ERRATA

Erratum: Stationary probability distribution near stable limit cycles
far from Hopf bifurcation points

Mark Dykman, Xiaolin Chu, and John Ross

PACS number(s): 05.40.+j, 99.10.+g

We did not specify that the proof we gave in the Appendix holds provided the matrix $\mathbf{U}(t)$ is Hermitian. In the general case this matrix is non-Hermitian, and the matrix \mathbf{S} used to diagonalize $\mathbf{U}(t)$ is not unitary. However, the result we were proving (that the probability distribution is Gaussian in the directions transverse to the limit cycle) applies for a non-Hermitian $\mathbf{U}(t)$. Generalization of the proof is straightforward and will be presented elsewhere.

1063-651X/95/52(6)/6916(1)/$06.00 ©1995 The American Physical Society

Erratum: Phase ordering dynamics of cosmological models

J. A. N. Filipe and A. J. Bray

PACS number(s): 64.60.Cn, 64.60.My, 98.80.Cq, 99.10.+g

On p. 2528 (top of first column) where it reads “to obey $|\phi| < 1$ at all times . . .” it should read “to obey $|\phi| \leq 1$ at all times . . .”. On p. 2529 (middle of first column) where it reads “scaling function $f_{LG} \equiv C(1,2)_{LG}$. . .” it should read “scaling function $f_{LG}(x,q) \equiv C(1,2)_{LG}$. . .”. On p. 2530 [after Eq. (41)] where it reads “e.g., (23), or by . . .” it should read “e.g., (22), or by . . .”. Equation (45) should read as follows:

$$f(x,q) = f_{\infty}(x,q)$$
$$= \frac{B[(\alpha + 1)/2, \frac{1}{2}]}{4(\alpha + 1)B(\alpha, \frac{1}{2})} \frac{(q + 1)/2 \alpha + 1}{q^{\alpha/2}} (1 + q - x)^{\alpha} (x \rightarrow q + 1) . \quad (45)$$

Equation (50) should read as follows:

$$\langle (\nabla \phi)^2 \rangle = C(1,1)\langle (\nabla m)^2 \rangle_{S_0} = C(1,1)\langle (\nabla \phi)^2 \rangle_{S_0} . \quad (50)$$

The first line of Eq. (51) should read as follows:

$$\langle \phi^2 \rangle_{\gamma} (1,2)_{\gamma \rightarrow 1} = \gamma \langle 1,1 \rangle_{S_0} = \frac{T_0}{(\alpha - 2)\eta^2} . \quad (51)$$

On p. 2532 (top of first column) where it reads “is $w \equiv 2/\sigma, . . .” it should read “is $w \equiv 4/\sigma, . . .”. On the same page [after Eq. (56)] the equation

$$\langle \phi^2 \rangle = \int_{-\infty}^{\infty} dm \ p(m) \phi^2 = \sigma P(0)$$

should read

1063-651X/95/52(6)/6916(2)/$06.00 ©1995 The American Physical Society