. 4 the overall effect of thermal
expansion is small. Its detailed analysis is beyond the scope
of the paper.

D. Mode nonlinearity due to the strain-hole coupling

Figure 5 shows the calculated temperature dependence
of the scaled nonlinear frequency shift ℵκ = δωκ/ωκη2

κ
,

Eq. (19), for two Lamé modes in p-doped silicon. The cal-
culations are done using the three-band model and refer to
the hole densities 2.0 × 1019 cm−3 and 1.0 × 1020 cm−3. We
note first that the values of ℵκ in Fig. 5(a) are larger by a
factor >10 than those for GaAs. This is a consequence of the
small band splitting in silicon and the associated absence of

FIG. 5. Temperature dependence of the scaled relative nonlinear
frequency shifts δω

κ
/ω

κ
η2
κ

for 〈100〉 and 〈110〉 Lamé modes in
single-crystal Si for (a) nh = 2.0 × 1019 cm−3 and (b) nh = 1.0 ×
1020 cm−3. Note that the results presented here are calculated through
the three-band model as well.

partial compensation of the contributions from light and heavy
holes. The calculation in the two-band approximation with the
Si parameters gives a much smaller ℵκ than in the three-band
model.

The parameter ℵκ shows a very different behavior as
a function of temperature depending on the hole density.
For nh = 2.0 × 1019 cm−3, Fig. 5(a), ℵκ monotonically de-
creases with the increasing temperature, whereas for nh =
1.0 × 1020 cm−3, Fig. 5(b), it displays a maximum as a func-
tion of T . This is different from the temperature dependence
of the eigenfrequencies in Fig. 3. We relate this difference to
the following: ℵκ has contributions from the terms in the free
energy that contain integrals over k of higher-order derivatives
of Fermi distribution fν over μ0. For nh = 2.0 × 1019 cm−3,
where the hole gas is not strongly degenerate and essentially
nondegenerate in the split-off band, these higher-order deriva-
tives make a comparatively large contribution to ℵκ . This
contribution falls off with the increasing temperature, as ex-
plained at the end of Sec. IV, and so does ℵκ , too. In contrast,
for nh = 1.0 × 1020 cm−3, the hole gas is strongly degener-
ate for T = 100 K, and then the terms with the higher-order
derivatives of fν , which have very sharp peaks/dips with zero
area, begin contributing as these peaks/dips get broadened
with the increasing T , leading to an initial increase of ℵκ ,
followed by the decrease for still larger T .
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FIG. 6. Hole density dependence of the scaled relative nonlinear
frequency shifts δω

κ
/ω

κ
η2
κ

for 〈100〉 and 〈110〉 Lamé modes in
single-crystal Si for (a) T = 200 K and (b) T = 300 K. The results
here are obtained using the three-band calculations.

The above arguments are corroborated by Fig. 6, which
shows the dependence of ℵκ on the hole density for 〈100〉
and 〈110〉 Lamé modes at T = 200 K and T = 300 K. The in-
crease of ℵκ with nh for low densities is a consequence of the
increase of the effect of the coupling with the increasing nh for
a nondegenerate hole gas. However, for μ0 � kBT , where the
gas is strongly degenerate, ℵκ is decreasing with the increas-
ing nh. This is because the major contribution to ℵκ in this
density range comes from the term in the free energy given
by the integral over k of the sum

∑
ν fνE (4)

ν (k); cf. Eq. (A6).
In turn, since

∑
ν E (4)

ν (k) = 0, the contribution to this sum
comes from the range of k where the gas degeneracy is less
pronounced at least for some bands ν. Furthermore, since
E (4)

ν (k) ∝ (D‖ε̂‖/μ0)4 for the corresponding energies and
μ0 ∝ n2/3

h , ℵκ falls off with the increasing nh. The crossover
from the increase to decrease with the increasing nh, which is
due to the onset of strong degeneracy of the hole gas, shifts to
higher nh with the increasing temperature.

VI. EFFECT OF HOLE-STRAIN COUPLING
ON MODE DAMPING

In this section we provide a brief discussion of another
effect of the coupling to holes, the effect of this coupling
on the decay rates of low-frequency eigenmodes. Here, the
major mechanisms include direct decay due to hole scattering
off the eigenmodes and the changes in decay resulting from

their coupling to higher-frequency phonons. These changes
come from the modifications of the very coupling parameters
caused by doping, as well as the changes in the decay rates
of thermal phonons arising from their interactions with holes
and scattering off dopants. It is important to note that the
very presence of dopants does not directly lead to decay of
low-frequency eigenmodes, although it changes their eigen-
frequencies. We note that we do not discuss the damping due
to the coupling of low-frequency MEMS modes to two-level
systems, as this mechanism is unlikely to play a major role at
room temperature.

To the leading order in the hole-strain coupling, the rate of
the eigenmodes decay due to scattering of holes off them is de-
termined by the probabilities of transitions where a hole goes
from its initial to a final state |ψi〉 → |ψf〉 and a vibrational
quantum of the mode is absorbed. These probabilities are
proportional to the difference in the populations of the states
|ψi〉 and |ψf〉, i.e., they are ∝ h̄ωκ f ′

ν ∝ (h̄ωκ/Ekin ), where
Ekin = max(μ0, kBT ) is the typical hole energy. The strong in-
equality Ekin � h̄ωκ leads to a decrease of the scattering rate.

Other factors that come into play are related to the dy-
namics of holes. The hole mean free path in a highly doped
Si micromechanical resonator is in the range of 10−2 µm. It
is much smaller than the length scale on which the strain
created by low-frequency eigenmodes varies. Note that this
length scale is given by the resonator size L ∼ 102 µm. An-
other important factor is that the hole relaxation time, τh, is
much smaller than the reciprocal frequencies of the modes
under consideration, i.e., ωκτh � 1. For highly doped Si, τh

is �10−13 s at temperatures near room temperature. There-
fore, when estimating the mode decay rate due to a transition
|ψi〉 → |ψf〉, in the expression for the scattering rate the stan-
dard δ function that describes energy conservation, Ef − Ei =
h̄ωκ , can be replaced by τh/h̄.

The coupling Hamiltonian can be estimated as Hi ∼
D(h̄/2Mωκ )1/2‖εκ (r)‖; cf. Sec. III A. With this estimate, and
using the appropriately modified Fermi golden rule, we obtain
the following estimate for the mode decay rate �(h)

κ
due to

direct hole scattering:

�(h)
κ

∼ 1

ρ

D2

Ekin
L−2τhnh, (20)

where we used the relation M = ρV . For room temperature
and the parameters from the previous estimates (cf. Sec. III A),
this yields �(h)

κ
∼ 1 s−1 for L ∼ 100 µm. For a nondegenerate

hole gas, �(h)
κ

falls off with the increasing temperature because
Ekin = kBT and, at the same time, the hole relaxation time τh

decreases.
We now discuss the decay mechanism associated with the

scattering of high-frequency (thermal) phonons off the low-
frequency eigenmode of the resonator. In MEMS, this type
of scattering primarily arises from the cubic anharmonicity,
i.e., the terms ∝ ε̂3 in the free energy. In pure and n-doped Si,
the coefficients of different components of the rank-6 tensor
ε̂3 (i.e., the third-order elastic constants ci jk) have different
signs [55,56]. As mentioned earlier, p-type doping considered
here makes significant contributions to c(h)

i jk , which can be
comparable to the intrinsic values and may either increase
or decrease them. These contributions also have different
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signs; in particular, within the two-band approximation we
found that c(h)

111 = c(h)
123 = −2c(h)

112 and c(h)
144 = −2c(h)

155. The cor-
responding modification of the third-order elastic constants
can either increase or decrease the decay rate resulting from
phonon scattering, depending on which phonon branches are
more strongly coupled to the low-frequency eigenmode.

However, since the calculation of the parameters c(h)
i jk

relied on the assumption that the holes follow the strain
adiabatically, it applies to phonons with comparatively low
frequencies. In particular, it assumes that the phonon fre-
quencies are small compared to the hole relaxation rate. For
room temperatures, the important role in the decay of the
considered low-frequency modes is played by phonons, which
do not generally satisfy this assumption. The analysis of the
hole-induced coupling to high-frequency phonons is beyond
the scope of this paper, but one may expect such coupling to
be comparatively weak because of the averaging of the effect
of high-frequency strain on the hole distribution.

Three conventionally considered mechanisms of phonon-
induced decay of low-frequency MEMS modes are the
Landau-Rumer mechanism, cf. Refs. [57–60], thermoelastic
relaxation [28,61], and Akhiezer damping [22]; see Ref. [13]
for a review. The Landau-Rumer mechanism applies when the
relaxation time of high-frequency phonons, τph, exceeds ω−1

κ
.

In pure Si crystals at room temperature, τph ∼ 10−10 s [62].
This is consistent with the estimate [63,64]

τ−1
ph ∼ kBT/m0vsa0,

where m0 and a0 are the atomic mass and the lattice constant
of Si, respectively. The value of τph somewhat varies be-
tween different phonon branches, cf. Ref. [62]; however, since
τ−1

ph � ωκ , the Landau-Rumer mechanism is not relevant for
the modes we consider in this paper.

The theory of thermoelastic relaxation and Akhiezer damp-
ing takes into account fast relaxation of high-frequency
phonons. Thermoelastic relaxation is important when ω−1

κ
is

comparable to the time required for the heat to propagate
across the region where strain is nonuniform, assuming that
the phonon thermalization time is much smaller than ω−1

κ
.

For the strain from the low-frequency eigenmodes considered
here, the heat diffusion time is ∼L2/v2

s τph � ω−1
κ

. Therefore,
the major mode decay mechanism is the Akhiezer damping.

The Akhiezer damping of low-frequency MEMS eigen-
modes has been considered in a number of theoretical papers;
cf. Refs. [13,23,34,65–67]. The temperature dependence of
this damping in Si MEMS was studied experimentally in
Ref. [24]. In the regime where ωκτph � 1, the decay rate can
be written as

�(Akh)
κ

= a(Akh)Cγ 2
cplωκτph. (21)

This expression disregards the difference between the relax-
ation rates of different high-frequency phonons; C is the spe-
cific heat per unit mass, and γ 2

cpl is the characteristic variance
of the scaled coupling parameters between the considered
low-frequency mode and different high-frequency phonons. It
can be thought of as the variance of the generalized Grüneisen
parameters [13,23,67] and is affected by doping, as discussed
earlier. The parameter a(Akh) is model-dependent; for a sim-
ple model of coupling to acoustic phonons, it is given by
a(Akh) = ωκT/3v2

s [68]. As an estimate, for ωκ ∼ 108 s−1,

τph ∼ 10−11 s, and typical parameter values for Si at room
temperature [69], with γcpl ∼ 0.4 [70], we obtain �(Akh)

κ
∼

50 s−1, which is indeed much larger than �(h)
κ

.
The coupling to holes and acceptors opens additional chan-

nels of scattering of high-frequency phonons. As a result,
increasing the doping level leads to a decrease in the phonon
relaxation time τph; see Refs. [71–77] and the papers cited
therein (moreover, for low temperatures doping can lead to
Anderson-type localization of phonons; cf. Refs. [78–80]). In
turn, as seen from Eq. (21), the decrease of τph generally re-
sults in a decrease in the decay rate �(Akh)

κ
with the increasing

doping. However, as mentioned earlier, the doping-induced
corrections to the third-order elastic constants may enhance
or reduce the coupling between the considered MEMS modes
and higher-frequency phonons, thus affecting γ 2

cpl.
Taken together, these arguments indicate that, quite unex-

pectedly, the decay rate of MEMS eigenmodes may either
increase or decrease with the increasing level of doping. A
detailed theoretical analysis of the effect is beyond the scope
of this paper and will be done separately, but it will be in-
teresting to study the effect in the experiments on ring-down
measurements, as they directly provide mode decay rates.

VII. CONCLUSIONS

The results of this paper show a strong effect of the hole-
strain coupling on the eigenmodes of semiconductor-based
nano- and micromechanical resonators. The effect is rooted
in the large values of the deformation potential parameters
in typical semiconductors. We consider the range of densities
and temperatures where it is sufficient to take into account
only two or three hole energy bands. The two-band analysis
applies to semiconductors with a comparatively large spin-
orbit splitting in the valence band, as in Ge or GaAs, for
example. If the spin-orbit splitting is small, as in Si, then it
is necessary to take the split-off band into account for the hole
densities and temperatures of interest.

Where the two-band approximation applies, we provide
explicit expressions for the doping-induced corrections to the
linear elasticity that account for band warping, and we analyze
the corrections to the quartic nonlinearity of the eigenmodes.
To describe the effect of the coupling to holes where the
split-off band needs to be taken into account, we develop
an efficient numerical algorithm. We also briefly outline two
effects of the coupling on the decay of low-frequency eigen-
modes. One is the direct hole scattering off the modes, which
we show to be a weak effect. The other is the change of the
decay rates of thermal phonons and their coupling to low-
frequency eigenmodes. Our estimate shows that, depending
on the intrinsic anharmonicity parameters of the crystal, this
change can lead to an increase or, unexpectedly, a decrease of
the decay rates of the low-frequency eigenmodes.

Our results reveal a nontrivial interplay between the band
structure and the degeneracy of the hole gas. In the two-band
model, we illustrate this interplay using GaAs resonators,
which are an important class of relevant systems. Here, in
a broad range where the ratio of the chemical potential
to the temperature varies from 4.4 to 0.27, the coupling-
induced change of the eigenmode frequencies remains small.
This is primarily due to the strain-induced corrections to the
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light- and heavy-hole-band energies having opposite signs and
thus effectively compensating each other when integrated over
the bands.

The compensation is much less efficient for the quartic
(Duffing) nonlinearity parameter of the modes, leading to
a nonmonotonic temperature dependence of this parameter.
We present this dependence for the Lamé modes, which are
often studied in experiments. The difference between the lin-
ear and nonlinear effects arises, because the expression for
the nonlinearity parameter includes higher-order derivatives
of the densities of states weighted with the coupling which,
for different bands, vary with energy more strongly than the
weighted densities of states themselves.

The changes of the mode parameters are significantly more
pronounced for the hole densities and temperatures where
the split-off band is partially occupied. The mode eigenfre-
quencies are changed much stronger than in the two-band
approximation. They display a distinctly nonmonotonic tem-
perature dependence. The Duffing nonlinearity parameter is
significantly larger.

Interestingly, the effect of doping on the nonlinearity de-
pends nonmonotonically on the hole density nh. For low
densities, the effect increases with the increasing nh as there
are more holes available to couple to. However, for higher
densities, as the hole gas becomes strongly degenerate, the
energies of the holes that can change their states due to strain
become larger, since these energies are determined by the
chemical potential. Respectively, the effect of the perturbation
from the strain becomes weaker.

In terms of applications, particularly those that require
frequency stability, it is important that doping modifies the
temperature dependence of the frequencies of different modes
in different ways. Therefore, one can detect a temperature
change by monitoring the frequency of one mode, and then
compensate it to adjust the frequency of the other mode to a
desired value. In terms of suppressing temperature-related fre-
quency fluctuations, it is also advantageous that there emerge
plateaus in the temperature dependence of the eigenfrequen-
cies of some modes. The sensitivity and nontrivial dependence
of the eigenfrequency change and the mode nonlinearity on
the hole density allow one to find an optimal doping level in
the desired temperature range.

The results of the paper are in good agreement with
the experimental data on the temperature dependence of the
eigenmode frequencies in p-doped silicon microresonators.
They explain why this dependence is different for different
modes and provide means for predicting this dependence
and the dependence of the mode nonlinearity on the hole
density and temperature. More broadly, the results show that
nano- and micromechanics reveal new aspects of the electron-
phonon coupling, which are of interest both for fundamental
and applied studies.
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APPENDIX A: FREE-ENERGY EXPANSION

We calculate the expansion terms of the free energy �F (n)

in two steps: first we find the strain-induced corrections to the
hole energy E (n)

ν (k, ε̂) using the full Hamiltonian Ĥ (k, ε̂), and
then we sum these corrections over the bands ν and integrate
over k, with the proper weight. In this Appendix we give the
expressions for the weighting factors. They are obtained by
expanding the grand potential �ν (r) in μ(n)(ε̂) − E (n)

ν (k, ε̂)
and taking into account that the hole density is not per-
turbed by the strain. To shorten the notation, we introduce an
operator

Ŝ =
∑

ν

∫
d3k/(2π )3 (A1)

that describes summation over the bands and integration
over k.

We have provided the expressions for μ(1) and �F (1) in
Eq. (7). To the second order, we have the correction to the
chemical potential

μ(2) =(∂nh/∂μ(0) )−1 ∂

∂μ(0)
Ŝ
[
2 fνE (2)

ν − f ′
ν

(
μ(1) − E (1)

ν

)2]
,

(A2)

where, as in the main text, we adopt the notation fν ≡
fν (E (0)

ν , μ(0) ) and E (n)
ν ≡ E (n)

ν (k, ε̂).
The second-order term in the free energy is

�F (2) = Ŝ
[
2 fνE (2)

ν − f ′
ν

(
μ(1) − E (1)

ν

)2
]
, (A3)

where f ′
ν ≡ ∂ fν (E (0)

ν , μ(0) )/∂μ(0); in the main text and in
what follows, the number of primes after fν denotes the order
of the derivative of fν (E (0)

ν , μ(0) ) over μ(0).
Similarly we find

μ(3) = (∂nh/∂μ(0) )−1 ∂

∂μ(0)
Ŝ

[
2 fνE (3)

ν − 2 f ′
ν

(
μ(1) − E (1)

ν

)
× (

μ(2) − E (2)
ν

) − 1

3
f ′′
ν

(
μ(1) − E (1)

ν

)3
]

(A4)

and

�F (3) = Ŝ
[
2 fνE (3)

ν − 2 f ′
ν

(
μ(1) − E (1)

ν

)(
μ(2) − E (2)

ν

)
− 1

3 f ′′
ν

(
μ(1) − E (1)

ν

)3]
. (A5)

To find the amplitude dependence of the eigenmode fre-
quency, we also need the fourth-order term in the free energy:

�F (4) = Ŝ
{
2 fνE (4)

ν − f ′
ν

[(
μ(2) − E (2)

ν

)2 + 2
(
μ(1) − E (1)

ν

)
× (

μ(3) − E (3)
ν

)] − f ′′
ν

(
μ(1) − E (1)

ν

)2(
μ(2) − E (2)

ν

)
− 1

12 f ′′′
ν

(
μ(1) − E (1)

ν

)4}
. (A6)

The calculation in the two-band approximation is simpli-
fied by the fact that μ(1) = atrε̂ is equal to the isotropic part of
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E (1)
ν . Therefore, μ(3) drops out from �F (4), and it is sufficient

to find only μ(2).

APPENDIX B: CANCELLATION OF THE
LONG-WAVELENGTH DIVERGENCE IN THE

FREE-ENERGY EXPANSION

The individual terms in the expression for the correction to
the free energy of the fourth order in strain �F (4), Eq. (A6),
diverge for k → 0. However, we show in this Appendix that
the overall expression remains finite in the two-band ap-
proximation. In this approximation we have from Eq. (11)
E (n)

ν (k, ε̂) ∝ 1/k2(n−1) for k → 0. Therefore, the correction
to the chemical potential μ(2), which is given by Eq. (A2),
does not diverge. The integrals over k of the terms that
contain

∑
ν f ′′

ν Ẽ (1)
ν

2μ(2),
∑

ν f ′
νẼ (2)

ν μ(2),
∑

ν f ′′
ν Ẽ (1)

ν
2Ẽ (2)

ν , and∑
ν f ′′′

ν Ẽ (1)
ν

4 do not diverge either. Here Ẽ (n)
ν ≡ E (n)

ν for n � 2
while Ẽ (1)

ν ≡ E (1)
ν − atrε̂; we also use the fact that Ẽ (n)

0 =
−Ẽ (n)

1 . As a result, it is sufficient to check the convergence of
the contribution to �F (4) of the remaining sum of the singular
terms,

Ssing =
∑

ν

[
fν Ẽ (4)

ν − f ′
ν

(
Ẽ (1)

ν Ẽ (3)
ν + 1

2
Ẽ (2)

ν
2

)]
. (B1)

The term Ẽ (4)
ν in Ssing is ∝ k−6 for k → 0; this is the

strongest divergence in the expression. However, one has
to take into account that the contributions Ẽ (n)

ν from the
light and heavy holes to the sums over ν = 0, 1 have op-
posite signs; cf. Eq. (11). As a result, if we replace fν
with its ν-independent value at zero energy, f (0, μ(0) ) =
[1 + exp(−μ(0)/kBT )]−1, then the terms ∝ k−6 cancel each
other. If one further uses the expansion fν ≡ fν (E (0)

ν , μ(0) ) ≈
f (0, μ(0) ) − f ′(0, μ(0) )E (0)

ν (k) and again takes into account
that Ẽ (n)

0 = −Ẽ (n)
1 , one obtains for k → 0:

Ssing ≈ −2 f ′(0, μ(0) )
[
E (k)Ẽ (4)

0 + Ẽ (1)
0 Ẽ (3)

0 + 1
2 Ẽ (2)

0
2
]
.

A direct calculation based on Eq. (11) shows that the terms
∝ k−4 and k−2 drop out of Ssing. The remaining term does not
give a diverging contribution to �F (4).

These arguments are corroborated by the estimate of the
contribution to �F from the range of small k < kε, where
the strain-induced term in the hole energy exceeds the “bare”
energy E (0)

ν (k). From Eq. (11), kε ∼ [(b/B)‖ε̂‖]1/2. For such
k, the hole energy is small compared to the thermal energy,
Eν (k) � kBT . Then, for k < kε, we can expand the integrand
in Eq. (1) for �ν (r) in ξν = (−1)ν (E2 + 
(1) + 
(2) )1/2/kBT .
The leading-order contribution from the range k � kε to the
free energy is quadratic in ξν and comes with the weight k3

ε ,
which implies that it scales as ‖ε̂‖7/2. This is of the same order
of magnitude as the contribution from the range of small k to
�F given by Eqs. (14) and (15). Indeed, taking into account
that for small k, the difference between f0 and f1 is ∝ k2, we
see that the integrands in these equations are independent of
k, so the contribution from the range k � kε to the harmonic
part of �F scales as ‖ε̂‖7/2 too. It is easy to check that
the corresponding contribution to �F (4) scales as ‖ε̂‖11/2, in
agreement with Ssing = O(k0) for k → 0.

APPENDIX C: LUTTINGER-KOHN-BIR-PIKUS
HAMILTONIAN

Here, for completeness, we provide the explicit expression
of the three-band Luttinger-Kohn-Bir-Pikus Hamiltonian and
the values of the relevant parameters, along with some prop-
erties of the strain-induced corrections to the hole energy used
in the main text. We use the notations of Ref. [36]. The Hamil-
tonian Ĥ (k, ε̂) for a given wave vector k and strain ε̂ is a 6 × 6
matrix and has the form Ĥ (k, ε̂) = Ĥ (0)(k) + Ĥi · ε̂, where
Ĥ (0)(k) is the free-hole term and Ĥi · ε̂ is the strain-induced
term. The terms have a similar structure, which is dictated by
the symmetry.

The free-hole Hamiltonian Ĥ (0)(k) can be written as

Ĥ (0)(k) =
(

[Ĥ (0)(k)]4×4 [Ĥ (0)(k)]4×2

[Ĥ (0)(k)]2×4 [Ĥ (0)(k)]2×2

)
,

where the upper left 4 × 4 block describes the dynamics of the
light and heavy holes, the lower right 2 × 2 block is associated
with the spin split-off band, and the off-diagonal 4 × 2 and
2 × 4 blocks describe the interband coupling. In the explicit
form

[Ĥ (0)(k)]4×4 = h̄2

2m0

[(
γ1 + 5

2
γ2

)
k214×4 − 2γ2

∑
i

k2
i Ĵ2

i − 2γ3

∑
i 	= j

kik j ĴiĴ j

]
,

[Ĥ (0)(k)]2×2 =
(

h̄2

2m0
γ1k2 + �0

)
12×2, (C1)

and

[Ĥ (0)(k)]4×2 = [Ĥ (0)(k)]†
2×4 = h̄2

2m0

⎛⎜⎜⎜⎜⎜⎝

√
6γ3kz(kx − iky)

√
6
[
γ2
(
k2

x − k2
y

) − 2γ3ikxky
]

√
2γ2

(
k2 − 3k2

z

) −3
√

2γ3kz(kx − iky)

−3
√

2γ3kz(kx + iky) −√
2γ2

(
k2 − 3k2

z

)
−√

6
[
γ2
(
k2

x − k2
y

) + 2γ3ikxky
] √

6γ3kz(kx + iky)

⎞⎟⎟⎟⎟⎟⎠.

Here, i, j enumerate the components x, y, z which are chosen along the 〈100〉 axes; m0 is the free-electron mass; γ1,2,3 are the
Luttinger parameters; �0 is the band splitting due to spin-orbit coupling; 14×4 and 12×2 are the 4 × 4 and 2 × 2 identity matrices,
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respectively; and Ĵx,y,z are the angular-momentum matrices for the angular momentum J = 3/2. The three Luttinger parameters
are γ1 ≈ 4.285, γ2 ≈ 0.339, and γ3 ≈ 1.446 for Si, and γ1 ≈ 6.85, γ2 ≈ 2.10, and γ3 ≈ 2.90 for GaAs.

The coupling Hamiltonian Ĥi · ε̂ has the form

Ĥi · ε̂ =
(

[ĥi]4×4 [ĥi]4×2

[ĥi]2×4 [ĥi]2×2

)
,

where

[ĥi]4×4 = −
(

Dd − 5

6
Du

)
trε̂ 14×4 − 2

3
Du

∑
i

Ĵ2
i εii − 2

3
D′

u

∑
i 	= j

ĴiĴ jεi j, [ĥi]2×2 = −Dd trε̂ 12×2, (C2)

and

[ĥi]4×2 = [ĥi]
†
2×4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
2
3 D′

u(εzx − iεyz )
√

2
3 [Du(εxx − εyy) − 2D′

uiεxy]
√

2
3 Du[trε̂ − 3εzz] −√

2D′
u(εzx − iεyz )

−√
2D′

u(εzx + iεyz ) −
√

2
3 Du[trε̂ − 3εzz]

−
√

2
3 [Du(εxx − εyy) + 2D′

uiεxy]
√

2
3 D′

u(εzx + iεyz )

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (C3)

The Hamiltonian Ĥ (k, ε̂) respects the symmetry of the sys-
tem. The terms containing the tensor components εi j and those
containing the products kik j are located at the same places in
the matrices Ĥi · ε̂ and Ĥ (0)(k), respectively.

The values of the deformation potential parameters in Si
are Du ≈ 3.3 eV and D′

u ≈ 4.42 eV, while in GaAs Du ≈
3.0 eV and D′

u ≈ 4.67 eV.
One can easily check that the eigenvalues of the upper

left 4 × 4 block of Ĥ (0)(k) + Ĥi · ε̂ give the dispersion
laws of the light and heavy holes in the presence of strain,
Eq. (11). The parameters in Eq. (11) are A = (h̄2/2m0)γ1,
B = (h̄2/2m0)2γ2, C = (h̄2/2m0)

√
12(γ 2

3 − γ 2
2 ), D =

(h̄2/2m0)2
√

3γ3, a = −Dd , b = 2Du/3, and d = 2D′
u/

√
3.

A relation similar to Eq. (13), i.e.,

∫
d3k

[
E (1)

ν (k, ε̂) − atrε̂
]

f
(
E (0)

ν , μ(0)) = 0, (C4)

holds for the three-band model as well. This relation was
used, in particular, to simplify the calculation of �F (4).
Equation (C4) follows from simple symmetry arguments. The
integral over k of the term ∝E (1)

ν is an invariant. Therefore,
it is proportional to trε̂. To find the proportionality coefficient
we can evaluate E (1)

ν for hydrostatic strain εi j = ε0δi j . As seen
from Eqs. (C2) and (C3), such strain shifts the hole energies
in all bands by −3Ddε0. Then E (1)

ν (k, ε̂) = −Dd trε̂ = atrε̂,
which proves Eq. (C4).

Another useful relation that we have used in the main text
refers to the higher-order corrections to the hole energy E (n)

ν .
Since trĤ (k, ε̂) = 2

∑
ν Eν (k, ε̂), we have

∑
ν

E (n)
ν (k, ε̂) = 0 for n > 1. (C5)

APPENDIX D: TEMPERATURE DEPENDENCE OF c44

To better understand the nonmonotonic temperature depen-
dence of �(h)

κ
shown in Fig. 3, here we present separately the

temperature dependence of the intrinsic and doping-induced
parts of the elasticity parameter c44. The value of

√
c44 de-

termines the eigenfrequency of the 〈110〉 Lamé mode; see
Eq. (16). As shown in Figs. 7(a) and 7(b), c44 of pure Si
monotonically decreases, whereas the doping-induced correc-
tion c(h)

44 monotonically increases with the increasing T . For
a nondegenerate hole gas, this can be related to the estimate
of the coefficient in the nth-order expansion term of the cor-
rection to the free energy ‖�̂(n)‖ ∝ D(D/Ekin)n−1; cf. Eq. (5).
It indicates that c(h)

44 ∝ −D2/Ekin ∝ −T −1; the negative sign
here is due to the fact that the strain-induced redistribution of
the holes always tends to lower the free energy.

For the density nh = 2.0 × 1019 cm−3 used in Fig. 7, the
hole gas is moderately degenerate in the light and heavy-hole
bands and nondegenerate in the split-off band. Therefore, one
still may think that Ekin goes up with the increasing tem-
perature, leading to the decrease of |c(h)

44 |. The competition
between the opposite temperature dependence of the intrinsic
and doping-induced contributions leads to the nonmonotonic
behavior of c44 shown by the lower dashed curve in Fig. 7(a).
In turn, this results in the nonmonotonic temperature depen-
dence of �(h)

κ
for the 〈110〉 Lamé mode.

The analysis of the doping-induced corrections to the
second-order elastic constants for other modes is similar.
However, the calculation shows that |c(h)

i j | decreases with
the increasing temperature even for the hole density 1.0 ×
1020 cm−3. This differs from the nonmonotonic dependence
on temperature of the doping-induced part of the fourth-order
elastic constant c(h)

i jkl ; cf. Fig. 5(b). The difference stems from
the different structures of the expressions (A3) and (A6) for
the quadratic and quartic corrections in ε̂ to the free energy.
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FIG. 7. Temperature dependence of the elastic constant c44. Panel (a) shows c44 as a function of T for pure (solid curve) and p-doped Si with
a hole density of nh = 2.0 × 1019 cm−3 (dashed curve). The parameters for pure Si are taken from Ref. [35]. Panel (b) shows the temperature
dependence of the doping-induced correction c(h)

44 at nh = 2.0 × 1019 cm−3, which is calculated using the three-band model. The dashed curve
in panel (a) shows the sum of the intrinsic and doping-induced contributions, demonstrating a nonmonotonic temperature dependence of c44 in
doped Si.
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