
E DWARD BROWN

NUMER I C A L
T E CHN I QU ES
I N A S T RO PHYS I C S

About the cover: The image is from a simulation of a single-mode Rayleigh-Taylor instability. Made with the
FLASH code.
Credit: Calder et al. (2002) The Astrophysical Journal Supplement Series, 143, 201. Image copyright American
Astronomical Society.

© 2016 Edward Brown
git version d2406547 …

cbna

Except where explicitly noted, this work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

iii

Preface

These notes are from a graduate-level course on numerical techniques in
astrophysics at Michigan State University. The only preparation assumed
is that the students have completed an undergraduate degree in physics
or astronomy. The course was taught as a half-semester module, and
therefore the scope is limited to being an introduction to assorted topics,
rather than amore focused exploration of any one area.

The text layout uses the tufte-book1 LATEX class: the main feature is a 1 https://tufte-latex.github.io/
tufte-latex/large right margin in which the students can take notes; this margin also

holds small figures and sidenotes. Exercises are embedded throughout
the text. These range from “reading exercises” to longer, more challeng-
ing problems.

These notes are under active development; to refer to a specific
version, please use the eight-character stamp labeled “git version” on the
copyright page.

https://tufte-latex.github.io/tufte-latex/
https://tufte-latex.github.io/tufte-latex/

Contents

1 Arithmetic at finite precision 1

2 Finding Roots 5

3 Ordinary Differential Equations 9

4 Stiff ODEs 27

5 Traffic 33

6 The Equations of Fluid Mechanics 37

7 A simple PDE: the linear advection equation 41

8 Flux-conservative algorithms 47

9 Solving a Parabolic PDE 53

A Performance 57

Bibliography 61

List of Figures

2.1 The cosine function. 5

3.1 Illustration of Richardson extrapolation 25

4.1 Integration with forward Euler 29
4.2 Integration with backward Euler 30
4.3 Integration with trapezoid method 30

5.1 Characteristics of traffic flow. 34

7.1 Initial profile for the advection equation. 43
7.2 Solutions of the advection equation 44

8.1 Solution of Burgers equation 48
8.2 Schematic of piston-driven shock. 48
8.3 A disturbance steepening as it propagates. 49

List of Exercises

1.1 Cycling integers 2
1.2 Integer representation of 32-bit numbers 2
1.3 Determining characteristics of processor 2
1.4 Floating-point precision 2
1.5 Spacing of model numbers 2
1.6 Numerical approximation of derivative 3
1.7 Convergence of finite difference 3
1.8 Convergence of finite difference, redux 3

2.1 Efficiency of bisection rootfind 6
2.2 Write a bisection scheme 6
2.3 Explaining Newton’s method 6
2.4 Convergence of Newton’s method 6
2.5 Radius of convergence for Newton’s method 7
2.6 Write a Newton’s rootfind scheme 7

3.1 The second-order Adams-Bashforth method 12
3.2 The predictor-corrector scheme 13
3.3 Write a 4th-order Runge-Kutta integrator 26

4.1 The trapezoidal scheme for stiff ODE’s 31
4.2 Stability properties of explicit and implicit schemes 31

5.1 Modeling traffic flow 35

9.1 Diffusion in a rod 55
9.2 Numerically solve the reaction-diffusion equation 56

1
Arithmetic at finite precision

1.1 Representation of integer numbers

An integer i can be represented by the model

i = s×
q∑

k=1

wkrk−1 (1.1)

Here s is the sign bit, r > 1 is the base (usually 2), q = N − 1 where
N is the total number of bits, and 0 ≤ wk < r. The largest integer
representable with this model is clearly rq − 1. In the remainder of this
discussion, we’ll assume that r = 2 (binary arithmetic).

Addition is performed in the usual fashion. To perform subtraction—
addition of a negative number—there is no need to test for the value of
s and have a separate algorithm; instead a negative number−j (j > 0) is
stored as its complement, which is 2q − j, with the sign bit set to s = 1.
Hence i− j = i+(−j) = i+2q − j. We also stipulate that addition acts like
an odometer that “rolls over.” This scheme automatically sets the sign bit
correctly.

For example, suppose we have 4 bits available, so q = 3 in eq. (1.1).
Then we can represent the positive integers from 0 to 2q − 1 = 7 as

0 0000
1 0001
2 0010
3 0011
... ...
7 0111

Suppose we wish to compute 7 − 1 = 7 + (−1). We represent the
number−1 as 8 − 1 = 7 and set the sign bit, giving 1111. Doing the
addition,

7 0111
-1 1111
6 0110

which is the correct result. Try this scheme for, e.g., 3 − 5 and verify

2 numerical techniques in astrophysics

that you get the correct result.

E X E R C I S E 1 . 1— What is the output of the following loop?

9 integer :: a, i

12 a = 1
13 do i = 0,32
14 print ’(i3,tr1,i12)’,i,a
15 a = a+a
16 end do

1.2 Representation of real numbers

Let x ̸= 0 be a real number. Then x is represented by the model (according
to the fortran standard)

x = s× be ×
p∑

k=1

fk × b−k. (1.2)

Here b is termed the radix and p the digits: b, p > 1. The exponent e lies
in the range emin ≤ e ≤ emax, where emin, emax are theminimum and
maximum exponents. Finally, 0 ≤ fk < b with f1 ̸= 0.

E X E R C I S E 1 . 2— In the integer representation of eq. (1.1) for a 32-bit
number, what are the largest and smallest representable integers?

E X E R C I S E 1 . 3— Write a program to find the following characteristics of
your machine: radix b, digits p, and minimum and maximum exponents emin, emax.
Note that fortran has built-in functions to return these values. If you wish to
use C++, you can find analogous functions in the class numeric_limits<float>,
described in the header file <limits>.

E X E R C I S E 1 . 4— In terms of the model parameters b and p, what is the
smallest number ε such that 1.0− ε ̸= 1.0? What is its decimal value on your
machine?

E X E R C I S E 1 . 5— Using the model in equation 1.2, find an expression in
terms of b and p for the spacing S between model numbers about x = 3π/4. Write
a code to confirm your answer.

arithmetic at finite precision 3

1.3 Binary storage: which end is up?

In the previous examples, we have written the numbers with the most-
significant bit (the biggest term in the sum, eq. [1.1] and [1.2]) coming
first. This is a big-endian scheme. Another possible scheme is to store
the bits starting with the least significant, a little-endian scheme. Both
schemes are in use, and this fact, among others, makes files of raw binary
data non-portable.

E X E R C I S E 1 . 6— Suppose you could evaluate a function f(x) at points a,
a+ h, and a+ 2h. Construct an approximation to df(x)/dx|x=a that is accurate to
O(h2).

E X E R C I S E 1 . 7— Compute a numerical approximation to the derivative of
cos(x),

d cos(x)
dx

≈ cos(x+ h)− cos(x)
h

(1.3)

for h = S× 2q with S from problem 1.5 and q = 20, 19, 18, . . . , 0. For each q,
compute the relative error between the numerical approximation of d cos(x)/dx
and− sin(x). Plot your results, and explain any trends you see.

E X E R C I S E 1 . 8— Now repeat problem 1.7, but this time don’t make h a
binary multiple of S (for example, make h = 0.9× S× 2q). How do your results
differ from those of problem 1.7?

2
Finding Roots

2.1 Introduction

A common numerical task is finding the root(s) xr of a function f(x)
such that f(x)|x=xr = 0. In practice, this means finding xr to within
some tolerance Δ. Recall that it may not be even possible to represent xr
exactly. It is desirable that the algorithm be

• Efficient: it should converge to the desired tolerance in as few a num-
ber of function evaluations as possible.

• Robust: if xr is known to lie in the interval [x1, x2], then the algorithm
should converge.

As a worked example, suppose we wanted to find the root of f(x) = cos(x)
for x ∈ [0, π] (see Fig. 2.1).

●

●

x

f(
x)

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0
Figure 2.1: Function f(x) = cos(x) on the
interval x ∈ [0, π].

6 numerical techniques in astrophysics

2.2 Bisection

One fail-proof method is bisection. If we have the root bracketed be-
tween [x1, x2], meaning that f(x1) and f(x2) have different signs, then the
following algorithm will always find a root. Find the midpoint of the in-
terval xm = (x1 + x2)/2 and compute f(xm). Determine the subinterval,
either [x1, xm] or [xm, x2], in which the root lies. Now repeat by finding the
midpoint in which the root lies, and so on until the width of the inter-
val is less than the desired tolerance Δ. For example, in Figure 2.1, our
guesses are at x1 = 0.25π and x2 = 0.7π. The midpoint of this interval is
then 0.475π, and our next interval will be [0.475π,0.7π].

E X E R C I S E 2 . 1— In the bisection scheme, for a given starting interval size
Δinitial, how many iterations are required to reach a given tolerance Δ?

E X E R C I S E 2 . 2— Write a bisection scheme. Find the root cos(x) = 0 on the
interval x ∈ [0, π]. Plot the error in the bracket as a function of iteration number.

2.3 Newton’s method

A second, classic, method is due to Newton. On each iteration n, with
trial guess xn, evaluate the function f(xn) and its first derivative f′(xn) and
compute a new guess xn+1 by expanding the function to first order and
solving for the correction δxn = xn+1 − xn,

0 = f(xn+1) ≈ f(xn) + f′(xn)δxn, (2.1)

whence xn+1 = xn − f/f′|xn . For example, in Fig. 2.1, if our initial guess is
x0 = π/4, then f(x0) = cos(π/4) = 1/

√
2 and f′(x0) = −1/

√
2. Hence our

next guess for the root would be x1 = π/4 +
√
2/

√
2 = (π + 4)/4, which

differs from the root, π/2, by 1 − π/4 = 0.21. This is an improvement
from our previous guess. If the method is converging, δxn will decrease
rapidly with n, and one stops when δxn < Δ.

E X E R C I S E 2 . 3— Explain geometrically how Newton’s method works.

E X E R C I S E 2 . 4— Derive an expansion series for δxn, as defined in
equation (2.1), in terms of the previous correction δxn−1. Show that the leading
order term isO(δx2n−1), and use this to estimate the number of iterations
required to converge a given tolerance Δ.

finding roots 7

E X E R C I S E 2 . 5— For the function in Fig. 2.1, what is the smallest value of
the initial guess x0 such that Newton’s method converges to xr = π/2? What
happens if the initial guess is smaller than this?

E X E R C I S E 2 . 6— Write a Newton’s rootfind scheme. Test it by finding the
root of cos(x) = 0 for x ∈ [0, π]. Plot the error in the root as a function of the
iteration number.

3
Ordinary Differential Equations

3.1 Background

A common computational task is the solution of ordinary differential
equations. To motivate this, consider some number N particles interact-
ing in a potential. The particles obey the equations of motion

drrri
dt

=
pppi
mi

, (3.1)

dpppi
dt

= −∇Φ ({rrr}) . (3.2)

for i = 1, . . . ,N. This is a system of 6N ODE’s. Some familiar examples for
the potential Φ are

gravitational, Φ ({rrr}) = − 1
2

∑
i ̸=j

Gmimj

|rrri − rrrj|
;

molecular, Φ ({rrr}) = − ϵ
2

∑
i ̸=j

[
2
(

r0
|rrri − rrrj|

)6

−
(

r0
|rrri − rrrj|

)12
]
;

or screened coulomb, Φ ({rrr}) = − 1
2

∑
i ̸=j

ZiZje2

|rrri − rrrj|
exp

(
−|rrri − rrrj|/r0

)
.

The gravitational interaction gives us Kepler’s problem and for large N
models of globular clusters. The Lenard-Jones (molecular) and Yukawa
(screened coulomb) potentials are common in molecular dynamics prob-
lems.

The Lane-Emden Equation

A classic problem in stellar evolution is the construction of polytropic
stellar models. One makes the ansatz that the pressure P is related to the
density ρ via

P(r) = Kρ1+1/n(r) (3.3)

10 numerical techniques in astrophysics

where n and K are constants. Further define the dimensionless variable θ
via

ρ(r) = ρcθ
n(r), (3.4)

where the subscript c denotes the central value at r = 0. Substituting
these definitions into Poisson’s equation,

∇2Φ = 4πGρ, (3.5)

and the equation for hydrostatic equilibrium,

∇P = −ρ∇Φ, (3.6)

we obtain the Lane-Emden equation for index n,

ξ−2 d
dξ

(
ξ2 dθ

dξ

)
= −θn. (3.7)

Here ξ = r/rn is the dimensionless coordinate, and

rn =
[
(n+ 1)Pc

4πGρ2
c

]1/2
(3.8)

is the radial length scale.
For a stellar model, we have the following boundary conditions,

θ(ξ)|ξ=0 = 1, (3.9)

θ′(ξ)
∣∣

ξ=0 = 0. (3.10)

From the form of equation (3.7), it follows that θ(−ξ) = θ(ξ), that is, the
solution is even. A power-series solution to θ out to order ξ6 is

θ(ξ) = 1− 1
6

ξ2 +
n

120
ξ4 − n(8n− 5)

15120
ξ6 +O(ξ8) (3.11)

Finally, there are analytical solutions for n = 0, 1, and 5. In particular,

θ0(ξ) = 1− ξ2

6
(3.12)

θ1(ξ) =
sin ξ

ξ
. (3.13)

We will use these analytical solutions to verify the ordinary differential
equation solver in the project. The location of the first zero, ξ1, is taken
as the “radius” for the stellar model. For example, if n = 0 (eq. [3.12]),
ξ1 =

√
6.

To solve the Lane-Emden equation numerically, first decom-
pose the Lane-Emden equation (eqs. [3.7], [3.9], and [3.10]) into two
first-order differential equations. Define

t = ξ (3.14)

y = θ (3.15)

z =
dθ
dξ

. (3.16)

ordinary differential equations 11

With this decomposition, we now have two coupled first-order ODEs,

y′ = z (3.17)

z′ = −2
t
z− yn (3.18)

with boundary conditions

y(0) = 1 (3.19)

z(0) = 0. (3.20)

NB: This system is indeterminate at t = 0. To get around this, you can
start the integration at t = h, using the expansion (eq. [3.11]).

The two-body gravitational problem

Another classic problem is Kepler’s: two point masses interacting via
a gravitational potential. For this problem, we can solve it analytically,
which will give us something to compare our numerical solutions against.
Let’s first recall some analytical properties of our 2-body problem. We’ll
set G = 1 to make our equation simpler. In doing these calculations, it
is good practice to scale quantities so that they are of order unity. The
final numerical results can then be scaled to CGS values when we wish to
extract physical values.

By boosting to a center-of-mass frame, we can reduce our problem
to that of a single particle of mass μ ≡ m1m2/(m1 + m2) obeying the
equations of motion

drrr
dt

=
ppp
μ
,

1
μ
dppp
dt

= −M
r3

rrr, (3.21)

where M = m1 + m2 and rrr = rrr2 − rrr1. If the total energy E = p2/(2μ) −
M/r < 0, then the motion is in an ellipse, with semi-major axes,

a = −Mμ
2E

, b =
L

(2μE)1/2
(3.22)

Here L = μrrr × ppp = const is the angular momentum. The period of the
orbit is

T =
π√
2
Mμ3/2|E|−3/2 (3.23)

From this solution, we can get back the positions of our two masses via
the equations

rrr1 = −m2

M
rrr, rrr2 =

m1

M
rrr,

where we take the origin to be at the center-of-mass.

12 numerical techniques in astrophysics

3.2 A worked example: Development of a two-body code

Let’s build a lightweight code to integrate the equations of motion. Here
we’ll break the code into two pieces: a module that will hold all of the
“tools” needed to do the calculation, and a driver routine that sets up
the problem (perhaps taking input from the user) and the calls upon the
tools in the module to do the work.

How should we integrate our equations (3.21)? To start, suppose we
have a solution z = (rrr, ppp) at time t. Here z denotes a point in our 6N-
dimensional phase space. We can approximate the solution at a slightly
later time t+ h as

z(t+ h) = z(t) + h
dz
dt

∣∣∣∣
t
+

1
2!

h2 d2z
dt2

∣∣∣∣
t
+ . . .

But, we have expressions for dz/dt: these are just the right-hand sides
of equations (3.21). So the simplest expression, accurate toO(h2) is to
approximate our integral by a sequence of steps

z(t+ h) ≈ z(t) + h
dz
dt

∣∣∣∣
t
.

To discretize this equation, let tn = t0 + nh, and let zn = z(tn). Denoting
dz/dt|tn = f(zn), we arrive at our equation,

zn = zn−1 + hf(zn−1), (3.24)

where f(z) is the right-hand side of equations (3.21). This method is
called forward Euler. It is not all that accurate, but it makes a good start-
ing point for developing our methods.

E X E R C I S E 3 . 1— Suppose we have an ODE

du
dt

= f(t, u). (3.25)

Given a set of solutions φk = u(t = k× h), k = 0, . . . , n, construct an
approximate solution φn+1 at time tn+1 = (n+ 1)h, where h is the stepsize, by the
relation

φn+1 = φn + h
[
af(tn, φn) + bf(tn−1, φn−1)

]
, (3.26)

where a and b are constants. Find a and b such that φn+1 agrees to u[t = (n+ 1)h]
to order h2 if φn = u(t = nh) and φn−1 = u[t = (n− 1)h]. If you did this correctly,
you will have derived the second-order Adams-Bashforth method.

Truncation Error

The forward Euler method is a first-ordermethod. The truncation error
on each step isO(h2). To integrate over a fixed interval T takes T/h steps,
making the global errorO(h).

ordinary differential equations 13

Suppose we take a predictor step to the midpoint of the interval,

zpn+1/2 = zn +
h
2
f(tn, zn), (3.27)

and then use zPn+1/2 in a midpoint corrector step,

zn+1 = zn + hf(tn+1/2, z
p
n+1/2). (3.28)

One can show (see Exercise 3.2) that zn+1 agrees with the solution to
O(h2); this procedure is a second-order Runge-Kuttamethod.

E X E R C I S E 3 . 2— Show that the scheme in equations (3.27)–(3.28) gives an
approximate solution φn+1 that agrees with the exact solution u[t = (n+ 1)h] to
order h2.

Note that there is more than one way to construct a scheme of a given
order. For example, we might split the steps as follows. For zn = (rn, pn),
compute zn+1 via

rn+1/2 = rn +
h
2
pn
m
,

pn+1 = pn −
h
m

(
∂Φ
∂r

)
rn+1/2

,

rn+1 = rn+1/2 +
h
2
pn+1

m
. (3.29)

This is known as the Verlet or leapfrogmethod.

Project Organization

In general, it is usually good to organize the effort before coding; impos-
ing order is more difficult when there is already a lot of files lying about.
What kind of files will we have? First, we will have files containing the
fortran source code. It might be desirable to keep those in a separate
directory—let’s call it source. Second, the fortran compiler will generate
many extra files as it builds the code, and if there are a lot of source files,
we’d like to have a script that controls the build. Most of these files are
clutter, so let’s put them into a directory build. Finally, of course, we’ll
want to run our code and produce graphs, so let’s make a third directory,
exec, which will hold the executable as well as any analysis. All three of
these directories will reside in a top-level project directory, 2body.

Note that the way I am laying things out is not the only way to do
things, and I make no assertion that it is the best way. But it is important
to have some organization, or else you will waste too much time and
energy.

14 numerical techniques in astrophysics

Code Organization

Having organized our directory, we now need to think about the struc-
ture of our code. What features should it have? Again, there is more than
one way to do this. Let’s first look at our module. We’ll put this into a file
gravbody.f. Because we’ll have a lot of related routines and data, we’ll
enclose them into a single within the statements

7 module gravbody

108 end module gravbody

In the driver program, which we’ll put in a file orbits.f, the state-
ment

1 program orbits
2 use gravbody

will make all of the routines defined in gravbody accessible by the calling
program.

Now to fill in structure of our gravbodymodule. First, it might be
nice to group our data for a particle (mass, position, and velocity) into
one structure. Fortran allows us to define a data type.

14 type body
15 real :: M
16 real, dimension(Ndim) :: r, v
17 end type body

This allows us to hold all of the information about our pseudo particle
in one place. Note that Ndim is a parameter that will need to be speci-
fied elsewhere. (We could make this a calculation in 3 dimensions, but
we know from the equations that the orbit is in a plane.) We can pass a
variable of type body to functions to compute the acceleration, kinetic
energy, or potential energy. In this type, we will use the member M to de-
note the total mass. The member variables are accessed in the following
way: if pt is a variable of type body, then pt%M accesses the component M
of pt.

Now we can add to our module functions that operate on body. First,
let’s introduce a helper function to compute the norm (length) of a vec-
tor; we’ll need this to compute both the acceleration and the potential
energy.

19 contains
20 function norm(x) result(nx)
21 real, dimension(:), intent(in) :: x
22 real :: nx
23 nx = sqrt(dot_product(x,x))
24 end function norm

ordinary differential equations 15

The contains command must precede all of the subroutines in the mod-
ule. We can then compute the acceleration,

26 function acceleration(pt) result(a)
27 type(body), intent(in) :: pt
28 real, dimension(Ndim) :: a
29 real :: r3
30

31 r3 = norm(pt%r)**3
32 a = -pt%M*pt%r/r3
33 end function acceleration

the kinetic energy per unit reduced mass,

35 function kinetic_energy(pt) result(K)
36 ! kinetic energy per unit of reduced mass
37 type(body), intent(in) :: pt
38 real :: K
39

40 K = 0.5*dot_product(pt%v,pt%v)
41 end function kinetic_energy

and the potential energy per reduced mass,

43 function potential_energy(pt) result(Phi)
44 ! potential energy per unit of reduced mass
45 type(body), intent(in) :: pt
46 real :: Phi
47

48 Phi = -pt%M/norm(pt%r)
49 end function potential_energy

We’ve chosen to work in the center of mass frame, so we don’t actually
need to track the masses of the individual objects; we just need the total
mass to get the acceleration. That is why we compute the kinetic energies
per reduced mass; for comparison with a physical system we can easily just
scale our numerical results.

Given the acceleration aaa(rrr), how do we integrate our equa-
tions of motion? Let’s start with the forward Euler algorithm (eq. [3.24]).
Given our initial conditions rrr0 and vvv0, we compute

rrr1 = rrr0 + hvvv0,

vvv1 = vvv0 + haaa(rrr0).

This is our approximation to the solution at t = h. We then repeat this
step and march our solution along. Our function will take two argu-
ments: a variable of type body, which will be modified by the routine, and
a stepsize dt.

16 numerical techniques in astrophysics

68 subroutine forward_Euler(pt, dt)
69 type(body), intent(inout) :: pt
70 real, intent(in) :: dt
71 real, dimension(Ndim) :: a
72

73 a = acceleration(pt)
74 pt%r = pt%r + pt%v*dt
75 pt%v = pt%v + a*dt
76 end subroutine forward_Euler

One further piece of organization. I might want to run this code with
a different stepsize algorithms. I therefore provide some tags,

10 integer, parameter :: fEuler = 1
11 integer, parameter :: leapfrog = 2
12 integer, parameter :: rk2 = 3

and a wrapper to switch routines,

51 subroutine step(pt, dt, method)
52 type(body), intent(inout) :: pt
53 real, intent(in) :: dt
54 integer, intent(in) :: method
55

56 select case (method)
57 case (fEuler)
58 call forward_Euler(pt,dt)
59 case (leapfrog)
60 call verlet(pt,dt)
61 case (rk2)
62 call runge_kutta_2(pt,dt)
63 case default
64 stop ’need to code your method first!’
65 end select
66 end subroutine step

Here leapfrog and rk2 are some other integration routines that we’ll
cover later. The routine step is a “generic” wrapper that selects the
method to use.

Now that we have our module, let’s look at our driver program. What
should it do? There are basically 4 things:

1. read in parameters controlling the run;

2. set the initial conditions;

3. integrate over the desired time; and

4. print diagnostics

ordinary differential equations 17

Let’s take these in order. We will want to run the code with different
initial conditions, different stepsizes, different integration times, and so
on. We don’t want to recompile our code every time; instead, it would be
good if we could read in the parameters of our code from a file. Fortran
provides a lightweight means to do this using a namelist,

1 program orbits
2 use gravbody
3

4 type(body) :: pt
5 real :: x0, v0, m
6 real :: K, Phi, E, Einit
7 real :: dt, dtdiag, dtprint, tend, tdiag, tprint, t
8 integer :: method
9 character(len=*),parameter :: inputfile = ’twobody.in’

10

11 ! set up the run: we’ll use a namelist to input parameters
12 namelist /twobody/ dt,dtdiag,dtprint,tend,method
13 namelist /init/ m,x0,v0
14 open (unit=10,file=inputfile,status=’old’)
15 read(10,nml=twobody)
16 read(10,nml=init)
17 close(10)

Lines 12 and 13 define two namelists, twobody and init, which contain
our run-time parameters. We then, in line 14, open the file “twobody.in”;
the flag status=’old’ will cause the code to return an error if the file
doesn’t exist. We then read in the namelists and close the file. Here is the
sample file twobody.in.

1 ! methods: 1 forward euler
2 ! 2 leapfrog
3 ! 3 runge-kutta 2nd order
4 &twobody
5 dt = 0.01,
6 dtdiag = 1.0,
7 dtprint = 0.1,
8 method = 2,
9 tend = 10.0 /

10 &init
11 m = 4.0,
12 x0 = 1.0,
13 v0 = 1.75 /

Having read in our run-time parameters, we can initialize our variables,

19 t = 0.0

18 numerical techniques in astrophysics

20 tprint = 0.0
21 tdiag = 0.0
22

23 ! initialize the body
24 pt%M = m
25 pt%r = (/ x0, 0.0 /)
26 pt%v = (/ 0.0, v0 /)
27

28 ! compute initial energy
29 K = kinetic_energy(pt)
30 Phi = potential_energy(pt)
31 Einit = K + Phi
32 E = Einit

Now we are ready to set up a loop that will step our solution forward.
Along the way, we’ll want to print out some diagnostics. We don’t neces-
sarily want to do this after every step, so let’s define two time intervals,
dtprint, which is the time interval between printing out the coordi-
nates, and dtdiag, which is the time interval between printing out the
energy. We’ll keep track of the time at which we last printed out these
diagnostics. A simple loop that runs until the time exceeds tend is

35 print ’(A,es11.4,A,f8.5)’, ’evoloving with dt = ’, dt,’; tend = ’,tend
36 call pretty_print_energy
37 call print_coordinates
38 do
39 if (tend-t < dt) dt = tend-t
40 call step(pt,dt,method)
41 t = t + dt
42 if (t >= tend) exit
43 if (t-tprint >= dtprint) then
44 call print_coordinates
45 end if
46 if (t-tdiag >= dtdiag) then
47 call pretty_print_energy
48 end if
49 end do
50 call print_coordinates
51 call pretty_print_energy

Notice the form of the do-loop: it runs until the exit condition

42 if (t >= tend) exit

is reached. The routines print_coordinates and pretty_print_energy
are defined within the program.

ordinary differential equations 19

53 contains
54 subroutine print_coordinates
55 print ’(f8.5,2(tr4,2(f8.5,tr1)))’,t,pt%r,pt%v
56 tprint = t
57 end subroutine print_coordinates
58

59 subroutine pretty_print_energy
60 K = kinetic_energy(pt)
61 Phi = potential_energy(pt)
62 E = K + Phi
63 print ’(64(”=”),/,A,3(f8.5,tr1),es11.4,/,64(”=”))’, &
64 & ’K,Phi,E,err = ’,K,Phi,E,abs((E-Einit)/Einit)
65 tdiag = t
66 end subroutine pretty_print_energy
67

68 end program orbits

Because these routines are “contained” in the program, they can access all
of the variables used in the program.

Building the code

With the code complete, we are now ready to compile it. Of course, we
can just do this by typing the appropriate command, such as gfortran.
But for complex codes with tens to hundreds of files, this becomes
unwieldy. It is also inefficient to recompile everything if just one file
changed. A way to organize this is to use the make utility or an integrated
development environment, such as CodeWarrior™ or Xcode™. Here I’ll
illustrate the use of make, which is a scripting tool for compilation.

In the build directory, we create a file, makefile. The syntax is a bit
cumbersome, but is fairly self-explanatory. First, I define macros that tell
where the various directories are,

1 # LAYOUT
2 PROJECT_DIR = ..
3 EXEC_DIR = $(PROJECT_DIR)/exec
4 SRC_DIR = $(PROJECT_DIR)/source
5 VPATH = $(SRC_DIR)

The VPATHmacro is internal to make and is a list of directories to search
when looking for source code. I then give a list of macros that control
options for compiling the code.

7 # COMPILER
8 FC = gfortran
9

10 # COMPILER FLAGS

20 numerical techniques in astrophysics

11 FCimpno = -fimplicit-none
12 FCreal = -fdefault-real-8
13 FCchecks = -fbounds-check
14 FCwarn = -Wunused-value -Werror -W
15 FCfixed = -ffixed-form -ffixed-line-length-132
16 FCfree = -ffree-form
17 FCopt = -O2
18 FCdebug = -g
19

20 INCLUDES = -I$(SRC_DIR)
21

22 COMPILE_BASE = $(FC) $(INCLUDES) $(FCimpno) $(FCreal) $(FCfree) -c
23 COMPILE_TEST = $(COMPILE_BASE) $(FCwarn) $(FCchecks) $(FCopt)
24

25 COMPILE = $(COMPILE_TEST)

Last set of macros; the desired name of the executable and the object
files. These are intermediate files that contain the machine language
instructions, but aren’t yet linked into an executable file.

27 EXEC = twobody
28 OBJS = gravbody.o orbits.o

Now we’re ready for the instructions to build the code. First, we tell
make how to create an object file (.o suffix) from a fortran file (.f suffix)
of the same name.

30 %.o:%.f
31 $(COMPILE) $<

Rules for compilation all have this form

1 target:<dependencies>
2 <instructions to make target from dependencies>

In the build directory, issue the command make gravbody.o. What
happens? Make sees the rule %.o:%.f and therefore looks for a file the
the name gravbody.f, first in the current directory, and then in the
directories specified in the VPATHmacro. It then expands the macro
$(COMPILE) and operates that command on the dependencies (the $<
macro). What happens if you type make gravbody.o a second time?
This time nothing happens, because the source file, gravbody.f, has
not changed since gravbody.o was last made. Only when the depen-
dencies are newer than the target (or if the target doesn’t exist) are the
instructions for building the target executed.

The next rule gives the instructions for making the full executable,
which we named twobody.

ordinary differential equations 21

33 $(EXEC): $(OBJS)
34 $(FC) -o $@ $(OBJS)

In order to build twobody, we require that make first build gravbody.o
and orbits.o; it will do this as needed using the rule we defined. In the
next line, the -o $@ directive tells the compiler to put the executable in a
file with the target name ($@ is a make macro for the current target).

The last two targets,

36 install: $(EXEC)
37 cp $(EXEC) $(EXEC_DIR)
38

39 clean:
40 -@rm -f *.o *.mod $(EXEC)

don’t refer to files at all, so they are always executed. The first target,
install, will force a build of the executable if necessary, and then copies
into our specified location. The second removes all of the build files. Note
that in addition to the *.o files, the compilation makes a module file
gravbody.mod. This contains information about the routines in that
module, and is used when compiling orbits.o. As a result, we have to
have gravbody.o compiled before orbits.o.

3.3 Symplectic Integration

When you run the code with the forward Euler method, you will find
that the scheme does not preserve energy well. in fact, if your timestep
is too large, you will find your system becoming unbound! In general, we
must go to higher-order methods, i.e., methods for which on a given step
the approximate solution matches the Taylor series out toO(hn), where
n > 2. Before doing this, however, let’s take a nice detour to show some
algorithms, called sympletic integrators, that have much better energy
conserving properties.

To develop a set of sympletic integrators, let’s recall some facts from
quantum mechanics. Recall that the time evolution of a state is given as

|Ψ(t)⟩ = e−iHt/ℏ |Ψ(0)⟩

if the Hamiltonian operator H does not depend on time explicitly. Since
H is Hermitian, we can from the corresponding row vector,

⟨Ψ(t)| = ⟨Ψ(0)| eiHt/ℏ.

Given an operator A that doesn’t explicity depend on time, the expecta-
tion value of A at time t is

⟨A⟩ = ⟨Ψ(t) |A| Ψ(t)⟩ =
⟨

Ψ(0)
∣∣∣eiHt/ℏAe−iHt/ℏ

∣∣∣Ψ(0)
⟩
;

22 numerical techniques in astrophysics

this defines the time-dependent operator A(t) = eiHt/ℏAe−iHt/ℏ. Now take
the time derivative of A(t) to obtain

iℏ
∂

∂t
A(t) = −H

(
eiHt/ℏAe−iHt/ℏ

)
+
(
eiHt/ℏAe−iHt/ℏ

)
H

= A(t)H−HA(t) = [A(t),H] .

Recall that the commutator divided by iℏ corresponds to a Poisson
bracket in classical mechanics, and we have a formalism for evolving
the phase space vector z = (q, p) in time:

ż = {z,H} . (3.30)

Here
{A,B} =

∑
i

∂A
∂qi

∂B
∂pi

− ∂A
∂pi

∂B
∂qi

is the Poisson bracket.
Formally, we may define an operatorDH(a) = {a,H} so that equa-

tion (3.30) becomes
ż = DH(z).

which has the formal solution z(t) = exp(tDH)z(0). Right now this is
just formalism, but this expression is a canonical transformation. Why is
that important? It can be shown that such a transformation preserves
volumes of phase space along the trajectory followed by the system. This
leads to a way to preserve better energy conservation properties into our
system of equations.

Now let t → h, where h is some very small interval of time. Further-
more, suppose that H(q, p) = V(q) + K(p), i.e., the Hamiltonian has a ki-
netic term that depends only on the momenta and a potential term that
depends only on the coordinates. ThenDH separates intoDH = DV +DK.
We can therefore write our solution at time h as

z(h) = exp(hDV) exp(hDK)z ≈ (1+ hDV) (1+ hDK) z(0).

Now,DKz = {z,DK} = (∂z/∂q)(∂K/∂p) = (p/μ). Hence, the action of
the operator 1+ hDK is to perform the mapping,

(q, p) →
(
q(h) = q(0) + h

p(0)
μ

, p(0)
)
.

Since p/μ = v, this just looks like the first-order Euler step for the posi-
tion q. Now we can feed this result into the second term,

(1+ hDV) (q(h), p(0)) =

(
q(h), p(h) = p(0)− h

∂V
∂q

∣∣∣∣
q(h)

)
.

Here−∂V/∂q is just the force, so this second stage is an Euler step for
the momentum. Notice, however, that we evaluated the force not at q(0),

ordinary differential equations 23

the position at the beginning of the step, but rather at q(h), the updated
position. It may be hard to believe, but this small change makes a huge
difference in how well the scheme conserves energy!

To construct a higher order method, construct an operator

k∏
i=1

exp(cihDV) exp(dihDK),

where the ci and di are coefficients chosen to that this operator agrees
with the exact, formal operator exp(h(DV +DK) to the desired order in h.
Each of these operators is a canonical transformation, so the product For
example, let k = 2 and expand our operators to second-order in h,

k∏
i=1

exp(cihDV) exp(dihDK)

≈ (1+ c1hDV)(1+ d1hDK)(1+ c2hDV)(1+ d2hDK)

≈ 1+ (c1 + c2)hDV + (d1 + d2)hDK

+(c1d1 + c2d2)h2DVDK + d1c2h2DKDV. (3.31)

Keep in mind thatDV andDV do not commute; further, you can verify
thatD2

V = D2
K = 0. Comparing equation (3.31) with the formal expan-

sion

exp[h(DV +DK)] ≈ 1+ h(DV +DK) +
h2

2
(DVDK +DKDV) ,

we see that by choosing c1 = c2 = 1/2, d1 = 1, and d2 = 0, we will obtain
the desired method.

Let’s translate this second-order method to an algorithm. We’ll define
the velocity v = p/μ and the acceleration a = −(1/μ)∂V/∂q. Then our
algorithm becomes

q1 = q0 +
h
2
v0

p2 = p1 = p0 + ha1

q2 = q1 +
h
2
v1. (3.32)

This is known as the Verlet or leapfrog method. There are systematic
methods for creating higher-order methods.

3.4 The Fourth Order Runge-Kutta Method

A widely used method in the fourth-order Runge-Kutta algorithm. A step
is taken to a midpoint, and this is used to extend the integration across
the step. Given a set of first order equations dy/dt = f(t, y) the solution
yn+1 = y(t+ h) is determined from yn = y(t) as follows. Define

k1 = f(t, yn) (3.33)

24 numerical techniques in astrophysics

k2 = f
(
t+

h
2
, yn +

h
2
k1

)
(3.34)

k3 = f
(
t+

h
2
, yn +

h
2
k2

)
(3.35)

k4 = f (t+ h, yn + hk3) . (3.36)

in terms of which

yn+1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4) . (3.37)

3.5 Convergence and Error

One method of quantifying the error in our calculation is based on
Richardson extrapolation [Richardson and Gaunt, 1927]. To motivate
this, suppose we wanted to compute the derivative of a function f(x) by
finite difference. We could use our central difference approximation

f′cd =
f(x+ h)− f(x− h)

2h
= f′(x) + g(x)h2 +O(h4). (3.38)

Here g(x) = f′′′(x)/3! and is by assumption unknown to us. Suppose we
use equation (3.38) twice, once with a “coarse” hc and once with a “fine”
hf, i.e., hf < hc. We would then have

f′c = f′(x) + g(x)h2
c +O(h4

c), (3.39)

f′f = f′(x) + g(x)h2
f +O(h4

f). (3.40)

By subtracting f′f from f′c, we can eliminate the (unknown) exact solution
f′(x) and obtain

g(x) =
f′c − f′f
h2
c − h2

f
+O(h4

c). (3.41)

Substituting this approximation for g(x) back into equation (3.40), we
then have an approximation for the exact solution f′(x),

f′(x) ≈
(hc/hf)

2f′f − f′c
(hc/hf)2 − 1

+O(h4), (3.42)

that is good to fourth order!
Just for amusement, we can use this technique, as Richardson did,

to approximate the value of π. Imagine a circle of unit diameter, so that
its circumference is π. Now imagine we inscribe a square in this circle.
Pythagorus would compute the circumference of this square as C4 =

2
√
2, if he could believe in irrational numbers. Now inscribe a hexagon in

this circle. Since a hexagon is made of six equilateral triangles, we can see
that it must have a circumference of C6 = 3. For our order parameter, we
can use hc = 1/4 and hf = 1/6. Then applying equation (3.42) gives us an
approximation,

π ≈ (3/2)23− 2
√
2

(3/2)2 − 1
=

27− 8
√
2

5
≈ 3.137,

ordinary differential equations 25

which is good to 0.1%. If you want to practice your mental arithmetic
skills, you can try computing the above, including extracting

√
2, in your

head.

1⁄√
2

1

1

½
Figure 3.1: Constructing an estimate of
π. The circle shown has a circumference
of π. The inscribed circle, with vertex
angle 2π/4, has circumference 2

√
2. The

inscribed hexagon, with vertex angle
2π/6, has circumference 3.

In practice, it is better to use the difference between a coarse and fine
solution as an estimate of the error, rather than attempt to improve the
solution. We don’t have any precise way of determining the error in the
Richardson extrapolation itself; moreover, higher order doesn’t necessarily
mean better accuracy.

As an example, suppose we are integrating the Lane-Emden equation

26 numerical techniques in astrophysics

using our fourth-order Runge-Kutta scheme. We could make the follow-
ing argument. Suppose we try a step with size 2h; then

yc = y(t+ 2h) + (2h)5φ +O(h6). (3.43)

Here y(t + 2h) is the exact solution, yc is our approximate numerical
solution for the coarse stepsize, and φ is some number. If we now repeat
the step with a fine stepsize h, we get a different numerical solution,

yf = y(t+ 2h) + 2(h5)φ +O(h6). (3.44)

Subtracting eq. (3.43) from eq. (3.44) gives us an estimate of the error,

Δ = yf − yc = −30h5φ +O(h6).

Thus the quantity

yf +
Δ
15

= y(t+ 2h) + 2(h5)φ − 2h5φ +O(h6)

should be of order h6.
This local extrapolation looks good, but there is no way to guarantee

that it actually works! The quantity φ may not be the same for the coarse
and the fine solutions, for example; there is simply no way to know.
Moreover, we lose our quantification of the error in doing this. A better
approach is to use Δ as an indication of the error, and then adjust the
stepsize h to reduce Δ to a desired amount. This is expensive, since we
are now taking 8 function evaluations for one step. More sophisticated
approaches are detailed in Press et al. [2007].

E X E R C I S E 3 . 3— Write a 4th-order Runge-Kutta integrator using a fixed
stepsize h, to solve the Lane-Emden equation (§ 3.1) for an arbitrary index n.
Compute the error E = ∥t1 − ξ1∥ in the radii as a function of decreasing stepsize
h for the analytical solutions, eq. (3.12) and (3.13). One way to compute t is to
find where y(t) changes sign, and then use these two steps as brackets to find the
root y(t) = 0. Since the Runge-Kutta scheme gives you the function and
derivative at the two bracketing points (call them t+ and t−, with t− = t+ + h
and y(t+) > 0 and y(t−) < 0), you can use bisection to find the root where
y(t+ + xh) = 0, with 0 ≤ x ≤ 1. To evaluate y(t+ + xh), use the interpolation
formula [Press et al., 2007]

y(t+ + xh) = (1− x)y(t+) + xy(t−) + x(x− 1)

× [(1− 2x)(y(t−)− y(t+)) + (x− 1)hz(t+) + xhz(t−)] . (3.45)

The error in this interpolation formula isO(h4). Plot E(h), and verify that your
code converges as expected.

4
Ordinary Differential Equations and Stiffness

The following discussion is based on the review paper by Cash [2003].

4.1 A single ODE

Consider the equation
du
dt

= −λu (4.1)

with λ > 0 a constant. Suppose you wish to solve this by forward Euler
differencing,

un = un−1 + h
du
dt

∣∣∣∣
n−1

= un−1 − hλun−1. (4.2)

where un is the solution at t = n × h. Then given the initial condition
u0 = u(t = 0), we have

u1 = (1− hλ)u0, (4.3)

u2 = (1− hλ)u1 = (1− hλ)2u0 (4.4)

. . . (4.5)

un = (1− hλ)nu0. (4.6)

In order to have un → 0 as n → ∞, we must have |1− hλ| < 1, or

0 < h < 2/λ. (4.7)

Note that this holds no matter the initial condition u0. Even if we take
many tiny steps until our solution has become quite small, taking steps
with too large a size leads to numerical instability. This condition holds
even in the general case z′ = λz with λ ∈ C,ℜλ < 0. In this case, hλ must
lie in a unit circle (in the complex plane) centered on z = −1. Schemes
such as the forward Euler are known as explicit schemes, because the
solution at step n is given as a function of previous steps.

In contrast, suppose we used backward Euler differencing,

un = un−1 − hλun, (4.8)

28 numerical techniques in astrophysics

so that un = (1+ hλ)−nu0. In this case stability requires that∣∣∣∣ 1
1+ hλ

∣∣∣∣ < 1,

which is satisfied (so long as λ < 0) for all h > 0. In other words, we
may take as large a stepsize as we wish, and our solution will converge.
This does mean it will be accurate! This is still a first-order method. But
we are guaranteed that our solution will have the right asymptotic be-
havior as we take more and more steps. Schemes such as backward Euler
are implicit schemes: the solution at step n must be found by solving a
system of equations. For just one equation, they don’t add much; if we
wanted to solve the system accurately we would be taking h ≪ 2/λ in
any case, so stability is not much of a consideration. The picture becomes
considerably different, however, when there is more than one equation.

4.2 A system of two ODEs

Now, having warmed up with a single ODE, consider the system of equa-
tions,

du
dt

= z, (4.9)

dz
dt

= −λu− (1+ λ)z. (4.10)

You can verify that this system of equations has the solution

u = e−t + e−λt, (4.11)

z = −e−t − λe−λt. (4.12)

In this case the extension of eq. (4.6) is(
un

zn

)
= Cn·

(
u0

z0

)
(4.13)

where C is a 2× 2 matrix,

C =

(
1 h

−hλ 1− h(1+ λ)

)
. (4.14)

In order for (un zn)T → 0 as n → ∞, the analog to the analysis fol-
lowing equation (4.7) is to require that the two eigenvalues of C are less
than one in absolute value. First, we must find the two eigenvalues of
C. Although there is a formal method for doing this, we can find the by
recalling that the eigenvalues ξi satisfy the relations

2∏
i=1

ξi = detC,
2∑

i=1

ξi = trC. (4.15)

stiff odes 29

In this case,
detC = 1− h(1+ λ) + h2λ

and
trC = 2− h(1+ λ),

so the two eigenvalues must be

ξ1 = 1− h, ξ2 = 1− λh.

Hence for stability we must have

0 < h < min
(
2,

2
λ

)
. (4.16)

Here we begin to see the problem with explicit schemes. We are forced
to follow the shortest timescale in the problem, even if that variable is
negligible. This is a critical common problem in reaction networks, where
the timescales can differ by orders of magnitude. This would make many
problems simply intractable, and an implicit solver is imperative.

forward Euler, h = 0.10

t

y n

0 2 4 6 8 10

−10

−5

0

u

z

u, exact

z, exact

forward Euler, h = 0.20

t

y n

0 2 4 6 8 10

−10

−5

0

5

10 u

z

u, exact

z, exact

Figure 4.1: Integration of equations (4.9)–
(4.10) with λ = 10 using a forward Euler
method. (Left) With hλ = 1.0 the solution
is stable, although not particularly
accurate; but with hλ = 2.0 the numerical
scheme becomes unstable (right).

How would a backward scheme look? In this case our vector at step n
is given explicitly in terms of the step at n+ 1,(

un

zn

)
=

(
1 −h

λh 1+ h(1+ λ)

)
·
(

un+1

zn+1

)
. (4.17)

We can invert this equation using the formula a−1
ij = Cji/| detA|, where Cji

is the ji-th cofactor of aij,(
un+1

zn+1

)
=

1
|(1+ h)(1+ λh)|

(
1+ h(1+ λ) h

−λh 1

)
·
(

un

zn

)
. (4.18)

It is easy to show that the eigenvalues for the matrix in equation (4.18)
are

ξ1 =
1

1+ h
, ξ2 =

1
1+ λh

,

so this scheme is again stable for all h > 0 if λ > 0.

30 numerical techniques in astrophysics

backward Euler, h = 0.80

t

y n

0 2 4 6 8 10

−10

−5

0

u

z

u, exact

z, exact

Figure 4.2: Integration of equations (4.9)–
(4.10) with λ = 10 using a backward Euler
step. In contrast to the forward Euler
method, this scheme converges even with
hλ = 8.0 (although accuracy is rather
poor).

A third method for solving this problem is the trapezoidal method,
which is second order and mixes an explicit and implicit step,

yn+1
j = ynj +

h
2
[
fj(yni) + fj(yn+1

i]
)
.

For the system of equations (4.9)–(4.10), this method has eigenvalues

ξ1 =
1− h/2
1+ h/2

, ξ2 =
1− hλ/2
1+ hλ/2

,

which implies stability for h > 0, λ > 0. But note that for very stiff
problems (large λ), |ξ|2 → 1; as a result the transient e−λt is only weakly
damped and convergence is rather poor.

trapezoid, h = 0.40

t

y n

0 2 4 6 8 10

−10

−5

0

u

z

u, exact

z, exact

Figure 4.3: Integration of equations (4.9)–
(4.10) with λ = 10 using a trapezoid
method. Here hλ = 4.0; although the
solution does converge, the numerical
solution oscillates on account of the weak
damping of the transient part of the
solution.

stiff odes 31

E X E R C I S E 4 . 1— Show that the system of equations that must be solved at
each step in the trapezoidal scheme is(

1 − h
2

λh
2 1+ h

2 (1+ λ)

)(
un+1

zn+1

)
=

(
1 h

2
− λh

2 1− h
2 (1+ λ)

)(
un

zn

)
(4.19)

E X E R C I S E 4 . 2— Write a forward Euler loop to solve equations (4.9)–(4.10)
with λ = 10. Integrate over a sufficiently large range in t, e.g., out to t = 10 to
catch any bad behavior. Verify that the solution is unstable for h larger than the
limit you derived. Then repeat with a backward Euler scheme and verify that the
integration is stable. What happens if you use a trapezoidal scheme?

4.3 Real problems, not linear

Implicit schemes must solve at each step equations of the form yn+1 =

f(tn, yn+1). This is fine if we have a linear equation, but what happens if
this equation is nonlinear? We can do a rootfind (using a multidimen-
sional Newton method perhaps); another option is to linearize our equa-
tions. Here we’ll give an example of taking a semi-implicit Euler step.
Given a set of M ODEs

ẏi = fi(yj), i, j = 1, . . . ,M,

we expand fi in terms of (yn+1
j − ynj),

fi(yn+1
j) = fi(ynj) +

∂fi
∂yj

(
yn+1
j − ynj

)
,

to obtain (
yn+1
i − yni

)(
δij − h

∂fi
∂yj

)
= hfi(ynj). (4.20)

Here ∂fi/∂yj is a M × M matrix called the Jacobian and δij is the identity
matrix. By inverting the matrix

Aij ≡
(

δij − h
∂fi
∂yj

)
,

we obtain the desired solution

yn+1
i = yni + h(A−1)ijfj. (4.21)

This is a semi-implicit scheme, so it is not guaranteed to be stable. Strict
monitoring of errors and adaptive stepsizes are a must.

5
Traffic

Since you now have a tested RK4 solver, let’s use it to do a toy simulation
of cars on a street. This is a warm-up to treating fluids; we’ll first look at
a system of a small number of interacting particles and then move to the
limit of treating the fluid as a continuum.

Suppose we have N cars, and each car’s location is described by Xi(t), i =
1, . . . ,N. The velocity of each car is Vi = X′

i and each car drives according
to a very simple rule:

Vi = Vmax

(
1− ρi

ρmax

)
, (5.1)

where
ρi =

1
xi+1 − xi

. (5.2)

That is, as the distance to the car in front gets smaller, the velocity gets
smaller. A car with an open road in front drives at the speed limit Vmax.

5.1 Characteristics: A worked example

To connect our cars with fluid mechanics, lets put N = 100 cars on a grid.
We will set ρmax = 1.0, Vmax = 1.0. We will space them according to the
following prescription: for x < 40, ρ = 0.25; for 80 < x < 120, ρ = 0.9;
and for x > 160, ρ = 0.25. We interpolate smoothly between the high
and low regions as follows: for 40 < x < 80,

ρ = 0.25+ 0.65 sin2
(

π
2

x− 40
80− 40

)
.

The use of the sin2 ensures the derivatives are continuous as well, i.e., the
interpolation is smooth. We shall use periodic boundary conditions: as
cars move off the grid on the right, they are added back on the left. We
plot the density distribution in Figure 5.1 at time t = 0 (left panel) and
at t = 79 (right panel). What do we observe? First note that although
the cars are moving from left to right, the bump in density propagates

34 numerical techniques in astrophysics

● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●

●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

x

ρ

t = 0.00

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

●●●
●

●
●

●
●

●
●

●● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

x

ρ

t =79.30

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0 Figure 5.1: Characteristics of traffic flow.

backward. Furthermore, notice that the left edge of the bump steepens
while the right becomes more shallow.

To understand this behavior in more detail, let’s introduce an equation
expressing the conservation of cars (no fusion or fission allowed!):

∂tρ + ∂x

[
ρVmax

(
1− ρ

ρmax

)]
= 0. (5.3)

The quantity in [] is the flux of cars and is only a function of ρ. We can
therefore write eq. (5.3) as

∂tρ + f′(ρ)∂xρ = 0,

where f = ρVmax(1− ρ/ρmax) is the flux.
Now, let us look for characteristic curves: paths X(t) such that along

path, ρ is constant. Such a path satisfies

d
dt

ρ(x = X(t), t) = (∂xρ)
dX
dt

+ ∂tρ = 0. (5.4)

Expanding eq. (5.3) and eliminating ∂tρ from eq. (5.4) gives (here we
assume that whatever mathematical requirements are needed to ensure a
solution do in fact exist) an equation for the characteristics:

dX
dt

= f′(ρ) = Vmax

(
1− 2

ρ
ρmax

)
. (5.5)

In our example (Fig. 5.1), the characteristics in the high-density bump,
ρ/ρmax = 0.9, move backward: Ẋ = −0.8Vmax. For the low-density
regions, ρ/ρmax = 0.25, the characteristics move forward: Ẋ = 0.5Vmax.
Note that these are not the velocities of individual cars!

The bump moves backwards because information in a high density
(ρ > 0.5ρmax) region moves backward along characteristics. The left edge
of the bump steepens because the characteristics are converging there.
Since the characteristics in a region where f(ρ) is smooth do not cross,
the convergence along the left-edge of the bump implies the formation of
a discontinuity in the solution: a shock front.

On the right-hand side of the bump, the characteristics are diverging.
This produces a rarefaction, the properties of which will be explored in the
exercise.

traffic 35

E X E R C I S E 5 . 1—

1. A light turning green— Put N = 60 cars on the road. The cars’ positions at
t = 0 are

Xi(t = 0) =

{
5(i− 19)/ρmax i = 1, . . . , 19
(i− 19)/ρmax i = 20, . . . ,N

(5.6)

The car in front (i = N) sees a density ρN = 0. Integrate the positions of all
the cars forward in time at least to t = 150.0(ρmaxVmax)

−1 (you may need to
integrate longer for the second problem). Plot the trajectories of all the cars
on a single plot of time versus position.

2. A slow driver—The cars’ positions at t = 0 are

Xi(t = 0) = 5(i− N)/ρmax i = 1, . . . ,N (5.7)

The car in front, i.e., car N, is driven by “Speedy” who as a matter of principle
never drives faster than 0.6Vmax, even with an open road (ρN = 0) in front
(any perceived relation between Speedy and anyone you know is purely
coincidental). Integrate the positions of all the cars forward in time. Plot the
trajectories of all the cars on a single plot of time versus position.

3. A rarefaction— Let’s construct an initial density profile with two piecewise
constant values separated by a discontinuity at x = 0. (A problem of this
nature is called the Riemann problem.) That is,

ρ(x, t = 0) =

{
ρL, x < 0
ρR, x ≥ 0

(5.8)

with ρL = 0.9 and ρR = 0.25.

Arrange cars on the grid following this prescription and start their engines.
Plot the density as a function of position at some later time (cf. Fig. 5.1). You
should see a rarefaction front. Make sure you have enough cars (say N = 100)
to see this front develop. Now, let’s understand what’s going on in a bit more
detail. You may notice that the front begins to appear almost as a straight line
connecting a region with ρ = ρL to a region with ρ = ρR. Let’s run with that:
from the discontinuity at x = 0 there will be two diverging characteristics that
set the rightmost point of ρL and the leftmost point of ρR. The equations of
these characteristics are XL(t) = −0.8Vmaxt and XR(t) = 0.5Vmaxt. (Recall that
the characteristics satisfy the equation Ẋ = Vmax(1− 2ρ/ρmax).)

Suppose that for XL(t) < x < XR(t) the density does indeed follow a straight
line with ρ(x = XL(t)) = ρL and ρ(x = XR(t)) = ρR. Derive an equation for ρ
in this region in terms of x and t. Then derive an equation for the
characteristics in this region. Does this match your numerical solution?

6
The Equations of Fluid Mechanics

6.1 Fluids as continua

Over scales that are large compared to the collisional mean free paths
between particles, we can treat the fluid as a continuous medium. That is,
we suppose that we can find a scale that is infinitesimal compared to the
macroscopic scales, but still much larger than the scales for microscopic
interactions. Thus, we can define thermodynamic quantities at a location.

Consider such a macroscopically small volume V. Its mass is M =∫
V ρ dV, where ρ is the mass density. If uuu(xxx, t) is the velocity, then the flux

of mass into the element is

−
∫
∂V

ρuuu · dSSS =
∂

∂t

∫
V

ρ dV

where the right-hand side follows from mass conservation. Using Gauss’s
law to transform the left-hand side into an integral over V and combining
terms, we have ∫

V

{
∂ρ
∂t

+∇ · (ρuuu)
}

dV = 0.

Since this equation holds for any V, the integrand must vanish, and we
have our first equation,

∂tρ +∇ · (ρuuu) = 0. (6.1)

Our next equation is to get the analog of FFF = maaa. Ignoring viscous
effects, the net force on our fluid element (with volume V) is due to the
pressure over its surface P and the gradient of the gravitational potential
Φ: ∫

V
ρ
d2rrr
dt2

dV =

∫
V
FFF dV = −

∫
V

ρ∇Φ dV−
∫
∂V

P dSSS.

Transforming the second integral on the right-hand side to a volume in-
tegral, and assuming that∇Φ and∇P vary on macroscopic lengthscales,
we arrive at an equation for the acceleration,

d2rrr
dt2

= −∇Φ − 1
ρ
∇P. (6.2)

38 numerical techniques in astrophysics

where rrr(t) is the position of the particle so that the left-hand side is the
acceleration. Here we must be careful: uuu(xxx, t) refers to velocity of the
fluid at a given point in space and a given instance of time, not to the
velocity of a given particle. A fluid element can still accelerate even if
∂tuuu = 000 by virtue of moving a different location. At time t this particle
has the velocity

drrr
dt

∣∣∣∣
t
= uuu(xxx = rrr|t, t) (6.3)

where we use the fact that the particle is moving along a streamline of
the fluid. At a slightly later time h, the particle has moved to a location
rrr(t+ h) ≈ rrr(t) + huuu, and the velocity is now

drrr
dt

∣∣∣∣
t+h

= uuu(xxx = rrr|t+h, t+ h) ≈ uuu+ h(uuu ·∇uuu+ ∂tuuu), (6.4)

where we evaluate the derivatives at time t. Subtracting equation (6.3)
from equation (6.4) and dividing by h gives us the acceleration; inserting
this into Newton’s law and dividing by volume gives us Euler’s equation of
motion,

∂tuuu+ uuu ·∇uuu = −∇Φ − 1
ρ
∇P. (6.5)

6.2 The conservation laws

We will start from the equations expressing conservation of mass1, mo- 1 In a relativistic system, we would
instead start from conservation of baryon
number.

mentum, and energy. We already derived the continuity (conservation of
mass) equation,

∂tρ +∇ · (ρuuu) = 0, (6.6)

and the Euler equation,

∂tuuu+ uuu ·∇uuu = −∇Φ − 1
ρ
∇P. (6.7)

Note that if we multiply eq. (6.7) by ρ, we can rewrite it, using eq. (6.6),
as

∂t(ρuuu) +∇ · [uuu(ρuuu)] = −ρ∇Φ −∇P. (6.8)

The left-hand side is interpreted as expressing the conservation of mo-
mentum (ρuuu) in the absence of forces, analogous to eq. (6.6) for the
conservation of mass (ρ).

Note the general form of a conservation equation:

∂t(conserved quantity)

+∇ · (flux of conserved quantity) = (sources)− (sinks).

Because the momentum density ρuuu is a vector, its flux is a tensor:
[uuu(ρuuu)]ij ≡ ρuiuj.

the equations of fluid mechanics 39

The next equation is that of energy conservation. Here we must con-
sider both the internal energy per unit volume E/V = ρϵ and the kinetic
energy per unit volume ρu2/2. In this section ϵ represents the internal
energy per unit mass of the fluid. In a fixed volume of the fluid the total
energy is then ∫

V
(ρ

1
2
u2 + ρϵ) dV.

The flux of energy into this volume will clearly include

−
∫
∂V

(
1
2

ρu2 + ρϵ
)

uuu · dSSS.

But wait, there’s more! In addition, we have a conductive heat flux,

−
∫
∂V

FFF · dSSS.

Moreover, the pressure acting on fluid flowing into our volume does work
on the gas at a rate

−
∫
∂V

Puuu · dSSS.

As a result, the net change of energy in our volume is

∂t

∫
V

(
1
2

ρu2 + ρϵ
)

dV =

−
∫
∂V

dSSS ·
[
uuu
(

1
2

ρu2 + ρϵ + P
)
+ FFF

]
+

∫
V
(ρuuu · ggg+ ρq) . (6.9)

On the right-hand side we’ve added in the work done by gravity and the
heating evolved by nuclear reactions (this could also involve sinks, such
as neutrinos, which have a long mean free path). Expressed in differential
form, this is

∂t

(
1
2

ρu2 + ρϵ
)
+∇·

[
ρuuu
(

1
2
u2 + ϵ +

P
ρ

)]
+∇·FFF = ρq+ ρuuu · ggg. (6.10)

You are possibly wondering why I didn’t put gravity, which can be ex-
pressed as a potential, on the left hand side of this equation. The reason
is that the gravitational stresses cannot be expressed in a locally conserva-
tive form; it is only when integrating over all space that the conservation
law appears.

Equations (6.6), (6.8), and (6.10) are supplemented by an equation of
state, which allows one to get from the pressure P, the temperature T,
and the mass fractions Xi of the species present, the remaining thermo-
dynamical quantities, such as mass density ρ and specific energy ϵ. In
addition, Poisson’s equation

∇2Φ = 4πGρ, (6.11)

specifies the gravitational acceleration ggg = −∇Φ. We then need one
more equation to specify the heat flux F. If the typical lengths over which

40 numerical techniques in astrophysics

particles or photons travel before scattering is very small compared to
the lengthscale over which the macroscopic properties of the fluid vary,
we expect the flux to obey a conduction equation of the form

FFF = −K∇T. (6.12)

This assumption is clearly questionable in many astrophysical plasmas.

6.3 Thermodynamical quantities

In most textbooks on thermodynamics and statistical mechanics, the
thermodynamics are formulated in terms of some sample of fixed size.
For example, in the first law,

dE = TdS− PdV, (6.13)

the energy E and entropy S are extensive quantities, and scale with the
number of particles N in our sample. In a fluid, however, these quantities
are all functions of position. By S(r), we mean that we can define a small
portion of the star about the coordinate r that is large enough particles
to ensure that quantities such as pressure and temperature are well-
defined, but small enough that we can treat S(r) as a continuous function
of position when integrating over the whole star.

Using extensive quantities in fluid mechanics is cumbersome, so we
instead use quantities like the energy per unit mass ϵ = E/(ρV) or the
entropy per unit mass s = S/(ρV). Since a fixed mass of fluid M occupies
a volume V = M/ρ, we can divide the first law, eq. (6.13), by M to obtain

dϵ = Tds− Pd
(

1
ρ

)
= Tds+

P
ρ2 dρ. (6.14)

The other extensive variables can be re-defined into mass-specific forms
in a similar fashion.

7
A simple PDE: the linear advection equation

7.1 Background

As a simple example of a partial differential equation, let’s consider the
advection equation in 1-d. Suppose we have a fluid in a pipe flowing with
velocity u. Now suppose we inject a bit of dye into our pipe. If we ignore
diffusion, then the concentration of dye φ(x, t) will be described by

∂tφ = −u∂xφ, (7.1)

which is just the one-dimensional form of the conservation equation

∂tφ +∇ · (uuuφ) = 0. (7.2)

Systems of equations where a quantity obeys a conservation law like
eq. (7.2) are quite common in physics.

7.2 Discretization in space

To solve equation (7.1), let’s discretize our solution on a uniform grid
in the x-coordinate, with a grid spacing h. One way of representing ∂xφ
is to use a finite difference scheme. There are several ways to do this.
Let xj = j × h, j = 1, . . . ,M be the points on our grid. Let Qn

j be our
approximate solution for φ(x = xj, t = tn). Then we can approximate ∂xφ
at x = xj by, for example,

∂xφ ≈ DuQn
j ≡

Qn
j − Qn

j−1

h
upwind differencing (7.3)

∂xφ ≈ DcQn
j ≡

Qn
j+1 − Qn

j−1

2h
central differencing. (7.4)

Schemes with even more grid points included are possible as well.

Exercises

1. Show that the upwind differencing scheme is first-order in grid spac-
ing h, i.e.,DuQn

j = ∂xφ|x=xj,t=tn +O(h) for Qn
j = φ(x = xj, t = tn).

42 numerical techniques in astrophysics

2. Show that the central differencing scheme is second-order in grid
spacing h.

7.3 Discretization in time

The simplest scheme for advancing in time from t = tn to tn+1 = tn + τ is
the forward Euler step,

Qn+1
j = Qn

j − τuDQn
j . (7.5)

Inserting the central differencing scheme, for example, would produce

Qn+1
j = Qn

j −
(τu

h

) Qn
j+1 − Qn

j−1

2
. (7.6)

Notice that our choice of time step appears in combination with τu/h.
Clearly for our scheme to be faithful to the underlying differential equa-
tions, we must have this combination be small, say τu/h = 0.1 to be
concrete. Physically, this just means we don’t want to fluid to cross more
than a fraction of a grid during any given time step.

7.4 A worked example

Now let’s try out these schemes. Let’s set u = 1.0, h = 0.1 and make the
grid xj = j × h, for j = 1, 2, . . . , 500. We can then set τ = 0.01, so that
τu/h = 0.1. Finally, we need to establish an initial profile. Rather than
having a sharp step, let’s use the following function, which smooths out
the front,

Q0
j =

1
2

[
1− tanh

(
xj − 5
5h

)]
. (7.7)

This equation produces a front centered at x = 5, with a width of roughly
10× h, so that it is well-resolved (see Fig. 7.1).

Exercises

1. Verify that the solution to equations (7.1) and (7.7) at time t = tn is

Qn
j =

1
2

[
1− tanh

(
xj − utn − 5

5h

)]
. (7.8)

2. Solve equations (7.1) and (7.7) using upwind differencing (eq. [7.3]).
Let it run until the front reaches the midpoint of your domain (i.e.,
t = 20, n = 2000). How does the numerical solution compare with the
exact solution, eq. (7.8)?

3. Now repeat exercise 2, but use a central differencing scheme (eq. [7.4]).
How do things change? Are they what you expected?

a simple pde: the linear advection equation 43

●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

upwind differencing, h = 0.10

x

Q

t = 0.00

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.1: Initial profile for the advec-
tion equation.

7.5 Stability

As the problem 3 showed, not all difference schemes are stable! Let’s
understand this in a bit more detail. Rather than do a standard analysis,
which writes our solution as the sum of the solution to the underlying
PDE and a error term, we’ll take our numerical solution to be the exact
solution for some PDE, and try to see what PDE our solution actually
solves. This example is taken from LeVeque [2002].

For upwind differencing, we take g(x, t)|x=xi,t=tn = Qn
i . From equa-

tion (7.3) and (7.5) the function g must satisfy

g(x, t+ τ)− g(x, t) = −Co [g(x, t)− g(x− h, t)] .

Here Co = uτ/h is the Courant number. Expanding both sides to second
order in h and τ,

∂tgτ +
1
2
∂ttgτ2 = −Co

[
∂xgh− 1

2
∂xxgh2

]
(7.9)

and rearranging terms gives

∂tg+ u∂xg = − τ
2
∂ttg+

uh
2
∂xxg. (7.10)

The left hard side is our original advection equation, but what is the right
hand side? Differentiate equation (7.9) by t to obtain

τ∂ttg = −uτ∂xtg−
τ2

2
∂tttg+

uτh
2

∂xxtg. (7.11)

44 numerical techniques in astrophysics

This may not look like much help, but if we then differentiate equa-
tion (7.9) with respect to x,

τ∂txg = −uτ∂xxg−
τ2

2
∂ttxg+

uτh
2

∂xxxg

we can use the equality ∂xt = ∂tx to eliminate the first right-hand term
in equation (7.11) and obtain to lowest order that ∂ttg = u2∂xxg. Here
we use the fact that τ/h is a fixed number, so that all the other terms are
indeed second order. Substituting this into equation (7.10) then gives

∂tg+ u∂xg =
uh
2

(1− Co) ∂xxg. (7.12)

We recognize the right-hand side as being a diffusive term. For Co < 1, the
diffusion coefficient is positive, and hence has stable solutions. We thus
have a stable differencing scheme, but it comes at a cost: our solution has
an effective kinematic viscosity of order u× h. The effect is that our front
is smeared out, as can be seen in Fig. 7.2.

●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

upwind differencing, h = 0.10

x

Q

t =20.00

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

numerical

exact

Figure 7.2: Exact and numerical solutions
of advection equation at t = 20.

Recall that for the Reynolds number is defined by Re ≡ uL/ν, where
L is a characteristic lengthscale and ν is the kinematic viscosity. In a
plasma, ν ∼ csλ, where cs is the sound speed (the molecular speed)
and λ is the mean free path, the average distance a particle goes before
having a collision. Hence the ratio of the effective Reynolds number of
a simulation to that of the physical system, for fluid flows of order the
sound speed, is

Renum
Re

≈ λ
h
.

Note that Renum ≈ N, where N = L/h is the number of grid points.
In an accretion disk, Re ∼ 1012. When examining results of numerical

a simple pde: the linear advection equation 45

simulations of astrophysical plasmas, bear in mind that the simula-
tions are likely to have an effective Reynolds closer to that of snake oil1 1 Assuming it is similar to whale oil.

(νsnake ≈ 0.3 cm2/s) than that of the physical system.

8
Flux-conservative algorithms

The following notes make extensive use of the excellent book by LeVeque
[2002].

8.1 Introduction: Burgers Equation

For a simple example that illustrates the difference between a conserva-
tive differencing scheme and a non-conservative one, consider Burgers
equation,

∂tu+ u∂xu = 0. (8.1)

This is written as a nonlinear advection equation. We can rewrite it,
however, in the conservative form

∂tu+ ∂x

(
1
2
u2
)

= 0. (8.2)

This is called a conservative form because it has the form

∂t(quantity) +∇ · (flux of quantity) = 0,

if we identify the flux as u2/2.
To see why the distinction matters, let’s make a simple case. Define u

on the grid x ∈ [−1, 4], and define

u(x, t = 0) =

{
2 x ≤ 0
1 x > 0

, (8.3)

with boundary conditions u(x = −1, t) = 2, u(x = 4, t) = 1. Use an
upwind differencing scheme (eq. [7.3]), and numerically integrate the
equations (8.1) and (8.2) from t = 0 to t = 2. Determine the location of
the “step” at this time. Make sure you have sufficient grid resolution to
determine the step’s position to within 1%.

The result of this exercise is plotted in Figure 8.1. Both methods have
converged, but to different solutions. As a first clue to what is happening,

48 numerical techniques in astrophysics

let’s compare the upwind differenced forms for both methods:

un+1
i = un

i −
τ
h
un
i
(
un
i − un

i−1
)
, quasilinear; (8.4)

un+1
i = un

i −
τ
h

[
1
2
(un

i)
2 − 1

2
(
un
i−1
)2]

, conservative. (8.5)

Both methods are trivially the same at t = 0 (and in fact anywhere there
is a smooth solution) except at the discontinuity! For example, for u0

i = 1
and u0

i−1 = 2, the quasilinear finite difference gives u1
i = 1+ τ/h, whereas

the conservative method gives u1
i = 1+ 3τ/(2h).

●●
●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●
●●

Burgers eqn.: t = 2.0, N = 401

x

u

−1 0 1 2 3 4

1.0

1.2

1.4

1.6

1.8

2.0

conservative

nonconservative

analytical

Figure 8.1: Solution of Burgers equation,
for both a quasilinear and conservative
form.

The problem here is not with our differencing scheme, but rather
with the underlying partial differential equation. Although both equa-
tions (8.1) and (8.2) are equivalent where u is smooth, continuous, and
differentiable, neither is defined at a discontinuity. Such discontinuities
do arise in fluid mechanics. Properties like pressure and density are re-
ally defined on macroscopic scales, that is, on scales much larger than a
particle mean free path. On very small scales the fluid equations simply
do not apply. In a shock front, the fluid properties change on a scale of
a few particle mean free paths and thus appear as discontinuities. Con-
servation laws—of mass, of momentum, and of energy—do still apply,
however. For example, suppose we have a long tube along which a shock
is propagating. Consider a region of the tube that contains the shock, as
depicted in Fig. 8.2.

u•t S•t

u S ρ0, P0ρ1, P1

u S ρ0, P0ρ1, P1

Figure 8.2: Schematic of piston-driven
shock.

In a time t, the shock as moved a distance S · t to the right, and the
mass in a region containing the shock has therefore increased by St(ρ1 −
ρ0). This must be equal to the net mass flux into the region, t(u1ρ1 −
u0ρ0) = tu1ρ1 since for this example the upstream velocity is u0 = 0.
Thus the speed of the shock is S = u1ρ1/(ρ1 − ρ0). In general, if we have

flux-conservative algorithms 49

a small interval containing a discontinuity in a conserved quantity φ,
with upstream and downstream values φup and φdown, and upstream and
downstream fluxes fup and fdown, then the discontinuity propagates with
speed

S =
fdown − fup

φdown − φup
. (8.6)

We can apply this to Burgers equation if it is written in conservative form
(eq. [8.2]; this is the only form for which a discontinuous solution exists).
The upstream quantity and flux are uup = 1.0, fup = u2

up/2 = 1/2; their
downstream counterparts are udown = 2.0, fdown = u2

down/2 = 2.0, As a
result, the discontinuity travels with speed S = 1.5 and at time t = 2.0
will have reached x = 3.0 (cf. Fig. 8.1). The flux-conservative algorithm
converges to the correct result even when given discontinuous input
data.

It might be tempting to ascribe this case as being an artifact of a prob-
lem in which the initial data is discontinuous. This is not the case, how-
ever. Such discontinuities do arise in nature, and in fact can arise even
if the initial conditions are smooth. Suppose we replace the initial data
(eq. [8.3]) with a smooth function, for example

u(x, t = 0) =
1
2

[
3− tanh

(x
50h

)]
. (8.7)

Our profile is now initially smooth, but how does it propagate? The char-
acteristics satisfy the equations

X = ut+ X0

and along a characteristic we have

du(x = X(t), t)
dt

= ∂tu+ ∂xu
dX
dt

= ∂tu+ u∂xu = 0.

Thus the solution is propagated along characteristics: u(x, t) = u(x −
ut,0). Because the “back” of the front has u = 2 while the “front” has
u = 1, the back of the wave “catches up” to the front of the wave, so that
the disturbance will steepen as it propagates, as shown in Figure 8.3.

0.50.0 0.5 1.0 1.5

1.0

1.2

1.4

1.6

1.8

2.0

+ (/) =

Figure 8.3: The plots show the solution
of Burgers’s equation for a disturbance
propagating along the x-direction. Be-
cause the sound speed is greater in the
compressed region, the “back” of the
disturbance moves faster than the front:
as a result, the disturbance steepens. The
disturbance steepens into a shock in a
time t ≈ Δ/(uL − uR), where Δ is the
initial width of the transition and uL and
uR are the values of u on the left and right
sides of the disturbance.

This steepening is a common occurrence in gaseous flows. In general,
the formation of shocks and other discontinuities is a generic feature of
hyperbolic equations. It is better to use the integral, that is, conservative,
forms of the equations, which are able to handle such discontinuities.

8.2 AWorked Example: Linear Acoustics

To see how hyperbolic problems can be decomposed in terms of charac-
teristics, let us consider the equations of mass and momentum continu-

50 numerical techniques in astrophysics

ity,

∂tρ + ∂x(ρu) = 0 (8.8)

∂t(ρu) + ∂x(ρu2 + p) = 0. (8.9)

Let’s look for perturbations about a state with constant density and
velocity, ρ = ρ0 + ρ1(x, t), u = u0 + u1(x, t). We assume that fluids
with a subscript “1” are small, so we will expand equations (8.8) and (8.9)
keeping only terms with at most 1 subscripted power per term. The two
equations thus become

∂tρ1 + ρ0∂xu1 + u0∂xρ1 = 0 (8.10)

u0 [∂tρ1 + ∂x(ρu)1] + ρ0∂tu1 + ρ0u0∂xu1 +
dp
dρ

∂xρ1 = 0. (8.11)

The term in [] vanishes due to mass continuity, and so we can write these
equations as a linear system,(

∂tρ1

∂tu1

)
+

(
u0 ρ0

ρ−1
0 c2s u0

)(
∂xρ1

∂xu1

)
= 0 (8.12)

This just looks like a matrix form of the linear advection equation,

∂tq+ A∂xq = 0,

with

A =

(
u0 ρ0

ρ−1
0 c2s u0

)
, q =

(
ρ1

u1

)
.

I’ve also used dp/dρ = c2s to simplify things. If we insert a trial character-
istic solution, ρ1 = ρ(x − st), u1 = u(x − st), then the equation becomes
the eigenvalue problem(

u0 ρ0

ρ−1
0 c2s u0

)(
ρ′

u′

)
= s

(
ρ′

u′

)
(8.13)

with eigenvalues s = u0 ± cs.
The eigenvectors for this problem are

e1 =

(
−ρ0/cs

1

)
, s1 = u0 − cs (8.14)

e2 =

(
ρ0/cs
1

)
, s2 = u0 + cs. (8.15)

Hence the general solution to our problem is(
ρ(x, t)
u(x, t)

)
= w1(x− s1t)

(
−ρ0/cs

1

)
+w2(x− s2t)

(
ρ0/cs
1

)
. (8.16)

flux-conservative algorithms 51

If the solution at t = 0 is [ρ̃(x), ũ(x)], then we can solve for w1(x),w2(x):

w1(x) = − c
2ρ0

ρ̃ +
1
2
ũ

w2(x) =
c

2ρ0
ρ̃ +

1
2
ũ,

and the general solution for the perturbations is

ρ(x, t) =
1
2
[ρ̃(x− s1t) + ρ̃(x− s2t)]

− ρ0

2cs
[ũ(x− s1t)− ũ(x− s2t)] (8.17)

u(x, t) = − cs
2ρ0

[ρ̃(x− s1t)− ρ̃(x− s2t)]

+
1
2
[ũ(x− s1t) + ũ(x− s2t)] . (8.18)

Now apply these solutions to the Riemann problem, which is to find how
our state evolves with

ρ̃, ũ =

{
ρL, uL x < 0
ρR, uR x > 0

Here ρL and ρR are constants, as are uL and uR. For simplicity, take u0 =

0, so that s1 = −c and s2 = c. Then ρ̃(x − s1t) = ρ̃(x + ct); along
the interface x = 0 for t > 0, this is just ρR. This hold for the other
eigenvalues as well: those with s = −c come from the right, and those
with s = c come from the left. Along the interface, the solution is then

ρ(0, t) =
1
2
[ρL + ρR] +

ρ0

2cs
[uL − uR] (8.19)

u(0, t) =
cs
2ρ0

[ρL − ρR] +
1
2
[uL + uR] . (8.20)

If x = 0 represents the interface between two cells in our fluid, we can
then use these solutions to reconstruct the fluxes ρu and ρu2 + p along
the cell interface, and then update the solutions for ρ, u in the ith cell
using these fluxes. For example∫

i
ρn+1dx = −h

[
(ρu)ni+1/2 − (ρu)ni−1/2

]
. (8.21)

Here (ρu)i+1/2 is formed from equations (8.19) and (8.20) with the “left”
quantities referring to cell i and the “right” quantities referring to cell
i+ 1, and similarly for (ρu)i−1/2. This method of reconstructing the fluxes
using the solution to the Riemann problem along the interface forms the
essence of Godunov’s scheme.

9
Solving a Parabolic PDE

9.1 The Diffusion Equation

The diffusion equation,

∂tθ = ∇ · (D∇θ) , (9.1)

whereD is the diffusivity, is an example of a parabolic partial differential
equation. Equation (9.1) is the divergence of a flux F = −D∇θ, and
typically has boundary conditions θ|B = θB(t) (Dirichlet) or F|B = FB(t)
(Neumann).

9.2 The Crank-Nicholson Algorithm

A classic algorithm for integrating equation (9.1) stably is the Crank-
Nicholson formula. Define a uniform mesh with spacing h by xj = x0 + j ·
h, j = 1, . . . ,M, and further let τ be the step in time, so that tn = t0+n · τ.
If φn

j is the approximate solution at x = xj, t = tn, then we can define the
flux at the half-mesh points j+ 1/2, j− 1/2 as

Fn
j−1/2 = −Dj−1/2

φn
j − φn

j−1

h
, Fn

j+1/2 = −Dj+1/2
φn

j+1 − φn
j

h
. (9.2)

In the remainder of this project, we shall takeD to be constant, so we can
drop its mesh index. Taking the difference of the fluxes in equation (9.2)
gives us an approximation for the RHS in equation (9.1),

−D∂x (−∂xθ) ≈ D
φn

j−1 − 2φn
j + φn

j+1

h2 . (9.3)

A first-order representation of the time derivative is

φn+1
j − φn

j

τ
; (9.4)

the characteristic timescale in the problem is∼ O(h2D). To avoid getting
clobbered taking very small steps in time, it is useful to define an implicit

54 numerical techniques in astrophysics

step, in which the RHS is evaluated at tn+1 instead of tn. The Crank-
Nicholson scheme uses the average of the implicit and explicit evaluation
of the spatial derivative,

φn+1
j − φn

j

τ
=

D
2

[
φn+1

j−1 − 2φn+1
j + φn+1

j+1

h2 +
φn

j−1 − 2φn
j + φn

j+1

h2

]
. (9.5)

A stability analysis shows that this scheme is stable, and has the addi-
tional benefit of being second-order in both time and space.

Exercises

Verify that equation (9.5) is second-order in h and τ. To verify that it
is second-order in τ, you should expand around the half-step point t =

tn+1/2.

9.3 Numerical solution

Define χ ≡ Dτ/(h2) and rearrange equation (9.5) to obtain

− χ
2

φn+1
j−1 + (1+ χ)φn+1

j − χ
2

φn+1
j+1 =

χ
2

φn
j−1 + (1− χ)φn

j +
χ
2

φn
j+1. (9.6)

This system of equations is tridiagonal: that is, it has the form

A · xxx = bbb (9.7)

where xxx = (φn+1
1 , φn+1

2 , . . . , φn+1
M), bj = (χ/2)φn

j−1+(1− χ)φn
j +(χ/2)φn

j+1,
and

A =

· · 0 0 0
· · · 0 0
0 − χ

2 1+ χ − χ
2 0

0 0 · · ·
0 0 0 · ·

 . (9.8)

The only elements non-zero elements of A are in a band spanning ele-
ments at most once removed from the diagonal. Tridiagonal matrices are
very easily inverted, which makes this algorithm very efficient. A stan-
dard lapack routine for solving equation (9.8) is xGTSV, where x is either
s (single precision) or d (double precision). Note that in these routines,
the entire matrix A is not stored, but only the diagonal, the sub-diagonal,
and the super-diagonal components.

For example, the call to dgtsv is
call dgtsv(M,nrhs,subdiag,diag,supdiag,rhs,M,info).

Here M is the rank of the array, and the vectors subdiag(1:M-1),
diag(1:M), superdiag(1:M-1) hold the sub-diagonal, diagonal, and
super-diagonal elements.

solving a parabolic pde 55

Boundary conditions

For Dirichlet boundary conditions, one may simply set φ1 = φL, where φL

is the fixed value of the solution at the left-hand boundary, for example.
For Neuman boundary conditions, the problem is more subtle. Here it is
instructive to construct ghost zones, at j = 0 and M + 1. These zones are
not included in the matrix solve (eq. 9.7), but the values of φ0 and φM+1

are adjusted to enforce the boundary conditions. For example, suppose
we want an insulating boundary, i.e., one with zero flux. In this case we
have

φ2 − φ0 = 0,

φM+1 − φM−1 = 0.

Substituting these relations into the finite difference equation about
j = 0 and j = M gives

(1+ χ)φn+1
1 − χφn+1

2 = (1− χ)φn
1 + χφn

2

−χφn+1
M−1 + (1+ χ)φn+1

M = χφn
M−1 + (1− χ)φn

M.

The use of ghost zones is a common technique for enforcing boundary
conditions. Note that we could have enforced the boundary conditions
without ghost zones, but this would have required either a lower-order
representation of the boundary, or more than two points (and hence a
loss of the efficient tridiagonal structure of the matrix).

E X E R C I S E 9 . 1— Solve a diffusion problem in a rod of unit length with
insulating boundary conditions. Let the initial thermal profile be

φ(x, t = 0) =
1
2
[1− cos(2xπ)] ,

so that the boundaries have φ(0) = φ(1) = 0 at t = 0 and φ′(0) = φ′(1) = 0 as
well. Predict the asymptotic solution before you do this numerically.

9.4 An reaction-diffusion problem

Now let’s apply our diffusion solver to a more complicated equation, a
reaction-diffusion equation,

∂tθ = D∂2
x θ +Rθ(1− θ). (9.9)

The non-linear term on the RHS is called a KPP source term. The solution
to equation (9.9) is a front with width δ ≡ θ/|∂xθ|max ∝

√
D/R that

travels with speed u ∝
√
DR.

The tricky part of eq. (9.9) is that it is non-linear, so our Crank-
Nicholson scheme is not directly applicable. To get around this, we can

56 numerical techniques in astrophysics

use the concept of Strang splitting. In general, suppose we can write an
equation

∂tφ = L1φ + L2φ, (9.10)

where L1 and L2 are operators for which we have a technique to integrate
them if only the other operator weren’t there. For example, in this case,

L1φ = D∂2
x φ, L2φ = Rφ(1− φ).

One can advance the solution in time by working on each part separately,

φ∗
j = (1+

τ
2
L1)φn

j (9.11)

φ∗∗
j = (1+ τL2)φ∗

j , (9.12)

φn+1
j = (1+

τ
2
L1)φ∗∗

j . (9.13)

In words, we would use the Crank-Nicholson scheme to advance the
solution a half-step, use that “halfway” solution to compute the reaction
term, and then finish the step with the Crank-Nicholson piece.

One can show that this splitting is second-order accurate in time if the
individual operators L1, L2 are second-order accurate in time.

E X E R C I S E 9 . 2— Numerically solve equation (9.9). You will need to decide
on the mesh and time-step. What size must your grid be, and how fine must the
mesh be, in order for the flame to be captured? Show that after an initial
transient, the flame reaches a steady velocity that scales as

√
DR, and that the

width is∝
√

D/R.

A
Performance

We aren’t going to touch on issues of performance or efficiency much in
this course, but it’s a topic of which one should at least be aware. This
exercise is meant as a brief introduction.

1. fortran stores matrices as a sequential stream of numbers, for
which the row index advances fastest. For example, the 3 × 3 matrix
A(i, j) is stored sequentially in memory as

A(1, 1),A(2, 1),A(3, 1),A(1, 2),A(2, 2),A(3, 2),A(1, 3),A(2, 3),A(3, 3).

To see how this affects performance, cook up two large matrices (e.g.,
1024 × 1024 so that they don’t fit into cache memory). One way to
construct the matrices is to make each element some function of the
indices, e.g., A(i, j) = i+ j or B(i, j) = i− j + 1. Now add them in three
different ways,

(a) with the inner loop over the column (second) index;

(b) with the inner loop over the row (first) index;

(c) using the built-in addition, A = B+ C

Time these methods. Note: Some compliers will automatically opti-
mize your code, which will make this example not as interesting! Make
sure you compile without the -O flag.

To time a loop, you can use the cpu_time routine, as demonstrated in
the following simple code.

1 ! sample_time.f
2 ! A simple example of timing a section of code.
3 !
4 ! AST 911, Spring 2008
5 ! Edward Brown, Michigan State University
6 !
7 program time_a_loop

58 numerical techniques in astrophysics

8 implicit none
9 integer, parameter :: N = 1024

10 real, dimension(N,N) :: a
11 integer :: i,j
12 real :: t0, t1
13

14 call cpu_time(t0)
15 do i = 1,N
16 do j = 1,N
17 a(i,j) = i+j
18 end do
19 end do
20 call cpu_time(t1)
21 print *,’time = ’,t1-t0
22 end

2. Consider the multiplication of two matrices of size N×N. First, verify
that the number of floating-point operations required to multiply the
two matrices together is proportional to N3.

3. Generate a set of non-trivial square matrices with N = 2s, s =

4, . . . , 10. Now, for each size N, multiply the two matrices by each
of the following methods.

(a) a loop nest

(b) the intrinsic matmul proceedure

(c) if available, a tuned blas routine1. 1 blas (Basic Linear Algebra Subpro-
grams) routines are designed for high-
performance matrix operations, and are
the building blocks of lapack.

Tabulate the run time for each method as a function of N.

Suppose you had to perform the operation C = A + BT, that is,
C(i, j) = A(i, j) + B(j, i). Here you can’t avoid non-sequential memory
access. To see how blas routines are tuned for performance, time the
following two algorithms and see if there is a difference. Again, let the
matrices be square and of rank N = 1024.

1. A straightforward loop nest

22 do i = 1,N
23 do j = 1,N
24 a(j,i) = a(j,i) + b(i,j)
25 end do
26 end do

Note that elements in array b are not accessed sequentially.

2. Now work on 2 × 2 blocks, and cut the inner loop into two loops each
of size N/2.

http://www.netlib.org/blas/faq.html#1.6%22
http://www.netlib.org/lapack/index.html

performance 59

46 do i = 1,N,2
47 do j = 1,N/2,2
48 d(j,i) = d(j,i) + b(i,j)
49 d(j+1,i) = d(j+1,i) + b(i,j+1)
50 d(j,i+1) = d(j,i+1) + b(i+1,j)
51 d(j+1,i+1) = d(j+1,i+1) + b(i+1,j+1)
52 end do
53 end do
54 do i = 1,N,2
55 do j = N/2 + 1,N,2
56 d(j,i) = d(j,i) + b(i,j)
57 d(j+1,i) = d(j+1,i) + b(i,j+1)
58 d(j,i+1) = d(j,i+1) + b(i+1,j)
59 d(j+1,i+1) = d(j+1,i+1) + b(i+1,j+1)
60 end do
61 end do

What is the difference in memory access between method 1 and method
2? Is there a significant gain in performance?

Bibliography

J. R. Cash. Review Paper: Efficient numerical methods for the solution
of stiff initial-value problems and differential algebraic equations. Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 459(2032):797–815, 2003.

Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, 2002.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes. Cambridge University Press, third edition,
2007.

Lewis F. Richardson and J. Arthur Gaunt. The Deferred Approach to the
Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices. Philo-
sophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, 226(636-646):299–361,
1927.

	Arithmetic at finite precision
	Representation of integer numbers
	Representation of real numbers
	Binary storage: which end is up?

	Finding Roots
	Introduction
	Bisection
	Newton's method

	Ordinary Differential Equations
	Background
	A worked example: Development of a two-body code
	Symplectic Integration
	The Fourth Order Runge-Kutta Method
	Convergence and Error

	Stiff ODEs
	A single ODE
	A system of two ODEs
	Real problems, not linear

	Traffic
	Characteristics: A worked example

	The Equations of Fluid Mechanics
	Fluids as continua
	The conservation laws
	Thermodynamical quantities

	A simple PDE: the linear advection equation
	Background
	Discretization in space
	Discretization in time
	A worked example
	Stability

	Flux-conservative algorithms
	Introduction: Burgers Equation
	A Worked Example: Linear Acoustics

	Solving a Parabolic PDE
	The Diffusion Equation
	The Crank-Nicholson Algorithm
	Numerical solution
	An reaction-diffusion problem

	Performance
	Bibliography

