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Abstract

Electrons trapped above the surface of helium provide a means to study many-body
physics free from the randomness that comes from defects in other condensed-matter
systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum
discrete, with controlled level spacing. The lowest two states can act as charge qubit states.
In this paper, we study how the coupling to the quantum field of capillary waves on
helium—known as ripplons—affects electron dynamics. As we show, the coupling can
be strong. This bounds the parameter range where electron-based charge qubits can be
implemented. The constraint is different from the conventional relaxation time constraint.
The electron–ripplon system in a dot is similar to a color center formed by an electron defect
coupled to phonons in a solid. In contrast to solids, the coupling in the electron on helium
system can be varied from strong to weak. This enables a qualitatively new approach to
studying color center physics. We analyze the spectroscopy of the pertinent synthetic color
centers in a broad range of the coupling strength.

Keywords: charge qubits; quantum dots; electrons on helium; quantum gates; color centers;
electron–phonon coupling; spectroscopy

1. Introduction
Studying the two-dimensional (2D) system of electrons on the surface of liquid helium

is interesting in several aspects. In this system, electrons are strongly interacting with
each other and are coupled to a quantum field of helium vibrations, which leads to rich
and nontrivial many-body behavior. At the same time, the system is pristine, with no
defects, allowing one to investigate this behavior in a controlled way, which is hard if not
impossible to do in other areas of condensed-matter physics. In particular, the electron–
electron interaction can be controlled by varying the electron density by several orders of
magnitude, from 1011 cm−2 down to 106 cm−2. The strength of the coupling to the helium
vibrations can also be controlled over a broad range. This coupling is determined by the
electric field E⊥, which presses the electrons against the helium surface and can be changed
in the experiment from ∼102 V/cm to ∼104 V/cm.

In the overwhelming majority of experiments conducted so far, the electron system
on helium was nondegenerate and the electron wave functions did not overlap. Yet, the

Entropy 2025, 27, 787 https://doi.org/10.3390/e27080787

https://doi.org/10.3390/e27080787
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3996-7932
https://orcid.org/0000-0002-4314-5045
https://doi.org/10.3390/e27080787
https://www.mdpi.com/article/10.3390/e27080787?type=check_update&version=1


Entropy 2025, 27, 787 2 of 18

system is strongly correlated. The correlations are at the root of many phenomena ob-
served in the system. These phenomena range from Wigner crystallization, which was first
observed with electrons on helium [1,2], to many-electron tunneling [3,4], magnetocon-
ductivity and cyclotron resonance [5–13], radio-frequency, microwave and piezoacoustic
response [14–25], and profound nonlinear effects [26–36]. Interestingly, but not unexpect-
edly, the electron–electron interaction is competing with the coupling to the vibrational
excitations in the helium. The latter coupling can lead to a polaronic effect [37], which
can be strong, particularly in a magnetic field [38]. However, because of thermal density
fluctuations in the electron liquid, an electron can be “blown away” from the polaronic
well [5]. In particular, it is this effect that is behind the observed magnetoconductivity,
which is very different from the conventional magnetoconductivity of other 2D electron
systems [9].

In spite of the significant progress in understanding many aspects of the physics of
electrons on helium, the fundamental question of the single-electron polaronic effect and
its consequences remains unanswered. In this paper, we study this effect in the setting
where the electron states can be well-controlled. Moreover, we show that, with electrons
on helium, it becomes possible to implement, using the polaronic coupling, a “tunable
synthetic color center”. The importance of such an implementation follows from the
fact that color centers are a prominent type of defects in solids [39]. These defects have
been attracting increasing attention recently in the context of quantum measurements
and quantum information [40–50]. However, in solids, the coupling between electronic
transitions in color centers and phonons cannot be tuned, which limits the analysis. In
contrast, this limitation does not exist for electrons on helium.

A theoretical study of the single-electron polaronic effect has been made timely by
the recent progress in the experimental techniques. It is now possible to place an electron
system into a high-quality-factor microwave cavity [51–53]. Quantum measurements of
the cavity response enable accessing features of the electron dynamics at the single-electron
level that have not been possible in the past. In parallel, precision methods have been
developed for single-electron confinement in electrostatically created quantum dots on
the helium surface, which can be embedded into micro-cavities [54,55]. A representative
example of such a dot placed into a microwave cavity is shown in Figure 1.

Figure 1. Electron in helium quantum dot device similar to the devices described in Ref. [54].
Trenches of order 0.5–1 µm are dry-etched into a high-resistivity silicon to confine superfluid helium
via capillary action. Electrostatic gates are defined by patterning of a pre-sputtered niobium film.
They enable tuning of E⊥ which, in turn, enables a controlled polaronic coupling between the
electron and the bosonic excitations of helium. The geometrically and electrostatically defined dot is
coupled to a microwave resonator cavity to perform spectroscopy measurements of the states of the
trapped electron.

In this paper, we study the response of an electron confined in a quantum dot to a
resonant field that causes transitions between quantized intradot energy levels. These
transitions are analogous to the transitions between the electron states of an electron
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localized at a defect in solid, i.e., between the states of a color center. We show that, by
varying the strength of the coupling of the localized electron on helium to the helium
vibrational modes, one can reproduce and explore various regimes encountered in the
physics of color centers, from strong to intermediate to weak coupling.

Another motivation for this study comes from the idea of using electrons in quantum
dots on helium as charge qubits [56–60]. Critical for implementing a quantum computer
based on electrons on helium is understanding of the polaronic effect. In the standard
terms of quantum information [61], this effect is an analog of dephasing. However, it is
far more complicated and is not described by a dephasing rate. We will study how the
polaronic effect is manifested in the gate operations on a charge qubit based on an electron
in a quantum dot on helium. Various aspects of this effect, including the ultimate limit on
the gate fidelity will be analyzed.

2. Model
We consider a geometry where electrons are floating in the x − y plane above the

helium surface. They are bound to the surface by an image potential −Λ/z for z > 0, where
Λ = (ε − 1)e2/4(ε + 1), with ε ≃ 1.057 being the helium dielectric constant; the coordinate
z is counted off the surface. There is a ∼1 eV exchange-force barrier preventing penetration
into the helium. The motion of the electron normal to the surface is therefore quantized,
and the spectrum is Rydberg-like, with the characteristic Bohr radius rB = h̄2/Λme ≈ 76 Å.
The spacing between the lowest and the first excited states is ≳120 GHz in frequency units;
it largely exceeds the relevant temperatures and the energies of in-plane motion [37,62,63].

Quantum dots are created by electrodes submerged in the helium at a depth
ddot ≃ 0.5 µm [54,57,58]. The low-lying states of intradot electron motion are weakly non-
equidistant states of two vibrational modes. We will choose the coordinates of these modes to
be pointing along the x and y axes and call them x and y modes, respectively. The electron
states then are the Fock states of two oscillators |nx, ny⟩, where nx,y = 0, 1, 2, .... The mode
eigenfrequencies Ωx and Ωy are controlled by the electrode potential. The Hamiltonian
that describes the low-energy in-plane intradot states reads

H0 = ∑
i=x,y

h̄Ωia†
i ai + Hnonlin Hnonlin =

1
2 ∑

i=x,y
h̄Viia†

i
2a2

i + h̄Vxya†
xaxa†

yay. (1)

Here, ai, a†
i (i = x, y) are the ladder operators of the x and y modes. The parameters

Vii and Vxy describe the internal mode nonlinearities and the cross-nonlinearity, respec-
tively. For typical quantum dots, they are small compared to Ωx,y. They determine the
non-equidistance of the energy levels of the intradot vibrations. The smallness of the non-
linearity parameters is a consequence of the smallness of the quantum localization lengths
li = (h̄/2meΩi)

1/2 (i = x, y) compared to the size of the dot; here me is the electron mass.
Making the dot potential asymmetric in the x and y directions allows one to make

the frequencies Ωx and Ωy different, so that |Ωx − Ωy| ≫ |Vxx|, |Vyy|, |Vxy|. Typically, for
electron dots in superconducting microwave cavities, of interest are frequencies Ωx,y in the
range of several gigahertz. We will assume that the temperature is low, kBT ≪ h̄Ωx,y, so
that the electron is in the ground intradot state. Given the above estimate of the frequencies,
this corresponds to temperatures ≲ 0.1–0.5 K, which are routinely used in experiments on
electrons on helium.

The relevant excitations in helium are the capillary waves, ripplons, and acoustic
phonons. The phonons play an important role in the electron energy relaxation. In terms of
the polaronic effects, of primary interest are ripplons, which typically have low frequencies
and are more strongly coupled to surface electrons [37,62]. These surface waves are
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characterized by their 2D wave vector q. The Hamiltonian Hint of the electron–ripplon
coupling and the ripplon Hamiltonian Hr have the form

Hint = ∑
q

(
Vqeiqrbq + V∗

q e−iqrb†
q

)
, Hr = h̄ ∑

q,
ωqb†

qbq, (2)

where r = (x, y) is the 2D electron coordinate, Vq are the coupling parameters, ωq is the
frequency and bq is the annihilation operator of the ripplon with wave vector q. Since
helium is isotropic, ωq is independent of the direction of q.

The values of Vq are obtained by projecting the overall coupling energy onto the lowest
state of electron motion normal to the surface. They have the form [37]

Vq = (V(pol)
q + eE⊥)(h̄q/2ρHeωqSHe)

1/2, V(pol)
q ≈ −(Λq2/2)[1 + ln(qrB/4)]. (3)

Here, V(pol)
q comes from the modulation of the image potential by surface waves. The

term ∝ eE⊥ comes from the change in the electron energy in the pressing field E⊥ due to
rising and lowering of the helium surface, and thus the electron, by surface waves; ρHe is

the helium density; and SHe is the helium surface area. We use the expression for V(pol)
q

that applies for the variational wave function of motion normal to the surface of the form
ψ(z) ∝ z exp(−z/rB). Of interest is the case where the Bohr radius rB is small compared
to typical value of q−1, and we have kept the leading-order terms in qrB; rB becomes a
variational parameter for E⊥ > 0 (cf. [57]).

The Adiabatic Approximation

The wave numbers q of the ripplons coupled to an intradot electron are effectively
limited by the reciprocal electron localization lengths l−1

x , l−1
y . This is seen from Equation (5)

below and can be easily understood, since the effect of ripplons with wavelengths small
compared to lx, ly is averaged out. The typical frequencies of the relevant ripplons are

ωq ≲ ωqm , qm = (l2
x + l2

y)
−1/2. (4)

They are much smaller than the electron vibration frequencies Ωx,y. For typical Ωx,y/2π in
the range of 3–6 GHz, we have ωqm ≃ 7.3 × 107–1.2 × 108 s−1. As a consequence, there is
no single-ripplon decay of the vibrational electron states. The main effect of the coupling to
ripplons is the ripplon-induced modulation of the electron energy levels. Such modulation
can be described in the adiabatic approximation. In this approximation, one keeps in the
electron operator exp(iqr) in Hint, Equation (2), only the terms that are diagonal in the
intradot states, whereas the off-diagonal terms are disregarded. Respectively, the coupling
Hamiltonian takes the form H(ad)

int , where

H(ad)
int = ∑

q
e−ηq ∑

n,m

(ilxqx)2n

n!2
a†

x
nan

x
(ilyqy)2m

m!2
a†

y
mam

y (Vqbq + V∗
q b†

q),

ηq =
1
2 ∑

i=x,y
l2
i q2

i . (5)

Here, we used the standard expression for the components x, y of the electron displace-
ment operator, x = lx(a†

x + ax) and y = ly(a†
y + ay). The nonadiabatic terms, which are

disregarded in the replacement of Hint → H(ad)
int , lead to small corrections to the frequencies

Ωx, Ωy.
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The total Hamiltonian of the electron–ripplon system in a dot on helium in the adia-
batic approximation is

H = H0 + H(ad)
int + Hr. (6)

The smallness of the characteristic ripplon frequencies ωq compared to the frequencies
Ωx,y of the intradot electron excitations points to a similarity with the physics of color
centers. The electron transition frequencies of color centers are often in the visible or
near-infrared range [39,44,46,47], largely exceeding the phonon frequencies. The coupling
to phonons in color centers is determined by the structure of the underlying defects and
is often strong. However, it is not tunable in situ, whereas the coupling of an intradot
electron to ripplons can be controlled by varying E⊥, as seen from Equations (2) and (3). We
note that the shape of the spectra of color centers is also usually analyzed in the adiabatic
approximation (cf. [39,64,65]).

3. Resonant Linear Response of Intradot Electrons
Electron transitions between the intradot vibrational states have a large dipole moment

|er| ∼ elx,y. Therefore, they can be comparatively strongly coupled to the intracavity
microwave field (this, in fact, is what enables detecting single electrons using a microwave
cavity). For temperatures kBT ≪ h̄Ωx,y the electron occupies the ground vibrational state
|nx, ny⟩ with nx = ny = 0. By tuning one of the transition frequencies, for example Ωx,
close to the cavity eigenfrequency one can study the spectrum of resonant response to a
microwave field associated with the transition |0x, 0y⟩ → |1x, 0y⟩.

The response to a weak microwave field at frequency ω is characterized by the electron
conductivity. Using the Kubo formula, the diagonal component of the electron conductivity
for a cavity field polarized along the x-axis can be written as

σxx(ω) =
e2ω

h̄

∫ ∞

0
dteiωt⟨[x(t), x(0)]⟩ , (7)

where ⟨·⟩ implies thermal averaging.
The real part of σxx gives the absorption coefficient of the field. For ω ≈ Ωx and in

the case where the linewidth of the resonant peak of Re σxx is small compared to Ωx and
|Ωx − Ωy|, we can keep only the term ∝ exp(−iΩxt) in the expression for ⟨[x(t), x(0)]⟩.
For low temperatures and ω ≈ Ωx this gives

Re σxx(ω) ≈ e2

2me
αxx(ω) , αxx(ω) = Re

∫ ∞

0
dteiωt ⟨ax(t)a†

x(0)⟩ . (8)

If there were no coupling to ripplons, we would have αxx(ω) = πδ(ω − Ωx), i.e., the cavity
absorption spectrum would have the form of a δ-peak at the intradot frequency Ωx. The
electron–ripplon coupling leads to broadening of this spectroscopic peak. We note that the
mode nonlinearity and the nonlinear mode coupling do not affect the spectral peak for
low temperatures.

3.1. Averaging over the Ripplon States

The averaging in Equation (8) implies a trace over the electron and ripplon states with
the weight Z−1 exp(−βH), where H is the full Hamiltonian of the system (see Equation (6)),
β = 1/kBT, and Z is the partition function. For typical temperatures T > 10 mK used in
the experiments, the averaging should be performed assuming that the ripplons coupled
to the electron are thermally excited even though the electron itself is in the ground
intradot state.
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The electron–ripplon coupling leads to a displacement of the ripplon equilibrium
positions, i.e., deformation of the helium surface. If the electron is in the ground state, one
can allow for this displacement by making a unitary transformation

Ug = exp

[
∑
q

exp(−ηq)

h̄ωq
(Vqbq − V∗

q b†
q)

]
, (9)

where we have taken into account the explicit form of the diagonal matrix element of the
coupling Hamiltonian H(ad)

int , Equation (5), on the electron wave function |mx, nx⟩ with
mx = nx = 0.

The transformation (9) leads to a shift bq → bq − V∗
q exp(−ηq)/h̄ωq. When substi-

tuted into H(ad)
int , this shift results in an adiabatic polaronic change of the frequencies and

nonlinearity parameters of the electron vibrational modes. In particular, the frequency of
the x-mode is shifted from Ωx to Ωad,

Ωx → Ωad, Ωad = Ωx + Pad, Pad = 2 ∑
q
(lxqx)

2|Vq|2e−2ηq /h̄2ωq. (10)

The shift is quadratic in the coupling parameters and is independent of temperature.
It is convenient to calculate the correlator ⟨ax(t)a†

x(0)⟩ in Equation (8) by chang-
ing to the interaction representation with the Hamiltonian H̃0 + Hr, where H̃0 differs
from H0 in that Ωx is replaced by Ωad. Then the time evolution operator becomes
U†

g exp[−iHt]Ug = exp[−i(H̃0 + Hr)t]Tt exp[−i
∫ t

0 dt1H̃(ad)
int (t1)dt1], where Tt is the time

ordering operator and H̃(ad)
int is given by Equation (5) in which the sum over m, n runs

over m + n > 0 (the term with m = n = 0 in H(ad)
int has been eliminated by the canonical

transformation). Tracing out the ripplonic variables in a standard way, we obtain

⟨ax(t)a†
x(0)⟩ = e−iΩadt exp[−W(t)],

W(t) = ∑
q

|Vq|2

(h̄ωq)2 e−2ηq (lxqx)
4
[
(n̄q + 1)

(
1 − e−iωqt

)
+ n̄q

(
1 − eiωqt

)
− iωqt

]
(11)

Here, n̄q is the thermal occupation number of a ripplon with the wave number q,

n̄q ≡ n̄(ωq), n̄(ω) = [exp(h̄ω/kBT)− 1]−1.

3.2. Radiation Emission from the Excited State

If the intradot electron is excited, it can emit radiation by going from the excited to
the ground state. We will consider the radiation spectrum assuming that it is the x-mode
that is excited and that the ripplons are in thermal equilibrium. This means that they
have “adjusted” to the excited state of the mode, while the mode itself is not in thermal
equilibrium; for example, it has absorbed an x-polarized photon, which has brought it
into the first excited vibrational state, where it stays longer than it takes for the ripplons
to thermalize.

The general expression for the electron emission spectrum can be found in a standard
way by studying the linear response of the intradot electron to a quantized x-polarized
intracavity radiation field. Near its maximum, the shape of the spectrum is given by
the function

α̃xx(ω) = Re
∫ ∞

0
dteiωt a†

x(0)ax(t), (12)

where we use an overline to indicate the averaging described above.
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For emission from the first excited vibrational state of the x-mode, a calculation similar
to the one in the analysis of the absorption spectrum gives

a†
x(0)ax(t) = e−iΩadt exp

[
−W∗(t) + 2it ∑

q

|Vq|2

h̄2ωq
e−2ηq (lxqx)

4

]
(13)

Measuring emission into the cavity thus provides a direct way to detect that the intradot
electron was excited. Such detection is demanding, as it requires single-photon resolution.
In what follows we focus on the absorption and control of electron transitions by short
resonant pulses supplied to the cavity.

4. Absorption Spectrum in the Limiting Cases
Equations (8) and (11) provide an explicit general expression for the absorption spec-

trum of microwave radiation by an electron in a quantum dot on helium. The expression is
simplified in the limiting cases of strong and weak coupling to the ripplons. The strong-
coupling condition is

γ ≫ ωqm , γ = h̄−1

[
∑
q
|Vq|2e−2ηq (lxqx)

4(2n̄q + 1)

]1/2

. (14)

Physically, this condition means that the coupling energy, h̄γ, is much stronger than the typi-
cal ripplonic energy h̄ωqm . When this condition holds, one can expand W(t) in Equation (11)
to second order in ωqt, which gives W(t) ≈ γ2t2/2. Then, from Equations (8) and (11), the
spectrum αxx(ω) has the shape of a Gaussian peak centered at Ωad:

αxx(ω) ≈ (π/2γ2)1/2 exp
[
−(ω − Ωad)

2/2γ2
]
, γ ≫ ωqm . (15)

The Gaussian shape of the absorption peak is familiar from the theory of strongly
coupled color centers [64–66]. The characteristic width of the peak γ is linear in the
coupling strength.

For a coupling that is not too strong, a very narrow zero-ripplon line emerges on the
background of the broad Gaussian peak. This spectral feature is an analog of the zero-
phonon lines in the spectra of color centers [39,67] and also an analog of the very narrow
lines in Mössbauer spectra. The form of this line, αzr(ω), is determined by the behavior
of the function W(t) for large ωqm t. In particular, the position of the line is determined by
the last term in Equation (11) for W. In the approximation where we disregard processes
leading to transitions between the intradot electron states, the zero-ripplon line has the
form of a δ-function:

αzr(ω) = π exp(−W̄)δ(ω − Ωzr), Ωzr = Ωx + Pzr,

W̄ = ∑
q

|Vq|2

(h̄ωq)2 e−2ηq (lxqx)
4(2n̄q + 1), Pzr = ∑

q

|Vq|2

h̄2ωq
e−2ηq (lxqx)

2[2 − (lxqx)
2]. (16)

The zero-ripplon shift Pzr of the spectral line (16) away from the “bare” frequency
Ωx is independent of temperature. Importantly, it differs from the adiabatic line shift Pad.
This means that the zero-ripplon line is shifted away from the position of the Gaussian
peak (15). The factor exp(−W̄) is the analog of the Debye-Waller factor in the theory of
x-ray and neutron scattering in solids and of the Pekar-Huang-Rhys factor in the theory of
optical absorption by color centers. To the order of magnitude, W̄ ∼ γ2/ω2

qm . Therefore,
the zero-ripplon line (16) has an exponentially small intensity (i.e, the spectral peak has an
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exponentially small area) in the limit of very strong coupling, but if the parameter W̄ is not
too large, the line should be clearly resolved on the background of the Gaussian peak.

In the opposite limit, i.e., for weak electron–ripplon coupling, where W̄ ≪ 1, the
zero-ripplon line is the most intense line in the spectrum. The coupling to ripplons, besides
the shift of the line from Ωx, leads to the onset of sidebands, i.e., broad absorption bands
on the higher- and lower-frequency sides of the zero-ripplon line. This is again similar to
the optical spectra of impurities in solids [39,67]. From Equations (8) and (11), to the first
order in W̄, we have

αxx(ω) = αzr(ω) + π S(∆ω)[n̄(∆ω) + 1] + π S(−∆ω)n̄(−∆ω),

S(ω) = ∑
q

|Vq|2

(h̄ωq)2 e−2ηq (lxqx)
4δ(ω − ωq), ∆ω = ω − Ωzr. (17)

This equation explicitly shows that there are two sidebands, S(±∆ω). The sidebands are
continuous spectra with typical width ωqm . The higher-frequency sideband, ∆ω > 0, comes
from absorption where the electron and a ripplon are excited by the radiation, whereas the
lower frequency sideband, ∆ω < 0, correspond to the process where the electron is excited
but a ripplon is absorbed.

As seen from Equations (16) and (17), there holds the relation

W̄ =
∫ ∞

0
dω S(ω)[2n̄(ω) + 1].

It has a simple meaning. As seen from Equation (8),
∫ ∞
−∞ dω αxx(ω) = π independent of the

coupling to ripplons, whereas for weak coupling,
∫

dω αzr(ω) ≈ π(1 − W̄). The reduction
in the absorption in the zero-ripplon line is compensated by the sideband absorption.

Explicit Expressions in the Case of Electrons on Helium

The frequencies of ripplons coupled to the intradot electron are low. Therefore, the pa-
rameters in the expressions for the spectra should be evaluated assuming that kBT ≫ h̄ωqm .
In the following, to simplify the estimates, we set lx = ly. Then, using the explicit
form of the dispersion law ωq = (σHeq3/ρHe)

1/2, where σHe is the surface tension, from
Equation (3), we obtain the contributions W̄E⊥ and W̄pol of the pressing electric field and
the polarization coupling to W̄ in the form, respectively,

W̄E⊥ =
3e2E2

⊥
32
√

πh̄2
l3
xρHe

σ2
He

kBT, W̄pol =
9

512
√

π

Λ2kBTρHe

h̄2σ2
Helx

Cpol, (18)

where
Cpol ≈ cpol

2 + 0.70cpol + 0.25, cpol = 1 − ln(4lx/rB).

There is also a contribution to W̄ from the cross-term, which is ∝ E⊥Λ. We do not give an
explicit expression for the corresponding term, it is smaller than the sum W̄E⊥ + W̄pol. As
noted earlier, rB in the expression for W̄pol becomes a variational parameter in the presence
of E⊥, it is reduced from its E⊥ = 0-value. Numerically, for T = 20 mK and the transition
frequency Ωx/2π = 4 GHz we have W̄pol ≲ 0.05, whereas W̄E⊥ ≲ 0.4 for E⊥ = 100 V/cm.
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The contributions SE⊥ and Spol to the sidebands from the pressing field and the
polarization coupling to ripplons are, respectively,

SE⊥(ω) =
e2E2

⊥
16πh̄

l4
xρ4/3

He

σ7/3
He

exp[−l2
x(ρHeω2/σHe)

2/3]ω2/3

Spol(ω) =
1

64π

Λ2l4
xρ8/3

He

h̄σ11/3
He

exp[−l2
x(ρHeω2/σHe)

2/3] C̃pol ω10/3 (19)

where C̃pol = [1 − ln(4/qωrB)]
2, with qω = (ρHeω2/σHe)

1/3.
It follows from Equations (17) and (19) that the sidebands S(±∆ω)n̄(±∆ω) due to

the pressing field and the polarization coupling have qualitatively different shapes. Near
the zero-ripplon line, the term ∝ Spol increases from zero as |∆ω|7/3 with the increasing
distance from the line ∆ω, for small |∆ω|, that is, the zero-ripplon line is well-separated
from this sideband. In contrast, the sideband ∝ SE⊥ falls off as |∆ω|−1/3, that is, it has the
form of a tail of the zero-ripplon line. This “tail” is not related to the decay of the electron
states but rather to the modulation of the electron transition frequency by ripplons.

5. Single-Qubit Gates for Electrons on Helium
An important application of quantized intradot electron states is using them as charge

qubit states. This is made possible by the long lifetime of the excited electron states and by
the sufficiently strong nonparabolicity of the confining in-plane potential, which can be
inferred already from Figure 1. The parameters |Vij| of the electron Hamiltonian Hnonlin,
Equation (1), while small compared to Ωx,y, can be much larger than the electron decay rates
and the ripplon-induced fluctuations of the electron energy levels. Therefore, radiation with
frequency close to Ωx causes interstate transitions |0x, 0y⟩ → |1x, 0y⟩, but does not excite
transitions |1x, 0y⟩ → |2x, 0y⟩. The electron system can be then thought of as a quantum
2-level system, with the states |0⟩ ≡ |0x, 0y⟩ and |1⟩ ≡ |1x, 0y⟩.

Single-qubit gate operations can be performed by short resonant radiation pulses.
Coupling to ripplons affects the gate fidelity, the primary effect being the modulation of
the transition frequency. We will analyze some consequences of this effect by adding to
the Hamiltonian (6) the term Hp that describes a microwave pulse, which has an electric
field inside the dot Ep that is polarized along the x-axis. The pulse has a time-dependent
amplitude Ep(t), and its frequency ωp is close to Ωx:

Hp = −eEp(t)x cos(ωpt + ϕp) ≈ −h̄ fp(t)axeiωpt − h̄ f ∗p (t)a†
xe−iωpt, (20)

Here fp(t) = e(lx/2h̄)Ep(t) exp(iϕp), and we keep in Hp only resonant terms.
We will consider the effect of a rectangular pulse of duration tp,

fp(t) = | fp|eiϕp [Θ(t)− Θ(t − tp)],

where Θ(t) is the step function, and we will use the two-state approximation. Of interest
are pulses that lead to a transition |0⟩ → |1⟩. Therefore tp is of the order of the reciprocal
Rabi frequency, tp ∼ | fp|−1.

In this setup, the full density matrix ρ̂er of the electron–ripplon system has four
nontrivial matrix elements ⟨mx, 0y| ρ̂er |nx, 0y⟩ where mx, nx can take on the values 0 and 1.
These matrix elements are operators with respect to ripplons. Of interest is their trace over
ripplons, Trr ⟨mx, 0y| ρ̂er |nx, 0y⟩; the ripplons are assumed to be in thermal equilibrium.
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It is convenient to analyze the density matrix using the polaronic transformation

UP = exp

[
∑
q

exp(−ηq)

h̄ωq
(1 − l2

xq2
x a†

xax)(Vqbq − V∗
q b†

q)

]
. (21)

After the transformation, the projection of the Hamiltonian H, Equation (6) (i.e., the Hamil-
tonian in the absence of the drive), on the states |mx, 0y⟩ takes the form

U†
PHUP → h̄Ωzra†

xax +
1
2

Ṽxxa†
x

2a2
x + Hr.

Here we used that the relevant vibrational states of the x-mode are |0⟩ and |1⟩; for complete-
ness we included the term ∝ a†

x
2a2

x, which is multiplied by the renormalized nonlinearity
parameter Ṽxx. We note that, as a result of the transformation, the mode frequency has been
changed from Ωx to Ωzr.

Further, we proceed to the rotating frame using the transformation URF = exp[−it(ωpa†
xax

+ h̄−1Hr)]. As a result, we obtain a system of four operator equations for the elements of the
density matrix on the electron states:

ρmn = ⟨m|U†
RFU†

Pρ̂erUPURF |n⟩ , m, n ∈ {0, 1}. (22)

They read as follows:

ρ̇00 = −i
(

f ∗p eξ†
ρ01 − fpeξ ρ10

)
, ρ̇11 = i

(
f ∗p eξ†

ρ01 − fpeξ ρ10

)
,

ρ̇01 = −i∆pρ01 − i fpeξ(ρ00 − ρ11), ρ10 = (ρ01)
†, (23)

where

ξ ≡ ξ(t) = −∑
q

exp(−ηq)

h̄ωq
l2
xq2

x

(
Vqbqe−iωqt − V∗

q b†
qeiωqt

)
, ∆p = ωp − Ωzr. (24)

We used the fact that

U†
PHpUP = −h̄ fp(t)axeiωpt exp[ξ(0)] + H.c.

The parameter ∆p in Equation (23) is the detuning of the drive frequency from the frequency
of the zero-ripplon line of the electron in the quantum dot. We assume that |∆p| ≪ ωp. The
operator ξ(t) is anti-Hermitian, ξ†(t) = −ξ(t), and one can check that ⟨ξ(t)ξ†(t)⟩ = W̄.

5.1. The Effects of Quantum and Classical Ripplon-Induced Fluctuations

Of interest to us are Rabi oscillations of the electron in the presence of coupling to
ripplons, i.e., the evolution of the populations of the states |0⟩ and |1⟩. These populations
are given by the traces of Trrρ00 and Trrρ11 over ripplonic states. From Equation (23), it
is seen that the time evolution of ρmn is characterized by the frequency ∼ | fp|. Therefore,
ripplons with frequencies ωq ≫ | fp| are averaged out. Typically, | fp| ≪ kBT/h̄. Therefore,
it is a good approximation to assume that quantum fluctuations of the ripplonic field as
a whole are averaged out; here, we take into account that the coupling to low-frequency
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quantum fluctuations of this field is weak (cf. Equation (19)). Then, in Equation (23) we
can replace

fp(t) eξ(t) → f̃p(t), f̃p(t) = fp exp[ξT(t)],

fp = | fp|eiϕp exp[−W̄q], W̄q =
1
2 ∑

q

|Vq|2

(h̄ωq)2 e−2ηq (lxqx)
4 . (25)

Here, W̄q is half the contribution to the Debye-Waller factor W̄ at T = 0 (cf. Equation (16)).
The term ξT(t) accounts for the coupling to thermal ripplons. Typically, their fre-

quencies ωq satisfy the condition ωq ≪ kBT/h̄. From Equation (24), the correlation
function of ξT(t) is obtained from the correlation function of ξ(t) by keeping the terms
∝ n̄q ≈ kBT/h̄ωq,

Ξ(t − t′) = ⟨ξT(t)ξ†
T(t

′)⟩ = 2kBT ∑
q

|Vq|2

(h̄ωq)3 e−2ηq (lxqx)
4 cos[ωq(t − t′)], (26)

whereas the commutator ⟨[ξT(t), ξ†
T(t

′)]⟩ is smaller than Ξ(t − t′) by a factor ∼ h̄ωqm /kBT.
Therefore ξT(t) = −ξ†

T(t) is essentially a classical zero-mean Gaussian noise with the corre-
lator Ξ(t). This noise affects Rabi oscillations. Tracing over ripplons becomes equivalent to
statistical averaging over the realizations of the noise ξT(t).

We note that the time-averaging used to obtain W̄q is not limited to the coupling to
ripplons. However, the approximation ωq ≪ kBT/h̄ is specific for ripplons, given the low
temperatures used in quantum computing systems. We also note a simple relation between
the noise correlator Ξ(t) and the sideband spectral density S(ω),

Ξ(t) =
∫ ωT

0
dω

2kBT
h̄ω

S(ω) cos ωt,

where the cutoff ωT is ≲ kBT/h̄; as explained above, for electrons on helium one can set
ωT → ∞, given the exponential falloff of S(ω) that typically occurs already for ω ≪ kBT/h̄.

5.1.1. Nonergodic Response

The problem of Rabi oscillations can be solved in several limiting cases. One of them
is the case of comparatively large drive and, respectively, short pulses tp. If the typical
ripplon frequency ωqm is small compared to t−1

p , i.e., the correlation time of the noise ξT is

large compared to tp, one can replace ξT(t) in Equation (25) for f̃p(t) with ξT(0), so that
f̃p(t) becomes time-independent. Then Equation (23) becomes a standard equation for
Rabi oscillations with a time-independent drive. The noise determines the static random
phase of the drive. If the electron is initially in the ground state and the Rabi frequency
Rnonergodic is extracted from the occupation of the excited state in response to a pulse, from
Equation (23) we find

Rnonergodic =
{

∆2
p + 4| fp|2

}1/2
.

Unexpectedly, the Rabi frequency measured this way is independent of the noise.
However, the off-diagonal matrix elements ρ01 = ρ∗10 depend on a particular realiza-

tion of the noise. If the noise is so slow that several measurements of ρ01 can be repeated for
the same value of ξT to average over the quantum measurements outcomes, the result will
be nonergodic. It will depend on a particular value of ξT and will not include averaging
over ξT (cf. [68]). In other words, the values of ρ01 will be different in different series of
such measurements.

For an electron in a quantum dot on helium, if the electron transition frequency
is Ωx/2π ∼ 4 GHz, the correlation time of the noise from thermal ripplons is
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2π/ωqm ≲ 10−7 s. Therefore, even with ∼10 ns-long control and measurement pulses,
it will be difficult to accumulate enough measurements for the same configuration of
the ripplonic field. More realistic nonergodic measurements would help revealing noise
from nonthermal fluctuations of the helium surface and from the varying configuration
of stray electrons in the cavity, as such electrons are often inadvertently deposited along
with the electrons that go into the quantum dots. The measurements would provide an
important insight into the nature of the fluctuations, including density and the dynamics of
stray electrons.

If the pulses are short in the sense that ωqm tp ≪ 1, but the noise from thermal ripplons
ξT varies from measurement to measurement, one can still assume that ξT is constant
during a pulse. In this case measurement outcomes will have to be averaged over the
realizations of ξT . For example, if the electron is in the ground state at t = 0 and ∆p = 0,
we have from Equation (23)

ρ01(t) = −i
fp

2| fp|
exp[ξT(0)] sin(2| fp|t).

The results of uncorrelated measurements of ρ01 given by this expression have to be
averaged over the Gaussian distribution of the thermal noise ξT(0).

5.1.2. Response to a Resonant Pulse for Strong Electron–Ripplon Coupling

More accessible are measurements where ωqm is comparable or larger than t−1
p . In

this case, the variation of ξT(t) during a pulse has to be taken into account. We will study
the response to a resonant pulse, assuming that at t = 0 the electron is in the ground
state. Tracing over ripplons will be replaced by averaging over the classical noise ξT(t).
From Equation (23) we obtain an equation for the difference in the state populations
N (t) = ρ00(t)− ρ11(t), which reads

d
dt
N (t) = −2| fp|2

∫ t

0
dt′ exp

[
−i∆p(t − t′)− ξT(t) + ξT(t′)

]
N (t′) + c.c. . (27)

For strong coupling to ripplons, W̄ ≫ 1, the mean value of the random factor in
Equation (27),

⟨exp[−ξT(t) + ξT(t′)]⟩ = exp
[
−Ξ(0) + Ξ(t − t′)

]
≈ exp[−γ2(t − t′)2/2], (28)

rapidly falls off with the increasing t − t′. In the above expression we used Equation (14) for
the parameter γ, in which we replaced 2n̄q + 1 with 2kBT/h̄ωq. We also used that γ ≫ ωqm

for strong coupling, and therefore ωq|t − t′| ≪ 1 for |t − t′| ≲ 1/γ.
If | fp| ≪ γ, it is seen from Equation (27) that N (t) slowly varies on the time scale γ−1.

Then in this equation one can replace N (t′) in the integrand with N (t), which gives

⟨N (t)⟩ = ⟨N (0)⟩ exp(−Γsct), Γsc =

√
8π

γ
| fp|2 exp(−∆2

p/2γ2). (29)

As seen from this equation, rather than experiencing Rabi oscillations, the difference in the
state populations exponentially decays in time, that is, the populations of the state |0⟩ and
|1⟩ approach each other. The decay rate in the strong-coupling limit is Γsc ≪ | fp|. This
rate falls off with the increasing strength of the coupling to ripplons, which determines γ,
and in particular with the increasing temperature. It is quadratic in the amplitude of the
radiation pulse ∝ | fp|.
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The condition Γsc ≪ γ, which underlies replacing N (t′) with N (t) in Equation (27),
is met “automatically”, since | fp| ≪ γ. The corresponding inequalities also justify the next
step, in which N (t) is replaced with ⟨N (t)⟩.

Equation (29) shows that, practically, one cannot perform coherent gate operations
on a charge qubit if the coupling of the underlying electron to ripplons is strong, at least
unless the microwave field is so strong that fp ≫ γ and the operations are carried out over
time smaller than γ−1. The constraint is not related to the lifetime of the excited electron
state. It also may not be directly mapped on qubit decoherence described by the standard
T2-type process.

5.1.3. Response to a Resonant Pulse for Weak Coupling to Ripplons

We now consider the effect of a radiation pulse in the case of weak electron–ripplon
coupling. It is important to make sure that the divergence of S(ω)/ω for ω → 0 does
not make it impossible to perform reliable single-qubit gates. Moreover, it is necessary to
estimate the gate error related to the coupling to ripplons.

We will again assume that initially (t = 0) the qubit is in the ground state, ⟨N (0)⟩ = 1,
and that ∆p = 0, i.e., the pulse frequency ωp is equal to the zero-ripplon transition frequency
Ωzr. We will find the lowest-order in ξT correction to N . To do it, we rewrite Equation (27)
in the form

d2

dt2 N + 4| fp|2N = 2| fp|2
dξT(t)

dt

∫ t

0
dt′N (t′) exp[−ξT(t) + ξT(t′)] + c.c.

The zeroth-order solution N (0)(t) of this equation describes Rabi oscillations,

N (0)(t) = cos(2| fp|t). (30)

The correction to N (t) of the lowest order in ξT has the form

N (1)(t) =
2| fp|kBT

h̄

∫ ∞

0
dω

ω S(ω)

(ω2 − 4| fp|2)2

×
{

4| fp|[cos(ωt)− cos(2| fp|t)] + (ω2 − 4| fp|2)t sin(2| fp|t)
}

(31)

This equation shows that the correction to the Rabi-oscillation term (30) increases with the
increasing temperature. It is seen that the major contribution to N (1)(t) comes from the
range of frequencies of the sideband spectrum S(ω) where ω ∼ 2| fp|, i.e., from the range
where the noise “resonates” with the Rabi oscillations; the contributions from the low- and
high-frequency parts of S(ω) are suppressed. Interestingly, the function N (1)(t) displays
oscillations at the Rabi frequency with an amplitude that increases with time.

Overall, Equation (31) shows that the correction to the qubit dynamics is small for
weak coupling. However, the form of the correction is somewhat unexpected. The explicit
expression for N (1)(t) makes it possible to find an optimal value of the Rabi frequency 2| fp|
for a desired gate operation. In particular, a contribution to N (1)(t) from the pressing field
for a π pulse, 2| fp|t = π, for the typical parameter values E⊥ = 100 V/cm and T = 20 mK
is well approximated by the expression

N (1)
E⊥

≈
e2E2

⊥kBTl4
x

32h̄2
ρ4/3

He

σ7/3
He

(2| fp|/π)2/3,

which gives ∼8 × 10−3 for the pulse duration π/2| fp| = 10−6 s. The gate error can be
reduced using longer pulses, lower temperatures, and weaker pressing fields.
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Since the typical sideband frequency ωqm /2π is ∼20–30 MHz, it is straightforward
to separate the zero-ripplon line from the sidebands if the quality factor of the cavity is
>103. This requirement is easily met in superconducting cavities. We note also that the
direct Coulomb interaction between electrons in neighboring quantum dots provides a
natural way of implementing two-qubit gates, as was envisioned early on [56,57]. The
relevant parameter is the Coulomb frequency ωC = [(d2Vid/dr2)/me]1/2, where Vid is the
coupling potential. This potential may be modified from the direct Coulomb potential by
the screening from the electrodes. If the screening is inessential, ωC/2π ≈ 0.23 GHz for an
interdot distance of 5 µm. This frequency should be small compared to the difference in
the eigenfrequencies Ωx in different dots. A gate operation can be performed by tuning
the eigenfrequencies in different dots in resonance. Since there are no two-level systems in
the system, the tuning is protected from resonance-related errors typically associated with
such systems.

6. Discussion
The results of this paper show that electrons in quantum dots on helium surface

provide an extremely rich system to explore. Their energy spectrum is discrete and can be
controlled electrostatically. When the system is embedded into a microwave cavity, one can
observe resonant transitions between the energy levels. This underlies using the electron
states as charge qubit states. However, even though the system is free from defects, the
electron coupling to the quantum field of ripplons may pose an obstacle to implementing
charge qubits. The physics here is different from the conventional analysis of the processes
that lead to electron relaxation. It is rather related to the physics encountered in the studies
of color centers in solids.

The effect of the coupling on gate operations can be reduced to an effective Debye-
Waller factor, which is due to quantum fluctuations and decreases the amplitude of the
driving field, and a classical noise that modulates this amplitude. Such description is
possible because, for typical parameters of quantum dots on helium, the frequencies of the
ripplons coupled to an electron are small compared to kBT/h̄. The slowness of the ripplons
may lead to nontrivial measurement outcomes, particularly if the measurements are fast.

Further insight can be gained using the explicit expression for the characteristic di-
mensionless parameter of the electron–ripplon coupling that we provide. If this parameter
is large, it means that the coupling is strong. In this regime, practically, one cannot per-
form coherent gate operations on an electron charge qubit. The coupling depends on the
electron localization length in the dot, the temperature, and most importantly, the field
E⊥ that presses the electrons against the helium surface. This field is necessary to prevent
“evaporation” of the electrons from the surface. As we show, for the coupling parameter
to be small, E⊥ must be comparatively small itself, ≲100 V/cm. For weak coupling, the
error of single-qubit gate operations can be small; it can be estimated using the explicit
expressions provided in the paper.

The possibility to vary the coupling to ripplons from weak to strong opens a unique
way of studying physics of color centers formed by electronic defects in solids. The electron–
ripplon coupling mimics the electron–phonon coupling in color centers in solids. This is
despite the energy scales being vastly different. The transitions frequencies of color centers
are in the range of a few electron-volts. For F-centers in alkali halide crystals the typical
phonon energies are in the range of 0.02–0.03 eV [39], and for NV− centers in diamond
they are in the range of 0.1 eV, whereas for the ripplons coupled to an intradot electron they
are typically ∼10−7 eV. At the same time, the dimensionless coupling parameter W̄, the
Pekar-Huang-Rhys factor can reach 20–30 and more for F-centers [69,70], and it is ∼3.5–4
for an NV− center [71]; these numbers are easy to emulate with electrons in quantum dots
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on helium. Impurity atoms in liquid helium also often have broad spectral lines [72], as they
form bubbles and are thus strongly coupled to helium vibrations. Bubbles are also formed
by single electrons in helium. An electron confined to a bubble seems to be the closest
system to an electron in a quantum dot, but a major difference is that the bubbles are small,
with radius ∼17 Å. Therefore the characteristic excitation energies in the bubbles are much
higher, ∼0.1 eV, and the frequencies of the vibrational modes of helium are ∼5 × 10−5 eV;
the coupling to these modes is strong, leading to the linewidth ∼10−3 eV for T = 0 [73].

Spectral lines of color centers as well as impurities and electrons confined to bubbles
in helium have a complicated structure. The change in the structure with the varying
coupling parameters could not be explored. For electrons on helium, the variability of
the coupling is enabled by E⊥. Our results show how the electron absorption spectrum
changes with decreasing E⊥ from a comparatively broad Gaussian peak with a superposed
weak zero-ripplon line, for large E⊥, to a strong narrow zero-ripplon peak, for small E⊥,
with sidebands that have a characteristic form.

The linear and nonlinear response of a localized electron to a resonant electromagnetic
field and the change in this response with the varying control parameters open a path to
a better understanding of the electron coupling to a quantized field of helium vibrations,
including the features of the coupling in confined geometries. It also provides a means to
study the overall structure of the electron motional states in a quantum dot on the helium
surface. In a broader context, the system offers a controlled platform for studying the effects
of electron coupling to a bosonic field.
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