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Preface

These notes were written while teaching a sophomore-level astronomy
course, “Planets and Telescopes” at Michigan State University during
Spring Semesters of 2015 and 2016. The background required is intro-
ductory calculus and freshman-level physics.

In the first year, the main text was Lissauer and de Pater, Bennett
et al.1; in the second year, we switched to Ryden and Peterson2 and Tay- 1 Jack J. Lissauer and Imke de Pater.

Fundamental Planetary Science: Physics,
Chemistry and Habitability. Cambridge
University Press, 2013; and Jeffrey O.
Bennett, Megan O. Donahue, Nicholas
Schneider, and Mark Voit. The Cosmic
Perspective. Addison-Wesley, 7th edition,
2013
2 Barbara Ryden and Bradley M. Peterson.
Foundations of Astrophysics. Addison-
Wesley, 2010

lor3 and increased the amount of time spent on basics of astronomical

3 John R. Taylor. An Introduction to Error
Analysis. University Science Books,
Sausalito, CA, 2nd edition, 1997

observation and statistical analysis. Some of the notes and exercises on
statistics are written in the form of Jupyter Notebooks; these are in the
folder statistics/notebooks.

The text layout uses the tufte-book (https://tufte-latex.
github.io/tufte-latex/) LATEX class: the main feature is a large right
margin in which the students can take notes; this margin also holds
small figures and sidenotes. Exercises are embedded throughout the text.
These range from “reading exercises” to longer, more challenging prob-
lems. Because the exercises are embedded with the text, a list of exercises
is provided in the frontmatter to help with locating material.

In the course, about three weeks were spent covering the material in
Appendix C, “Probability and Statistics”. This was done between covering
Chapter 2, “Light and Telescopes” and Chapter 4, “Detection of Exoplan-
ets”. This ordering was driven by the desire to keep the lectures and labs
synchronized as much as possible. In Chapter 1, “Coordinates”, several of
the exercises refer to the night sky as viewed from mid-Michigan in late
January.

I am grateful for many conversations with, and critical feedback from,
Prof. Laura Chomiuk, who taught the lab section of this course, graduate
teaching assistants Laura Shishkovsky and Alex Deibel, and undergrad-
uate learning assistants Edward Buie III, Andrew Bundas, Claire Kopen-
hafer, Pham Nguyen, and Huei Sears.

These notes are being continuously revised; to refer to a spe-
cific version of the notes, please use the eight-character stamp labeled
“git version” on the front page.

http://jupyter.org
https://tufte-latex.github.io/tufte-latex/
https://tufte-latex.github.io/tufte-latex/
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1
Coordinates: Specifying Locations on the Sky

1.1 Declination and right ascension

To talk about events in the sky, we need to specify where they are located.
To specify where they are located, we need a point of reference. This is a
bit tricky: we are riding on the Earth, which rotates and orbits the Sun;
the Sun orbits the Milky Way; the Milky Way moves through the Local
Group; and on top of all this the universe is expanding.

The primary criterion for choosing a coordinate system is convenience.
We want a system that is easy to use and that describes the sky straight-
forwardly. As viewed from Earth, we appear to be at the center of a great
sphere, with celestial objects lying on its surface. This is similar to de-
scribing locations on the Earth, for which we use two angles: latitude,
which measures the angle north or south from the equator; and longi-
tude, which measures the angle east or west from the prime meridian.
Likewise, to describe the apparent position of objects as viewed from
Earth, we also need two angles.

NCP

SCP

Z

celestial equator δ

Figure 1.1: The meridian (red) passing
through our zenith (Z). Our vantage point
is from the center of the sphere. Also
shown are the north celestial pole (NCP),
south celestial pole (SCP) and the celestial
equator (CE). The shaded region are
points below our horizon; objects in that
region are not visible from our location. A
star with negative declination δ is shown
as well.

First, let’s describe our measurement of position on the sky. The local
gravitational acceleration ggg specifies the local vertical; this picks out a
point on the celestial sphere, our zenith. Our horizon is then defined by
points that lie 90◦ from this zenith, measured along a great circle passing
through the zenith. The zeniths above the north and south poles define
the north and south celestial poles. A great circle connecting the celestial
poles and our zenith defines our meridian (see Fig. 1.1). As the Earth
rotates, celestial objects appear to move westward on circles about the
celestial poles.

Midway between the north and south celestial poles lies the celes-
tial equator. For any star, you specify its declination δ as the angle
north (positive) or south (negative) of the celestial equator along that
star’s meridian. For example, Betelgeuse, the red star in the shoulder
of Orion, has a declination δ = 7◦ 24′ 25′′. Polaris, the North star, has
δ = 89◦ 15′ 51′′.

Declination is quoted in degrees (◦),
arcminutes (′), and arcseconds (′′). There
are 60 arcminutes in 1 degree and 60
arcseconds in 1 arcminute.
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E X E R C I S E 1 . 1— How far above our southern horizon will Betelgeuse be
when it crosses our meridian? Our latitude is 42◦ 43′ 25′′N.

Declination measures how far north or south of the celestial equator
a given object lies. To specify an east-west location, we need another
reference point. Because of the Earth’s rotation, we can’t use a point
on Earth, such as the Greenwich observatory (which is where the 0◦ of
longitude is defined). We can, however, use the Earth’s motion around
the Sun: as the Earth moves around the Sun, the Sun appears to move
eastwards relative to the fixed stars. This path the Sun takes around
the celestial sphere is known as the ecliptic, and the constellations that
lie along the ecliptic are the zodiac. Because the Earth’s rotational axis
is tilted at an angle of 23◦ 16′ with respect to its orbital axis, the Sun’s
declination varies over the course of a year.

summer solstice

vernal equinox

autumnal equinox

winter solstice

Figure 1.2: As Earth orbits the Sun, the
Sun’s declination traces out a path along
the celestial sphere known as the ecliptic.
Over the course of a year, the Sun appears
to move eastward, relative to distant
stars, along the ecliptic.

The Sun reaches its minimum declination,−23◦ 16′, when it appears
to lie in the direction of Sagittarius at the winter solstice. One quarter
orbit later, the Sun crosses the celestial equator; at this point the Sun
is in the direction of Pisces at the vernal equinox. Another quarter orbit
brings the Sun in the direction of Gemini with declination 23◦ 16′; this
is the summer solstice. A further quarter orbit, and the Sun crosses the
celestial equator in the direction of Virgo at the autumnal equinox.

The ecliptic thus intersects the celestial equator at two points (Fig. 1.2),
the vernal and autumnal equinoxes. We usually associate the equinoxes
with a specific time of year, but they actually define unique directions
on the sky. We can therefore define our second angular coordinate,
right ascension, as the angle between an objects’ meridian and the ver-
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nal equinox, measured eastwards along the celestial equator.

VE
RA0h

12h

18h
6h

eclip
tic

δ

NCP

Figure 1.3: The right ascension (RA) and
declination (δ) of a celestial object.

Rather than specify the right ascension by degrees, astronomers in-
stead quote it in terms of hours (and minutes and seconds). The vernal
equinox is therefore at RA = 00h 00m 00s and the autumnal equinox is at
RA = 12h 00m 00s.

E X E R C I S E 1 . 2— Estimate the Sun’s current right ascension. Given that
Betelgeuse is currently visible in the night sky, what is a a plausible value for its
right ascension?

1.2 Precession

As we noted above, at the summer solstice, the Sun is in the direction of
Gemini. On the solstice, the Sun will appear to be directly overhead at a
latitude of 23◦ 16′N, which is known as the Tropic of Cancer. Why isn’t it
called the Tropic of Gemini?

The answer is that the Earth’s rotation axis is not fixed; it precesses.
The north and south celestial poles trace a circle on the sky relative to
distant stars over a 26 000 yr period. The causes the direction of the
equinoxes to move westward along the ecliptic on that timescale. There
are 13 constellations, the zodiac, around the ecliptic; in the last two mil-
lennia the direction of the summer solstice has shifted one constellation
over, from Cancer to Gemini. Likewise, the winter solstice used to be in
the direction of Capricorn; now it is in the direction of Sagittarius.

As a practical matter, this means that the coordinates of right ascen-
sion and declination, which are based on the direction of the Earth’s
rotation axis, slowly change. To account for this, when giving the coor-
dinates for an object astronomers specify an epoch—a reference time
to which the right ascension and declination refer. The current epoch is
J2000, which refers to roughly noon UTC on 1 January 2000.

E X E R C I S E 1 . 3— Brainstorm some possible coordinate systems, and
describe their advantages and disadvantages in comparison to right ascension
and declination.

1.3 Keeping time

Our local noon is when the Sun crosses our meridian1. The time between 1 The local noon is usually not at 12:00pm:
our time zones are only to the nearest
hour, and there is an adjustment for
daylight savings time.

two successive noons is one solar day, which we divide into 24 hours. This
is slightly longer than the time for the earth to complete one rotation,
however: because of the Earth’s motion about the Sun, the position of
the Sun shifts by about one degree over the course of a day, and the Earth
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must rotate that amount in addition to one full rotation before the next
noon (Fig. 1.4).

360°
365.24

noon
noon + 1 d

Figure 1.4: The movement of the Earth
from noon to noon. The arrows indicate
the direction towards the Sun.

There are 365.24 solar days between successive solar crossings of the
vernal equinox, which defines a tropical year. Over the course of this year,
the extra rotation on each solar day adds up to one complete rotation
of the Earth. The Earth rotates 366.24 times in one tropical year, and
therefore the rotation period of the Earth is

365.24
366.24

× 24hr = 23h 56m 04s.

In fact, the tropical year is slightly shorter, by about 20min = 1 yr/26 000
because of the precession of the Earth’s axis.

Our time—hours and minutes—is tied to the position of the Sun,
which is convenient for daily activity but not so convenient if we want
to know when a particular star is observable. Instead of marking when
the Sun crosses our meridian, we define our local sidereal time relative to
our meridian crossing the vernal equinox. Because we also define right
ascension relative to the vernal equinox, objects with a right ascension
near that of the sidereal time will be high in the sky.

To compute our local sidereal time, first determine the right ascension
of the Sun (Exercise 1.2); this will then fix the offset between the local
sidereal time and the local noon in UTC. We can then compute our offset
for local noon based on our longitude.

E X E R C I S E 1 . 4— Local noon at 0◦ longitude corresponds to 12:00 UTC.
Given that our longitude is 84◦ 28′ 33′′ W, what is our local noontime in UTC.
What local time would this correspond to today? From this and your estimate of
the Sun’s current hour angle, what is the current sidereal time?

1.4 Parallax

The motion of the Earth around the Sun does cause a small shift in the
apparent angular position of a star, a phenomena known as parallax. This
effect is exploited to determine the distance to nearby stars.

The angular shift, ϖ, is related (see Fig. 1.5) to the radius of the
Earth’s orbit, 1 AU, and the distance to the star d via

1 AU
d

= tan ϖ ≈ ϖ.

When ϖ is expressed in arcseconds, this gives

d =
206 265AU

ϖ/1′′
= 1 pc

(
1′′

ϖ

)
, (1.1)

which defines the parsec. In CGS units 1 pc = 3.086 × 1018 cm, which is a
bit over 3 light-years.
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1 AU

d

ϖ

Figure 1.5: The parallax angle ϖ of a star
induced by Earth’s motion around the
Sun.1.5 Angular distances between nearby objects

To compute the angular distance between two points on the sky, we draw
two vectors aaa, bbb to these points and use

cos θ =
aaa · bbb
|aaa||bbb|

.

Since both aaa and bbb lie on the unit sphere, |aaa| = |bbb| = 1; the (x, y, z)
components of these vectors are

(cos δ1 cos η1, cos δ1 sin η1, sin δ1)

and
(cos δ2 cos η2, cos δ2 sin η2, sin δ2) ,

respectively. Taking the dot product,

cos θ = cos δ1 cos δ2 (cos η1 cos η2 + sin η1 sin η2) + sin δ1 sin δ2

= cos δ1 cos δ2 cos (η1 − η2) + sin δ1 sin δ2. (1.2)
x

z

y

η
1

η
2

δ
2

δ
1

θ

Figure 1.6: Two locations on the sphere
separated by a distance θ.We are usually interested in the angular distance between two nearby

sources, with RAs η1 ≈ η2 and declinations2 δ1 ≈ δ2. We can use the 2 Notice our coordinates differ from the
usual spherical polar coordinates: δ is
measured from the x-y plane, not from the
z-axis.

expansion rule,

cos x ≈ 1− x2

2
, x ≪ 1

on θ and η1 − η2 in equation (1.2):

1− θ2

2
≈ cos δ1 cos δ2

[
1− (η1 − η2)

2

2

]
+ sin δ1 sin δ2

= cos(δ1 − δ2)− cos δ1 cos δ2
(η1 − η2)

2

2
.

We can now expand cos(δ1 − δ2), cancel common factors and multiply by

We make heavy use of the sine and
cosine addition formula: cos(x + y) =

cos x cos y − sin x sin y, and sin(−y) =
− sin y, cos(−x) = cos(x).

2,
θ2 ≈ (δ1 − δ2)

2 + cos δ1 cos δ2(η1 − η2)
2.
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Finally, we notice that to lowest order, cos δ1 cos δ2 ≈ cos2 δ, where
δ = (δ1 + δ2)/2 is the average of the two declinations. This gives us a
formula for the angular distance θ between two nearby points,

θ ≈
√

cos2 δ (η1 − η2)
2
+ (δ1 − δ2)

2
. (1.3)

This looks like the pythagorean formula; the factor of cos δ accounts for
the lines of constant RA converging as they approach the poles.

η
1

δa

δb

η
2

cosδb (η1– η2)

cosδa (η1– η2)

Figure 1.7: The distance between two
RAs η1 and η2, measured along a circle of
radius cos δ.

E X E R C I S E 1 . 5— Atlas A and Electra are two bright stars that lie on the
east and west sides of the Pleiades star cluster. Atlas has right ascension
RA = 03h 49m 09.7s and declination δ = 24◦ 03′ 12′′; Electra has
RA = 03h 44m 52.5s and δ = 24◦ 06′ 48′′. Find the angular distance between
these stars. If the distance to the Pleiades is 136 pc, what is the projected distance
between these stars?

1.6 Looking up

Finally a note about directions when looking up at the sky. We’ve drawn
our coordinates from the perspective of someone outside the celestial
sphere; our perspective, however, is from the center. When we look up
at the sky, if we face south, so that the direction northwards is at the top
of our field of view, then the easterly direction is to our left. Objects of
larger right ascension are therefore to our left as well.



2
Light and Telescopes

What do we actually measure when we observe a star? A star emits pho-
tons with a range of wavelengths over the electromagnetic spectrum. The
total emitted energy per second over all wavelengths is the star’s luminos-
ity. For example, the solar luminosity is L⊙ = 3.86× 1026 W. A telescope
collects only a small fraction of this power: if a telescope has a collect-
ing areaA and is a distance d from the star, then it intercepts a fraction
A/(4πd2) of the star’s light. We call F = L/(4πd2) the flux. The units of
flux are Wm−2.

More specifically, F is the bolometric flux, that is, the flux over all
wavelengths. Of course, no telescope detects all wavelengths of light.
Many wavebands, e.g., UV, X-ray, and infrared, do not even penetrate the
Earth’s atmosphere. Moreover, detectors (photographic plates or CCD’s)
are not uniformly efficient at converting photons into a signal.

In order to have a common standard, (optical) astronomers use filters,
which transmit light only in certain wavelength bands. In this context,
the flux refers to the power per area carried by light with wavelengths in
that band. For historical reasons, astronomers define magnitudes, which
are a relative logarithmic1 scale for fluxes. The difference in magnitude 1 In these notes, lg ≡ log10 and ln ≡ loge.

between two stars is defined by

m1 −m2 = −2.5 lg
(
F1

F2

)
(2.1)

where the magnitudes m1, m2 and fluxes F1, F2 refer to light that has been
passed through a particular filter.

Table 2.1: Selected common filters about
the range of visible wavelengths [Binney
and Merrifield, 1998]. Here “FWHM”
means “Full width at half-maximum.”

Filter λeff/nm FWHM/nm

U 365 66
B 445 94
V 551 88
R 658 138

Note that magnitudes are defined as the ratio of two fluxes. This is
very useful when comparing the relative brightness of two stars; un-
fortunately it makes conversion to a physical unit (Wm−2 nm−1) non-
trivial. The magnitude scales are typically defined so that the star Vega
has U = B = V = . . . = 0.2 2 But for historical reasons, V(Vega) =

+0.04.
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E X E R C I S E 2 . 1—

1. Suppose we have two identical stars, A and B. Star A is twice as far away as
star B. What is mA −mB?

2. Suppose a star’s luminosity changes by a tiny amount δ. What is the
corresponding change in that stars’ magnitude?

If we take a ratio of two magnitudes using different filters
from a single star, then we have a rough measure of the star’s color.
This ratio is called a color index. For example,

B− V ≡ mB −mV = −2.5 lg
FB

FV

gives a measure for how blue the star’s spectrum appears.

E X E R C I S E 2 . 2— Which has the larger B− V index: a red star, like
Betelgeuse, or a blue-white star, like Rigel?

Two stars with the same apparent brightness may have very
different intrinsic brightnesses: one may be very dim and nearby, the
other very luminous and faraway. To compare intrinsic brightness, we
need to correct for the distance to the star3. We define the distance mod- 3 This assumes we know the distance,

which can be difficult!ulus as the difference in magnitude between a given star and the magni-
tude it would have if it were at a distance of 10 pc:

DM ≡ m−m(10 pc) = −2.5 lg
[

L
4πd2

4π(10 pc)2

L

]
= −2.5 lg

(
10 pc
d

)2

= 5 lg
(

d
pc

)
− 5.

The magnitude that the star would have if it were at 10 pc distance is
called its absolute magnitude, M ≡ m− DM.

2.1 Light is a wave
cλ

E

Figure 2.1: Schematic of the electric force
(blue arrows) for a wave traveling towards
us at speed c with wavelength λ.

Charges feel an electric force. When we detect light, what happens at
the atomic level is that the charges in our detector (antenna, CCD, eye)
feel an electric force that oscillates with frequency ν. If we could set up a
grid of detectors and measure the electric force per unit charge, we would
notice a sinusoidal pattern traveling at speed4 c = 299 792 458m/s 4 This velocity is exact; the meter is

defined in terms of the speed of light.with a wavelength λ = c/ν. We call this force per charge the electric field
EEE(xxx, t). The intensity of the light at our detector is proportional to |EEE|2.
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In situations in which the wavelength is small (relative to the system
in question), light propagates along rays. The rule for propagation is
known as Fermat’s principle: the path is that for which the propagation
time is minimized. To illustrate this, we shall use it to derive the laws for
reflection and refraction.

Consider light reflecting from a mirror as shown in the top panel of
Figure 2.2. The time for light to propagate from source to observer is

τ =
1
c

[√
h2
s + x2 +

√
h2
o + (w− x)2

]
.

To minimize the path length, we compute dτ/dx and set it to zero,

0 =
dτ
dx

=
1
c

[
x√

h2
s + x2

− w− x√
h2
o + (w− x)2

]
=

1
c
[sin i− sin r] .

Hence the light travels such that i = r: the angles of incidence and
reflection are equal.

ri

w

hs

in1

n2 r

ho

x

d

h

w
x

Figure 2.2: Top: reflection of light from a
surface. Bottom: refraction of light as it
passes from a medium with index n1 into
a medium with index n2.

For a second example, consider the passage of light from one medium
to another, as depicted in the bottom panel of Figure 2.2. The interaction
of matter with the oscillating electric field causes the light to travel at a
speed c/n, where n is called the index of refraction and is a property of the
material. For the situation in Fig. 2.2, the propagation time is

τ =
n1

c

√
h2 + x2 +

n2

c

√
d2 + (w− x)2;

minimizing the propagation time with respect to x gives

0 =
n1

c
x√

h2 + x2
− n2

c
w− x√

d2 + (w− x)2
=

1
c
[n1 sin i− n2 sin r] .

This result, n1 sin i = n2 sin r, is also known as Snell’s law.

θ

H

�

θ

�

x

h

d

i

r

Figure 2.3: Change in angular size of an
object in water.

E X E R C I S E 2 . 3— A small stick of length ℓ is placed on the bottom of an
empty swimming pool as shown in Fig. 2.3; when you look down on the stick
from a height H above the bottom of the pool, the stick subtends an angle
tan θ = ℓ/H. The pool is then filled with water (n = 4/3) to a depth d. Because of
refraction, the stick will appear to subtend a different angle θ′. Correct the right
hand diagram of Fig. 2.3 to show how the light ray propagates from the ends of
the stick to your eye. Is θ′ larger or smaller than θ—is the image of the stick
magnified or reduced? For the case ℓ ≪ H, so that θ ≪ 1, use the small angle
expansions to derive an expression θ′ = θM, whereM depends on h, d, and n.

2.2 Diffraction

A telescope makes an image by focusing the incoming rays of light onto
a detector. Suppose we are at a fixed point and the wave is propagating
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past us. In general we would observe an electric field amplitude of the
form

E(t) = A0 cos (2πνt) + B0 sin (2πνt)

where ν = c/λ is the frequency. Let’s check this: in going from t = 0
to t = T = 1/ν, the period of the wave, the argument of the cosine and
sine goes from 0 to 2π, which is one oscillation. To find the net intensity
I from a number of waves, we sum the amplitudes to get the net electric
field EEE and then take the square |EEE|2.

Now imagine the electromagnetic wave incident on our telescope. The
source is very distant, so the wavefront (a surface of constant phase) is
a plane—think of sheets of paper moving downward onto the telescope.
To make an image, the telescope focuses the incident radiation to a point
on the detector. There is a limit, however, to how sharply the image can
be focused. Let’s look at a small angle θ away from the axis. Then the
wavefront is incident on the telescope as shown in Figure 2.4. To keep
the math tractable, we’ll make our telescope opening one-dimensional
and we’ll break it into a N + 1 little detectors spaced a distance d = D/N
apart.

10 2 N

Nd sin θ

d

θ

Figure 2.4: Schematic of a plane wave
incident at angle θ on a detector.

Because of the angle, the light travels an extra distance d sin θ to reach
detector 1, 2d sin θ to reach detector 2, and so on. As a result, if the
phase at the first detector (number 0) is χ, the phase at detector 1 is
χ + 2πd sin θ/λ, at detector 2, χ + 4πd sin θ/λ, and so on. When we
combine the signals from these detectors, the amplitude of the electric
field will have the form

E = A0

[
cos χ + cos

(
χ + 2π

d sin θ
λ

)
+ cos

(
χ + 2π

2d sin θ
λ

)
+

+ cos
(

χ + 2π
3d sin θ

λ

)
+ . . .+ cos

(
χ + 2π

Nd sin θ
λ

)]
+B0

[
sin χ + sin

(
χ + 2π

d sin θ
λ

)
+ . . .+ sin

(
χ + 2π

Nd sin θ
λ

)]
.
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When θ → 0, the amplitude goes to E → (N+ 1) [A0 cos χ + B0 sin χ], and
so the brightness I(θ → 0) = |E|2 is a very large number. That’s good: the
light from the star is focused to a point. Now, how large does θ have to be
before E goes to zero?

To find this, let’s first set χ = 0 to keep things simple. There are a
number of ways to find the sum; a particularly easy way is to recognize
that this sum over cosines looks like adding up the x-component of vec-
tors, and the sum over the sines looks like adding the y-component of
vectors. We add the vectors by placing them nose-to-tail as shown in
Fig. 2.5. The net amplitude is then A0 times the x-component of the red
vector, plus B0 times the y-component of the red vector. Clearly if we
want both the sum over sines and over cosines to vanish, we need the
vectors to make a complete circle.

ϕ

ϕ

nϕ/2

Figure 2.5: Addition of a series of vectors
with a phase difference φ.

In this addition, each vector has length 1. If N + 1 is large, then the
circumference of the circle is approximately (N + 1) = 2πr. For small
φ = (2πd/λ) sin θ, the radius of the circle is r ≈ 1/φ. Hence the condition
for our vectors to sum to zero becomes

N+ 1 =
2π
φ

=
2πλ

2πd sin θ

Now, we assume that N ≫ 1, so that (N+ 1)d ≈ Nd = D, the diameter of
our telescope’s aperture. Then, the brightness falls to zero an angle

sin θ ≈ θ ≈ λ/D

away from the center of the star’s image.
The full form of the intensity as a function of angle from the beam axis

is,

I = I0

[
sin (πD/λ sin θ)
sin (πd/λ sin θ)

]2
. (2.2)

E X E R C I S E 2 . 4— Write a Python function that computes eq. (2.2) for
different values of N and D/λ. Plot I/(I0n2) against θλ/D. Describe your findings.

The wave nature of light places a limitation on the resolving power of a
telescope, defined as the angular separation for which two point sources
can be distinguished. Two point-like objects separated by an angular
distance≲ λ/D will have their images smeared into one.

E X E R C I S E 2 . 5— What is the resolving power of the Hubble Space Telescope
(D = 2.4m) and the Keck telescope (D = 10m) at a wavelength λ = 570 nm?
Estimate the angular resolution of the human eye at that wavelength. What is the
resolving power of the Arecibo radio telescope (D = 305m) at a frequency of
3GHz?
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For ground-based telescopes, an even more severe limitation is the
refraction of light by the atmosphere. The atmosphere is turbulent,
and the swirling eddies contain variations in density that change the
refractive index and distort the wavefront. This distortion smears the
image over an angular scale that is typically larger than 1′′.

E X E R C I S E 2 . 6— What is the angular size of a solar-sized star
(R⊙ = 6.96× 105 km) at a distance of 1 pc? What is the angular size of Mars
(R♂ = 3 390 km) at a distance of 0.5AU? How would the difference in angular
size affect the appearance of these two objects?

In addition to distorting the wavefront, the air also atten-
uates the brightness of the light. The amount of attenuation
depends on the column, that is, the mass per unit area of air along the
line of sight, which in turn depends on the viewing angle (Fig. 2.6).

Figure 2.6: Illustration of the greater
column of atmosphere (airmass) that
the light from a star an angle z from the
zenith must traverse.

Astronomers define the airmass m as a function of zenith angle z by

air mass =
∫

ρ(r) dℓ∫
ρ(r) dr

where ℓ is along the line of sight to the star. For a planar atmosphere,
dℓ = dr/ cos z = sec z dr, and so the airmass is just sec z. The dimming of
the star is proportional to exp

[
−
∫

ρ(r) dℓ
]
, and therefore the magnitude

of a star at zenith angle z varies as

m(z) = k sec z+ c,

where k and c are constants. By measuring the apparent brightness of
the star at several different zenith angles, astronomers can empirically
determine these constants.



3
Spectroscopy

3.1 Electromagnetic radiation is quantized

Electromagnetic radiation—light—is carried by massless particles known
as photons. Being massless, they travel at a speed c in all frames. The
energy of a photon depends on its frequency ν: Eν = hν. Since ν = λ/c,
we can also express the energy of a photon as Eλ = hc/λ. When matter
absorbs or emits radiant energy, it does so by absorbing or emitting
photons.

E X E R C I S E 3 . 1— On a very dark night, the eye can make out stars down to
visual magnitude V ≈ 6. Given that the sun has V = −26.71 and that the flux
from the sun in V-band is approximately 103 W/m2, estimate the radiant flux
from this V = 6 star. If the V band photons have an average λ = 550 nm, how
many photons from this barely visible star enter your pupil and strike your retina
each second?

Suppose we shine a monochromatic (i.e., comprising a single wave-
length) beam of light at a tinted piece of glass (sunglasses, for example).
The light that emerges on the other side is the same color—meaning it
has the same wavelength—but is dimmer. What are we to make of this?
For the exiting light to be dimmer, some of the photons must have been
absorbed. But if the photons are indistinguishable, why are only some ab-
sorbed? Once we have quantization, we are forced to adopt a probabilistic
viewpoint: each photon has a certain probability of being absorbed.

3.2 The hydrogen atom

The electrons bound to an atom or molecule can only occupy states hav-
ing a discrete set of energies. For example, the electron in a hydrogen
atom only has energies

En = −13.6 eV× 1
n2 , (3.1)
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where n > 0 is an integer known as the principal quantum number. These
energies are negative, relative to a free electron. For example, it takes
13.6 eV to remove an electron in its ground state from the atom.

Because the electrons in an atom can only have certain energies, the
atom can only absorb or emit light at specific wavelengths, such that
the energy of the photon matches the difference in energy between two
levels. For example, a hydrogen atom can absorb a photon of energy

E1→2 = −13.6 eV
(

1
22 − 1

12

)
= 10.2 eV

corresponding to the energy required to move the electron from n = 1 to
n = 2.

The wavelengths that can be emitted or absorbed by a hydrogen atom
at rest can be found by substituting E = hc/λ into equation (3.1):

λm→n = λ0

(
1
n2 − 1

m2

)−1

, (3.2)

where λ0 = 91.2nm. The transitions to the lowest levels are named after
their discoverers: Lyman for m → 1, Balmer for m → 2, Paschen for
m → 3. A greek letter is used to denote the higher state: for example
Lyman α (abbr. Lyα) means 2 → 1, with λLyα = 121.6nm. The first
line transition in the Balmer series is 3 → 2, and is designated Hα:
λHα = 656.3nm. The first 50 lines for the Lyman (m → 1), Balmer
(m → 2), and Paschen (m → 3) are shown in Fig. 3.1; note the 4 → 3
transition is outside the plot range.
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Figure 3.1: Spectral lines of neutral
hydrogen.

3.3 Diffraction Gratings

To look at the different wavelengths in the light from a source, we use a
diffraction grating, which is a series of fine, closely spaced lines etched on
a surface. When light is projected onto the grating, it is reflected from the



spectroscopy 15

lines in all directions. Along a given direction, the light from two adjacent
lines will travel a slightly different distance: if the spacing between lines
is d, the extra distance traveled from a neighboring line is d sin θ, where
θ is the angle between the incident and reflected rays. Because of this
different path length, a distant detector will in general receive waves of
many different phases. When the waves are added together, the peaks
and troughs cancel, and the result is that the summed wave is greatly
reduced in amplitude.

There are, however, certain directions along which the intensity is
maximized. If the extra path length is a multiple of the wavelength then
all the waves reach the distant detector so the intensity is bright. That is,
at angles satisfying

d sin θ = mλ, (3.3)

bright spots are produced.This situation is depicted in Fig. 3.2 for m = 1.
For each line, the path length differs by one wavelength from its neigh-
bors; as a result, the rays along a direction θ (at the right of the figure) are
in phase. Since different wavelengths produce their bright spots at differ-
ent angles, the light is dispersed in wavelength, producing a spectrum. A
good home example of a grating is a compact disk: the tracks on the disk
diffract light. θ

d

d sin
θ

Figure 3.2: A diffraction grating.
E X E R C I S E 3 . 2—

θ

You shine a red laser pointer (λ = 650 nm) onto a face-up CD, and observe that
two dots appear on a blank screen, as shown above. The laser beam is vertical and
the two dots that appear on the screen are at angles 23◦ and 52◦ from the
vertical. There are no other dots appearing. From the information given, calculate
the spacing between the tracks on the CD. Suppose we then shine a green laser
pointer (λ = 530 nm) at the disk. At what angles would dots appear?

For a telescope, there is an additional complication: we don’t have a
single source, but rather an image of the entire field of view. To restrict
our field of view, we overly our grating with a slit, as shown in Figure 3.3.
The width of the slit is matched to the seeing so that if projects a line
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of light onto the diffraction grating. The dispersed light thus makes a
two dimensional image, with position along the slit along one axis, and
wavelength along the other axis.

di�raction grating

CCD

slit

stellar spectra

absorption lines

emission lines
from sky

position along slit

w
av

el
en

gt
h

Figure 3.3: Taking a spectrum of an
astronomical object.

E X E R C I S E 3 . 3— The Goodman spectrograph on the SOAR telescope has a
grating with 400 linesmm−1. For the first order spectrum (m = 1), find the
dispersion dθ/dλ, in units of arcseconds per nanometer, at λ = 500 nm.

3.4 Absorption and emission lines

Now that we are taking spectra, what do we see? Suppose we look at a
tenuous cloud of hot gas, and there is no light source behind this cloud.
Because the gas is hot, collisions between atoms will excite electrons into
excited states. When these electrons make a transition to the ground
state, a photon is emitted. Thus, when we take a spectrum of the light
from this cloud, we expect to see a series of discrete, bright lines at those
frequencies. This is an emission line spectrum.

Emission lines are also produced in Earth’s atmosphere from a vari-
ety of sources: for example collisions of molecues with cosmic rays and
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recombination of ions and electrons that had been photoionized by sun-
light.

Conversely, suppose we have gas that is backlit by a strong source of
photons—think of the atmosphere of a star. As the photons go through
the gas, some are absorbed. Thus, the spectrum is a continuous blend
of light, with darker lines corresponding to the absorption in the atmo-
sphere. This is an absorption line spectrum.

When a gas becomes sufficiently dense that it is opaque, meaning
that no light gets through it, then the surface emits a broad continuous
spectrum of light, with the flux peaking at a wavelength that corresponds
to the temperature of the gas. The hotter the gas, the shorter the peak
wavelength.

3.5 The Doppler Shift

In addition to telling us about the intrinsic properties of the medium pro-
ducing the spectrum—its temperature, density, and composition—the
spectrum can also tell us about its velocity. Because light has wave-like
behavior, it has properties in common with other waves you are familiar
with, such as sound. One property that is very useful in astronomy is the
Doppler effect: the wavelength changes depending on the motion of the
source along your line of sight. To give a concrete example, suppose we
have a source that is moving away from us with velocity v. We’ll take v
positive for motion away from us.1 1 The convention here is not universal; in

physics texts, v is usually taken as positive
if the motion is towards the observer. In
that case, replace v with−v in eq. (3.4)
below. As always, one must pay attention
to the context before using a formula.

If the source is emitting light with wavelength λ, then the period (time
between successive crests) is T = λ/c. In this time T, however, the source
has moved away from us a distance vT. The tail of the wave is therefore
not at a distance λ from the head, but rather at a distance λ + vT. As a
result, the wavelength we receive is not λ, but rather

λ′ = λ + vT = λ +
v
c

λ = λ
(
1+

v
c

)
. (3.4)

In deriving this equation, you may have noticed that the speed of the
light wave c is unaffected by the motion of the source. Unlike other waves
such as sound, a light wave always moves at a speed c regardless of the
motion of either the emitter or the receiver. With light, only the rela-
tive speed of the source and observer matters in the expression for the
doppler shift.

There is one further modification to equation (3.4). A consequence of c
being a constant is that time passes at different rates for the emitter and
receiver. The period of the wave T is what is measured at the source. The
observer, however, measures that interval of time to be T/

√
1− v2/c2.

Since the wavelength is λ = cT, this means there is an additional redshift
to the wavelength as well.
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vT

λ+vT

λ

Figure 3.4: Schematic of the doppler
effect for a source (red star) moving to the
right at speed v.When these changes are made, the formula for the wavelength ob-

served from a source moving at radial velocity v is

λobs = λsource

[
1+ v/c√
1− v2/c2

]
. (3.5)

In this equation, v is the velocity of the source along the line of sight.
For a source moving towards us, the observed wavelength is shortened;
as a result, a line in the middle of the visible spectrum (yellow-green) is
shifted toward the blue. We call this a blueshift, irrespective of the actual
wavelength of the light. For a source moving away from us, a line in the
yellow-green is shifted toward the red; we term this a redshift.

E X E R C I S E 3 . 4— A radar detector used by law enforcement measures speed
by emitting a radar beam with frequency 22GHz and measuring the frequency of
the reflected signal.

1. What is the wavelength λ of the radar beam?

2. If a motorist is going 40m/s (about 89 miles/hour) away from the officer,
what is Δλ = λmotorist − λofficer? What is Δλ/λ?



4
Detection of Exoplanets

4.1 The Difficulty with Direct Detection

Suppose we want to observe exoplanets directly. Let’s first estimate how
far we have to look.

E X E R C I S E 4 . 1— The density of stars in the solar neighborhood is
0.14 pc−3. Suppose 50% of the stars have planets, and we want a sample of about
20 planetary systems. What would be the radius (in parsec) of the volume
containing this many systems? Given this radius, what is the average distance to
a star in this sample?

Next let’s estimate the difference in brightness between a planet and
its host star. We shall use our solar system as an example.

E X E R C I S E 4 . 2— The Sun, which is at a distance of 1 AU, has an apparent
V-band magnitude V⊙ = −26.74. At its closest approach of approximately 4 AU,
Jupiter has an apparent magnitude VX = −2.94. Compute the ratio of fluxes in
V-band, i.e., FX/F⊙, if both Jupiter and the Sun were at the same distance.

Finally, we know that there is a limit to the angular resolution of a
telescope. This limit is imposed by both the atmospheric seeing and the
telescope optics. Let’s estimate how the angular separation of planet and
star compares with a fiducial angular resolution.

E X E R C I S E 4 . 3— Jupiter’s mean distance from the Sun is 5.2AU. Suppose
we were to view the Sun-Jupiter system from the average distance derived in
exercise 4.1; what would be the angular separation between Jupiter and the Sun?
How does this compare with the atmospheric seeing under good conditions?

As these exercises illustrate, imaging a planet directly is a daunting
task. Astronomers have therefore resorted to indirect means, in which
the host star is observed to vary due to the influence of the planet’s
gravitational force. This motivates a review of Kepler’s problem.
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4.2 Planetary Orbits: Kepler

Suppose we have a exoplanet system with a planet p and a star s. The
vector from the star to the planet is rrrsp = rrrp − rrrs, and the force that the
star exerts on the planet is

FFFsp = −
GMpMs

|rrrsp|3
rrrsp. (4.1)

The planet exerts a force on the star FFFps = −FFFsp.
To make this problem more tractable, we shall put the origin of our

coordinate system at the center of mass, as shown in Fig. 4.1,

O

mp

ms

rp
rs

rsp = rp-rs

O

R

mp

ms

xp

xs

Figure 4.1: Center of mass in a star-planet
system.

RRR =
Msrrrs +Mprrrp
Ms +Mp

;

in this frame the star and planet have positions

xxxs = rrrs − RRR = −
Mp

Mp +Ms
rrrsp (4.2)

xxxp = rrrp − RRR =
Ms

Mp +Ms
rrrsp (4.3)

and hence accelerations

d2xxxs
dt2

= −
Mp

Mp +Ms

d2rrrsp
dt2

d2xxxp
dt2

=
Ms

Mp +Ms

d2rrrsp
dt2

.

If we substitute this acceleration into the equation of motion for the
planet,

Mp
d2xxxp
dt2

= FFFsp,

and use eq. (4.1) for FFFsp, we get the reduced equation of motion

d2rrrsp
dt2

= −G
Ms +Mp

|rrrsp|3
rrrsp. (4.4)

We recover this same equation if we substitute the accelerations into the
equation of motion for the star. Hence for a two body problem, we only
need to solve equation (4.4) for rrrsp(t) and then use equations (4.2) and
(4.3) to compute the positions xxxs(t), xxxp(t) of the star and planet.

E X E R C I S E 4 . 4— Locate the center of mass for the Sun-Jupiter system:

M⊙

MX = 1047; rrr⊙X = 5.2AU.
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The solution to equation (4.4) is an elliptical orbit (Fig. 4.2) with the
center-of-force at one focus of the ellipse. The period T depends on the
semi-major axis a of the ellipse,

T2 =
4π2

G(Ms +Mp)
a3. (4.5)

Suppose the orbit is circular, so that |rrrsp| = a is constant. Then by com-
bining equations (4.5) and (4.2) we can find the orbital speed of the star,

vs =
Mp

Ms +Mp
× 2πa

T
=

[
GMp

a
Mp

Ms +Mp

]1/2
. (4.6)

This speed is detectable via doppler shift of the stellar absorption lines.

f

a ea

Figure 4.2: Orbital elements for a body
moving in a gravitational potential about
a fixed center of force, indicated by the
yellow star.

E X E R C I S E 4 . 5— Compute the orbital speed of the Sun for the two-body
Sun-Jupiter system;

M⊙

MX = 1047; rrr⊙X = 5.2AU.

E X E R C I S E 4 . 6— What is the wavelength shift induced by the motion of
the Sun, computed in exercise 4.5, for an absorption line with rest wavelength
600 nm?

4.3 Transits

In § 3.5 we derived the doppler shift for motion along our line-of-sight.
In general, however, the orbit is not edge-on, but rather inclined at an an-
gle (Fig. 4.3). In this case the speed that is measured via doppler shift of
stellar lines is vs sin i. Thus, our problem becomes, given a measurement
of period T and projected speed K = vs sin i, what can we learn about the
planet?

i

Figure 4.3: Schematic of the inclination of
a planetary orbit to our line of sight.

We can combine equations (4.5) and (4.6) into the form

M3
p sin

3 i
(Ms +Mp)2

=
K3T
2πG

. (4.7)
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The right-hand side is in terms of the observed quantities K and T, and
is therefore determined from observations. We expect Ms ≫ Mp, and
can usually estimate Ms from spectroscopy of the star. Even with this
information, we can only determine Mp sin i.

For systems with sufficiently large inclination, we will observe the
planet to transit the star, that is, to pass in front of the stellar disk. From
Fig. 4.4, if aRs + Rp

i
to

observer

Figure 4.4: Schematic of a planetary
transit.

cos i <
Rs + Rp

a
,

then the light from the star will be partially blocked during some part of
the orbit.1 1 We are assuming that the star is suffi-

ciently far away that we can ignore the
angle subtended by the star.

E X E R C I S E 4 . 7— For the Sun-Jupiter system (R⊙ = 6.96× 105 km,
RX = 71 400 km, a = 5.2AU), what orbital inclination is required for an observer
in a distant planetary system to witness a transit?

What is the probability distribution of a star’s inclination?
To derive this, let’s imagine each planet’s orbital angular momentum as
a vector having unit length. We don’t care about whether, from out per-
spective, the planet orbits counterclockwise or clockwise, so we put all of
the arrows with 0 ≤ i ≤ π/2, as shown in figure 4.5.

i

di

sin i dφ

Figure 4.5: Schematic of the probability
of the orbital inclination lying within
(i, i+ di) and (φ, φ + dφ).

Now imagine a huge sample of planetary systems. If the orbits are
randomly distributed, then we expect the arrows to be evenly distributed
over our hemisphere; as a result, the probability of a planet having incli-
nation in (i, i + di) and azimuthal angle in (φ, φ + dφ) is the ratio of the
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area of that little coordinate patch to the area of the hemisphere,

p(i, φ) di dφ =
sin i di dφ

2π
.

Since we aren’t interested in the azimuthal angle, we can integrate over
φ to find the probability distribution for a planet to have a given inclina-
tion, p(i) = sin i.

E X E R C I S E 4 . 8— From a solar-mass star you measure a periodic doppler
shift with T = 3 yr and K = 18m s−1. What is the probability that the planet has
a mass> 2MX? What is the probability that the planet has a mass> 10MX?

E X E R C I S E 4 . 9—

a) For an edge-on, circular orbit, show that the fraction of the orbit during which
the planet is in transit is

f =
Ttr

T
=

Rs + Rp

πa
,

where a is the orbital separation.

b) Derive an expression for the transit duration Ttr in terms of a and the masses
and radii of the star and planet.

c) For the Sun-Jupiter system, what is f and Ttr?





5
Beyond Kepler’s Laws

When we studied the two-body problem, we treated the masses as simple
points. In reality, they are complex extended objects. In this chapter,
we’ll explore some of the effects that arise when we go beyond the simple
problem of two massive point particles orbiting one another.

5.1 Tidal forces

Because a planet is extended, the gravitational force exerted by another
mass on it varies across its diameter. As a warm-up, let’s imagine putting
four test masses some distance from the Earth and letting them free-fall.
We have a camera that is aligned with the center of mass of these four
particles and that free-falls with them.

a

a

GM
R2

Figure 5.1: Four freely falling bodies. In a
frame that falls with them, how does their
motion appear?

Figure 5.1 depicts the setup: the particles are a distance a from the
center of mass (indicated with a cross) and the center of mass is a dis-
tance R from the Earth’s center. When we release the particles and
camera, the camera and center of mass both move downward with ac-
celeration−GM/R2 ẑzz. Because each particle feels a slightly different
gravitational force, however, none of the particles falls with that exact
acceleration: the top particle has a lower acceleration and the bottom,
higher; while the left and right particles have some horizontal accelera-
tion toward the center of mass.

E X E R C I S E 5 . 1— Compute the difference between the acceleration of each
test mass and that of the center of mass. Expand this difference to lowest order
in a/R. This difference is the tidal force. Sketch the tidal force on each particle
from the point of view of the free-falling camera.

For the Earth-moon system (Fig. 5.2), we can decompose the tidal
force exerted by the moon into radial and tangential components. The
Earth-Moon separation is a = 60.3R⊕, so expanding our expression for
the tidal force to lowest order in R⊕/a is a good approximation.

Upon expanding the tidal acceleration components to lowest order in
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Figure 5.2: Schematic of the tidal force on
the Earth raised by the Moon.

R⊕/a, the components1 are found to be

1 The geometry can be worked out by
consulting Fig. 5.2; it is straightforward,
but tedious, and I won’t go through the
algebra here.

r̂rr :
GM$R⊕

a3
(
3 sin2 θ − 1

)
(5.1)

θ̂ :
3GM$R⊕

2a3
sin 2θ. (5.2)

E X E R C I S E 5 . 2— Sanity check: does the radial component of the tidal
force, eq. (5.1), agree with the calculation in Exercise 5.1?

Figure 5.3: Tidal force field exerted by the
Moon on the Earth.

The ratio of the radial component of the tidal acceleration, neglecting the
angular dependence, to the Earth’s surface gravity is

M$
M⊕

(
R⊕

a

)3

= 5.6× 10−8.

This is quite small, and you might wonder how the tidal force can produce
such large daily flows of water in the ocean. But consider the tangential
component, eq. (5.2): it has a maximum at θ = 45◦, 135◦ and, although
it is also small, there is nothing to oppose it.

The Earth’s rotational period is shorter than the Moon’s
orbital period. Because of viscosity (resistance to flow) the tidal
bulge is carried ahead of the line joining the centers of the Earth and
Moon (Figure 5.4). As a result, the Moon’s pull exerts a torque on the
Earth and gradually slows its rotation; the oblate Earth in turn exerts a
torque on the Moon and gradually forces it to greater orbital separation.

5.2 Motion in a rotating frame

To work out the equations of motion in a rotating frame, we start from
an inertial frame in polar coordinates. In this system, the particle is
located at (r, θ); the position vector of the particle is rrr = r̂rrr. After an
internal Δt, the particle’s position is (r+Δr, θ+Δθ), as shown in Fig. 5.5.
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τ

Ω

τ

Figure 5.4: The torque resulting from the
misalignment of Earth’s tidal bulge.

y

x
θ

θ+Δθ

θ+Δθ

θ

r+Δr

r

r

r+Δr

Figure 5.5: Polar coordinates for a parti-
cle.

As the particle moves, both r̂rr and θ̂ change as well. Since both r̂rr and
θ̂ are unit vectors, only their direction changes with their magnitude
remaining constant. Neither vector changes under purely radial motion,
Δθ = 0. Under a change in angle Δθ, however, both r̂rr and θ̂ rotate by an
angle Δθ, as shown in Fig. 5.6. In the limit Δθ → 0,

Δr̂rr → Δθθ̂; Δθ̂ → −Δθr̂rr.

Dividing by Δt and calling ω = dθ/dt the angular velocity, we have
dr̂rr/dt = ωθ̂ and dθ̂/dt = −ωr̂rr.

Δθ
Δθ

Δθ
Δr

θ+Δθ

r+Δr

Figure 5.6: Change in the unit vectors
r̂rr and θ̂ under a change in the angular
coordinate Δθ.

We can then differentiate the particle’s position with respect to time
to get its velocity in polar coordinates, and then differentiate again to get
the acceleration.

drrr
dt

=
dr
dt

r̂rr+ rωθ̂; (5.3)

d2rrr
dt2

=
d2r
dt2

r̂rr+ 2
dr
dt

ωθ̂ + r
dω
dt

θ̂ − rω2r̂rr. (5.4)

Now suppose further that the angular velocity has two parts: ω = Ω+ω′,
a uniform rotation at velocity Ω plus a remaining portion ω′. Further,
since Ω represents uniform rotation, dΩ/dt = 0 and the acceleration is

1
m
FFF =

d2rrr
dt2

=

(
d2r
dt2

− rω′2
)

r̂rr+
(
2
dr
dt

ω′ + r
dω′

dt

)
θ̂

−rΩ2r̂rr+ 2Ω
(
dr
dt

θ̂ − rω′r̂rr
)
. (5.5)

Here FFF is the force in an inertial frame.
Now the first two terms on the right-hand side are just the accelera-

tion d2rrr′/dt2 that an observer rotating with velocity Ω would write down
(cf. eq. [5.4]). Hence, if we move the last two terms of equation (5.5) to
the left, we are left with the equations of motion in a rotating frame, We also make the identification

vr = dr/dt, vθ = rω′.d2rrr′

dt2
=

1
m
FFFrot =

1
m
FFF+ rΩ2r̂rr︸︷︷︸

centrifugal

+ 2Ω
(
vθ r̂rr− vr θ̂

)
︸ ︷︷ ︸

Coriolis

. (5.6)
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The centrifugal force is outwards (along r̂rr); the Coriolis force depends
on velocity and deflects the motion of a particle at right angles to its
velocity2. If you’ve ever tried to walk in a straight line on a spinning 2 That is, if you are moving in the r̂rr

direction, the Coriolis force is in the θ̂
direction, and vice versa.

merry-go-round, then you’ve met the Coriolis force.

E X E R C I S E 5 . 3— Figure 5.7 depicts a merry-go-round rotating
counter-clockwise with velocity Ω > 0. Four points, A–D are moving as shown.
Draw the deflections of their trajectories due to the Coriolis force.

Ω

A

B

C

D

Figure 5.7: Schematic for Exercise 5.3.

5.3 Lagrange and Roche

For analyzing the motion of a test particle in the vicinity of two massive
orbiting bodies, we transform to a frame with an origin at the center of
mass mass and with an angular velocity Ω. The bodies have masses M1

and M2, and we take M1 to be the more massive of the two bodies. The
two bodies are located at coordinates

M1 : x1 = −a
M2

M
, y1 = 0; (5.7)

M2 : x2 = a
M1

M
, y2 = 0, (5.8)

Here M = M1 + M2 is the total mass of the two bodies and a their
separation.

Let’s check that our rotating coordinate system is consistent: since M2

is at rest, the net force on it vanishes, so from equation (5.6),

−GM1

a2
+ a

M1

M1 +M2
Ω2 = 0,

or

P2
orb =

(
2π
Ω

)2

=
4π2

GM
a3.

This is just what we would expect from Kepler’s law.
Now we are in a position to ask, are there any points where a particle

could sit at rest in this frame? Between the two masses, for example, we Remember, “at rest in this frame” means
the particle is co-rotating with our two
masses.

expect that the net force must vanish at some point. The acceleration of a
test mass is

d2rrr
dt2

= − GM1

|rrr− rrr1|3
(rrr− rrr1)−

GM2

|rrr− rrr2|3
(rrr− rrr2) +

G(M1 +M2)

a3
rrr. (5.9)

Along the x-axis, points where a particle would feel no acceleration are
given by the roots of the equations

x < x1 :
GM1

(x1 − x)2
+

GM2

(x2 − x)2
+

G(M1 +M2)

a3
x = 0;

x1 < x < x2 : − GM1

(x− x1)2
+

GM2

(x2 − x)2
+

G(M1 +M2)

a3
x = 0;

x2 < x :
GM1

(x− x1)2
+

GM2

(x− x2)2
+

G(M1 +M2)

a3
x = 0.
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This is a nasty quintic equation; if, however, we take the limit M2 ≪ M1

then after some inspired algebra we find that there are three roots, which
are the first three Lagrange points:

L1 xL1 ≈ a

{
M1

M1 +M2
−
[

M2

3(M1 +M2)

]1/3}
;

L2 xL2 ≈ a

{
M1

M1 +M2
+

[
M2

3(M1 +M2)

]1/3}
;

L3 xL3 ≈ a
{
−M1 + 2M2

M1 +M2
+

7M2

12M1

}
.

These points are depicted in Fig. 5.8 for a system with M2 = 0.05M1. The
remaining two Lagrange points L4 and L5 form equilateral triangles with
M1 and M2. CM

L4

L5

L2L3
L1

Figure 5.8: Lagrange points for a system
with M2 = 0.1M1.

We can draw an equipotential surface (in the rotating frame) that
crosses through L1: the surface is dumbbell-shaped and forms two Roche
lobes (Fig. 5.8) that touch at L1. Within each lobe the gradient of the
potential is inward toward the center of the lobe.

E X E R C I S E 5 . 4— Show that the acceleration vanishes at L4:

a) Find the coordinates of L4;

b) Compute the net gravitational acceleration, due to both M1 and M2, on a
particle at point L4 and show that it points toward the center of mass; then

c) Show that the gravitational acceleration cancels the centrifugal, so that the
net acceleration vanishes.

From the expressions for L1 and L2, we notice that they can be
written as 3 3 Recall that

a
M1

M1 +M2
= x2,

the location of body 2.

xL1 ≈ x2 − RH; xL2 ≈ x2 + RH,

with

RH ≈ a
[

M2

3(M1 +M2)

]1/3
.

Particles within a sphere of radius RH are dominated by the gravitational
attraction of M2; RH is called theHill radius.

E X E R C I S E 5 . 5— Compute the Hill radius for the Sun-Jupiter system.

E X E R C I S E 5 . 6— Speculate on what would happen if M2 had an
atmosphere that extended outside its Roche lobe.





6
Planetary Atmospheres

It’s more important to know whether there will be weather than what the
weather will be. —Norton Juster, The Phantom Tollbooth

6.1 Hydrostatic equilibrium

Let’s consider a fluid at rest in a gravitational field. By at rest, we simply
mean that the fluid velocity is sufficiently small that we can neglect the
inertia of the moving fluid in our equation for force balance. By a fluid,
we mean that the pressure is isotropic1 and directed perpendicular to a 1 Meaning the pressure is the same in all

directions.surface. Let’s now imagine a small fluid element, with thickness Δr and
cross-sectional area ΔA, as depicted in Fig. 6.1.

ΔA

Δr

ΔA P(r+dr)

ΔA P(r)

Δm g = (ρ ΔA Δr) g

Figure 6.1: A fluid element in hydrostatic
equilibrium.

The weight of the fluid element is Δmg, where g is the gravitational
acceleration and Δm = ΔA× Δr× ρ is the mass of the fluid element with
ρ being the mass density. The force on the upper face is ΔA × P(r + Δr);
on the lower face, ΔA×P(r). Here P(r) is the pressure. For the element to
be in hydrostatic equilibrium the forces must balance,

ΔA [−P(r+ Δr) + P(r)− Δrρg] = 0;

dividing by Δr and taking the limit Δr → 0 gives us the equation of
hydrostatic equilibrium:

dP
dr

= −ρg. (6.1)

For an incompressible fluid in constant gravity, the pressure increases
linearly with depth. This is a good approximation to the pressure in
Earth’s oceans: the density of sea water changes by less than 5% between
surface and floor. In general, however, the density ρ depends on the
pressure P, and we need more information to solve for the atmospheric
structure. The SI unit of pressure is the Pascal:

1 Pa = 1Nm−2. The mean pressure at
terrestrial sea level is 1 atm = 1.013 ×
105 Pa. Other common units of pressure
are the bar (1 bar = 105 Pa) and the Torr
(760 Torr = 1 atm).

E X E R C I S E 6 . 1— Water is nearly incompressible and has a density of
103 kgm−3. How deep would you need to dive for the pressure to increase by
1 atm = 1.013× 105 Pa? The gravitational acceleration at Earth’s surface is
9.8m s−2.
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Let’s look at this in a bit more detail. Suppose we take our fluid layer
to be thin, so that g is approximately constant. Then we can write equa-
tion (6.1) as ∫ P(z)

P0

dP = −g
∫ z

0
ρ dz.

Now consider a cylinder of cross-section ΔA that extends from 0 to z. The
mass of that cylinder is

m(z) = ΔA×
∫ z

0
ρ dz.

and its weight is m(z)g.

P(z) ΔA

P(0) ΔA

mg = g ΔA ∫ρ(z) dz’

Figure 6.2: The mass of a column of fluid.

The difference in pressure between the bottom and top of the cylinder
is just

P0 − P(z) = gm(z)/ΔA,

that is, the weight per unit area of our column. Let’s apply this to our
atmosphere: if we take the top of our column to infinity and the pressure
at the top to zero, then the pressure at the bottom (sea level) is just the
weight of a column of atmosphere with a cross-sectional area of 1m2.

6.2 The ideal gas

To solve equation (6.1) we need at a minimum a relation between pres-
sure and density. A relation between pressure, density, and temperature
is called an equation of state. For an ideal gas2 of N particles in a vol-

2 By ideal gas, we mean that the particles
are non-interacting; as a result, the energy
of the gas only depends on the kinetic
energy of the particles and in particular is
independent of the volume.

ume V at pressure and temperature P and T, the equation of state is

PV = NkT (6.2)

where k = 1.381× 10−23 JK−1 is Boltzmann’s constant.
In chemistry, it is convenient to count the number of particles by

moles. One mole of a gas has NA = 6.022 × 1023 particles3, and the 3 The constant NA is known as Avogadro’s
number.number of moles in a sample is n = N/NA. If we divide and multiply

equation (6.2) by NA, then our ideal gas equation becomes

PV = n [NAk]T ≡ nRT,

where R = NAk = 8.314 JK−1 mol−1 is the gas constant. This is perhaps
the most familiar form of the ideal gas law—but it is not in a form useful
to astronomers.

We astronomers don’t care about little beakers of fluid—we have
whole worlds to model! Let’s take our ideal gas law and introduce the
molar weight m as the mass of one mole of our gas. Then the ideal gas law
can be written

P =

(
mN/NA

V

)
kNA

m
T ≡ ρ

kNA

m
T. (6.3)
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The quantity in parenthesis is the mass per volume, or density ρ, of our
fluid. This is the same mass density that appears in equation (6.1). Equa-
tion (6.3) is the form most convenient for fluid dynamics, because it is
in terms of intrinsic fluid properties rather than in terms of a laboratory
quantity like volume.

6.3 The scale height

Let’s take a first stab at modeling Earth’s atmosphere with equation (6.1).
We’ll take Earth’s atmosphere to be an ideal gas and for simplicity we’ll
assume the temperature doesn’t change with altitude4. The molar weight

4 This isn’t true, of course, but let’s keep
things simple and see how we do.

of dry5 air is 0.02897 kgmol−1. Using equation (6.3) to eliminate ρ in
5 The water vapor content of air varies
considerably depending on ambient
conditions.

equation (6.1), we obtain

1
P
dP
dz

= − mg
NAkT

, or
dP
P

= − mg
NAkT

dz.

Integrating from z = 0, where P(z = 0) = P0, to a height z gives us an
equation for the pressure as a function of height,

P(z) = P0 exp
[
− mgz

NAkT

]
. (6.4)

Since the argument of the exponential is dimensionless, we see that we
can write P(z) = P0e−z/HP , where

HP =
NAkT
mg

is the pressure scale height—the height over which the pressure de-
creases by a factor 1/e.

E X E R C I S E 6 . 2— Evaluate HP for dry air at a temperature of 288K (15 ◦C).
Check that your answer is reasonable based on your experience. In fact, this value
of HP is overly large because the temperature in the troposphere does, in fact,
decrease with height at an average lapse rate of

dT
dz

= −6.5 ◦C km−1.

6.4 The adiabatic thermal gradient

Hot air rises. This simple phenomenon sets the lapse rate in the tro-
posphere. Warm surface air rises quickly enough that there is little ex-
change of heat with colder, downward moving air. As a result, the fluid
motions are adiabatic. To understand what this means, recall the first
law of thermodynamics6, which relates the change in internal energy dU 6 Enrico Fermi. Thermodynamics. Dover,

1956
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and in volume dV to the heat transferred dQ:

dQ = dU+ PdV, (6.5)

where P is the pressure. Now, we aren’t using volume to describe our
fluid7 so let’s apply this equation to 1mol of our fluid, and divide both 7 cf. eq. (6.3)

sides by the molar mass m. Then Q refers to the heat transferred per
kilogram, and U refers to the internal energy per kilogram. Instead of dV,
we then have dV/(1mol × m) = d(1/ρ) = −ρ−2dρ. Our first law,
rewritten in terms of mass-specific quantities, is thus

dQ = dU− P
ρ2 dρ. (6.6)

Suppose we wish to express quantities in terms of temperature T and
density ρ: then

dU =

(
∂U
∂T

)
ρ
dT+

(
∂U
∂ρ

)
T
dρ,

and

dQ =

(
∂U
∂T

)
ρ
dT+

[(
∂U
∂ρ

)
T
− P

ρ2

]
dρ.

Hence the heat needed to raise the temperature of one kilogram of fluid
when holding density fixed is

Cρ ≡
(
∂Q
∂T

)
ρ
=

(
∂U
∂T

)
ρ
. (6.7)

For an ideal gas, U = U(T) and Cρ is approximately constant; hence we
may integrate equation (6.7) to obtain U = CρT+ const..

In Eq. (6.6), the last term is−(P/ρ) dρ/ρ = −(P/ρ) d ln ρ. This il-
lustrates a useful trick: take the logarithm of the equation of state,
ln(P) = ln(ρ) + ln(T) + ln(kNA/m), and then take the differential to
obtain

dP
P

=
dρ
ρ

+
dT
T
.

Now eliminate dρ/ρ in the equation

dQ = CρdT− P
ρ
dρ
ρ

to obtain an expression for the heat transferred as a function of tempera-
ture and pressure,

dQ =

[
Cρ +

P
ρT

]
dT− 1

ρ
dP =

[
Cρ +

kNA

m

]
dT− 1

ρ
dP.

From this we see that the heat needed to raise the temperature of one
mole when holding pressure fixed is

CP ≡
(
∂Q
∂T

)
P
= CV +

kNA

m
. (6.8)

The specific heat of one mole of various ideal gases is given in Table 6.1.
It is important to remember that these relations for the specific heats are
for an ideal gas and are not universally true.
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gas Cρ CP = Cρ + kNA/m γ = CP/Cρ

monatomic (3/2)kNA/m (5/2)kNA/m 5/3
diatomic (5/2)kNA/m (7/2)kNA/m 7/5

Table 6.1: Specific heats for ideal gases.

During convection, hot air rises and cool air descends,
and both move adiabatically. By adiabatically, we mean that there
is no heat exchange:

0 = dQ = CPdT− 1
ρ
dP.

Using the ideal gas equation of state we can eliminate 1
ρ = (kNA/m)T/P

and write
dT
T

=
kNA

mCP

dP
P

=
CP − CV

CP

dP
P

=
γ − 1

γ
dP
P
.

Integrating both sides of the equation gives

lnT =
γ − 1

γ
lnP+ const.,

or

T = T0

(
P
P0

)(γ−1)/γ

, (6.9)

where T0 and P0 are the temperature and pressure at the beginning of the
adiabatic process. Equation (6.9) tells us how the temperature changes
with pressure along an adiabat for an ideal gas.

E X E R C I S E 6 . 3— Use equations (6.9) and (6.1) to compute the lapse rate
dT/dz at sea level. Dry air is composed of mostly diatomic gases with a molar
weight 0.02897 kgmol−1. You should find an answer around−10 ◦C/km, which
is almost twice as large as the value quoted earlier. Can you guess why the value
you calculated might be off? (Hint: there is a process we haven’t yet accounted for. If
you want a hint, go outside and look up.)

6.5 Atmospheric circulation on a rotating Earth

The Sun heats the Earth unevenly; this in turn creates pressure gradients
that drive a circulation of the atmosphere and a transfer for heat from
the equator polewards. The Coriolis force deflects the horizontal motion
of the air, and this sets up large-scale features in the atmosphere.

Because of the Earth’s rotation, in the frame of a particular location on
Earth there is both a Coriolis and a centrifugal acceleration:

Coriolis aaaCor = −2Ω × vvv (6.10)

centrifugal aaacen = −Ω × (Ω × RRR) (6.11)

where RRR is the location of our particle and Ω is the rotation vector of the
Earth.
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The centrifugal component just depends on the latitude λ and causes
the Earth to bulge at the equator to compensate. It doesn’t, however,
change the motion of air currents. The vertical component of the Coriolis
acceleration will be quite small compared to ggg, so we can neglect it as well.
For the horizontal component, if we are at latitude λ, λ

Ω

Ωsinλ

v a

Figure 6.3: Motion in a horizontal layer in
a small region at latitude λ.

aCor = 2Ωv sin λ.

This acceleration is to the right in the northern hemisphere and to the
left in the southern. At the equator it vanishes.

E X E R C I S E 6 . 4— Suppose we have a river flowing at 3 km/hr. At our
latitude, how does the Coriolis acceleration compare to the centripetal
acceleration if the river has a bend with radius of curvature r? How large would r
need to be for the Coriolis force to dominate?

In addition to the Coriolis acceleration from the Earth rotation, hori-
zontal pressure gradients will also produce an acceleration

− 1
ρ
∇P.

A typical horizontal gradient for a weather system is about 0.03mbar/km. Recall that 1 bar = 1.013 × 105 Pa. The
density of air at sea level is 1.3 kgm−3.Consider a cyclone in which the winds swirl counterclockwise about a

low. Let’s look at a small parcel of fluid a distance r from the center of the
cyclone, which has a height H. The mass of our fluid parcel is ΔS ΔrH ρ,
and the acceleration of the fluid is−v2/r r̂. The equation for force and
acceleration along r̂ is therefore

L

P(r+Δr)

ρv2/r
P(r)

v

v

Δr

ΔS

�Ωsinλ

2Ωvsinλ

Figure 6.4: Forces on a parcel of air
circulating about a low.

[P(r)− P(r+ Δr)] ΔSH+ 2ΔS ΔrH ρ Ωv sin λ = −ΔS ΔrH ρ
v2

r
.

or
v2

r︸︷︷︸
centripetal

+ 2vΩ sin λ︸ ︷︷ ︸
Coriolis

− 1
ρ
dP
dr︸ ︷︷ ︸

pressure

= 0. (6.12)

E X E R C I S E 6 . 5—

a) When r is sufficiently large, we can neglect the centripetal term in
equation (6.12). In that case, for a pressure gradient of 3mbar/100 km, what
is a velocity satisfying this equation. Does this seem realistic?

b) Using the velocity you found in part a, determine the size r of the weather
system at which the centripetal term becomes comparable to the Coriolis
term.

In tropical regions the latent heat released from condensing water
vapor in rising updrafts can produce a strong pressure gradient around
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a low—a tropical depression. If the pressure gradient is strong enough,
a hurricane forms. In this case the pressure gradient can be as strong
as 0.3mbar/km, and the centripetal term cannot be neglected. If we
consider a hurricane located at latitude λ = 20◦ and take the eye region
to have r = 100 km, then solving equation (6.12) gives

v = −rΩ sin λ +

√
(rΩ sin λ)2 +

r
ρ
dP
dr

≈ 46m/s,

which is typical of hurricane-strength winds.

E X E R C I S E 6 . 6— You may have wondered why the strongest storms are
associated with low-pressure systems. Repeat the analysis leading to
equation (6.12) for air circulating in an anti-cyclone around a pressure high.
There is one crucial difference in the equation which leads to a limitation on the
pressure gradient and velocities in this case; explain this difference.





A
Constants and Units

A.1 Selected constants

constant symbol value in MKS

speed of light c 2.998× 108 ms−1

Newton constant G 6.674× 10−11 m3 kg−1 s−2

Planck constant h 6.626× 10−34 J s
Planck constant, reduced ℏ 1.055× 10−34 J s
Boltzmann constant k 1.381× 10−23 JK−1

Stefan-Boltzmann constant σ 5.670× 10−8 Wm−2 K−4

a = 4σ/c 7.566× 10−16 Jm−3 K−4

mass, hydrogen atom mH 1.673× 10−27 kg
atomic mass unit mu 1.661× 10−27 kg
electron mass me 9.109×10−31 kg
electron volt eV 1.602× 10−19 J

Astronomical
solar mass M⊙ 1.989× 1030 kg
solar radius R⊙ 6.960× 108 m
solar luminosity L⊙ 3.842× 1026 W
solar effective temperature Teff,⊙ 5780 K
astronomical unit AU 1.496× 1011 m
parsec pc 3.086× 1016 m
year yr 3.154× 107 s

A.2 Properties of selected stellar types

Spectral Type Teff (K) M/M⊙ L/L⊙ R/R⊙ V mag.

B5 15 400 5.9 830 3.9 -1.2
G0 5 940 1.05 1.4 1.1 4.4
M5 3 170 0.21 0.0066 0.27 12.3
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A.3 Planets of the solar system

Planet symbol a (AU) M (1024 kg) R (km) I/(MR2)

Mercury ' 0.387 0.330 2 440 0.353
Venus ♀ 0.723 4.869 6 052 0.33
Earth ♁ 1.000 5.974 6 371 0.331
Mars ♂ 1.524 0.642 3 390 0.365
Jupiter X 5.203 1900 69 900 0.254
Saturn Y 9.543 569 58 200 0.210
Uranus Z 19.192 86.8 35 400 0.23
Neptune [ 30.069 102 24 600 0.23



B
Mathematics Review

B.1 A Brief Refresher on Trigonometry

Definitions in terms of the unit circle

You may remember that in high school you memorized the definitions
of the sine, cosine, and tangent of an angle in a right triangle. The sin x
is the ratio of the side of the triangle opposite the angle x to the hy-
potenuse; the cos x is the ratio of the side adjacent the angle x to the
hypotenuse; and the tan x is the ratio of the side opposite the angle x to
the side adjacent the angle x. A useful mnemonic is S OH - C A H - T O A:
Sine-Opposite-Hypotenuse — Cosine-Adjacent-Hypotenuse — Tangent-
Opposite-Adjacent.

x

O

A

H

You may have wondered why the tangent, for instance, is called
by that name. Now that you are a collegiate sophisticate, we can delve
more deeply into how the sine, cosine, tangent, cotangent, secant, and
cosecant are constructed. Draw a circle with a radius of unit length. Now
draw a line from the origin O to intersect the circle at a point A, as shown
in Fig. B.1. Denote by x the length along the arc from the horizontal to
point A.

From the point A, we draw a vertical line to the horizontal. The length
of this line AB is sin x. Likewise, we draw a horizontal line from point A to
the vertical; the length of this line, which is equal to OB, we call cos x.

Next, we construct a line tangent to the arc at point A and extend this
tangent to where it intersects the horizontal axis, at point C, and to where
it intersects the vertical axis, at point D. We call the length of the line AC
tan x; the length of the line AD we call cot x.

1

D

O
x

B C

A

cos x

cot x

tan x

cs
c 
x

sec x

sin x

Figure B.1: Construction of the sine,
tangent, secant, cosine, cotangent, and
cosecant from the unit circle.

Finally, we draw from the origin O lines along the horizontal to inter-
sect the tangent at point C and along the vertical to interest the cotan-
gent at point D. The line from the origin O to point C is the secant and we
call the length OC sec x. The line OD is the cosecant and its length is csc x.

The relationships between these quantities can be deduced by studying
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Fig. B.1. First, the triangle ABC is similar to the triangle OBA. The ratio of
AC to AB is therefore equal to the ratio of OA to OB,

AC
AB

=
tan x
sin x

=
OA
OB

=
1

cos x
, so tan x =

sin x
cos x

. (B.1)

Likewise, the triangle OAC is similar to OBA; therefore

OC
OA

=
sec x
1

=
OA
OB

=
1

cos x
, so sec x =

1
cos x

. (B.2)

Finally, the triangle DAO is similar to OBA, giving

DO
AO

=
csc x
1

=
OA
BA

=
1

sin x
, so csc x =

1
sin x

, (B.3)

DA
OA

=
cot x
1

=
OB
BA

=
cos x
sin x

, so cot x =
cos x
sin x

=
1

tan x
. (B.4)

Some further relations follow immediately from the Pythagorean theo-
rem:

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

cotx x+ 1 = csc2 x.

At small angles x, we see from the diagram that sin x < x < tan x, and
cos x < 1. Further, one can show1 that 1 Richard Courant, Herbert Robbins, and

Ian Stewart. What is Mathematics? Oxford
University Press, 2d edition, 1996lim

h→0

sin h
h

= 1 and (B.5)

lim
h→0

cos h− 1
h

= 0. (B.6)

Trigonometric addition formulae

To develop the formulae for sin(x + y) and cos(x + y), consider the
schematic in Figure B.2. The grey arc is again a segment of a unit circle.
The length of OF is cos(x + y) and the length of CF is sin(x + y). By
construction, CE = sin y and OE = cos y.

x
y

O

A

C

D E

F G B
Figure B.2: Schematic of the addition of
two angles x and y.

The length CF = sin(x + y) is the sum of DF = EG and CD. Now
triangle CDE is similar to OBA; hence

CD
CE

=
CD
sin y

=
OB
OA

=
cos x
1

, so CD = sin y cos x.

By a similar argument, EG = cos y sin x. Hence

CF = sin(x+ y) = sin x cos y+ cos x sin y. (B.7)

To construct cos(x + y) = OF = OG − FG, we use a similar approach to
find that FG = DE = sin y sin x and OG = cos y cos x; therefore

cos(x+ y) = cos x cos y− sin x sin y. (B.8)
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Application to calculus

We can now use equations (B.5), (B.6), (B.7), and (B.8) to establish
formulae for the derivatives of the sine and cosine. For the sine, using
limh→0 sin h/h = 1 and limh→0(cos h− 1)/h = 0,

d sin x
dx

= lim
h→0

sin(x+ h)− sin x
h

= lim
h→0

sin x cos h+ cos x sin h− sin x
h

= cos x. (B.9)

Likewise,

d cos x
dx

= lim
h→0

cos(x+ h)− cos x
h

= lim
h→0

cos x cos h− sin x sin h− cos x
h

= − sin x. (B.10)

The formulae for the derivatives of the tangent, cotangent, secant, and
cosecant can be derived by using the chain rule on equations (B.1)–(B.4).

For a continuously differentiable function f(x), Taylor’s
theorem allows us to expand the function at a point x0 + h as a series in
powers of h,

f(x0 + h) = f(x0) +
df
dx

∣∣∣∣
x0

h+
1
2

d2f
dx2

∣∣∣∣
x0

h2 +
1

3 · 2
d3f
dx3

∣∣∣∣
x0

h3 + . . .

See § B.2 for details.
Applying this expansion to sin x and cos x about the point x0 = 0, we

have to order h2,

sin h = sin(0) + cos(0)h− 1
2
sin(0)h2 + . . . ≈ h, (B.11)

cos h = cos(0)− sin(0)h− 1
2
cos(0)h2 + . . . ≈ 1− h2

2
(B.12)

since sin(0) = 0, cos(0) = 1.

B.2 The Taylor Expansion

Suppose we wish to approximate a function f(x) in the neighborhood of
some point x0 by a power series. That it, we wish to write for some h ≪ 1,

f(x = x0 + h) = c0 + c1h+ c2h2 + c3h3 + c4h4 + . . .

We assume that f(x) is differentiable, and all those derivatives exist—
no discontinuities or places where the derivative blows up. To find the
constants c0, c1, c2, c3, . . ., we first set h = 0 and obtain

f(x0) = c0,
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which fixes the first constant. Next, we take the derivative and set h = 0,
x = x0

df(x)
dx

∣∣∣∣
x=x0

=
[
c1 + 2c2h+ 3c3h2 + 4c4h3 . . .

]
h=0 = c1.

For the next term, we take another derivative,

d2f(x)
dx2

∣∣∣∣
x=x0

=
[
2c2 + 3 · 2c3h+ 4 · 3c4h2 . . .

]
h=0 = 2c2.

Thus our expansion out to the term in h2 is

f(x0 + h) = f(x0) +
df(x)
dx

∣∣∣∣
x=x0

h+
1
2

d2f(x)
dx2

∣∣∣∣
x=x0

h2 +O(h3).

Here the expressionsO(h3)means that the remaining terms are of the
same size as h3.



C
Probability and Statistics

The true logic of this world is in the calculus of probabilities. —James
Clerk Maxwell

Astronomical observations produce data—sets of numbers
from measurements. To advance our understanding of astronomy, we
must compare this data to an underlying hypothesis or model. That is, we
compute some statistic s from the data {D} and assess the likelihood of
the value of s.

As a naive example, we might sum over the differences between the
predictions P = {pi} of a model and the observations {Di}:

s =
∑

i

(pi − Di)
2
.

In this case, s = 0 would signify perfect agreement. Nothing is ever
perfect, however; what would we make of s being small but non-zero?
We need a figure-of-merit1: given some small value of s, is it likely that 1 And of course, we want to find the best

choice of statistic s for assessing how well
the model fits the data.

the model is consistent with the data? If we judge the value of s to be
implausible, we say that the model, or hypothesis, is not supported by
the data.

The converse case of s having a value with a high probability does not,
however, “rule in” the hypothesis—at best, the hypothesis is consistent
with observations, but other hypotheses may also be consistent. The goal
is to amass an ever larger body of evidence supporting the hypothesis,
but one can never prove it conclusively.

C.1 Basic Rules of Probability and Combinatorics

Having motivated the problem, we now step back and ask, what is meant
by probability? We are familiar with many examples from our everyday
experience. What is the probability of drawing an ace from a deck of
cards? What is the probability of rain tomorrow? What is the probability
that our candidate will win the election?
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E X E R C I S E C . 1— Think of some different situations in which you might use
the word probability. How does the definition of probability differ among these
situations?

It is not immediately obvious that different usages of the term are
consistent. To give two examples:

1. A “fair” die is cast; we say that the probability of rolling a • is P(•) =
1/6. What does this mean? We may mean that if we were to roll the
die a very large number of times N, or roll a large number N of dice,
then the number of those tries yielding a • tends toward2 2 This definition carries the prior assump-

tion that all sides are equally likely and
that 0 ≤ P ≤ 1.

P(•) = lim
N→∞

N(•)
N

=
1
6
.

Note that this is an assertion: if we did this experiment and found that
Pexp(•) ̸= 1/6, we would claim the die is loaded!

2. The Newtonian constant of gravitation is

G = (6.67384± 80)× 10−11 m3 kg−1 s−2.

What does the “±80” mean? It signifies that the value of G has some
specified probability of lying in the interval 6.67304 ≤ G × 1011 ≤
6.67464. This is a different sense of probability than that in the first
example: the value of G has a single, definite value, and here the prob-
ability reflects the degree of certainty we attach to its measured value.

To start making this more precise, let’s introduce some terms3: 3 Richard Durrett. The Essentials of
Probability. Duxbury Press, Belmont, CA,
1994

For an experiment or observation there is a set of all possible outcomes,
called the sample space. A subset of possible outcomes is an event. We de-
scribe our events as subsets of a sample space Ω, as shown in Figure C.1.
We write, e.g., A ⊂ Ω. An impossible event is ∅, the empty set. When we
say “not A” we mean Ac, the complement of A (shaded region in Fig. C.2).
When we say “A or B” we mean “A or B or both” and denote this by A ∪ B
(Fig. C.3). Finally, when we say “A and B” we write A ∩ B (Fig. C.4). If “A
and B are mutually exclusive” then we write A ∩ B = ∅ and we say that the
sets are disjoint, like A and B in Fig. C.1.

For example, if we roll two dice, there are 6 × 6 = 36 possible out-
comes. This is our sample space. How many events are there for which
the sum of the two dice is a nine? Answer: there are four such possi-
bilities, {(3, 6), (4, 5), (5, 4), (6, 3)}. Let’s call this event A. If event
B denotes those rolls in which at least one die is a 3, then A ∩ B =

{(3, 6), (6, 3)}.
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E X E R C I S E C . 2— We have a deck of cards consisting of 4 suits (♣,♢,♡,♠)
with 13 cards per suit (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K). Suppose we draw one
card. There are 13× 4 = 52 possible outcomes.

1. How many events draw a♠?

2. How many events draw a 4?

3. How many events draw a 4♠?

4. How many events draw a 4 or a♠?

Ω
B

A

Figure C.1: Sets in Ω.

Ω

A

Figure C.2: The complement of A ⊂ Ω.

Ω

B

A

Figure C.3: A ∪ B.

Ω

A

B

Figure C.4: A ∩ B.

A probability is a rule that assigns a number P(A) to an event A and
obeys the following conditions:

1. 0 ≤ P(A) ≤ 1

2. P(Ω) = 1

3. For a set of disjoint (mutually exclusive) events4 {Ai},

4 We’ll need to be careful when we deal
with continuous, rather than discrete,
sets.

P (∪iAi) =
∑

i

P(Ai) :

P (A1 ∪ A2 ∪ A3 ∪ . . . ∪ AN) = P(A1) + P(A2) + P(A3) + . . .+ P(AN).

4. If A and B are independent—meaning that the outcome of A has no
influence on the outcome of B, and vice versa—then the probability of
both events occurring is P(A ∩ B) = P(A)P(B).

For example, suppose we roll a die. Each of the possible outcomes are
mutually exclusive, so by rules 2 and 3,

1 = P ({1, 2, 3, 4, 5, 6}) = P(1) + P(2) + . . .+ P(6).

If we assert that all outcomes are equally likely, P(1) = P(2) = . . . =

P(6) = p, then 6p = 1, so p = 1/6.
There are a few other properties of sets that are useful to know.

A ∪ B = B ∪ A, A ∩ B = B ∩ A;

A ∩ (B ∩ C) = (A ∩ B) ∩ C, A ∪ (B ∪ C) = (A ∪ B) ∪ C;

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

A ∪ Ac = Ω, A ∩ Ac = ∅;
Ω ∩ A = A, ∅ ∩ A = ∅.

Using these properties and our rules for assigning probabilities, we can
deduce a few more formulae. For example, P(Ac ∪ A) = P(Ac) + P(A) =
P(Ω) = 1; therefore, P(Ac) = 1 − P(A). Likewise, we can show that
P(∅) = 0. Finally, we can show that if A and B are not mutually exclusive,
but have some overlap, then

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).
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We encountered an instance of this last rule in exercise C.2.

E X E R C I S E C . 3— Suppose we draw 1 card from each of 2 decks. Find the
probability that at least one card is an ace, using the following two formulae:

P(“from deck 1 or from deck 2”) = P(“from deck 1”) + P(“from deck 2”)

−P(“from both deck 1 and deck 2”).

P(“at least one ace”) = 1− P(“drawing no ace”).

For an example of independent events,

P(“drawing a 4 and a♠”) = P(4)P(♠) =
1
13

1
4
=

1
52

.

Before continuing, we need to discuss techniques for han-
dling large numbers of possible outcomes. For example, sup-
pose we want to put 5 people in a line. How many ways are there to do
this? For the first spot there are 5 choices. After assigning this first spot,
we move to the second for which there are 4 choices. Proceeding along in
this fashion, the number of possible arrangements is P5 = 5·4·3·2·1 ≡ 5!. The factorial fcn. is recursively defined by

m! = m · (m− 1)!, with 0! = 1, 1! = 1.Suppose we are not picking everything; for example, in our class of 32
we may wish to pick a president, vice-president, secretary, and treasurer.
The number of possibilities is

P32 = 32 · 31 · 30 · 29 =
32 · 31 · 30 · 29 · 28 · . . . · 1

28 · . . . 1
=

32!
(32− 4)!

. (C.1)

Now suppose we aren’t picking individuals for distinct offices, but just
4 individuals. The order of how we pick is irrelevant—Autumn, Brook,
Collin, and Dustin is the same as Brook, Dustin, Collin, and Autumn. To
avoid over-counting different arrangements, we divide P32 from equa-
tion (C.1) by 4!, giving

“32 choose 4” ≡
(
32
4

)
≡ C32

4 =
32!

(32− 4)!4!
. (C.2)

More formally,
(n
m

)
is the number of ways of choosing m objects from a

set of n, without regard to order.
One example you may have seen often is the expansion of a binomial.

For example, suppose we wish to expand (a + b)5. There are a total of
25 = 32 terms of the form a5b0, a4b, a3b2, and so on:

(a+ b)5 = S5a5 + S4a4b+ S3a3b2 + S2a2b3 + S1ab4 + S0b5.

For S5, there is only one way to get a5: we must take one a from each of
the terms. For S4, we pick an a from four of the terms, and a b from the
fifth. There are five ways to do this. To get S3, we must pick an a from
3 of terms. We don’t care about order, so there are

(5
3

)
= 5!/(2!3!) =

5 · 4 · 3/(3 · 2) = 10 ways to do this. Our coefficients are therefore
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m term Sm

5 a5
(5
5

)
= 1

4 a4b
(5
4

)
= 5

3 a3b2
(5
3

)
= 10

2 a2b3
(5
2

)
= 10

1 a1b4
(5
1

)
= 5

0 b5
(5
0

)
= 1

and
(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5.

These coefficients
(n
m

)
obey several neat recurrence relations. When

we are picking our m objects, we have a choice: to pick or not to pick the
last item, item number n. If we pick the last item, then we must pick the
remaining m− 1 objects from the set n− 1. There are

(n−1
m−1

)
ways to do so.

If we do not pick the last item, then we must pick all m objects from the
set n − 1. There are

(n−1
m

)
ways to do so. The number of ways for both of

these choices must add up to the total number of ways of picking m from
n: (

n
m

)
=

(
n− 1
m− 1

)
+

(
n− 1
m

)
. (C.3)

We can make a nice table by putting the coefficients for each n on a row,
with n increasing as we go down the table. If m < 0 or m > n in one of
the terms in equation (C.3), we take that term to be 0. Also, we stagger
the entries, so that the terms on the RHS of equation (C.3) are diagonally
to the left and right above

(n
m

)
, like so:(n−1

m−1

) (n−1
m

)(n
m

) .

This gives us the following arrangement, known as Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
. . .

E X E R C I S E C . 4— Show that(
n

m+ 1

)
=

(
n
m

)
n−m
m+ 1

.

Then use this recurrence relation to derive
(6
m

)
,m = 1, . . . 6, starting from(6

0

)
= 1.
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We now have enough machinery to compute the probability of draw-
ing certain hands in poker. To make this concrete, we insist on no wild
cards. If we draw 5 cards from a deck, there are(

52
5

)
=

52 · 51 · 50 · 49 · 48
5 · 4 · 3 · 2 · 1

= 2 598 960

different possible hands. Suppose we want the probability of getting a
full house (3 of a kind plus one pair; e.g., 3 eights and 2 kings)? First,
there are 13 possibilities for the 3 of a kind. For each of those kinds, we
pick 3 out of 4 cards. We then have 12 choices for the pair, and once we
have that choice we’ll pick 2 of 4 cards. The number of such full house
combinations is therefore

13 ·
(
4
3

)
· 12 ·

(
4
2

)
= 13 · 4 · 12 · 6 = 3744

and the probability of a full house is therefore 3744/2 598 960 = 0.0014.

E X E R C I S E C . 5— What is the probability of drawing a flush (5 cards of the
same suit)?

C.2 A Probability Distribution: The RandomWalk

We are now ready to tackle a problem that occurs when modeling molec-
ular motion: the random walk. Imagine a person who flips a coin before
each step—heads to go right, tails to go left. On average, this person
doesn’t go anywhere, but from experience you know that sometimes
you will get several heads or tails in a row; you wouldn’t want to try this
random walk if you were a few steps from the edge of a cliff!

To formulate this problem, call the probability to go right p; the prob-
ability to go left is then (1 − p). We wish to find the probability Pn(m; p)
that after n steps, m will have been to the right and (n−m) to the left, for
a net displacement m − (n − m) = 2m − n steps. Clearly Pn(m; p) = 0 A positive distance means to the right;

negative, to the left.for m > n or m < 0. Since each step is independent of the others, the
probability for a specific sequence, e.g., RRLRLLRRRL, is

Pn(RRLRLLRRRL) = p6(1− p)4 (C.4)

since there were 6 steps to the right and 4 to the left. Of course, any
sequence of 6 steps to the right and 4 steps to the left has the same
probability, so to get the total probability P10(6) of having 6 steps out of
ten be to the right, we must multiply p6(1 − p)4 by the number of ways
of picking 6 steps out of 10 total, which is just

(10
6

)
. More generally, the

probability of taking m steps out of n to the right, with each step having a
probability p to be to the right, is

Pn(m; p) =
(
n
m

)
pm(1− p)n−m. (C.5)
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This function Pn(m; p) is called the binomial distribution.
For example, suppose you flip a coin 20 times. What is the probability

of getting exactly 10 heads?

Answer: P20(10) =
(
20
10

)(
1
2

)20

= 0.176.

E X E R C I S E C . 6— Compute P20(m) for m = 0 . . . 20 and p = 1/2. What is
the probability of getting 9, 10, or 11 heads? What is the probability of getting
between 7 and 13 heads?

Of course, as the next exercise illustrates, this probability distribu-
tion occurs in many contexts, not just in the context of flipping coins or
staggering home.

E X E R C I S E C . 7— A student takes an exam with 10 multiple choice
questions, each with 4 possible responses. Suppose the student guesses randomly
for each question. What is the probability the student gets 5 or more correct?

C.3 Describing the distribution

Themean

You are probably familiar with taking a simple average of a set of num-
bers: do a sum over the set and divide by the number of items in the set.
A related quantity for a probability distribution is the mean,

⟨m⟩ ≡
n∑

m=0

mPn(m; p). (C.6)

To show that this behaves as expected, there are some mathemat- More formally, we can define taking the
moment of a distribution with respect to
a function f(x) as

⟨f(x)⟩ =
∑

f(x)P(x).

In general, ⟨f(x)⟩ ̸= f(⟨x⟩).

ical preliminaries we need to address. First, let’s demonstrate that∑
Pn(m; p) = 1. The easiest way to do this is to take a concrete exam-

ple, say n = 5. Then

5∑
m=0

P5(m; p) =

5∑
m=0

(
5
m

)
pm(1− p)n−m

= p5 + 5p4(1− p) + 10p3(1− p)2 + 10p2(1− p)3

+5p(1− p)4 + (1− p)5.

Look familiar? You should convince yourself that this is the binomial

5∑
m=0

P5(m; p) = (p+ q)5
∣∣∣
q=1−p

= [p+ (1− p)]5 = 1.
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We can use this identity,
∑

Pn(m; p) =
∑(n

m

)
pmqn−m = (p + q)n with

q = 1− p, to help us evaluate various sums over the distribution.
To evaluate the mean, we first notice that each term in the sum of

equation (C.6) can be written mPn(m; p) =
(n
m

)
mpmqn−m. Now q = 1 − p;

but if we temporarily let q and p vary independently, we can write By ∂f/∂x, we mean, “the derivative of f
with respect to x, holding other variables
fixed.” For example, if f = f(x, y) = x2yey,
then ∂f/∂x = 2xyey and ∂f/∂y =

x2(1 + y)ey. Sometimes we write (∂f/∂x)y
just to make it clear we are holding y fixed.

mPn(m; p) =
(
n
m

)
p
(

∂

∂p

)
q
pmqn−m = p

(
∂

∂p

)
q

[(
n
m

)
pmqn−m

]
.

Hence, the mean is

⟨m⟩ =

n∑
m=0

mPn(m; p)

=

[
p
(

∂

∂p

)
q

n∑
m=0

(
n
m

)
pmqn−m

]
q=1−p

=

[
p
(

∂

∂p

)
q
(p+ q)n

]
q=1−p

=
[
pn (p+ q)n−1

]
q=1−p

= np. (C.7)

This makes sense: if we flip a fair coin n times, we expect the average
number of heads to be n/2. Notice also that for this distribution the
mean is the value for which the probability is highest.

The standard deviation

Although the mean ⟨m⟩ = np gives the most likely value, you know from
exercise C.6 that there is a substantial probability of getting values other
than ⟨m⟩. What we want to develop is a measure for how tightly the
distribution is clustered about the mean. We might want something like
⟨m− ⟨m⟩⟩—that is, what is the average difference from the mean—but
this won’t do: from the definition of the mean,

⟨m− ⟨m⟩⟩ = ⟨m⟩ − ⟨m⟩ = 0.

We could choose something like ⟨|m− ⟨m⟩|⟩, which gives a positive- From the definition of the mean,

⟨a+ bx⟩ =
∑

[(a+ bx)P(x)]

= a
∑

P(x) + b
∑

xP(x)

= a+ b ⟨x⟩ ,

since
∑

P(x) = 1.

definite measure of the width; a more convenient measurement, how-
ever, is the root-mean-square (rms) width

√
⟨(m− ⟨m⟩)2⟩. To calculate

this, let’s first expand the square:⟨
(m− ⟨m⟩)2

⟩
=
⟨
m2 − 2m ⟨m⟩+ ⟨m⟩2

⟩
=
⟨
m2⟩− ⟨m⟩2 .

To calculate
⟨
m2
⟩
for the binomial distribution, we use a similar trick

from the calculation of ⟨m⟩:

m2Pn(m; p) = p
(

∂

∂p

)
q

{
p
(

∂

∂p

)
q

[(
n
m

)
pmqn−m

]}
.
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Therefore

⟨
m2⟩ =

n∑
m=0

m2Pn(m; p)

=

{
p
(

∂

∂p

)
q

[
p
(

∂

∂p

)
q

n∑
m=0

(
n
m

)
pmqn−m

]}
q=1−p

=

{
p
(

∂

∂p

)
q

[
p
(

∂

∂p

)
p
(p+ q)n

]}
q=1−p

= p
(

∂

∂p

)
q

[
pn (p+ q)n−1

]
q=1−p

= np+ n(n− 1)p2.

Our expression for the rms width is therefore[⟨
(m− ⟨m⟩)2

⟩]1/2
=

[
np+ (np)2 − np2 − (np)2

]1/2
= [np(1− p)]1/2 . (C.8)

Notice that although the width of the distribution increases with n,
the ratio of the width to the average value decreases, width/mean ∝
1/
√
n. Thus the relative size of fluctuates about the mean decreases as n

becomes larger.

C.4 The Poisson distribution

A limiting case that comes up often is when p is very small, but n is large.
For example, suppose we are receiving X-rays from a dim source with a
photon countrate 36 hr−1; that is, in one hour we receive on average just
36 photons. In any given second the probability of receiving a photon is
36 hr−1 × 1 hr/3600 s = 0.01 s−1. If we point our detector at the source
for 500 s, however, we can expect to receive on average λ = 500 s ×
0.01 s−1 = 5 photons.

0 1 2 3 4 5
m

0.0

0.1

0.2

0.3

0.4

P λ
(m

)

λ=2.3

λ=1.2

Figure C.5: The Poisson distribution for
λ = 2.3 (thick gray lines) and λ = 1.2
(thin black lines).

If we take the binomial distribution, eq. (C.5), in the limit of p ≪ 1
while holding Np = λ = const., we obtain the Poisson distribution:

P(m, λ) =
λm

m!
e−λ. (C.9)

Thus in our example, if we have an average photon countrate of 36 hr−1

and we stare at our source for 500 s, then λ = 5 is our expected number
of photons, and P(3, λ) would be the probability of receiving 3 photons
in that time.

Not surprisingly, the mean number of events ⟨m⟩ is Recall the expansion

eλ =
∞∑

m=0

λm

m!
.⟨m⟩ =

∞∑
m=0

m
λm

m!
e−λ
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= e−λλ
d
dλ

∞∑
m=0

λm

m!

= λ.

The standard deviation is

σ =

√⟨
(m− ⟨m⟩)2

⟩
=

√
⟨m2⟩ − ⟨m⟩2 =

[
e−λ

(
λ
d
dλ

)2 ∞∑
m=0

λm

m!
− λ2

]1/2

=

[
e−λλ

d
dλ
(
λeλ)− λ2

]1/2
=

√
λ

As with the normal distribution, the ratio of width to mean, σ/ ⟨m⟩ =

1/
√

λ, decreases as the mean number of events increases.

E X E R C I S E C . 8— A high school graduating class has 400 students. What is
the probability that 2 people in that class have a birthday on January 1? What
about 3 students?

A historical example of a Poisson distribution is from WWII, when
London was targeted by V-1 flying bombs. A total of 537 V-1 bombs hit
London. To look at where the bombs hit, Clarke5 divided London into 5 R. D. Clarke. An application of the

poisson distribution. Journal of the
Institute of Actuaries, 72(3):481, 001 1946.
doi: 10.1017/S0020268100035435

576 districts, each of 0.25 km2 area. The distribution of bomb strikes
went as follows.

no. bombs 0 1 2 3 4 > 5
no. districts 229 211 93 35 7 1

That is, 229 districts were unscathed, 211 districts were hit once, and so
on, with one unfortunate district being hit by 7 bombs. Question: were
certain districts of London deliberately targeted? Suppose instead that
the bombs were just launched in the general direction of London and fell
randomly over the area. In that case, the probability of a district being
hit by any one bomb is small—1/576 to be exact. The average number
of bombs per district is λ = 537/576 = 0.9323, so we would expect a
Poisson distribution if the bombs were distributed randomly, with the
expected number of districts hit by m bombs as follows.

N (m) = 576× Pλ(m) = 576× λm

m!
e−λ,

m 0 1 2 3 4 5
Pλ(m) 0.3937 0.3670 0.1711 0.0532 0.0124 0.0023
N (m) 227 211 99 31 7 1

This matches the observed distribution well, and the pattern of hits is
therefore consistent with the bombs being scattered randomly over the
London area.6 6 This was probably small consolation to

the residents of the districts hit multiple
times.
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C.5 An alternate derivation of the Poisson distribution
This section is not essential and can be
omittedAnother probability distribution occurs in situations where the probabil-

ity of an individual event p is very small but there are a large number of
trials. In astronomy, this comes up frequently in looking at some sources
in X- or γ-rays: the probability of receiving a single photon in any given
second is small, but over a long period of time (several thousands of sec-
onds, e.g.) there will be a sizable number of photons collected. What is
the probability of receiving N photons in a given time interval?

To derive this, assume that our time intervals dt are sufficiently short
that the chance of receiving more than one photon in dt is negligible.
Then in dt we either receive one photon with probability μdt ≪ 1 or
we receive no photons with probability (1 − μ)dt. Let us take μ to be a
constant, and assume that non-overlapping intervals of time are statis-
tically independent—that is, the chance of receiving a photon in a given
interval doesn’t depend on what happened in the previous interval. Then
there are two ways to receive N photons in a time t + dt: we can receive
N photons in a time t and no photons in the interval (t, t+ dt); or we can
receive N−1 photons in a time t and one photon in the interval (t, t+dt).
The probability of receiving N photons in a time t + dt is the sum of the
probabilities of these two scenarios,

Pμ(N; t+ dt) = (1− μdt)Pμ(N; t) + μdtPμ(N− 1; t).

Rearranging terms and taking the limit dt → 0,

dPμ(N; t)
dt

= lim
dt→0

Pμ(N; t+ dt)− Pμ(N; t)
dt

= μ [Pμ(N− 1; t)− Pμ(N; t)] .

(C.10)
The probability of getting no events in t+ dt is easier:

Pμ(N = 0; t+ dt) = (1− μdt)Pμ(N = 0; t),

with solution Pμ(N = 0; t) = e−μt. We fix the constant of integration by
setting Pμ(N = 0; t = 0) = 1.

Once we have Pμ(N = 0; t), we can solve the differential equa-
tion (C.10) for Pμ(N = 1; t),

dPμ(N = 1; t)
dt

= μ
[
e−μt − Pμ(N = 1; t)

]
,

with solution Pμ(N = 1; t) = (μt)e−μt, as you can verify. We can then
find a solution for Pμ(N = 2; t) and continue in that fashion to find the
Poisson distribution:

Pμ(N; t) =
λN

N!
e−λ (C.11)

with λ = μt.
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E X E R C I S E C . 9— Show that Pμ(N; t) (eq. [C.11]) satisfies the recursion
relation, equation (C.10). Since Pμ(N = 1; t) also satisfies the equation, this
proves via induction that equation (C.11) is the correct distribution.

C.6 The normal, or Gaussian, distribution

To motivate our discussion of the probability distribution for a contin-
uous variable, suppose we wish to find the average location of a person
doing the random walk. If all the steps have the same unit length, then
for m steps to the right the position is x = m − (n − m) = 2m − n with
mean value ⟨x⟩ = 2 ⟨m⟩ − n. Now suppose that the steps are not all of
the same length, but instead have some random distribution with mean
length ⟨ℓ⟩. We’d like to know the probability, Pn(x), of our walker being
at position x.

The first conceptual hurdle we reach is that it makes no
sense to ask this question. We cannot ask, “What is the probability
Pn(x) of the walker being at exactly x = 0.2914578329?”: there are an
innumerable infinity of real numbers, so the probability of hitting any
particular real number exactly is vanishingly small. What we instead
must ask is, “What is the probability Pn(x; Δx) = p(x)Δx of being in some
interval Δx about x”? We call p(x) the probability density or probability
distribution and assume that P(x) ∝ Δx for sufficiently small Δx.

Although the formal proof is beyond the scope of the course, it can be
shown that in the limit of large N,

p(x; μ, σ) =
1√
2πσ

exp

[
− (x− μ)2

2σ2

]
; (C.12)

for this random walk with steps of average length ⟨s⟩, μ = (2 ⟨m⟩ −
n) ⟨s⟩ and σ ∝

√
n ⟨s⟩. This distribution is known as the normal, or

gaussian, probability distribution. The factor 1/(
√
2πσ) ensures that the

probability has the correct normalization, The peak, or most probable Recall that∫ ∞

−∞
e−βx2 dx =

√ π
β
.

value, of this distribution is at x = μ.
We can verify that the mean of the normal distribution is μ: letting

z = x− μ,∫ ∞

−∞

x√
2πσ

exp

[
− (x− μ)2

2σ2

]
dx =∫ ∞

−∞

z√
2πσ

exp
[
− z2

2σ2

]
dz+

∫ ∞

−∞

μ√
2πσ

exp
[
− z2

2σ2

]
dz

The first term on the RHS vanishes because it is odd in z; that is,∫ 0

−∞

z√
2πσ

exp
[
− z2

2σ2

]
dz = −

∫ ∞

0

z√
2πσ

exp
[
− z2

2σ2

]
dz.
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The second term is just μ
∫∞
−∞ p(z) dz = μ.
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Figure C.6: Normal, or Gaussian, proba-
bility distribution for different values of μ
with σ = 1.

∫ ∞

−∞
p(x; μ, σ) dx = 1.
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Figure C.7: Normal distribution for μ = 0
and varying values of σ.

To compute the standard deviation,
√
⟨(x− ⟨x⟩)2⟩ =

√
⟨x2⟩ − ⟨x⟩2, we

use the following trick:∫ ∞

−∞
x2e−βx2 dx = − ∂

∂β

∫ ∞

−∞
e−βx2 dx = − ∂

∂β

√
π
β
=

1
2

√
π

β3/2 .

To use this, we first change variables to z = x− μ; then

⟨
x2
⟩
− ⟨x⟩2 =

∫ ∞

−∞

z2 + 2zμ + μ2
√
2πσ

exp
[
− z2

2σ2

]
dz− μ2

=

∫ ∞

−∞

z2√
2πσ

exp
[
− z2

2σ2

]
dz+ 2μ

∫ ∞

−∞

z√
2πσ

exp
[
− z

2σ2

]
dz

+μ2
{∫ ∞

−∞

1√
2πσ

exp
[
− z

2σ2

]
dz− 1

}
.

You should see that the last term (in { }) is zero; also, the middle term
vanishes because it is odd in z. We then use our trick to evaluate the first
term and obtain,

⟨
x2
⟩
− ⟨x⟩2 =

∫ ∞

−∞

z2√
2πσ

exp
[
− z2

2σ2

]
dz

=

√
π
2

(2σ2)3/2
1√
2πσ

= σ2.

Plots of the normal distribution for different values of σ and μ = 0 are
shown in Figure C.7.

C.7 The cumulative probability distribution

Now that we have our probability distribution, we can ask questions such
as, “For a mean value μ and standard deviation σ, what is the probability
that a < x < b?” or “What is the probability that x < c?”

To answer questions like these, we integrate p over the range of inter-
est:

P(a < x < b) =

∫ b

a

1√
2πσ

exp
[
− (x− μ)2

2σ2

]
dx,

P(x < c) =

∫ c

−∞

1√
2πσ

exp
[
− (x− μ)2

2σ2

]
dx.

A common application is to assess the probability that a measurement
will lie within some range about μ: for example, “What is the probability
of measuring x in a range (μ − σ, μ + σ)?”
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As shown in Figure C.8, the 1σ region (light gray) contains 68% of the
probability; that is, for a normal distribution you would expect about
2/3 of your measurements to lie within μ ± σ. For the range μ ± 2σ, the
probability is 95%; that is, you would expect only 1 in 20 measurements
to lie outside this range.

4 2 0 2 4

x/σ

0.0

0.1

0.2

0.3

0.4

p
(x

)

Figure C.8: The 2σ (dark gray) and 1σ
(light gray) probability regions, compris-
ing 95% and 68% probability, respec-
tively.

C.8 Measurements with random fluctuations

Taking a measurement is not a simple affair. Suppose, for example, we
want to measure the brightness of a star. First, we do not directly mea-
sure the brightness; what happens instead is that the light from the star
is focused on a charge-coupled device (CCD)—a semiconductor chip—
that converts the photons into electric charge. The charge is read out
from a chip, and we relate that charge to the flux of light incident on the
chip. Now, the power supply to the CCD is not perfect but has some fluc-
tuations in voltage. There is turbulence in the atmosphere that refracts
the starlight. The telescope is a big mechanical device that vibrates. And
so on. If we take a set of measurements of some quantity, we will have
a distribution of values; our task is to estimate the most likely value for
that quantity given the measured values.

It is plausible that each of these fluctuations produces an upward or
downward error in our measurement, and the size of each fluctuation
varies randomly. We can therefore think of our measurement as being
like a random walk: each source of variation contributes “one step”, and
the end result is that the value x that we measure has a probability to lie
in (x, x+ dx) of

p(x) dx =
1√
2πσ

exp
[
− (x− μ)2

2σ2

]
dx.

In this case μ is the “true” value of the signal, which we don’t know a
priori. We also don’t know beforehand the value of σ, which indicates the
precision of our measurement.

Suppose we make N measurements with values xi, i = 1, . . . ,N.
Question: what is the best estimate of μ and σ? Intuitively we expect that
these should be We use E(μ) to mean, “The expected value

of μ”, and likewise for E(σ).

E(μ) = 1
N

∑
xi and E(σ) =

√
1
N

∑
(xi − x̄)2,

respectively. To put our expectations on a firmer footing, we note that
since the probability to measure a value x is P(x) and the N measure-
ments x1, x2, . . . , xN are independent, the probability that we measured
the set {xi}i=1,...,N is The symbol

∏
indicates a product,

N∏
i=1

ai ≡ a1 × a2 × . . .× aN.P
(
{xi}i=1,...,N

)
= P(x1)P(x2)× . . .× P(xN)
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=

N∏
i=1

1√
2πσ

exp
[
− (xi − μ)2

2σ2

]
dxi

= (2π)−N/2 σ−N exp

[
− 1

2σ2

N∑
i=1

(xi − μ)2
]

dx1 . . . dxN.

In the absence of additional information, our best guess for μ and σ is to
pick values that maximize the probability of our measurements. To find
μ, for example, we take the derivative of P

(
{xi}i=1,...,N

)
with respect to

μ and set it to zero to find the maximum, Recall that

d exp[f(x)]
dx

= exp[f(x)]×
df
dx

.

0 =
∂

∂μ
P
(
{xi}i=1,...,N

)
= P

(
{xi}i=1,...,N

)
×

[
1
σ2

N∑
i=1

(xi − μ)

]

= P
(
{xi}i=1,...,N

) 1
σ2 ×

[(
N∑
i=1

xi

)
− Nμ

]
.

For this derivative to vanish, the quantity in [ ]must vanish. We therefore
find that the value of μ which maximizes the probability that we made
this set of measurements to be

E(μ) = 1
N

N∑
i=1

xi ≡ x̄. (C.13)

E X E R C I S E C . 1 0— Show that

E(σ) =

[
1
N

N∑
i=1

(xi − μ)2
]1/2

.
You may notice that E(σ) depends on μ,
which we don’t know, but must rather es-
timate as x̄. If one uses x̄ as an estimate for
μ, then one has to make the uncertainty a
bit larger,

E(σ) =

[
1

N− 1

N∑
i=1

(xi − x̄)2
]1/2

.

To quote Press et al. [2007], “if the
difference between N and N − 1 [in the
formula for E(σ)] ever matters to you,
then you are probably up to no good.”

We often want to know the probability distribution for a
function of several random variables. For example, we might
measure the volume of a block as V = L × W × H, where L, W, and H
are the measured length, width, and height, respectively, and each has an
associated uncertainty σL, σW, and σH. What is the resulting uncertainty
in V?

To make this general, suppose f({xi}) is a function of the N indepen-
dent random variables x1, x2, . . . , xN. If the relative values of the uncer-
tainties are small, that is σi/xi ≪ 1, then we can expand f about the
values xi = μi:

f ({xi}) ≈ f ({μi}) +
N∑
i=1

∂f
∂xi

∣∣∣∣
xi=μi

(xi − μi) . (C.14)

To find the width of our distribution, we will compute

σ2
f = ⟨(f− ⟨f⟩)2⟩
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In the limit of a large number of measurements, we assume that ⟨f⟩ ≈
f({μi}); then

f− ⟨f⟩ ≈
N∑
i=1

∂f
∂xi

∣∣∣∣
x=μi

(xi − μi)

and the width σ2
f is

⟨
(f− ⟨f⟩)2

⟩
=

⟨[
N∑
i=1

∂f
∂xi

∣∣∣∣
x=μi

(xi − μi)

]2⟩
.

We then expand the square of the term in [ ] to obtain

⟨
N∑
i=1

(
∂f
∂xi

)2

(xi − μi)
2
+
∑
i ̸=j

∂f
∂xi

∂f
∂xj

(xi − μi)
(
xj − μj

)⟩
=

N∑
i=1

(
∂f
∂xi

)2 ⟨
(xi − μi)

2
⟩
+
∑
i ̸=j

∂f
∂xi

∂f
∂xj

⟨
(xi − μi)

(
xj − μj

)⟩
. (C.15)

Now, if the variables xi are completely independent, then⟨
(xi − μi)

(
xj − μj

)⟩
= ⟨(xi − μi)⟩

⟨(
xj − μj

)⟩
= 0

and therefore

σ2
f = ⟨(f− ⟨f⟩)2⟩ =

N∑
i=1

(
∂f
∂xi

)2

σ2
i (C.16)

This is an important result: it tells us how to propagate uncertainties.
To go back to our example, suppose we measure the length L, width W,
and height H of a block with associated uncertainties σL, σW, and σH. The
uncertainty in our volume is then We use the relation ∂V/∂L = W × H =

V/L, and so on for the derivatives w.r.t. W
and H.σ2

V =

(
V
L

)2

σ2
L +

(
V
W

)2

σ2
W +

(
V
H

)2

σ2
H (C.17)

or
σV

V
=

√(σL

L

)2
+
(σW

W

)2
+
(σH

H

)2
.

Using equation (C.16) we can derive general rules for propagating uncer-
tainties.

E X E R C I S E C . 1 1— Demonstrate the following relations. In these
equations, x and y are independent random variables, and a and b are constants.

1. For f = ax+ by, show that

σf =
√

a2σ2
x + b2σ2

y .

2. For f = xayb, show that

σf

f
=

√
a2
( σx

x

)2
+ b2

(
σy

y

)2

.
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An interesting special case of equation (C.16) is when we
make a number of repeated measurements xi, i = 1, . . . ,N and

f =
1
N

N∑
i=1

xi = ⟨x⟩,

that is, f is the average of our measurements. Since each measurement
has the same uncertainty σ, the uncertainty in our average—the error in
the mean—is

σ⟨x⟩ =
1
N

√√√√ N∑
i=1

σ2 =
1
N

√
Nσ2 =

σ√
N
. (C.18)

By making many repeated measurements, the uncertainty in the mean due to
random fluctuations can be made much less than the uncertainty of any single
measurement.

E X E R C I S E C . 1 2— Suppose during an election ten independent polls each
show that candidate A is leading with 50.3% of the vote. Since the margin of
error—the uncertainty—in each poll is±1%, the news anchor reports that the
election is a dead heat. Is this correct? What is the probability of candidate A
receiving more than 50% of the vote, assuming that the errors in the polls follow
a normal (Gaussian) distribution with σ = 1%?

Now we can generalize our discussion to the case of making N
measurements, but with each measurement xi having a different uncer-
tainty σi. What is our estimate for μ, and what is our estimate of σμ, the
uncertainty in μ? To answer, we go back to finding the value of μ that
maximizes the probability of us obtaining a sequence of measurements
{xi}i=1,...,N,

0 =
∂

∂μ
P
(
{xi}i=1,...,N

)
=

∂

∂μ
P(x1)P(x2) . . .P(xN)

= P
(
{xi}i=1,...,N

)
×

N∑
i=1

xi − μ
σ2
i

Hence the expected (most likely) value of μ is

E(μ) =
∑N

i=1 xi/σ2
i∑N

i=1 1/σ2
i

. (C.19)

Note that in the limit σi → σ, then E(μ) →
∑

xi/N, as it should.
We can compute the uncertainty in E(μ) from equation (C.16),

σ2
μ =

N∑
i=1

(
∂μ
∂xi

)2

σ2
i =

∑N
i=1 1/σ2

i(∑N
i=1 1/σ2

i

)2 =
1∑N

i=1 1/σ2
i

. (C.20)

As before, in the limit σi → σ, σμ → σ/
√
N.
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