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Zero-temperature phase-flip rate in a biased parametric oscillator
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A parametrically driven oscillator has two stable vibrational states at half the modulation frequency. The states
have opposite phases and equal amplitudes. An extra drive at half the modulation frequency provides an effective
bias that lifts the state symmetry. Quantum fluctuations lead to switching between the states, i.e., to phase-flip
transitions. We develop a semiclassical approach that allows us to find the dependence of the switching rates on
the amplitude of the bias and the parameters of the modulating field. We find that the rate of switching from a
“shallow” state can become anomalously small at certain parameter values, leading to an efficient localization
in this state. This is a consequence of the change of the topology of the oscillator phase trajectories. The results
pave the way for implementing nonreciprocal quantum Ising systems based on parametric oscillators.
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I. INTRODUCTION

Recent interest in quantum parametric oscillators is largely
motivated by the possibility to use their states as qubits and
in quantum metrology [1-12]. This possibility is a conse-
quence of the symmetry of parametrically excited vibrations,
which occur at half the modulation frequency w,,. Classically,
the vibrations have equal amplitudes and opposite phases.
Their symmetry is seen from a simple argument: incrementing
time by the modulation period 27 /w, does not change the
modulation, but corresponds to incrementing the phase of
vibrations at frequency w,/2 by 7 and thus to changing from
one vibrational state to another. Symmetric vibrational states
of a quantum parametric oscillator are generalized coherent
states of opposite signs. As shown in Ref. [2], symmetric and
antisymmetric combinations of such coherent states are the
states of a cat qubit [13].

A related aspect of parametric oscillators that has been
attracting much interest is the possibility to associate their
two vibrational states with two spin states. This suggested
using coupled parametric oscillators as Ising machines for
classical and quantum annealing [14-22]. Other applications
of parametric oscillators range from force and mass sensing
[23-25] to the studies of rare events in classical and quantum
systems far from thermal equilibrium [9,26-32] and phase
transitions into a time-symmetry-broken (time-crystal) state
[33-35], see Ref. [36] for a review.

A consequence of the symmetry of the vibrational states
is the possibility of quantum tunneling between them, as sug-
gested in Ref. [37]. Such tunneling is reminiscent of tunneling
between the quantum states at the minima of a symmetric
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double-well potential. In the presence of dissipation, it leads
to interwell switching. Switching between the symmetric vi-
brational states corresponds to a phase flip.

If oscillators are coupled to a thermal reservoir, phase
flips may also occur via transitions over the effective barrier
that separates the states in phase space. Such transitions are
reminiscent of thermally activated transitions over a potential
barrier. However, they can occur even for zero temperature
and have rates higher than the tunneling rate.

A natural way of controlling parametrically excited vi-
brations, which underlies many of their applications, is the
breaking of their symmetry. It can be implemented by ap-
plying an extra force at frequency w,/2. With this force,
the system no longer has symmetry with respect to time
translation by 2 /w,,. Classically, the effect of the force can
be understood if one thinks that it is in phase with one of
the vibrations and in counteraphase with the other. Then the
amplitudes of the vibrations become different.

In this paper we consider another, and much stronger, effect
of the force at w,/2: the change of the effective barrier for
activated interstate switching, and thus an exponential change
of the phase-flip rate. The barrier changes have opposite signs
for the two vibrational states. This is similar to changes of the
barrier heights for two wells of an initially symmetric double-
well potential by a static bias, so that we can call the force at
w,/2 a “dynamical bias.” In the classical regime, the change
of the switching barrier for a parametric oscillator was found
before in the lowest order in the amplitude of the biasing force
[38]. The bias-induced change of the stationary populations of
the vibrational states with the opposite phases was observed in
Ref. [39].

Here we study the effect of the bias for T = 0, where the
difference from the classical regime and the qualitative dis-
tinction from thermally activated transitions between potential
wells are most pronounced. We find the phase-flip rates of a
dynamically biased parametric oscillator in explicit form for
an arbitrary amplitude of the bias.
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FIG. 1. Floquet (quasienergy) Hamiltonian function g of a dy-
namically biased parametric oscillator as a function of the coordinate
Q and momentum P in the rotating frame. In the presence of weak
dissipation, the minima of the wells correspond to the stable vibra-
tional states with opposite phases. The wells at negative and positive
Q are labeled in the text by 0 = —1 and o = 1, respectively. The
plot refers to the dimensionless value of the scaled detuning of the
parametric drive & = 0.2 and the scaled amplitude of the biasing
field oy = —0.1.

The possibility to find the barrier height for T =0 is a
consequence of the detailed balance relation between the rates
of transitions between the quantized states (the Floquet states)
of the parametric oscillator. Such a relation was found earlier
in the absence of dynamical bias [28]. As we show, it holds
in the presence of the bias as well. It underlies the condition
of the vanishing of the probability current in the stationary
state in the coherent-state representation, which was used in
Refs. [40—-42] to find and analyze the stationary distribution
of a dynamically biased oscillator. We should comment that a
parametric oscillator is a driven system, it is far from thermal
equilibrium. Generally, there are no reasons for the detailed
balance to hold, and indeed it does not hold for T > 0 [28].
The effect of bias on the phase-flip rates in the temperature
range where quantum and thermal fluctuations are intertwined
was studied only for a weak bias [43].

The Floquet (quasienergy) surface of the oscillator as a
function of the coordinate and momentum in the rotating
frame has two wells, see Fig. 1. Their minima correspond to
stable vibrational states. A phase flip corresponds to switching
between the wells. We assume that the oscillator has many
quantized states inside the wells. Phase flip results from the
random walk over these states. We find the rates of the transi-
tions between the Floquet states, and from there evaluate the
phase-flip rates in the semiclassical approximation.

Phase flips were recently studied experimentally in a
dynamically biased parametric oscillator based on a supercon-
ducting system [44]. We briefly discuss these results below.
They illustrate the importance of the problem and also provide
an insight into applications in quantum material science.

In Sec. II, we introduce the Hamiltonian of the dynamically
biased parametric oscillator in the rotating frame. The classi-
cal Hamiltonian trajectories and their topological features in
the complex phase space and time are investigated in Sec. III.

They determine the rates of dissipation-induced transitions
that lead to a quantum walk over intrawell Floquet states.
The resulting quasistationary distribution over these states is
studied in Sec. IV. Ultimately, the intrawell quantum walk
leads to switching over the barrier that separates the wells
of the Hamiltonian, see Fig. 1, and thus to a phase flip. We
calculate the phase-flip rates in Sec. V and reveal that phase
flips can be suppressed, causing localization of the oscillator
inside a well. Section VI presents a summary of the results.

II. THE MODEL

The dynamics of a quantum parametric oscillator has been
extensively analyzed in various contexts, see the recent work
[40-42,45,46] and references therein. Of central attention has
been the model of an underdamped oscillator with eigenfre-
quency wg, which is modulated by a force at frequency w,
close to 2wy, so that |w, — 2wg| < wo. The modulation is
described by the term %q%Fp cos w,t in the oscillator Hamil-
tonian, where ¢ is the oscillator coordinate and F), is the
modulation amplitude; we use the notation f for the time in
the laboratory frame. An important role for stabilizing para-
metrically excited vibrations is played by the Duffing (Kerr)
oscillator nonlinearity, described by the term mqug /4 in the
Hamiltonian, where my is the oscillator mass [47]. We con-
sider the case where, in addition to the parametric modulation,
the oscillator is driven by the force —A sin(w,f/2). With this
force, the oscillator Hamiltonian has symmetry with respect
to time translation by period 47 /w), rather than 27 /w, for
Ay =0.

The standard approach [40-42,45,46] is to describe the
dynamics in the rotating frame in the rotating wave approxi-
mation (RWA). In terms of the raising and lowering operators
a' and &, the scaled oscillator Hamiltonian greads

A .
g=—Apdta+ E(aZ +a™y+22@ta+ 1/2)

—i(A/2)"Pag@—a"), r=3yh/Fw, (1)
The parameter X is the Planck constant scaled by the os-
cillator nonlinearity y and the amplitude and frequency
of the modulating field, whereas p is the scaled detuning
of half the modulating field frequency from the oscillator
eigenfrequency,

w = 2mow,dw/F,, dw = w,/2 — wp. 2)

The scaled amplitude oy = AgvV 6)/m0/Fp3 of the force at
frequency w,/2 determines the dynamical bias. The RWA
applies as long as the detuning |§w| and the force parameters
F, and A; are comparatively small, so that the amplitude
of the parametrically excited vibrations is not large, which
allows keeping only terms o (a'@)? in the nonlinear part of
the Hamiltonian.

It is convenient to rewrite the Hamiltonian ¢ in terms of
the scaled coordinate and momentum of the oscillator in the
rotating frame

0=i/2)"*@a-a"h, P=@n/2)"*a+a",
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&= j—‘(Qz +P?—p)’ + %(P2 0 - w3
Here and below we omit hats over Q and P. These are op-
erators, P = —ildg, but in the classical picture they become
dynamical variables. In making a transformation from Eq. (1)
to Eq. (3) we omitted a constant A /2. We note that i should
be renormalized,

w—> i+ 24,

if we define wy in such a way that the spacing between the
ground and first excited state of the undriven oscillator is Zwy.

Floquet states

The Hamiltonian g has two parameters, © and oy. It de-
scribes the oscillator dynamics in slow dimensionless time
t = tF,/2myw,. The Hamiltonian function g(Q, P) given by
Eq. (3) is shown in Fig. 1. We will be interested in the range
of 1 and oy where this function has a two-well shape with a
saddle-point at Q = Q;, P, = 0,

—1+3(laal /27 < p < QF + 1,

with Q; being the middle real root of the cubic equa-
tion dpg(Q, 0) = 0.

We label the wells at negative and positive Q by
o =—1 and o =1, respectively, and sometimes refer
to them as the left and right wells. For a; > 0 the
deeper minimum of g(Q, P), with g = g, is located at
Q > 0 (the 0 = 1-well), whereas the shallower one, with g =
gﬂ]‘iar{low, is located at Q < 0. At the saddle point of g(Q, P),
which is on the boundary between the wells, g = g;. In the
presence of weak dissipation the minima of g(Q, P) become
stable vibrational states.

For ay = 0 the function g(Q, P) is symmetric, it is even
in Q and P, and the wells have equal depth. The dynami-
cal bias breaks the symmetry, and the depths of the wells
become different. We note that g is not a sum of the ki-
netic and potential energies, moreover, it is quartic in the
momentum P.

We will be interested in the parameter range where there
are many eigenstates of the operator ¢ inside the wells of
g(Q, P). This happens where the dimensionless Planck con-
stant is small, A < 1. The intrawell states are localized, and
the matrix elements of g on these states are the approximate
eigenvalues of g. Even where the states in different wells have
the same effective energies for certain values of 1 and oy, the
intrawell-state picture is adequate, as the overlap of the states
in different wells is exponentially small and the tunnel split-
ting is normally much smaller than the decay rate. Therefore
the intrawell states are the approximate Floquet (quasienergy)
eigenstates, and the eigenvalues of g are the scaled Floquet
eigenvalues of the oscillator.

For small A, the intrawell eigenstates of g can be described
in the WKB approximation, see Ref. [48] for a recent discus-
sion of the system dynamics in a static double-well potential.
The classical intrawell motion is periodic vibrations with a
given g described by the Hamiltonian equations
P = —808(0, P), “

Q = 0pg(Q, P),

where O = dO/dt = (d0/dF)(2myw,/F,). In the WKB ap-
proximation, the eigenvalues g, of g for a given well are
determined by the Bohr-Sommerfeld condition [28]

1 1
1(gn) = )»<n + §>, I(g) = . fP(ng)dQ &)
4

Here I(g) is the classical action calculated for the intrawell
trajectory (4) with a given g(Q, P) = g, and P(Q|g) is the
momentum on this trajectory.

Equation (5) applies to the states in each of the wells
of g(Q, P). Generally, in the presence of the bias « ¢y, the
eigenvalues g, are different in different wells. At the same
time, unexpectedly, the frequency of the intrawell vibrations

w(g) =dl/dg

is the same in the both wells, for a given g. This is a conse-
quence of the structure of the Hamiltonian function g(Q, P).
Not only in the absence of the bias [28], but also where
lag| > 0, the corresponding Hamiltonian vibrations are de-
scribed by the Jacobi elliptic functions, see Appendix A. Such
functions have only one real period 7" (g) = 27 /a(g), which
is therefore the same in the both wells. They also have a
complex period rlgz)(g).

III. TOPOLOGY OF THE HAMILTONIAN TRAJECTORIES

Major qualitative features of the Hamiltonian dynamics can
be understood without appealing to the explicit expressions
for the Hamiltonian trajectories. In particular, the presence of
at least two periods of motion for a given quasienergy g above
the shallower minimum of g(Q, P) can be seen already from
Fig. 1. One expects that, along with intrawell vibrations, there
is periodic motion in complex time back and forth between the
wells in the classically forbidden region. This is reminiscent
of the dynamics of a particle with mass M and energy E in
a static double-well potential U(g). There, the underbarrier
motion in the region E < U(gq) is oscillations in imaginary
time in the inverted potential —U (g). The period of these
oscillations 7> is ix/quqlz dq/[U(q) — E1'/2, where q;.,
are the turning points, U (g1 2) = E, cf. [49]. The trajectory in
imaginary time (q(¢), p(t)) connects the real-time trajectories
in different potential wells.

A key feature of the problem considered here is that
g(Q, P) is neither a sum of the kinetic and potential energies
nor quadratic in P. As a result, the motion in the classically
forbidden region is far more complicated than in the above
example. A glimpse can be gained from Fig. 2, which shows
the turning points Q = 0 of the Hamiltonian trajectories (4) in
the complex plane (Re @, Im Q). The points can be immedi-
ately found from the equation Q = dpg(Q, P) = 0 by noting
that

9pg(Q. P) = P(Q|9)B'*(Q).
P*(Qlg) = —Q° — 1+ + B*(Q),
B(Q) =4(Q — 0:)(Q — Q).
0r=H—aut[—dg+a2— -7} ©

Here as in Eq. (5), P(Q|g) is the value of the momentum P
as a function of Q for a given g. We note that the equation
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| @1 @‘2 XQ_ @3 Q4 RG(Q)
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FIG. 2. The classical turning points, O = 0, in the complex plane
(Re Q, Im Q) for three different values of g. The points O, and Q3 4
are the turning points of motion in the left and right wells of g(Q, P),
respectively. They lie on the real axis for g above the minimum of the
shallower well g*mhf‘él"‘”. The zeros Q. of B(Q) in Eq. (6) are complex
for g > g., where g, is given by Eq. (8). They merge on the real axis
for g = g. and are real for g < g.. For g < g% the turning points
Q1> become complex. They are connected by a real-time trajectory

2(Q, P) = g is a quadratic equation for P?; we keep the so-
lution of this equation with B!/2 > 0 on the intrawell orbits,
so that P>(Q|g) = 0 at the boundaries of these orbits. With
Eq. (6), the equation dpg = 0 reduces to a combination of
quadratic and quartic equations for Q.

A. Interwell trajectories

We will first consider the range of quasienergies g above
the both minima of the wells of g(Q, P). Here the system has
two classical orbits for a given g. In Fig. 2, these orbits lie on
the real axis between Q; and Q,, for the left well of g(Q, P),
and between Q3 and Qy, for the right well; P(Q|g) = 0 at these
points, similar to the trajectories of a particle in a double-well
potential. The region between O, and Qs is the interwell
region in Fig. 1, for the corresponding g. However, besides
the turning points Q) 734, it follows from Eq. (6) that the
system has two more turning points, @, and Q_, which may
be complex.

The topology of the trajectories that connect the intrawell
trajectories is different in the regions of g where Q. are
complex or real. This is illustrated in Fig. 3. Where Q. are

in the complex-Q plane.

(a) g < 9ge (b)  0<ge—9g<|ge (c) 9> ge
Im 7',(72)/2 r Im T’EZ)/Q
{ Im 7/,
L Im 7/,
Im 7 Im 7
Im 74
Im 74
0 - 0
0 o0 & o X
. & = : & = ~ &
w w w
arctan[Re Q] $’ arctan[Re Q)] $’ arctan[Re Q] {é@
(d) (e) (f)
0.2 1 0.3 7 0.3
© i 0.2 A ©
s o s S 021
= ~ =
0.0 4 0.1 0.1 1
701 - T T T T OO L T T T T T T
0 Im7e Im7y, 71(72)/2 0 Im 7s Im 7/, 1m 71(72)/2 0 Im 7 Im 7/, Im 7';()2)/2
Im 7 Im 7 Im 7

g

FIG. 3. Phase portrait and action of the Hamiltonian system. Panels (a)—(c) show the evolution of the phase portrait with the varying
complex time t for different values of g. The trajectories Q(t + ), P(t + t) (blue lines) are calculated from Eq. (4) as functions of real time
t for different imaginary t. We plot the arctangent of the real parts of Q(¢r 4+ 7) and P(t 4 7), since Q and P are complex for complex t and
divergeatt =7, and 7 =t,,. Fort =0and 7t = ‘L'p(z) /2, the trajectories are real and correspond to the intrawell trajectories in the wells of
g(Q, P)withQ > 0and Q < 0 (i.e.,0 = 1 and 0 = —1), respectively. The intrawell trajectories are shown by black lines. The imaginary-time
interwell trajectories that connect the intrawell ones are shown by red lines. Panel (b) refers to g close to g., where the imaginary part of the
period ‘L'p(2) is large. At g = g, the intrawell trajectories (the black lines) are disconnected. The pattern of the trajectories becomes singular, it
forms a double cone. Panels (d)-(f) show the action, Eq. (17), as a function of the imaginary time t. There are two distinct jumps at T = 7, and
T = 1,. For all plots u = 0.5 and a; = 0.2 such that g, is above the minima of the both wells, g. > g% > ™ 1p the panels (a) and (d)
g = —0.2,in (b) and (e) g = —0.05251, and in (c) and (f) g = —0.02, respectively.
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complex, Fig. 2(a) suggests that there may exist an interwell
trajectory that lies on the real Q axis. On this trajectory both
P(Q|g) and the travel time are purely imaginary. This is sim-
ilar to a particle in a double-well potential. The travel time
between O, and Q3 is half the imaginary period of interwell
oscillations 7:[(,2) /2,ie.,

02

P =17(g) =2 /Q dQ/IP(QI)B*(O)]. (7
3

If we count the phases on the classical intrawell trajectories off

from the points where Q = Q, and Q = (3, respectively, we

see that the imaginary-time trajectory connects the classical

trajectories with the same phase.

The situation is different where the turning points Q4 lie
on the real Q axis, as shown in Fig. 2(b). Since B(Q) =0
for Q = Q4, there is no real-Q trajectory that connects the
intrawell trajectories: such trajectory would be reflected back
from the turning points. The connecting trajectory should go
in complex-Q plane around the turning points. Near a turning

point Q; (Q; = Q1 or Q)
0=C-0)", 0-0l <1,

with some (complex) constant C = C(Q,). Going around such
a turning point adds a real component to the otherwise imag-
inary time [ dQ/Q. This component accumulates between
the turning points Q_ and Q.. It makes the interwell travel
time rl(,z) /2 complex and thus leads to a phase shift between
the intrawell trajectories connected by the complex trajectory.
We note that, in calculating 7> /2, one should go around Q
and Q_ on the opposite sides in the complex-Q-plane, so that
B2 >0forQ>Q,andQ < Q_.

The time to go back and forth between the points Q, and
Qs is the complex period of the Hamiltonian trajectory. Since
a 0 —> 03 — O, trajectory is described by Jacobi elliptic
functions, it should bring the system to the same phase modulo
27, see also Appendix A. Therefore, by symmetry, the phase
shift for going from Q, to Qs is equal to O or &. It is deter-
mined by an integer number, which is given by the number
of turning points where Q = 0 on the real axis. This number,
and thus the phase shift, are robust against small changes of g
as long as the value g = g. is not crossed. They are changed
where g. is crossed as g varies, which suggests that the phase
shift can be thought of as topological. The topology of the
complex Hamiltonian trajectory is changed at g, as well.

The Hamiltonian trajectories are also described by the Ja-
cobi elliptic functions in the range of g where the function
g(Q, P) has only one well, i.e., for g < gﬂl‘fﬂlow. For oy > 0,
the turning points Q; and @, become complex, as shown in
Fig. 2(c). In general we can have g, = g"dloV The topolog-
ical features for the single-well region of g are discussed in
Appendix C.

B. The critical point

The two topologically distinct regimes refer to different
values of the quasienergy g. They should be separated by
a singularity. The singularity occurs for g = g., such that

0_ = Q0+ = Q.. From Eq. (6),

o= —t-wr gl O=-wp @

Since Q. is the point of merging of the two turning point, near
Q. the equation of motion for Q has the form Q = C'(Q —
Q.) with an imaginary C’. Then the time of going from one
intrawell trajectory to the other diverges, i.e., the trajectories
become disconnected.

The change of the topology is seen in Fig. 3. Fig-
ures 3(a)-3(c) show how the projections of the phase
trajectories on the real plane (Re Q,Re P) change with
the varying imaginary time for three different values
of g. The trajectories are obtained by evolving Q(t +
7),P(t+t) in real time ¢ over the period 2mw/w(g),
starting at different imaginary t. The shape of the tra-
jectories smoothly evolves with varying t for g not close
to g..

As g increases and approaches the critical value g, the
duration of the imaginary time to connect the intrawell tra-
jectories is increasing. The “neck” connecting the intrawell
trajectories contracts. At g = g, the pattern of the trajectories
forms a double cone with a vertex at Q = Q. and P = 0 (we
note that Q = P = 0 at this point). For g > g., the intrawell
trajectories reconnect.

A consequence of the nontrivial topology of the phase
portrait is seen from the imaginary-time interwell trajectories
shown by red lines in Figs. 3(a)-3(c). These lines connect
the intrawell trajectories at points where P has the same or
opposite signs depending on whether g < g. or g > g.. As
described in Sec. III A, for g < g., a phase of 7 is accumulated
along the interwell trajectory connecting Q, and Q3. There-
fore the imaginary-time interwell trajectories connect points
where P has the same sign. In contrast, for g > g, no phase
is accumulated and the imaginary-time interwell trajectories
connect points where P has opposite sign.

It is important to understand how the period 1152) depends
on g — g. close to the divergence at g = g.. As seen from
Eq. (6), for small |g — g.| and small |Q — Q.|, the equation of
motion has the form

0=C1Q—-0)— (g — "%

From this equation, the imaginary part of the period of motion
diverges as

ImrP(g) o —Inlg—gel. g — &l <K gl

In the absence of the drive at one half of the modulation
frequency, where oy = 0, we have Q. = 0. The logarithmic
divergence of the imaginary period of motion in this case
was found earlier [28] using the explicit expression for the
Hamiltonian trajectories, but the topological nature of this
divergence was not revealed.

C. Poles of the trajectories

Since the functions Q(r) and P(t) are described by the
Jacobi elliptic functions, they do not have branching points,
but can have poles where |Q(¢)|, |P(¢)| — oo. The functions
Q(t), P(t) are double periodic, with the real period rlgl) =
27 /w(g) and the second period 7{*(g). We will consider
the positions of the poles assuming that the right well of
g(Q, P) is deeper, oy > 0. We set Q(0) = Q3 and P(0) =0

023188-5



BONESS, BELZIG, AND DYKMAN

PHYSICAL REVIEW RESEARCH 7, 023188 (2025)

and seek the poles in the upper half of the complex-time plane
within the parallelogram of periods formed by the periods "
and 1'[52).

One pair of the poles can be easily found by integrating the
equation

dt =dQ/Q =dQ/P(Q|g)B"*(Q)

along a trajectory that goes to Q — oo along the real axis of
Q. If we start at Q = Q3 in Fig. 2, as the system moves from
03 to Q4 it acquires half the real period. For Q > Qy, the
momentum P becomes imaginary. Taking into account that
P <0atQ = Q4 and choosing Im P < 0 for Q > Qu, we find
that the pole is located at

oo
w(@) =7,"/2+i / dQ/IP(QIg)IB'*(Q).  (10)
4
A direct calculation shows that 7, <Im 1152) /2, see
Appendix A. We note that the calculated positions of the
poles are defined modulo (V. Therefore, depending on
which parallelogram of periods is considered, one can replace
i1 /2 with —z{D/2 in the expression for z,.

If we choose Im P > 0 for Q > Q4, the imaginary time
to move to Q — oo will be negative. The pole in the upper
halfplane is found by incrementing this time by 1[(,2). This
gives

n@=t"2+ i /Q dQ/|P(QI9)|BY*(Q). (11)

It is seen from Eq. (6) that near 7,(g) and 7,(g)
—i
20— 1)’
i

%=y

o~ P~ —iQ, |t—tl<kl1l, (12

PxiQ, |t—1|<1. (13)
In the range of g where g(Q, P) has two wells, two more
poles, T, and 7,,, can be reached by starting at O3, moving
in complex time by 7{”/2 to @y (with Im P > 0 for 05 <
0 < Q3), then in real time to Q;, and from there moving to
Q0 — —oo. Again, the poles can be reached by choosing Im
P < 0orIm P > 0 on the trajectories from Q; to Q — —oo.
The pole t,, is located at

T =17 /2+ " /2
—0o0
+sgnmPeo) | dQ/P(QI9)B*(Q),  (14)
1
whereas 7, is obtained by changing the sign in the last term
of the above expression; P, is the value of the momentum for
large negative Q (note that Im P does not change sign in the
range Q; > Q for the considered range of g).
Near these poles we find that
i
2(t - f**) '
—i

QNZ(I—I;* ’

P~iQ, It—t,l<1l. (16

In the range of g where g(Q, P) has one well, to find the
poles 7., and t,, one should move from Q3 to Q — —o0

Double well

Single well

FIG. 4. Position of the poles of Q(tr) and P(t) for Q(0) = Q3
and P(0) = 0. The dashed lines show the parallelogram of periods,
with the real period 7 " and the complex period >

along the real Q axis with Im P > 0 and Im P < 0, respec-
tively. If the points Q4 are on the real Q axis, moving between
them will contribute a real part " /2 to 7., and .

The positions of the poles together with the parallelograms
of periods 7" and t{* are shown in Fig. 4. The parallelo-
grams have the same shape for a shallow well in the range
g > ghallow Tndeed, one can make a transition between the
trajectories in the wells by changing time by r[()z) /2, which is
the time it takes to move from the turning point in the deeper
well Q3 to the turning point in the shallower well Q,, for the
chosen ay > 0. The positions of the poles and the forms of
the parallelogram of periods are different for the single- and
double-well cases and for g > g. and g < g..

Action as a function of imaginary time

An extra insight into the dynamics of the system can be
gained by looking at the action for a classical trajectory eval-
uated as a function of the complex time T,

1 T+l )
gl = 5 / dt PO, (17)

The integral can be thought of as starting at a point with
complex 7 on the boundary of the parallelogram of peri-
ods in Fig. 4 and moving parallel to the real-time axis to
the next boundary. Thus calculated action I(g|t) is shown
in Figs. 3(d)-3(f). Since Q(t + t) and P(t + t) are in gen-
eral complex for imaginary 7, it does not correspond to the
areas of the trajectories in Figs. 3(a)-3(c). Note that plot-
ted in Figs. 3(a)-3(c) are the trajectories in the variables
(arctan[Re Q], arctan[Re P]), which allowed us to take into
account that |Q| and |P| diverge as t approaches 7, or .
The functions P(¢), OQ(t) do not have branching points.
Therefore, based on the picture of the poles in Fig. 4, one
would expect that I(g|t) is equal to the action I(g|0) for
the intrawell classical orbit for a given g as long as Im 7 <
Im 7, in which case the integration contour can be shifted
to the real axis Im v = 0. Once Im t goes over the lowest
pole, Im t,, the action should decrease by the corresponding
residue f PdQ/2n = (u + a)/2. We used here that near this
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pole P~ —i(Q — 1) +i(n + g)/2Q. Once Im t goes over
the next pole, Im 7, another residue contributes to the in-
tegral. Here P ~ i(Q + 1) — i( — a4)/20Q. Thus the overall
change of the action ¢ PdQ/2x by going over both residues
is —ay. This is also the difference in the actions in the wells
o = —1 and o = 1, since the action for the o = —1-well
is determined by the trajectory Q(t + r[()z)/Z), Pt + r,(,z)/Z)
with real 7, while there are no poles along the imaginary-time
axis between t/, and Im 7 /2.

IV. QUANTUM HEATING

The focus of this paper is the effect of the dynamical bias
on the phase-flip rate, i.e., the rate of switching between the
wells of g(Q, P). Related to this is the problem of the distri-
bution over the intrawell states. The distribution is formed as
a result of a random walk over the intrawell Floquet states.
Such walk is a consequence of the coupling of the oscillator
to a thermal bath. In the absence of modulation, for 7 = 0,
the oscillator makes downward transitions between its energy
levels (separated by ~ hw) with emission of excitations into
the bath. In the presence of modulation, these transitions
correspond to upward and downward transitions between the
quasienergy states, since these states are linear combinations
of the states of the undriven oscillator. The outcome is occu-
pation of excited intrawell states in the stationary regime, the
effect called quantum heating [50,51].

A. Rates of transitions between the Floquet states

Dissipative dynamics of the modulated oscillator in slow
time 7 is described by the Markovian master equation. Such
description applies provided the dissipation comes from the
coupling to a thermal bath and the density of states of the bath
weighted with the coupling is almost constant in a narrow
frequency range of width ~|8w|, F,|g|/mowy centered at the
oscillator eigenfrequency wy, see [45,50] for more details (in
particular, this estimate refers to the considered below case
where the coupling to the bath is linear in the oscillator coordi-
nate). We will further assume that the transition rates are small
compared to the spacing between the quasienergy levels. Then
the dynamics of the oscillator can be described by a balance
equation for the populations p, of the Floquet (quasienergy)
states,

)bll = - Z(W/nnerpn - Wn+mnpn+m)v (]8)

where n enumerates the states. The explicit form of the rates
W,n of ' — n transitions depends on the relaxation mecha-
nism. We will consider it for the most commonly encountered
mechanism where the coupling of the oscillator to the thermal
bath is linear in @, &". Then, in the rotating frame, relaxation is
described by the superoperator L[p] = 2«[apa’ — L(a'ap +
pa'a)]. The parameter « is the dimensionless oscillator de-
cay rate; it is the coefficient of viscous friction force in the
classical limit scaled by the factor 2mow),/F),. Relaxation in
dimensional time is often described by the same operator L[ o]
with k replaced by « /2.

The expression for £ is written in the low-temperature
limit, where the thermal occupation number of the oscillator

it = [exp (iw,/2kpT ) — 177! can be set equal to zero. From
this expression, the transition rate is

W = 26| (7 |aln) | (19)

As seen from Egs. (18) and (19), the decay rate parameter «
drops out from the expression for p, in the stationary state
in the considered limit ¥ < w(g), where off-diagonal matrix
elements of the density matrix can be disregarded.

In the semiclassical case A < 1, the matrix elements
(n'|aln) are expressed in terms of the Fourier components
an(g) of the functions a(t, g) = Q@1 ~12[P(t, g) —i0(, 91
Here Q(t, g) and P(t, g) are the coordinate and momentum as
functions of time for a given g; these functions are periodic
with period {"(g) = 27 /o (g),

(n+mlaln) ~ an(gn),

2w
am(g) = if dpa(t,ge™™, ¢ =w(@r. (20)
21 0

Equations (18)—(20) also apply to an underdamped oscilla-
tor in the absence of modulation, in which case n enumerates
the Fock states. In the semiclassical limit in the laboratory
frame, a(¢, E) o E'/? exp(—i¢), where E is the oscillator
energy and ¢ is its phase. This gives a,, 8, 1, i.e., there
are only transitions down in energy for 7 — 0. For a driven
oscillator, the situation is qualitatively different, as the cou-
pling to a thermal reservoir leads to transitions up and down
the quasienergy.

The transition matrix elements for the driven oscillator can
be evaluated explicitly making use of the double periodicity
of O(t, g) and P(t, g). We start with the matrix elements for
the well at Q > 0. One can then relate the integral in Eq. (20)
to a contour integral. In the complex 7-plane the contour of
choice, which we denote by C, is a parallelogram that goes
from O to 'L'[(,U, then to rl()l) + r[(f), then to r,ﬁz), and then back
to 0. In terms of the phase ¢ = w(g)t, the contour C goes
along the loop 0 — 27 — 27 + w(g)T}” — w(g)rs? — 0.
Because of the periodicity a(t, g) = a(t + r,(,l), g =alt+
rlﬂz), g), we have

1 —im -1 —im
am(g) = E(l —e ‘7’1(12)) id(ﬁ a(t, g)e™™?,

95 = w(@)r. @1

As described in Sec. III C, the parallelogram C contains
four poles of Q(¢, g) and P(¢, g). However, from Eqs. (12) and
(15), only t, and t,, are poles of a(z, g). With the account
taken of these equations,

_iw(g) exp(—ime,) — exp(—imey.)
V2 1 —exp ( — im¢1(,2))

where ¢, = 0(8)Ts, Pux = O(8)Tix-

The absolute value of the matrix elements decays exponen-
tially for large |m|. The exponent is different for m = 0. We
have

an(g) oc exp( —mIm (¢ — ¢..)),
an(g) o exp(—|m[Im ¢,.),

an(g) = . (22

m> 1,
—m>1. (23)
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The matrix elements a,(g) for the 0 = —1-well in the
range g > g% can be found by noting that, in this range

of g, one can switch from a trajectory in one well to the
trajectory in the other well with the same g by shifting time by
(zs" 4 ©)/2, which is the time to move along the Hamilto-
nian trajectory from Q3 to Q. The contour of integration C has
to be shifted appropriately. As a result, the matrix elements
ap(g) for the 0 = —1-well are then given by Eq. (22) with
¢* and ¢** replaced by (5* = (b** - w(g)ff(,z)/z and 5** =
¢ + 0(g)T? /2, respectively.

For oy < 0, where the 0 = —1 well is the deeper well of
g(Q, P), the expressions for the Fourier components have to
be interchanged. As seen from Egs. (19) and (20), these ex-
pressions give the transition rates W, ,,, in the explicit form.
The rates W, 1, fall off exponentially with the increasing |m|.

For |may| < 1, one can expand the result for the matrix
elements and find a simple analytic expression for the linear
in a4 correction to a,,(g). It agrees numerically with the result
found in [43], which involved summation over the matrix
elements for ¢y = 0.

B. Intrawell probability distribution in the semiclassical limit

It follows from the explicit expressions for the transition
rates that the oscillator most likely makes transitions between
the Floquet states |n) toward the minimum of the well of
g(Q, P) it currently occupies. However, states remote from
the minimum can be also reached, albeit with small probabil-
ities. In the semiclassical range A < 1, where there are many
quasienergy levels inside the wells of g(Q, P), these probabil-
ities can be found using the real-time-instanton approach, see
Refs. [45,50] and references therein. The approach relies, in
part, on the time scale separation. Over the time ~« ~, there is
formed a quasistationary distribution over the intrawell states.
Switching between the wells is an unlikely event, as it involves
reaching highly excited intrawell states and going over the
barrier that separates the wells. The switching rates W, are
exponentially smaller than «, see Sec. V.

Following this approach, we seek the quasisationary in-
trawell distribution over the states in the form

on = e R@/h (24)

This expression reminds the Boltzmann distribution. The pa-
rameter A, which characterizes quantum fluctuations, plays the
role of temperature. Assuming that R(g) is a smooth function
of g and using that W, .1, = W, _,,, in the semiclassical range,
we write Eq. (18) as

ar=R _ 4. 0m)
t _8t_ s 01 )

HU pr) =1 Wopn(e" = 1). (25)

m

This equation has the form of a Hamilton—Jacobi equation for
an auxiliary system with the coordinate I, momentum p;, and
Hamiltonian H, whereas R is the action variable. The depen-
dence of H on I comes from the transition rates W,,_,, ,, which
have to be evaluated for n given by the Bohr-Sommerfeld
condition I = A(n + (1/2)).

The Hamiltonian equations of motion for / and p; are

. 0H . oH
I=—, p=—0.
3[71 al

The quasistationary distribution for p, is given by the station-
ary solution of Eq. (25), i.e., by the solution of the equations of
motion (26) with H = 0.

A trivial solution of the equation H(I, p;) = 0 is found
by setting p; = 0. In this case, with the account taken of
Eq. (19) and using the method [52] one can show that the
equation for the action variable (26) takes the form I = —2«I.
This equation describes relaxation of the system toward the
bottom of the initially occupied well of g(Q, P) in the neglect
of quantum fluctuations.

The solution of the Hamiltonian equations (26) that
describes the distribution p,, i.e., the real-time-instanton solu-
tion, corresponds to a trajectory I(z) that goes away from the
bottom of the well. It can be found by noting that the transition
rates obey a detailed balance condition

(26)

W Wy Wiy = W Wy W,
since
Wn—mn —$?
nmmn_ p2mIm (et —g, )7 27
Wn+mn

as seen from Eq. (22) (here the phases are calculated for g =
gn)- Note that Eq. (27) holds for both wells. The condition
H(, p;) = 0 is then fulfilled for

pr = 2Im ((P[()z) - ¢* - ¢**)»
which gives
I =2«l. (28)

Thus the instanton trajectory /(¢) is simply given by the time
reversed fluctuation-free path. The trajectory (28) goes from
the bottom of the occupied well of g(Q, P) up to larger g.
We note that, in general, out-of equilibrium systems do not
have time-reversal symmetry. Beyond a narrow range of 7 that
shrinks to zero for A — 0, the optimal trajectory I(¢) differs
from the time-reversed fluctuation-free path.

In the considered case # = 0, it follows from the above
expressions that

R(@=0R=0"(@p =2Im(t -1, — 1) (29

independent of the well. Thus the function R(g), which de-
scribes the tale of the distribution over the intrawell states
in the considered case 7 = 0, is given by an integral of a
simple explicit expression. One can show that Im (7, + T4y) <
Im rlgz), see Appendix B. Therefore R' > 0, and the quasista-
tionary state population

&n
pn = Cy exp [— / ng’(g)/)\} (30)
&min

monotonically falls off with the increasing distance g, — gmin
from the bottom gni, of the occupied well of g(Q, P). The
parameter C,, here is the normalization constant that depends
on the population of the well. This population is w &~ Cy,/[1 —
exp[—R’(gmin )0 (gmin)]- In the fully stationary state, which is
formed over the long time needed for interwell switching, the
well populations are given by Eq. (33) below.
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0 T T
(shallow) Je Js

min min

g

FIG. 5. The imaginary part of the complex vibration period 7>
and R'(g) for the scaled detuning of the modulation frequency u =
0.2 and the scaled amplitude of the biasing field oy = 0.1. The

. . . . dee] allow
function Im 7{”(g) diverges logarithmically at g7, gh®, and g,
while R'(g) diverges only at g.. The inset refers to 4 = oy = 0.2, in

which case g, = gshallow

In Fig. 5, we show R'(g) together with the imaginary part
of the complex period Im (?. The function Im (> diverges
logarithmically at g., as discussed above. It also diverges
logarithmically near the bottoms of the wells gifip and gehallow
see Appendix D. In contrast, R'(g) only diverges at g.. Near
the bottoms of the wells the distribution p, can be found
analytically, since Egs. (4) for the dynamical variables Q, P

can be linearized, see Appendix D.

V. QUANTUM ACTIVATION

Equation (30) shows that, even for zero temperature, the
oscillator occupies states far from the bottom of the wells of
g(Q, P), including the states near the boundary that separates
the wells. If the oscillator was initially prepared in one of the
wells, once it reaches the near-boundary states, it will switch
to another well with probability ~1/2. This is reminiscent of
thermal activation where a classical system switches between
potential wells due to thermal fluctuations. Since in the con-
sidered case the switching is due to quantum fluctuations, it is
called quantum activation [28,45].

The minimal value of g(Q, P) at the interwell boundary is
the saddle-point value g. Therefore the switching rate is

VVSW(U) - Csw(o—) X eXP(—RA(U)/)L),
8s
Ra(o) = / R (g)dg. a1)
gmin(”)

where 0 = 1 enumerates the wells; the prefactor Cg, (o)
is of the order of the decay rate (of the order of k, in the
dimensionless time). The parameter A characterizes the in-
tensity of quantum fluctuations, and therefore, by analogy
with thermal activation where the intensity of fluctuations is
characterized by temperature, R4 can be called the quantum
activation energy.

FIG. 6. The dependence of the activation energies R4 for switch-
ing from the deep (solid lines) and shallow (dashed lines) wells
on the bias «y;. The arrows indicate the values of a; where the
minimum of the shallow well coincides with g.. The results refer
tou = —0.5, 0.1, and 0.5.

We show the activation energies R4 in Fig. 6. For the
deeper and shallower wells, R4 monotonically increases and
monotonically decreases with the increasing «y, as do also
the depths of the wells. The activation energy of switching
from the shallow well thallow goes to zero as |y | approaches
the bifurcational value 2[(x 4 1)/3]*/? where the well disap-
pears. We note that, since R’(g) is independent of the well, the
difference in the values of R, is given by

gs“}:gélow
ARy = /deep R(g)dg, 32)

i.e., by the integral of R'(g) over the difference in the minimal
shallow and %P of ¢(Q, P) in the shallow and deep

values gy, Emin
wells.

The difference in R4 between the wells leads to an expo-
nentially large difference in the switching rates. Respectively,
the stationary populations of the wells w(o ), which are deter-

mined by these rates, are also exponentially different,
w(l)/w(=1) ocexp[(Ra(1) = Ra(=1))/A].  (33)

Once the system reaches the stationary state, the distribution
over intrawell quasienergy states is still described by Eq. (30).
The ratio of the prefactors C,, for the 0 = £1-well is propor-
tional to the ratio of the stationary populations in Eq. (33).

Along with interwell switching via quantum activation,
the oscillator can also switch via quantum tunneling. Where
there is no bias, oy = 0, the wells of g(Q, P) are symmet-
ric and interwell tunneling is resonant for all states. Bias
shifts quasienergy levels of different wells out of resonance,
generally. Since the action between the two wells differs by
8l = |ay|, only for

ag =mi, m==x1,%£2,... (34)

are the semiclassical states in the shallow well of g(Q, P) in
resonance with the states in the deeper well. This relation
coincides with the relation used in Ref. [44] to describe the
experimental results. For the lowest quasienergy level in the
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shallow well I = A/2, and therefore Eq. (34) is the condition
on the difference of the well depths. Importantly, since the
vibration frequencies in the wells are the same for the same g,
all levels come in resonance at a time.

Even in the resonant case, switching via quantum ac-
tivation is exponentially more likely than via tunneling in
the important case where the tunnel splitting is small com-
pared to the dissipation-induced broadening of the intrawell
quasienergy levels. This can be shown by extending the
arguments given in [28] for the symmetric case. There it
was shown that escape via quantum activation dominates
if Im 7{» > R'(g). This condition is seen from Egs. (10),
(14), and (29) to hold also in the asymmetric case we con-
sider here. We note that, in contrast to quantum activation,
the tunneling amplitude is not proportional to the relaxation
rate, and therefore tunneling can become important for very
small «, in particular, for « small compared to the tunnel
splitting.

A. Singularity of R’

The logarithmic divergence of R'(g) at g = g. indicates
that the eikonal approximation used to obtain Eq. (25) breaks
down for |g — g.| <« 1. However, the divergence is integrable.
The contribution of the range of small |g — g.| to the effective
activation energy R, is small. This was confirmed by directly
solving the Schrodinger equation g |n) = g, |n) for the case
ag = 0[28].

One can understand it alternatively from the analysis
of the matrix elements (n + m|a|n) ~ a,,(g,). These matrix
elements determine the probabilities of transitions |n) —
|[n + m); note that transitions with m > 0 are the transitions up
the g axis; they ultimately lead to interwell switching. In the
double-well regime, the factor exp(—imt (g)/2), which de-
termines a,,(g) for g close to g., changes sign as g goes across
gc for m =2k + 1 and k > 0. From Eq. (22), so does also
ia,(g). Therefore some of the matrix elements (m + n|a|n),
which generally contain a small quantum correction to a,,(g,),
may become equal to zero for g, close to g.. Then there would
be no transitions up over the corresponding m levels from the
corresponding states. However, generically, this requires fine
tuning and may happen to one state. Even in this case there
would be transitions up along the g-axis from other states. This
is why the calculation of R4 in the eikonal approximation is
justified.

A special case is where g, coincides with the bottom of
a well, so that in this well there are no states |n) with g, <
gc- This happens for oy = £u. Near the bottom of a well
the Hamiltonian g(Q, P) is approximated by the Hamiltonian
of a harmonic oscillator, cf. Appendix D. Respectively, the
matrix elements (m|a|n) o« §,, 4+ are limited to transitions
between the nearest states. However, for g. = gmin We find
that (1|al0) = 0, where |0) is the ground (lowest-g) state in
the well. This is in agreement with the semiclassical result
R'(g.) — o0o. As a consequence, if the oscillator is in the
ground intrawell state, it will stay there. In the symmetric case,
oy = 0, and for © = 0, this was indicated in Ref. [28] and was
recently seen in Ref. [31] as an extremely slow switching for
small 7. Generally, one may still expect quantum heating in

this case due to transitions to the excited states of ¢ which,
however, have exponentially small amplitudes.

For 0 < u < 2, the condition g, = gnin can hold for a
shallower well. The values of oy where it happens are marked
by the arrows in Fig. 6. If the system is initially prepared
in this well, it will be trapped there, even though the well
is expected to be less populated. Such trapping provides an
insight into one of the features of the stationary distribution of
the oscillator found in Ref. [41].

We note that, generally, the oscillator can escape from
the shallow well via tunneling unless tunneling is suppressed
by the quantum interference in the classically inaccessible
region; such suppression was predicted [28] and recently ob-
served [9] in the absence of bias. We also note that corrections
from finite 7 as well as dephasing change the transition rates
W, ntm and facilitate escape of the oscillator [28,43]. De-
phasing due to slow frequency fluctuations, that result from
1/ f-type noise, can be particularly important in this respect
as such fluctuations drive the system away from the parameter
values where g. = gmin; the analysis of this effect is beyond
the scope of the present paper.

B. Logarithmic susceptibility

The switching rates may change dramatically already for
a weak bias, |oy| < 1, provided |ay| > A [43]. For |ay] < 1
the activation energies become

Ra(0) ~ R + oayR. (35)

Here, Rgo) = R/&O)(:I:I ) is the activation energy for the symmet-
ric case, oy = 0, where the minima are located at Q = Qin =
o(u+1)"? and g= gigi)n = —(u + 1)?/4. The linearity of
the correction to R4 in a4 for small |oy| is a consequence
of the explicit expressions (29) and (31). As seen from these
expressions, R'(g) is an even function of ¢: the change oy —
—ag, Q0 > —Q, P — —P does not change the Hamiltonian
8(Q, P) and the equations of motion (4). Therefore the change
oy — —oy does not change the values of 1152), 7., and T,, in
Eq. (29) for R'(g). Hence, the expansion of R'(g) in o, starts
with aﬁ. We took into account here that R'(g) is a smooth
function of g away from g.. To consider the effect of the
vicinity of g., we note that, from Eq. (8), the correction to
gc 1s quadratic in oy for y — 0. Therefore the correction to
Im rl@, and thus to R'(g), is also quadratic in ¢, for g close to
gc; see, however, the discussion of the case 1 = 0 below.

On the other hand, the correction to gni, in Eq. (31) is
linear in «y. For the well o, we find from the expression for

g(Q, P) that
gmin(0) — gigi)n ~—oag(n+ 1)1/2~

It is the shift of g, that leads to a linear in ¢, term in Eq. (35).
From Eq. (31), we have

0)
8min

R = (o /ag) f dgR ()
gmin(‘T)
~ (n+ DVPRO (), (36)

where R/(O)(gﬁl)i)n) is the value of R'(g) evaluated at the mini-
mum of g(Q, P) for oy = 0. This value was found in Ref. [28].
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FIG. 7. Logarithmic susceptibility R;” as a function of the scaled
frequency detuning of the parametric drive u. The function Rf‘” gives
the correction to the switching activation energy that is linear in the
scaled amplitude o, of the symmetry-breaking field, see Eq. (35). For
u — 0, the perturbation theory, which leads to Eq. (35), becomes
inapplicable. In this region the result is shown by a dashed line.

Using it we obtain

2 w+2-2J14+u

Equation (35) shows that the correction to the logarithm
of the switching rate is linear in the bias field. Therefore the
coefficient R/(,‘U can be called the logarithmic susceptibility.
For 72 > A it was found in Ref. [43].

We show the result for the correction to the activation
energy for 7 =0 in Fig. 7. This correction monotonically
increases as || decreases.

For |u| <« 1 the perturbation theory leading to Eq. (35)
becomes inapplicable. In this range, for small || and small
|ag| we have, from Eq. (D1), R (gmin(0)) ~ In(4/|1t + o ayl).
Respectively, we eliminated the range of small |x| in Fig. 7.
Physically, for 1 + ooy = 0 the system is localized in the
ground intrawell state. The rate of transitions from this state
Wo1 can be shown to be o |u + oay|? for small i + ooyl
Again, the localization is destroyed and the correction to Ry
becomes linear in o for not too small 7 and in the presence
of dephasing.

C. Prebifurcation regime

The problem of switching from a shallow well simplifies
near the bifurcational value ap of the bias «;, where the well
disappears, |az| = 2[(1 + 1)/3]*/%. The minimum of the well
merges with the saddle point of g(Q, P) for Q = Qp, P =0,
where Qp = —[(1 + 1)/3]"/?sgn ay. At the bifurcation point,
g(05,0)=(1+ ,u)2/12. For concreteness we will assume
that a4 is close to |ag| > 0. In this case, the function g(Q, P)
has two wells for oy = oy — |ag| < 0. Itis easy to show that,
in the vicinity of the shallow well, to the leading order in ¢,

2w, 3
80, P)—gp~ —3 P+ 080" — 80480 — Qpday,
(38)

where 8Q = Q0 — QOp, [60] < /(1 + n)/3. This maps the
problem of switching from the shallow well on the problem
of switching of a mechanical particle with effective mass
3/2(2 — w) from a potential of the form of the cubic parabola.

At the bifurcation point the frequency w(g) goes to zero.
The dynamics of the system is different if, for the considered
bias oy & ap this frequency is large or small compared to
the decay rate . We call “preburcation regime” the param-
eter range where oy — ap| < 1 yet the vibrations about the
minimum of the shallow well of g(Q, P) are underdamped,
w(ghallowy > . In this regime, there apply the general expres-
sion (31) for the switching rate.

The analysis is simplified by the fact that w(ghallov) ~
2[(2 — w)])'?(|8gQp)/3)"/* is small in the prebifurcation
regime. Therefore one can use the approach [28,43] to write

M(g) //
= 2—, M == d dP,
N o) (&) o 0

N(g) = 1 / / dQdP (35 + 9;)8(Q. P), (39)
2 JJaw

R'(g)

where the integrals run over the interior A(g) of the well
limited by the contour g(Q, P) = g. From Eq. (38), we see that
M(g)/N(g) =3/(2 — ), to the leading order in ¢y Using
Eq. (38) to find the depth of the shallow well, we obtain for
the activation energy for switching from the shallow well near
the bifurcation point the expression

8
thallow — ﬂ|80(|3/2/[3(1 + ,Uv)]l/4_ 40)

This expression displays the characteristic scaling of the
switching rate |Sag|>/? with the distance |8oy| to a saddle-
node bifurcation point, cf. Ref. [50] and references therein.

VI. CONCLUSION

In this paper, we studied the rates of switching between the
states of parametrically excited vibrations of a quantum oscil-
lator. The states have opposite phases, and the switching is a
phase flip. We considered the effect of an extra field at half the
frequency of the parametric modulation. Such a field provides
a dynamical bias that lifts the symmetry with respect to time
translation by the modulation period, making the switching
rates different for the states with different phases. Our analysis
refers to the coupling to a low-temperature thermal reser-
voir, where the thermal occupation number of the oscillator
in the absence of modulation can be set equal to zero. We
assume that the coupling is weak, so that the dissipation rate
is small.

As a function of the coordinate and momentum in the
rotating frame, the Floquet Hamiltonian of the oscillator has a
double-well form, with the minima corresponding to the states
with opposite phases. The wells are asymmetric because of the
dynamical bias. The interwell switching results from quantum
activation, i.e., from transitions over the barrier that separates
the wells. It is due to unavoidable quantum fluctuations that
come along with dissipation in the presence of modulation.

The theory is semiclassical. It is based on the real-time
instanton approach that describes diffusion (quantum walk)
over quasienergy states away from the minima of the Floquet
Hamiltonian. We explicitly find the instanton trajectory.

At the heart of the analysis are the features of the classical
Hamiltonian dynamics in the rotating frame. They include
the same frequencies of the real-time intrawell trajectories
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in different wells for the same quasienergy. Overall, the
trajectories are double-periodic, with the complex period re-
lated to complex interwell trajectories.

We show that the phase portrait of the trajectories in com-
plex time displays an hourglass. This topological feature is
related to the merging of the branching points in the complex
phase space.

We express the distribution over the intrawell Floquet
states and the activation energies of quantum switching in
terms of the periods and the positions of the poles of the trajec-
tories, which are all given by simple integrals. An interesting
physical feature is the localization in a shallow well for certain
interrelation between the parameters. Such localization occurs
even though, generally, the rate of switching from the shallow
well is higher than from the deep one. This quantum effect
is rooted in the topology of the classical phase portrait. Our
approach allows us to describe the effect analytically.

Parametrically modulated oscillators are attracting signif-
icant interest in quantum information and quantum sensing.
In terms of sensing, of particular importance are the vicinities
of the bifurcation points. They have been explored for oscilla-
tors based on nonlinear superconducting circuits [53,54]. Our
results show that the switching rates display scaling behavior
near bifurcation points of biased oscillators.

In terms of quantum information, an advantageous feature
of parametric oscillators is that their intrawell states can be
used to create qubit cat states. Bit-flip errors in the qubits
result from interwell switching. To suppress these errors, the
oscillators have to be driven to comparatively large ampli-
tudes. Our paper describes the exponentially small switching
rates in this range in the presence of a dynamical bias. Attain-
ing the large-amplitude range is one of the central directions
of the current experimental work on superconducting qubits
[44,55,56]. However, so far the number of intrawell Floquet
states has remained small. An interesting and unexpected
effect observed in this range in the presence of dynamical
bias is oscillations of the switching rate as the bias is varied
[44]. A full description of this effect where there are only a
few intrawell states is beyond the scope of the present paper.
However, our results explain the observed relation between
the parameters where the quasienergy levels in different wells
align, enabling resonant tunneling.

An important consequence of the bias-induced change
of the interwell-flip rates is the possibility of nontrivial
many-body effects in systems of coupled quantum parametric
oscillators. If the oscillators are modulated at the same fre-
quency ), the major effect of a comparatively weak coupling
is the force that the oscillators exert on each other. Since the
oscillators vibrate at w,/2, this force is essentially the same as
the dynamical bias we studied in this paper.

For a given oscillator, the force on it from other oscillators
is proportional to their vibration amplitudes. The sign of the
force, which is the analog of the sign of the parameter oy
in Eq. (1), is determined by the vibration phases of these
oscillators. We can associate the two vibration phases of an
nth oscillator with spin projections o, = %1, cf. Sec. V. Then
the parameter a;") for this operator becomes ) An JnmOms
where j,, is proportional to the vibration amplitude of an
mth oscillator and to the coupling of this oscillator to the nth
one. The resulting bias changes the switching rate of the nth

oscillator from its value in the absence of the coupling W™ to

VVSE:/')CXP - Z JumGnOm |,
m (m#n)

where J,, X jum/A, with the proportionality coefficient given
by the parameter R/(;) for the nth oscillator. This maps the
quantum system, in the presence of dissipation, on the Ising
system. If the oscillators are nonequivalent, then J,,, # Jyy,
and the system becomes nonreciprocal, as demonstrated in the
classical domain for two oscillators [32]. Our paper shows that
new quantum effects, including, potentially, quantum phase
transitions in nonreciprocal systems, should emerge in a sys-
tem of coupled oscillators.
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APPENDIX A: CLASSICAL TRAJECTORIES

In the WKB approximation, the rates of transitions be-
tween the intrawell states of g(Q, P) can be calculated using
the classical Hamiltonian equations of motion of the system
with the coordinate Q and momentum P and the Hamiltonian
g(0, P), see Eq. (4). We now show that the solution of these
equations are given by elliptic functions. To this end, we con-
sider the equation for Q as a function of slow dimensionless
time for a given g,

0 = P(Qlg)v/B(Q), (A1)

where P(Q|g) and B(Q) are given in Eq. (6). We first change
from Q to O = Q — (Q4 + Q_)/2, where Q.. are the roots
of the quadratic equation B(Q) = 0. Next we change to O =
%(Q+ — Q_)cosh&. It is convenient to write Eq. (A1) for the
function x = exp(§),

x = 2xP(Q(x)[g),

2 (A2)

00 = 50 +0)+ M(ﬁ 1),
X
[we note for completeness that /B(Q)= (Q+—0-)
x—x"1H/2]

It is seen from Eq. (6) that, with the account taken of
the form of +/B(Q), the function xP(Q(x)|g) is a square root
of a quartic polynomial of x. Therefore x(¢) is expressed
in terms of the Jacobi elliptic functions [57]. These func-
tions are double-periodic, with a real and complex period.
Respectively, the functions Q(¢) and P(¢), which are rational
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Qi Qe Qs @
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FIG. 8. A periodic Hamiltonian trajectory that starts at Q3 and
goes twice along a semicircle |Q| — oo in the complex-Q plane. The
points Q; with i =1, ..., 4 are the turning points of the intrawell
trajectories with given quasienergy g.

functions of x(¢), are also double-periodic, and moreover, the
only singularities they have in the parallelogram of periods are
poles.

APPENDIX B: THE INTERRELATION BETWEEN THE
COMPLEX PERIOD AND THE POSITIONS OF THE POLES

In this section, we prove the interrelation Im (t[(,z) — T, —
Tux) > 0 between the complex period 7? and the positions
Ty, Tss Of the poles of Q(¢) and P(¢). This interrelation shows
that the function R'(g) given by Eq. (29) is positive. In turn, the
condition R > 0 means that the distribution over the intrawell
states falls off monotonically with the increasing g.

We consider the duration of motion over the contour shown
in Fig. 8 with a given quasienergy g. We start at the smaller-Q
turning point Q3 of the o = 1 well and go to Q@ — co. On
this section of the contour, as explained in the main text, cf.
Eq. (6),

dt =dQ/Q =dQ/P(Q|g)B"*(Q). (B1)

We take the branch P(Q|g) with P(Q|g) > 0 inside the 0 = 1
well, where O3 < QO < Qu, then go around the turning point
Qy in the upper half-plane of the complex-Q plane, so that Im
P < 0 for Q > Q4. Then the duration of motion from Q3 to
0 — 00is Ty.

We then go to Q — —oo along a semicircle in the
complex-Q plane. Since P(Q|g)/B(Q) o @2, the time it takes
to do so goes to zero for |Q] — co. However, +/B(Q) changes
sign. Respectively, the momentum P switches from the branch
described by Eq. (6) to the branch

P_(Qlg) = [-0* — 1+ — B>(Q)1">.

On this branch the momentum remains complex for any real
Q. Note that Im P_(Q|g) > 0, as the sign of the momentum
has changed as a result of going around the semicircle in the
0 plane.

We now consider moving from Q — —oo to Q — oo
along the real Q axis. This time is given by integrating
Eq. (B1) with P(Q|g) replaced with P_(Q|g),

.= / d0Q/P_(Qlg)B"*(Q), (B2)

Since Im P_(Q|g) > 0 and B'/? < 0, the imaginary part of the
integrand in Eq. (B2) is positive, Im 7_ > 0. For g < g, in
calculating T_ we have to go around the poles of B(Q) on the
real-Q axis at Q = Q., which gives a real contribution " /2
to7_.

From Q = 400, we again go around a semicircle in the
complex Q plane. Now on the real-Q axis at Q — —oo we
have +/B(Q) > 0 while the momentum is given by Eq. (6)
for P(Q|g) with Im P(Q|g) < 0. We integrate Eq. (B1) along
the real-Q axis from Q — —oo to Q3. It takes time T, (g), cf.
Eq. (14) for t,.(g).

Overall, since the trajectory comes to the initial state Qs,
the duration of motion is given by 7{*. Therefore we have

Im r1§2) =1Im (7, + 7 + T4s),
and thus

Im (z,g” — Ty — Ti) > 0.

APPENDIX C: SINGLE WELL REGIME

Because the wells of g(Q, P) have different depths, there
is a region of g where the vibrations occur only in the deeper
well. For concreteness, Fig. 2(c) shows positions of the turn-
ing points in this case for oy > 0, where the right, i.e., the
o = 1, well of g(Q, P) is deeper than the left, i.e., the 0 = —1
well. Here, as g decreases, the turning points Q; and Q, of
the left-well trajectories approach each other and ultimately
merge at g = gV The minimum of the well is located at
Qshallow oiven by the equations P(Q|g) = 0, dpg(Q, 0) = 0.
For g < gﬂ]‘i“él"w, the turning points Q;, become complex.
They are connected by a real time trajectory. The period of
motion along this trajectory for a given g coincides with the
period of motion along the real-Q axis in the right well for the
same g, see Fig. 2.

The complex turning points Q; and O, are connected to
the turning point Q3 of the 0 = 1 well with the same g by
complex-time Hamiltonian trajectories. The time it takes is
rl()z) /2, since moving back and forth is the period r[(,2>, cf.
Eq. (7). We first discuss this motion for the case where Q4
are complex. Starting from Q3 and moving in imaginary time
along the real-Q axis, one can reach the real-Q point on the
real time trajectory connecting Q; and Q,, see Fig. 2(c). From
there Q; or O, can be reached by moving in real time. By
symmetry, it takes the same time to reach Q; or Q», and this
time is rlgl) /4, since the real time to move from Q; to Q> is

751 /2. Therefore the complex period (> acquires a real part
of 7{!)/2. We note that it is legitimate to appropriately deform

the integration contour of QS‘ dQ/Q, which gives tl(,z) /2, as
long as it does not go around the branching points QO or Q_.

In the case where Q4 are on the real axis, moving between
them leads to a real contribution z{"/2 to |, 0. d0/ Q and thus
to rl(,z) /2. Since Q and P are periodic in the real time, we can
always add or subtract r1§1> from the complex period.

In Fig. 9, we show the change of the topology of the
Hamiltonian trajectories as g changes from the double-well
to the single-well range. In contrast to Fig. 3, shown is the
evolution of the phase portrait over the whole imaginary part
of the complex period 7). As g approaches the minimum
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FIG. 9. Phase portrait of the Hamiltonian system in the single-well regime. (a)—(c) show the real-time Hamiltonian trajectories Q(t + 1),
P(t + 7) (blue lines) calculated from Eq. (4) for different imaginary 7. The trajectories connecting the turning points Q3 and Q4 atIm t =0
and Q) and Q; atIm v = f](,z) /2 are shown in black. The red lines show the trajectories in purely imaginary time. For all plots i = 0.2 and
oy = 0.3. In panel (a) g = —0.01, in (b) g = —0.05297, and in (c) g = —0.1.

of the shallow well, the imaginary period increases until it
diverges for g = ghallY The o = 1-well trajectories become
disconnected from the trajectories that connect the turning
points Q1 and Q5. For g < ghallow they reconnect, except that
Q) and Q, are now complex. Still O; and Q, are connected
by a real-time trajectory with period ¢ V. The period 7>
becomes finite for g < gﬂﬁl"w, however it acquires a real part
equal to half the real period tlgl). Over the time Im 11(72) the
imaginary-time trajectory shown in red returns to a point on
the trajectory of the o = 1-well shifted by 7" /2, i.e., the sign
of P changes.

APPENDIX D: THE BEHAVIOR
AT THE MINIMA OF g(Q, P)

As g approaches a minimum gpi, of one of the wells,
the corresponding turning points approach each other and for
& = gmin merge together at O = Q. Since at the minimum
P(Onminlg) =0 and 09pg(Q,0) =0, near the minimum we
have P*(Q|g) ~ d\ (g — gmin) — d2(Q — Omin)* With dy 5 > 0.
Therefore, from Eq. (7),

Im rlgz) o In(g — gmin)
whether O, or Q3 approaches Quin, i.€., whether g is near the

minimum of the o = 1- or 0 = —1 well. This divergence is
also shown in Fig. (5).

The pole Im t,, also goes to infinity as g approaches a
minimum. It follows from Eq. (14) that, near the minimum of
the shallow well, the leading-order term in Im t,, coincides
with that in Im r[(,2>, whereas Im 7, does not diverge. On the
other hand, near the minimum of the deeper well Im t,, ~
Im 1;2)/2, but, as seen from Eq. (10), Im 7, ~ Im r’fz)/Z.
Therefore, from Eq. (29), R'(g) remains finite near both min-
ima of g(Q, P). This is to be contrasted with the behavior of
R’ near g., where it diverges, see Fig. 5.

A straightforward calculation shows that, near a minimum

of g(0, P)

VAp +/Ag
VAP — Aol
Ap=0nn—n+1, Ag=300, —u—1

For agy =0, we have Omin = +(u + 1)/2, and the above
expression coincides with the result [28]. For oy = 0 and
n =0, the critical value g. as given by Eq. (8) coincides
with gmin = —1/4. In this case, R'(g) logarithmically di-
verges as g — gmin. Lhis follows from Eqgs. (7), (10), (14),
and (29).

We note that, for gy = ||, we find g. = gifienp for —0.25 <
u<0and g. = Ifl‘ﬁil"w for 0 < u < 2. For u > 2, the con-
dition that the stationary points of g(Q, P) are minima with
respect to P is violated for the point (Qy, P = 0), which is the
saddle point for u < 2.

R'(g) ~ 2(ApAg)~"*In
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