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Preface

These notes grew out of a collection of handouts and exercises that I
wrote while teaching the junior/senior undergraduate course on stars
at Michigan State University in the autumn semesters of 2012, 2014, and
2016. In addition to deriving a basic physical description of how stars
work, a secondary goal of the course was to train students to make sim-
ple physical models and order-of-magnitude estimates. This is a crucial
skill that is not incorporated enough into the typical undergraduate
physics courses. In keeping with this goal, many of the exercises asked
the students to make estimates or to employ simple models, such as
constant density throughout the star, rather than to perform elaborate
calculations.

Concern about rising costs motivated me during the spring and sum-
mer of 2018 to assemble the handouts and exercises into a package that
could be inexpensively distributed to students and eliminate the need
for a required textbook. As I prepared for the transition to online teach-
ing in the spring and summer of 2020, I added notes on three common
numerical tasks: finding roots, solving ordinary differential equations,
and interpolating tabulated data. These methods are used in the group
computational project that is part of my course. Because there are many
excellent references and numerical libraries available for these tasks, the
goal of the appendix is just to introduce the techniques.

THERE ARE SEVERAL OPTIONS FOR THE ORDER IN WHICH TO PRESENT MA-
TERIAL. One would be to start with chapter 2, which covers hydrostatic
equilibrium and establishes estimates for the mean stellar density, pres-
sure, and temperature. The material in chapter 1 on radiant intensity,
flux, and thermal emission would then be introduced in chapters 3 and
4, which cover radiative heat transport in the stellar interior and the con-
ditions at the photosphere. The remainder of chapter 1 on magnitudes
would then come later, perhaps in chapter 6 where we discuss the main
sequence.

Although this order is logical, after deliberation I decided on the lay-
out used here for several reasons. First, radiative transfer is a difficult
subject, and introducing the basic concepts early gives the students more
time to become familiar with the topic. Second, finding Wien’s law re-
quires a numerical rootfind (exercise 1.5), and this is a good warmup for
further numerical projects. Finally, the discussion of radiative intensity
allows us to introduce magnitudes and color indices, thereby making
contact with the subject’s observational foundations at the start.

THE TEXT LAYOUT USES THE TUFTE-BOOK LATEX CLASS1. The main fea- 1 https://tufte-latex.github.
io/tufte-latex/tures are a large outer margin in which the students can take notes and

https://tufte-latex.github.io/tufte-latex/
https://tufte-latex.github.io/tufte-latex/
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the tight integration of text, figures, and sidenotes. Sixty-six exercises,
ranging from comprehension checks to longer, more challenging prob-
lems, are embedded throughout the text. A few of the exercises have a
numerical component, denoted with a “ ” symbol. Because the exer-
cises are spread throughout the text, there is a “List of Exercises” in the
front. I’ve also added boxes containing more advanced material that I
felt students should be exposed to, but were not essential to the main
development of the course.

ONE EVENING I TRIED TO ENLIVEN THE CHAPTER TITLES. I noticed that
the first two chapters had titles that were also titles for pop songs. I then
decided to find song titles that would fit for the remaining chapters.
When selecting titles, I imposed a rule that they all could plausibly go
together on a playlist. This was challenging since the chapters originally
had titles such as “The equation of state” and “The radiative opacity”.
The credits for the chapter titles, in order, go to Muse, Queen/David
Bowie, Greta van Fleet, Dio, Deep Purple, David Bowie, The Traveling
Wilburys, and Muse.

PLEASE BE ADVISED THAT THESE NOTES ARE UNDER ACTIVE DEVELOPMENT.
To refer to a specific version of the notes, use the eight-character stamp
labeled “git version” on the copyright page.
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1
Starlight

1.1 Introduction: Our Sun

Let’s start by considering the star we know best: the sun1. Measurements 1 The symbol ⊙ is used to denote the sun

of the Earth-Sun distance and hence the size of the sun began in antiq-
uity2. Observations of the planets’ orbital periods, when combined with 2 See Weinberg [2015] for a physicist’s

perspective on how this was done.Kepler’s laws, determine the planets’ relative distances from the sun.
The distance scale is then fixed using radar ranging of objects in the solar
system, with the mean Earth-Sun distance, known as an ASTRONOMICAL
UNIT, being defined3 as 3 Brian Luzum et al. The IAU 2009 system

of astronomical constants. Celestial
Mechanics and Dynamical Astronomy,
110(4):293–304, August 2011. DOI:
10.1007/s10569-011-9352-4

1 au = 1.495 978 707 00× 1011 m.

From the sizes and periods of the planetary orbits, along with Newton’s
theory of gravity, we deduce the mass of the sun4: 4 Note that GM⊙ is known much more

precisely than G or M⊙ separately.
M⊙ = 1.99× 1030 kg.

The sun is roughly 106 times more massive than the Earth and 1 000 times
more massive than Jupiter. Knowing the Earth-Sun distance and the
angular size of the sun, about 0.5◦ across its diameter, gives us its radius:

R⊙ = 6.96× 108 m.

The total radiant power emitted by a star is its LUMINOSITY L. A detector
with a collecting area A located a distance d from a star intercepts a
fractionA/(4πd2) of the star’s light. We call F = L/(4πd2) the FLUX,
which has units W m−2. From the mean solar flux5 at 1 au, 1360.8 ± 5 Greg Kopp and Judith L. Lean. A new,

lower value of total solar irradiance:
Evidence and climate significance.
Geophys. Res. Lett., 38(1):L01706, January
2011. DOI: 10.1029/2010GL045777

0.5 W m−2, we the infer the sun’s luminosity:

L⊙ = 3.83× 1026 W.

E X E R C I S E 1 . 1 — Suppose we wish to replace the MSU power plant—rated
at 70 MW (70 × 106 W)—with a grid of solar panels. Under ideal conditions
(direct light and 100% efficient panels), how many square meters of solar panels
are needed?
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E X E R C I S E 1 . 2 — What would the flux be from a star with L = 0.1 L⊙ at a
distance of 10 pc? Recall that a parsec (pc) is defined by the relation

1 au
1 pc

= 1′′ = 1
206 265

.

Our information about the sun and the more distant stars is carried by
light. Before going further, then, let’s establish some basic properties of
light and how observations are made.

1.2 Intensity and specific flux

k
λ

E

B

Figure 1.1: Schematic of the electric
field (blue arrows) and magnetic field
(red arrows) for a wave traveling along
direction kkk with wavelength λ.

When we detect light, what happens at the atomic level is that the
charges in our detector (a CCD, an eye, a photographic emulsion) feel
an electric (and magnetic) force that oscillates with frequency ν. Imag-
ine setting up a grid of detectors that measure the electric and magnetic
forces per charge at each point in space and at each instant of time. We
call these forces per charge the electric and magnetic fields, EEE(xxx, t) and
BBB(xxx, t). As light passes through this grid, we would notice a sinusoidal
pattern, with amplitude proportional to |EEE|2 + |BBB|2, traveling at speed66 This velocity is exact; the meter is

defined in terms of the speed of light. c = 299 792 458 m/s with a wavelength λ = c/ν.

CCD

mask

ΔA

ΔΩ

�lter

Figure 1.2: Schematic of radiative inten-
sity

Take a detector and place (see Fig. 1.2) in front of the detector a filter
that only lets through light with wavelengths in a range ∆λ. Place a
mask over the detector with a small pinhole of area ∆A that restricts the
light falling on the detector to fall in a narrow cone of solid angle ∆Ω

about the normal to the detector. Then measure the energy ∆E incident
on the detector in a time ∆t. The quantity

Iλ ≡
∆E

∆t∆A∆λ∆Ω
(1.1)

is known as the INTENSITY, and is the basic quantity describing radiation.
At sufficiently low intensity, we would find that energy is deposited into
our detector in discrete quanta, known as PHOTONS, with each photon
having an energy hc/λ = hν, with h = 6.63 × 10−34 J s being PLANCK’S
CONSTANT. The light emitted by the sun (or any other source) consists of
a huge number of photons; the distribution of photons over a range of
wavelengths is known as a SPECTRUM.

E X E R C I S E 1 . 3 — The peak of the sun’s spectrum is at a wavelength of
approximately 500 nm. Estimate the number of photons from the sun striking
1 m2 of Earth each second.

In situations in which the wavelength is small (relative to the system
in question so we can neglect diffraction), light propagates along RAYS.
By a ray of light, we mean the light emitted into a small cone of opening
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solid angle dΩ about a direction k̂kk. In the absence of any interactions with
matter, the intensity is conserved along a ray if both source and receiver
are stationary with respect to one another (Exercise 1.4).

Box 1.1 Solid angles

Imagine that you are at the center of a great sphere of radius R,
and you shine a light that emits rays into some solid angle. Orient
your coordinates so that the rays are traveling along the z-axis.
The light will illuminate an area

A = R2
∫ 2π

0

∫ θ

0
sin θ dθ dϕ.

Here θ is the opening half-angle of the cone. The solid angle into
which the light is emitted is Ω = A/R2. Astronomers often ex-
press the integral by changing variables to µ = cos θ, so that the
solid angle is

∆Ω =

∫ 2π

0

∫ 1

1−∆µ

dµdϕ.

If we integrate over all angles (0 ≤ θ ≤ π, or −1 ≤ µ ≤ 1), then we
get the area of a sphere, A = 4πR2.

What your friend sees

ΔAobs/d
2

ΔΩemit

What you see

ΔAemit/d
2

ΔAobs

ΔAemit

ΔΩemit

d

Figure 1.3: Schematic for exercise 1.4.

E X E R C I S E 1 . 4 — Your friend (at top in Fig. 1.3) flashes a light: in a time ∆t
it emits energy ∆Eemit in a waveband ∆λ. The opening through which the light
passes has area ∆Aemit, and the light goes into a cone of opening solid angle
∆Ωemit. Your friend therefore calculates her intensity as

Iλ,emit =
∆Eemit

∆t∆Aemit ∆λ∆Ωemit
.

You stand (at bottom in Fig. 1.3) with a camera, the aperture of which has area
∆Aobs., a distance d (d2 ≫ ∆Aemit,∆Aobs) from your friend. You measure an
intensity Iλ,obs. Show that Iλ,obs = Iλ,emit by doing the following.

1. Calculate the incident energy that falls on your camera aperture ∆Eobs.

2. Find the solid angle ∆Ωobs subtended by the rays entering the aperture.

3. Now use parts 1 and 2 to compute your intensity

Iλ,obs =
∆Eobs

∆t∆Aobs ∆λ∆Ωobs
.

and show that this is the same as Iλ,emit.

A related quantity is the SPECIFIC FLUX Fλ, which is the energy carried
by light having wavelength in a range ∆λ crossing an area ∆A (from
all angles) in a time ∆t. We compute Fλ by multiplying the intensity by
cos θ, where θ is the angle between the ray and the normal of our area7 7 this gives the projected area
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and integrating over angle:

Fλ =

∫
Iλ cos θ sin θ dθ dϕ. (1.2)

1.3 Thermal emission

Imagine we had a material that emits and absorbs equally well at all
wavelengths. We then made from this material a hollow box, and we
heated this box to a temperature T. The hot atoms in the walls of the
box would emit (and absorb) photons bouncing around in the cavity
in this box, until the photons were in thermal equilibrium8 with the8 Meaning that the radiation field is on

average neither gaining or losing energy
from the walls of the box

walls of the box. If we then drilled a small hole in the side of the box,
some photons would escape (but not so many as to disturb the thermal
equilibrium). The intensity emerging from such a box is known as the
PLANCK SPECTRUM:

Iλ(Planck) ≡ Bλ(T) =
2hc2

λ5

[
exp

(
hc

λkBT

)
− 1
]−1

. (1.3)

Here kB = 1.381 × 10−23 J K−1 denotes BOLTZMANN’S CONSTANT. This
spectrum is also known as a BLACKBODY spectrum, because it is emitted
from a material that absorbs (and therefore emits) equally well at all
wavelengths. The emission is peaked at a wavelength λpk ∼ hc/kBT.
Fig. 1.4 displays Planck’s spectra for various temperatures. Note that Bλ

increases at all wavelengths as the temperature increases.

102 103 104

 [nm]

103

104

105

 [
]

3000 K

4000 K

5000 K
6000 K

7000 K

Figure 1.4: Thermal spectra for tempera-
tures ranging from 3000 K to 7000 K.

E X E R C I S E 1 . 5 — Show that the peak of the thermal spectrum, temperature
T, occurs (i.e., where Bλ is maximum) at a wavelength

λpk = 290 nm
(

10 000 K
T

)
.

This result is known as WIEN’S LAW. Check this: what is the peak wavelength of
the sun’s emission? What is the peak wavelength for the cosmic microwave
background (TCMB = 2.73 K)? Hint: In finding the peak, you may need to find
the root of a function numerically; that is, you will have an expression f(x) and
you want to find xr such that f(x = xr) = 0. There are multiple ways to do this;
see the notebooks bisection and brent in the
numerical-methods/notebooks folder.

The Planck spectrum, expressed in terms of frequency, is

Bν(T) =
2hν3

c2

[
exp

(
hν
kBT

)
− 1
]−1

. (1.4)

E X E R C I S E 1 . 6 — What is the frequency corresponding to λpk in
Exercise 1.5? Compute the frequency νpk at which Bν is maximum. Is νpk the
same as the frequency corresponding to λpk?
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Using Eq. (1.2), we can compute the specific flux of this thermal radia-
tion. Since Bλ doesn’t depend on angle, the integral is easy:

Fλ = Bλ

∫ 2π

0

∫ π

0
cos θ sin θ dθ dϕ = 0.

E X E R C I S E 1 . 7 — Explain, without using mathematical expressions, why
there is no net flux for thermal emission.

Although the net flux is zero, if we just want the radiation escaping
from our cavity, we should only integrate over the angles 0 ≤ θ ≤ π/2. If
we do this, then our outward-going specific flux is

Fλ(outward) = Bλ

∫ 2π

0

∫ π/2

0
cos θ sin θ dθ dϕ = πBλ. (1.5)

To find the total power emitted per area for thermal radiation, we need to
integrate Fλ over wavelength:

F =

∫ ∞

0
Fλ(outward)dλ =

∫ ∞

0

2πhc2

λ5
dλ

exp (hc/λkBT)− 1
. (1.6)

By changing variables to x = hc/λkBT, we can write this integral as The integral over x can be converted
into 3! × ζ(4), where ζ is the Riemann
zeta function; for further information,
consult a text on mathematical methods in
physics.

F =
2πk4

B
h2c

T4 ×
∫ ∞

0

x3

ex − 1
dx︸ ︷︷ ︸

=π4/15

=

[
2π5

15
k4

B
h2c

]
T4.

The quantity in [·] is called the STEFAN-BOLTZMANN CONSTANT:

σSB = 5.7× 10−8 W m−2 K−4;

The total energy radiated per second per area from a thermal emitter of
temperature T is thus σSBT4.

REAL STARS ARE NOT BLACKBODIES! That being said, their spectra are
roughly thermal, so we can define an EFFECTIVE SURFACE TEMPERATURE

Teff =

[
F
σSB

]1/4

.

The total power output, or luminosity, of a star of radius R is thus

L = 4πR2σSBT4
eff. (1.7)

For the sun, Teff = 5780 K.
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1.4 The radiation energy density

We introduced
Iλ ≡

dE
dt dA dλdΩ

as the radiant energy dE crossing an area dA in a time dt, directed into a
solid angle dΩ, and carried by photons with wavelengths in a range dλ.
Notice that in time dt, these photons will fill a volume dV = cdt × dA.
Hence we can write the intensity as

Iλ = c
dE

dV dλdΩ
.

Using this expressions, we define the radiant energy density per wave-
length as

Uλ ≡
dE

dV dλ
=

1
c

∫
Iλ dΩ. (1.8)

If the radiation is thermal, that is, if Iλ = Bλ, then

Uλ =
Bλ

c

∫ 2π

0

∫ π

0
sin θ dθ dϕ =

4π
c

Bλ,

and the total radiant energy density is

U =

∫ ∞

0
Uλ dλ =

4
c
π

∫ ∞

0
Bλ dλ =

[
4σSB

c

]
T4.

In getting this result, we used equations (1.5) and (1.6). With

a ≡
[

4σSB

c

]
= 7.566× 10−16 J m−3 K−4,

the energy density of radiation in thermal equilibrium is U = aT4.
It is common to denote the average (over angle) intensity as

Jλ =
1

4π

∫
Iλ dΩ; (1.9)

the specific energy density is thus

Uλ =
4π
c

Jλ.

Box 1.2 Momentum transport and radiation pressure

In addition to transporting energy, photon also carry momen-
tum. You will learn in your quantum mechanics course that the
momentum of a photon of energy hν traveling along direction k̂kk is

ppp =
hν
c

k̂kk =
h
λ

k̂kk.
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Box 1.2 continued

Here ν and λ = c/ν are the frequency and wavelength of the pho-
ton. Hence the momentum carried by photons of energy Eν along
direction k̂kk is E/c. Since Iν is the amount of energy carried by
photons per area per time along the direction k̂kk, the momentum
transported by those photons per area per time along direction k̂kk
must be (Iν/c)k̂kk.

TO RELATE THIS MOMENTUM TRANSPORT TO THE RADIATION PRES-
SURE, suppose we have a sheet of absorbing material with a nor-
mal n̂nn being impinged by a ray of photon traveling along k̂kk. As the
photons are absorbed, they transfer momentum (along direction
n̂nn) of (Eν/c)n̂nn · k̂kk to the matter. The projected area of the ray on the
matter is dA n̂nn · k̂kk. The rate of momentum transfer along n̂nn per area
per frequency is therefore

Pν =
1
c

∫
Iν
(

n̂nn · k̂kk
)

︸ ︷︷ ︸
proj. area

(
n̂nn · k̂kk

)
︸ ︷︷ ︸

comp. of ppp along n̂nn

dΩ

=
1
c

∫ 2ϕ

0

∫ 1

−1
Iνµ2 dµdϕ. (1.10)

A change in momentum per time is a force; hence equation (1.10)
represents the force per area, or PRESSURE, exerted by photons
with frequencies in [ν, ν + dν]. The two factors of µ = cos θ ac-
count for the projected area and the component of momentum
along the normal to the surface n̂nn.

If the radiation is thermal, so that Iν = Bν and is independent
of angle, then

Pν =
4π
3c

Bν .

We can integrate Pν over frequency to get the total radiation pres-
sure,

Prad =
4π
3c

∫ ∞

0
Bν dν =

4
3c

σSBT4 =
1
3

aT4. (1.11)

Note that the pressure is 1/3 of the energy density for thermal
radiation. This is in general true for a gas of relativistic particles
that have momentum proportional to energy.

1.5 Magnitudes

When observing a star, astronomers are collecting light over a range of
frequencies. To compare observations, astronomers typically pass the
light through standard filters and measure the transmitted flux. The flux
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in a given band is then

Fband =

∫
Fλ T (λ)dλ.

Here T (λ) is the TRANSMISSION FUNCTION for that filter and specifies
how much light is let through as a function of wavelength. The trans-
mission functions for some common UV/optical/IR filters are shown in
Figure 1.5. For example, the V-band filter is centered at λ = 551 nm and
has a width at half-max of 88 nm.

Figure 1.5: Some standard
UV/optical/IR filters. The T (λ) are
normalized so that max(T ) = 1.

300 400 500 600 700 800 900
/

0.0

0.2

0.4

0.6

0.8

1.0
(

)

U B V R I

E X E R C I S E 1 . 8 — Suppose you wished to observe a sun-like star, and you
wanted to observe wavelengths near the peak of the spectrum. Which filter
would you choose, and why? What about for a star with a surface effective
temperature Teff = 8 000 K?

When making observations, a common practice is to compare fluxes
in a particular band between two stars. Optical astronomers define the
apparent magnitude m viaNB. Throughout this text, log ≡ lg

denotes log10 and ln denotes loge.

m(A)− m(B) = −2.5 log
[

F(A)
F(B)

]
. (1.12)

Here F(A) and F(B) are two different measurements of flux (from two
different stars, for example) in a particular waveband. In place of m, the
usual practice, is to simply use the label of the waveband. For example,
when an astronomer says, “The V-magnitude is 16.6”, what she means is
that the apparent magnitude measured in the V-filter is 16.6.

Because equation (1.12) is a flux ratio, the absolute scale is not defined.
Conversion from a magnitude to physical units, such as W m−2 nm−1, is
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unfortunately difficult and not straightforward. Instead, the magnitude
system is calibrated to specific stars. The zero-point is set so that Vega
has U = B = V = . . . = 09. 9 The modern value is V(Vega) = 0.026 ±

0.008; Bohlin and Gilliland [2004].Imagine comparing the flux from a star, at a distance d, with that from
an imaginary identical star located at a distance of 10 pc. We’ll call the
magnitude of this imaginary star at 10 pc the ABSOLUTE MAGNITUDE M
and define the DISTANCE MODULUS as

DM ≡ m−M = m(d)− m(10 pc)

= −2.5 log
[

L/4πd2

L/4π(10 pc)2

]
= −2.5 log

[(
10 pc

d

)2
]

= 5 log
(

d
pc

)
− 5. (1.13)

Since the absolute magnitude is a measure of the flux from the star if it
were at a specified distance, the absolute magnitude is a proxy for the
luminosity in a given filter. Because magnitudes do not have a straight-
forward conversion to physical units, the absolute magnitude is again a
relative scale for comparing stellar luminosities.

WE CAN ALSO COMPARE THE FLUX FROM TWO DIFFERENT FILTERS FOR THE
SAME STAR. The difference in magnitudes betweem two different filters
defines a COLOR INDEX, which measures where the star’s spectrum peaks
and is therefore a rough proxy for surface effective temperature. For
example, the index

B− V = −2.5 log

[∫
B−band Fλ dλ∫
V−band Fλ dλ

]

measures the ratio of V-band flux to B-band flux for a particular star.

E X E R C I S E 1 . 9 — How would the B − V index of the sun compare to that of
a hotter star, e.g., one with Teff = 8 000 K?

L52 M.A.C. Perryman et al.: The Hipparcos Catalogue

Fig. 3. The observational Hertzsprung-Russell diagram, MV versus

B − V , for the 20 853 stars with σπ/π < 0.1, and with the additional

constraint σB−V < 0.025 mag.

4. Final astrometric accuracies

Figs 1 and 2 illustrate the median precision of each of the astro-
metric parameters as a function of Hp magnitude and ecliptic
latitude, respectively. Detailed sky charts and histograms giving
the astrometric and photometric accuracies as a function of posi-
tion and magnitude are included in the Hipparcos Catalogue. As
an illustration of the astrometric and photometric quality of the
catalogue, Fig. 3 gives the observational Hertzsprung-Russell
Diagram, MV versus B–V, for the 20 853 stars for which distant
determinations are better than 10% (i.e. σπ/π < 0.1), and with
the additional constraint σB−V < 0.025 mag. The general fea-
tures of this diagram, based on the preliminary catalogue, have
been discussed by Perryman et al. (1995).

5. Catalogue Products

The Hipparcos Catalogue is available as a 17-volume publica-
tion, ESA SP–1200. This includes the main Hipparcos Cata-
logue, the Double and Multiple Systems Annex, the Variabil-
ity Annex, identification charts for faint objects or objects in
crowded regions, light curves for periodic and unsolved vari-
ables, and a full sky star atlas with nearby, variable, high proper
motion, and multiple systems indicated. All products of the mis-
sion, including intermediate astrometric data and the catalogues
of epoch photometry, are also provided on 6 ASCII CD-ROMs
included within the 17-volume publication.
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Figure 1.6: Distribution of stars cataloged
by Hipparcos in MV and B − V.

Figure 1.6 shows the absolute MV magnitudes and the B − V color
indices for 20 853 nearby stars as measured by the Hipparcos satellite10.

10 M. A. C. Perryman et al. The Hipparcos
Catalogue. A&A, 500:501–504, July 1997

Hipparcos was launched by ESA in 1989 to measure parallaxes for over
105 nearby stars. Its successor, Gaia, is measuring positions and motions
of about 109 stars in the Milky Way. Fig. 1.6 represents a wide range of
stellar masses and evolutionary stages. In the remaining chapters of these
notes, we’ll explore how the groupings on this diagram come about and
trace the life of a star from birth to death.
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E X E R C I S E 1 . 1 0 — Let’s examine the Hipparcos color-magnitude diagram,
Fig. 1.6, and understand the physical properties of the stars plotted on it.

1. On the axis B − V, indicate the direction “red→blue” in visual appearance;
assuming thermal emission, indicate the direction of increasing surface
temperature.

2. On the axis MV, indicate the direction of increasing luminosity. What is the
dynamic range (ratio, largest to smallest) of stellar luminosities on this plot?

3. Again assuming thermal emission, indicate the direction on the plot of
increasing stellar size (radius).

4. Look up MV and B − V for the sun, and indicate it on the plot.



2
Under Pressure

2.1 Hydrostatic equilibrium

Consider a fluid at rest in a gravitational field. By a FLUID, we mean
that the pressure is isotropic1 and directed perpendicular to any given 1 Meaning the pressure is the same in all

directions.surface. Let’s now imagine a small fluid element, as depicted in Fig. 2.1.
The gravitational acceleration is in the direction −r̂rr; the fluid element
has thickness ∆r along the direction of the gravitational force and cross-
sectional area ∆A.

ΔA

Δr

ΔA P(r+Δr)

ΔA P(r)

Δm g = (ρ ΔA Δr) g

Figure 2.1: A fluid element in hydrostatic
equilibrium.

Since our fluid is at rest, the forces must balance. This implies that the
pressure only depends on r, so that there is no net sideways force on our
fluid element. If the fluid has a density (mass per unit volume) ρ, then
the mass of the fluid element is ρ∆A∆r, and the gravitational force on
the fluid element is −(ρ∆A∆r)g(r)̂rrr. This gravitational force is balanced
by the difference in pressure P(r) between the upper and lower faces of the
element.

The pressure force on the upper face is −∆A×P(r+∆r)̂rrr; on the lower
face, ∆A × P(r)̂rrr. For the element to be in hydrostatic equilibrium the
forces along r̂rr must balance,

∆A [−P(r +∆r) + P(r)−∆rρg(r)] = 0.

Dividing by ∆r and taking the limit ∆r → 0 gives us the equation of
hydrostatic equilibrium:

dP
dr

= −ρg(r). (2.1)

This is a differential equation describing how the pressure varies in the
star. We don’t have enough information yet to solve it, however, because
we haven’t specified either the gravity g(r) or the density ρ.

Constant gravity

Let’s start with a simple case: a thin fluid layer, over which gravity is
approximately constant. This is a good approximations for Earth’s at-
mosphere or ocean. Exercise 2.1 examines the pressure increase in an
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incompressible (density is fixed) fluid. This is a bad approximation for a
star, but a good one for Earth’s oceans: the density of sea water increases
by less than 5% between the surface and ocean floor.

E X E R C I S E 2 . 1 — Seawater has a density ρ = 103 kg m−3. Solve eq. (2.1) to
get an equation for the pressure as a function of depth in the ocean. How deep
would you need to dive for the pressure to increase by 1 atm = 1.013 × 105 Pa?
Does this agree with your experience?

The SI unit of pressure is the Pascal:
1 Pa = 1 N m−2. The mean pressure at
terrestrial sea level is 1 atm = 1.013 ×
105 Pa. Other common units of pressure
are the bar (1 bar = 105 Pa) and the Torr
(760 Torr = 1 atm). We can write equation (2.1) in the form of an integral:∫ P(z)

P0

dP = −g
∫ z

0
ρdz.

Consider a cylinder of cross-section ∆A that extends from 0 to z. The
mass of that cylinder is

m(z) = ∆A×
∫ z

0
ρdz.

and its weight is m(z)g.

P(z) ΔA

P(0) ΔA

mg = g ΔA ∫ρ(z’) dz’
0

z

Figure 2.2: The mass of a column of fluid.

The difference in pressure between the bottom and top of the cylinder
is just

P0 − P(z) = gm(z)/∆A,

that is, the difference in pressure is the weight per unit area of our col-
umn. Let’s apply this to our atmosphere: if we take the top of our column
to infinity and the pressure at the top to zero, then the pressure at the
bottom (sea level) is just the weight of a column of atmosphere with a
cross-sectional area of 1 m2.

The isothermal ideal gas

In general the density ρ depends on the pressure P and temperature T via
an EQUATION OF STATE. Let’s relax our condition of constant density, but
keep gravity and temperature constant and assume the fluid is an ideal
gas2. For N particles in a volume V at pressure and temperature P and T,

2 By IDEAL gas, we mean that the particles
are non-interacting; as a result, the energy
of the gas only depends on the kinetic
energy of the particles and in particular is
independent of the volume.

the ideal gas equation of state is

PV = NkBT. (2.2)

In chemistry, it is convenient to count the number of particles by MOLES.
One mole of a gas contains3 NA = 6.022 × 1023 particles, and the number3 The constant NA is known as AVO-

GADRO’S NUMBER. of moles in a sample is n = N/NA. If we divide and multiply equa-
tion (2.2) by NA, then our ideal gas equation becomes

PV = n [NAkB]T ≡ nRT,
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where R = NAkB = 8.314 J K−1 mol−1 is the gas constant. This is perhaps
the most familiar form of the ideal gas law—but it is not in a form useful
to astronomers.

We astronomers don’t care about little beakers of fluid—we have
whole stars to model! Put another way, volume isn’t a useful quantity
since we are working in the middle of a large mass of fluid. Instead,
define the NUMBER DENSITY as the number of particles per volume, N/V.
The mass of each particle is A × mu, where mu has a mass of one ATOMIC
MASS UNIT (≡ 1 u)4. Hence the mass per volume of our fluid is 4 By definition, 1 mol of 12C atoms in their

ground state has a mass of 12 g. Thus,
1 u = 1.661 × 10−27 kg is 1/(12NA) of the
mass of 1 mol of 12C atoms in their ground
state

ρ = Amu ×
N
V
.

We call ρ the MASS DENSITY, or density for short. This quantity appears in
equation (2.1).

Starting with eq. (2.2), dividing by V and then multiplying and divid-
ing byAmu gives

P =

(
AmuN

V

)
kB

Amu
T ≡ ρ

kB

Amu
T. (2.3)

Equation (2.3) is the form most convenient for fluid dynamics, because it
is in terms of an intrinsic fluid property—the density ρ—rather than in
terms of the volume.

E X E R C I S E 2 . 2 — Let’s take a stab at modeling Earth’s atmosphere with
equation (2.1). Take Earth’s atmosphere to be dry (no water, so we don’t have to
worry about condensation) and model it as an ideal gas. Also assume the
temperature doesn’t change with altitude. The average molecular mass of dry air
is A = 28.97. Integrate eq. (2.1) from z = 0, where P(z = 0) = P0, to a height z.
Show that the solution is P(z) = P0e−z/HP , where HP is the PRESSURE SCALE
HEIGHT—the height over which the pressure decreases by a factor 1/e. Evaluate
HP for dry air at a temperature of 288 K (15 ◦C). Is the answer reasonable, based
on your experience? Is the assumption of an isothermal atmosphere a good one?
Explain why or why not.

The mass A of an atom or nuclei, when expressed in atomic mass We denote an atomic isotope or nuclide
as AEl, where A is the atomic number
(total number of neutrons and protons
in the nucleus) and El is the element
abbreviation (corresponds to number of
protons in the nucleus).

units, is approximately equal to the atomic number A (Table 2.1). The
electron mass is me = 0.0005485 u. Unless we need high accuracy, we can
neglect the electron mass and take the mass of an atom or nuclide to be
A× mu.

Table 2.1: Selected atomic masses
nuclide A A (|A − A|/A) (%)
n 1 1.00865 0.865
1H 1 1.00783 0.783
4He 4 4.00260 0.065
12C 12 12.00000 0.000
16O 16 15.99491 0.032
28Si 28 27.97693 0.082
56Fe 56 55.93494 0.116

2.2 Mass density and the mean molecular weight

For a mixture with different types of particles, it is useful to introduce the
MEAN MOLECULAR WEIGHT µ. This is computed by taking the total mass
of a sample of particles and dividing by the total number of particles, so



14 TO BUILD A STAR

that

µ =
ρ

muntot
=

1
mu

∑
i mi ni∑

i ni
. (2.4)

Some examples may make this clearer. Suppose we have n molecules
of molecular hydrogen (H2). The mass of this sample is ≈ 2 mu × n,
since each molecule has 2 nucleons. The total number of particles in our
sample is n, so

µ(H2) =
2mu × n

nmu
= 2.

Now suppose we raise the temperature and dissociate those molecules
into individual atoms. The mass of a sample of n atoms is 1 u × n, so
µ = 1. Let’s raise the temperature further, so that the gas ionizes into
electrons and nuclei (protons). This is a bit trickier. The electrons con-
tribute negligibly to the mass, so if we had n atoms, the mass is still
1 u × n. The total number of particles has doubled, however, since for
each atom there are now 2 particles (electron and nucleus). The mean
molecular weight is therefore

µ(1H + e−) =
nmu

2nmu
=

1
2
.

E X E R C I S E 2 . 3 — What is µ for a fully ionized 4He gas (A = 4, with 2
electrons per atom)?

The ideal gas EOS (eq. [2.3]) as used in astronomy is thus

P = ρ

(
kB

µmu

)
T, (2.5)

in which the composition enters via the mean molecular weight µ.

2.3 The mass distribution

Now let’s look at how gravity varies within a star. Suppose we are at a
distance r from the stellar center. Newton discovered that the gravita-
tional force inside a spherical shell vanished. This means that the net
gravitational force arising from portions of the star exterior to our po-
sition vanishes. The gravitational force depends only on the amount of
mass interior to our position,

m(r) = 4π
∫ r

0
ρ(r)r2 dr,

or in differential form,
dm
dr

= 4πr2ρ. (2.6)
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Furthermore, the gravitational force from a spherically symmetric mass
is identical to that of a point particle of the same mass. Thus, the gravita-
tional force at a radius r from the center is simply

g(r) =
Gm(r)

r2 .

Using this expression for g, we can write eq. (2.1) as

dP
dr

= −ρGm(r)
r2 . (2.7)

E X E R C I S E 2 . 4 — What happens to m(r) and g(r) at the center (r → 0)?
Before doing any calculation, see if you can argue that g(r) → 0 at the center. If
this is so, then what is dP/dr at the center? Assuming that ρ → ρc ≈ const. near
the center, integrate eq. (2.6) over a small radius ∆r to get m(∆r) and hence
g(∆r). Show explicitly that g(∆r) → 0 as ∆r → 0.

To recap, we now have two differential equations, (2.6) and (2.7), that
describe the structure of a star. These equations are for the pressure P(r)
and density ρ(r) in the star. We can’t solve these equations, however,
because we don’t yet have a relation between P and ρ. For example, the
ideal gas equation of state relates P and ρ via a temperature T, so at a
minimum we need an equation for T(r). We’ll defer the derivation of
additional stellar structures a bit, and explore what we can learn from
just these two equations. To proceed, we need to prescribe ρ(r); let’s use a
constant density and see where that leads.

E X E R C I S E 2 . 5 — Let’s suppose that ρ is constant throughout the star. In
what follows, you should be able to express everything in terms of the star’s mass
M and radius R, along with physical constants such as G and kB.

1. First, find ρ in terms of the total mass M and radius R.

2. Next, solve equation (2.6) to find m(r) in terms of M and r/R.

3. Use this expression for m(r) and your expression for ρ to integrate
equation (2.7) and to find the pressure at the center, Pc = P(r = 0).

4. Now that we have an expression for the central pressure in terms of M and R,
let’s try to understand what it means. Use your result from parts 1 and 3, as
well as equation (2.5) to find the central temperature of the star, in terms of G,
M, R, and the mean molecular weight of the gas µ. Evaluate Tc for M = M⊙,
R = R⊙, and µ = 0.6. Do you get a reasonable result?

2.4 A closer look at hydrostatic equilibrium

What would happen if the star were suddenly no longer in hydrostatic
equilibrium? To explore this, imagine that we could turn off the pressure.
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Once we did so, there would be no net outward force on a fluid element,
just the downward pull of gravity (cf. Fig. 2.1). The gas in the star would
therefore free-fall inwards once pressure were turned off.

HOW LONG WOULD THIS STELLAR IMPLOSION TAKE? We can certainly an-
swer this by integrating the equation of motion for a particle free-falling
from the surface of the star to the center. There is a simpler method,
however, using Kepler’s law. Start with a circular orbit and deform it
into increasingly eccentric ellipses while keeping the sun at one focus,
as shown in Fig. 2.3. The limit of these increasingly eccentric orbits is a
fall into the center. The time to fall in is one-half of an orbital period, and
the orbital period only depends on the semi-major axis, which in this
limiting case is a = R/2:

τff =
T
2
=

π√
GM

(
R
2

)3/2

.

Notice that this expression contains the combination
√

R3/M ∝ 1/
√
ρ̄,

where ρ̄ is the mean density:

τff =

(
3

32π

)1/2( 1
G

4πR3

3M

)1/2

=

(
3

32π

)1/2 1√
Gρ̄

. (2.8)

The time to collapse is proportional to 1/
√

Gρ̄ and depends on the aver-
age density of the star. We thus define the DYNAMICAL TIMESCALE of the
star as tdyn ≡ 1/

√
Gρ̄.

R

Figure 2.3: Deformation of an orbit until
it becomes a fall to the center, denoted by
the yellow dot.

Now imagine that after the collapse starts, we change our mind and
turn the pressure back on. The infall of the star’s outer layers compresses
the gas within the star’s interior and causes the pressure in the interior to
rise. This will eventually restore hydrostatic equilibrium. How quickly
can the star respond? A change is pressure is communicated to the rest of
the star by sound waves, which travel at a speed (see Box 2.1)

cs =

(
γ

P
ρ

)1/2

=

(
γ

kBT
µmu

)1/2

. (2.9)

Here γ is the adiabatic index: for an ideal monatomic gas, γ = 5/3. The
star can therefore respond to pressure changes on a SOUND-CROSSING
TIME τsc = R/c̄s. If we use the central temperature for a constant density
star (exercise 2.5) to get an estimate for the mean cs,

τsc ≡
R
c̄s
≈ R

(
µmu

γkBTc

)1/2

= R
(

2R
γGM

)1/2

=

(
3√
10π

)
1√
Gρ̄

.

Both the sound-crossing time, τsc, and the free-fall time, τff, are of the
order of the dynamical timescale 1/

√
Gρ̄.

We have another way of viewing hydrostatic equilibrium: the star is
able to remain in balance because the time for pressure disturbances to



UNDER PRESSURE 17

propagate is comparable to the time for large-scale motions of the fluid

τsc ∼ τff ∼ τdyn.

For the sun, ρ̄ = 1400 kg m−3; this is just a bit denser than you5. The 5 The density of an adult human body,
which is about 60% water, is close to
103 kg m−3; most of us are close to neutral
buoyancy in water.

dynamical timescale for the sun is thus about one hour.

E X E R C I S E 2 . 6 — The central temperature Tc is a measure of the average
kinetic energy of a particle at the stellar center. Use the central temperature that
you found for the constant density star in exercise 2.5 and estimate the time that
such a particle would take to cross a distance R. How does this time compare to
the orbital period of a satellite orbiting just outside the stellar surface?

Box 2.1 The sound speed

Suppose we have a long tube filled with gas at pressure
P(x, t) = P0, density ρ(x, t) = ρ0, and velocity u(x, t) = U0 = 0.
We then tap on one end of the tube; this causes a disturbance to
propagate down the tube. Denote the cross-sectional area of the
tube by A, and consider the volume A∆x located between x and
x +∆x; the mass in this small volume is ρA∆x.

As a result of the disturbance, the pressure in the tube be-
comes P(x, t) = P0 + σP1(x, t) and the fluid acquires a velocity
u(x, t) = σu1(x, t). This motion compresses or rarifies the gas:
ρ(x, t) = ρ0 + σρ1(x, t). In these expressions, terms with a sub-
script “1” are small perturbations compared with the equilibrium
quantities; also, σ is a bookkeeping parameter used to keep track
of the order of terms in the expansion. After expanding to terms
linear in σ, we’ll set σ = 1.

The nonuniform perturbed pressure subjects our small fluid
mass ρA∆x to a net force

A [P(x)− P(x +∆x)] ≈ −σA [P1(x +∆x)− P1(x)] .

This force causes the mass to accelerate:

ρA∆x
∂u
∂t

= A∆x (ρ0 + σρ1)
∂(0 + σu1)

∂t

≈ σ

[
A∆xρ0

∂u1

∂t

]
+O(σ2);

equating this to the expression for the force, taking the limit
∆x→ 0, σ → 1, and canceling common factors gives

∂u1

∂t
= − 1

ρ0

∂P1

∂x
. (2.10)

Because of the non-uniform velocity, the volume V and hence
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Box 2.1 continued

density of our little mass will also change:

∂V
∂t

= A [u(x +∆x)− u(x)] = σA∆x
[

u1(x +∆x)− u1(x)
∆x

]
or

1
V
∂V
∂t

= σ
∂u1

∂x
. (2.11)

This change in volume is related to the change in pressure. We are
interested in fluctuations that are sufficiently quick that no heat is
transferred into or out of our mass. This is an adiabatic process,
for which PVγ remains constant. Here γ is the ADIABATIC INDEX;
for an ideal gas, γ = CP/CV. (We shall discuss adiabatic processes
more thoroughly in chapter 6.)

As the pressure changes adiabatically from P0 to σP1, the vol-
ume changes as

dV
V

= d ln V = − 1
γ

dP
P

= − 1
γ

d ln P.

Hence

∂ ln V
∂t

= − 1
γ

∂ ln(P0 + σP1)

∂t
≈ − σ

γP0

∂ ln P1

∂t
= σ

∂u1

∂x
. (2.12)

The last equality comes from equation (2.11).
We therefore have two equations for the perturbed velocity to

order σ:

∂u1

∂t
= − 1

ρ0

∂P1

∂x
∂u1

∂x
= − 1

γP0

∂P1

∂t
;

differentiating the top equation with respect to x and the bottom
with respect to t, and equating the expressions for ∂2u1/∂t∂x
gives

∂2P1

∂t2 =

(
γP0

ρ0

)
∂2P1

∂x2 . (2.13)

This is the equation for a wave: the solutions are P1(x, t) = P1(x ±
cst), where the sound speed is cs =

√
γP/ρ.

2.5 Virial Equilibrium

With the assumption that ρ = constant, we showed (exercise 2.5) that
the central temperature and pressure depends on the total mass M, total



UNDER PRESSURE 19

radius R, and the gravitational constant G as

Tc =
1
2

{
GM
R

µmu

kB

}
(2.14)

Pc =
3

8π

{
GM2

R4

}
. (2.15)

Our task now is to show that the scalings of Tc and Pc with M and R—the
quantities in { }—hold in general for an a star in mechanical equilibrium.

To show this, we shall employ a form of the virial theorem. Suppose we
have a collection of N particles, all moving about and exerting forces on
one another. If we let this system settle down into some kind of bound
configuration, then we can add up the kinetic and potential energies of
all the particles to get a total kinetic energy K and a total potential energy
Ω. The virial theorem asserts that K is proportional to, and comparable in
magnitude to, Ω; indeed if the potential between a pair of particles scales
as r−1, r being the distance between the particles, then K = −Ω/2, as we’ll
now show.

Let us take the position and momentum of particle i to be rrri = (x, y, z)i

and pppi = (px, py, pz)i. Then the total kinetic energy is

K =
1
2

N∑
i=1

pppi ·
drrri

dt

=
1
2

 d
dt

(
N∑

i=1

pppi · rrri

)
︸ ︷︷ ︸

≡G

−
N∑

i=1

rrri ·
dpppi
dt︸︷︷︸
=FFFi

 . (2.16)

The quantity G =
∑

i pppi · rrri is called the “virial” of the system. By express-
ing the force FFFi = dpppi/dt on particle i as the gradient of a potential Ω,
FFFi = −∇iΩ, we can rewrite eq. (2.16) as ∇i ≡

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
i
,

that is, it is the gradient with respect to
the coordinates of particle i.2K =

dG
dt

+

N∑
i=1

rrri · ∇iΩ. (2.17)

So far, we’ve just shuffled and relabeled terms. The crucial step comes
in taking the time-average of the kinetic energy. The time average of a
quantity f is defined as

⟨f ⟩ ≡ lim
τ→∞

1
τ

∫ τ

0
f(t)dt.

Applying this to equation (2.17) gives

2⟨K ⟩ =

〈
dG
dt

〉
+

〈
N∑

i=1

rrri · ∇iΩ

〉

= lim
τ→∞

[
1
τ

∫ τ

0

dG
dt

dt
]
+

〈
N∑

i=1

rrri · ∇iΩ

〉
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= lim
τ→∞

[
G(τ)− G(0)

τ

]
︸ ︷︷ ︸

I

+

〈
N∑

i=1

rrri · ∇iΩ

〉
︸ ︷︷ ︸

II

Now, if the system is bound and in mechanical equilibrium, then the
positions and momenta of all particles are finite: none of the particles can
escape, and the system doesn’t violently collapse so that momenta are
diverging. Hence both G(τ) and G(0) are finite numbers, so as τ → ∞,
term I vanishes.

As for term II, we can show that if the potential between pairs of
particles depends on 1/r, where r is the distance between those particles,
then term II is just −Ω (see Box 2.2). For now, I’ll give a rough argument
of why this is so: in a spherically symmetric system, then the potential
just depends on the distance r from the origin; and since

r
∂

∂r

(
1
r

)
= − 1

r
,

the last term is just −Ω and our equation is

2⟨K ⟩+ ⟨Ω⟩ = 0. (2.18)

This is the virial theorem, applied to a r−1 potential.

Box 2.2 Working with vectors

In this sidebar we’ll show that the second term in equa-
tion (2.17) is

N∑
i=1

rrri · ∇iΩ = −Ω. (2.19)

First, we need an expression for Ω. Suppose we pick a pair of
particles, j and k. The potential between this pair is

−
Gmjmk

rjk
= −

Gmjmk√
(rrrj − rrrk)2

.

Our total potential consists of a sum over the potentials between
all N(N− 1)/2 unique pairs of particles,

Ω = − Gm1m2√
(rrr1 − rrr2)2

− . . .−
Gmjmk√
(rrrj − rrrk)2

− . . .

When we take the derivative in eq. (2.19), we apply rrri · ∇i to each
term in the potential and sum over all i. For the term with the pair
j, k, this will give

N∑
i=1

rrri · ∇i

(
−

Gmjmk√
(rrrj − rrrk)2

)
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Box 2.2 continued

= −Gmjmk

[
rrrj · ∇j

(
1√

(rrrj − rrrk)2

)
+ rrrk · ∇k

(
1√

(rrrj − rrrk)2

)]
.

Since many of you aren’t yet comfortable with vector expressions,
we’ll do this in detail for the x-component:[

rrrj · ∇j

(
1√

(rrrj − rrrk)2

)
+ rrrk · ∇k

(
1√

(rrrj − rrrk)2

)]
x

= xj
∂

∂xj

(
1√

(rrrj − rrrk)2

)
+ xk

∂

∂xk

(
1√

(rrrj − rrrk)2

)

= −
xj(xj − xk)

[(rrrj − rrrk)2]3/2 +
xk(xj − xk)

[(rrrj − rrrk)2]3/2

= −
(xj − xk)

2

[(rrrj − rrrk)2]3/2

The y- and z-components are similar, giving

N∑
i=1

rrri · ∇i

(
−

Gmjmk√
(rrrj − rrrk)2

)
= Gmjmk

(rrrj − rrrk)
2

[(rrrj − rrrk)2]3/2

= −

(
−

Gmjmk√
(rrrj − rrrk)2

)
.

This can be done for every term in the sum, with the final result
that

N∑
i=1

rrri · ∇iΩ = −Ω.

For an ideal monatomic gas in thermal equilibrium, the mean kinetic
energy of a particle in the gas is K = (3/2)kBT, and we therefore may
define an average temperature

2K = 3NkBT̄ = −Ω. (2.20)

The total number of particles is N = M/(µmu), and so

T̄ = − 1
3
Ω
µmu

MkB
. (2.21)

The total potential of the system depends on only three parameters: G, M,
and R. The only way to make a quantity having dimensions of energy is
for

Ω ∝ −GM2

R
,

and so
T̄ ∝ GM

R
µmu

kB
.
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The constant of proportionality depends on the distribution of gas in the
system. By using the ideal gas law, P̄ = ρ̄(kB/µmu)T̄, we find the mean
pressure

P̄ ∝ GM2

R4

of the system.
As a concrete example, let’s compute Ω for a constant density sphere.

If we bring a small amount of mass dm from infinity onto a sphere of
mass m and radius r, then the change in potential is

dΩ = −Gm
r

dm.

For a constant density, r = R(m/M)1/3; upon substituting for r we have

Ωconst. den. = −
∫ M

0

GM1/3m2/3

R
dm = −3

5
GM2

R
. (2.22)

Using this in equation (2.21) gives us the mean temperature, and hence
pressure, for a constant density sphere,

T̄ =
1
5

GM
R

µmu

kB
, (2.23)

P̄ =
3

20π
GM2

R4 . (2.24)

These are comparable to the central values, eqn. (2.14) and (2.15).

E X E R C I S E 2 . 7 — We can infer a great deal from our simple virial scalings.
Table 2.2 provides masses, radii, and luminosities, in units of M⊙, R⊙, and L⊙, for
stars from type B (hot blue stars) to type M (cool red stars). Using the constant
density model, compute ρ/ρ⊙, Tc/Tc,⊙, and Pc/Pc,⊙. You should find that each
quantity depends only on m = M/M⊙ and r = R/R⊙. Describe your findings: do
Pc/Pc,⊙, ρ/ρ⊙, and Tc/Tc,⊙ vary in a similar fashion? If not, how do they change
with stellar type?

Table 2.2: Masses, radii, and luminosities
for selected stellar types. The type—B2,
B8, F0, and so forth—indicates what
features are present in the star’s spectrum
and indicates the star’s surface effective
temperature.

B2 B8 F0 F5 G5 M0 M7
M/M⊙ 9.8 3.8 1.6 1.3 0.92 0.51 0.12
R/R⊙ 5.6 3.0 1.5 1.3 0.92 0.60 0.18
L/L⊙ 5800.0 180.0 6.5 3.2 0.79 0.08 0.003

E X E R C I S E 2 . 8 — Using the constant density model, derive an expression for
the total energy (kinetic plus potential) as a function of central temperature for a
given mass. Plot this relation. What happens to the central temperature if
additional heat is injected into the star?
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E X E R C I S E 2 . 9 — Let’s examine the behavior of a thin layer at the surface of
our constant density model. The pressure on the upper surface of our layer
vanishes, and the pressure on the bottom surface of our layer is P(R).

1. As a mathematical preliminary, suppose we have a function f(x) = Axα and
that we expand about a point x0 with f0 = Axα0 . Show that to lowest order in
δx,

f(x0 + δx) ≈ f0
(

1 + α
δx
x

)
.

2. Write dP/dr as ∆P/∆r, where ∆r is the thickness of the layer, and then
integrate the equation of hydrostatic balance (2.7) over the surface to show
that

4πR2P(R)− GMm
R2 = 0, (2.25)

where m = 4πR2ρ∆r is the mass of the layer. For the rest of this exercise, we
shall take m as fixed.

3. Now suppose of star expands by a small amount δR. Use the result of part 1 to
find the new density ρ′ in terms of the original density ρ and δR, to lowest
order in δR/R.

4. If the expansion is adiabatic, then the new pressure obeys a relation
P′V′γ = PVγ (Box 2.1). For our shell of mass m, show that this implies that
P′ρ′−γ = Pρ−γ , and thus find P′ in terms of P, δR/R, and γ, to lowest order in
δR/R.

5. Insert the expressions for P′ and R′ = R + δR into equation (2.25) and cancel
any common factors; you should find that the pressure and gravitational
forces no longer balance. Express the residual force in terms of GMm/R2, γ
and δR/R.

6. Equate this residual force with the acceleration of the shell, mδ̈R, and show
that the shell oscillates. For γ = 5/3 (appropriate for an ideal gas), find the
period of oscillation in terms of ρ = 3M/4πR3.

2.6 The Kelvin-Helmholtz timescale

Stars are born when a cold, dense6 cloud of gas and dust becomes un- 6 Dense is a relative term; here we mean
∼ 100 atoms per cubic centimeterstable to gravitational collapse. The details of this process is a topic of

current research; for our purposes, however, after a period of time a
PRE-MAIN SEQUENCE star forms. At this point, the star is in hydrostatic We’ll discuss the pre-main sequence

phase more thoroughly in § 6.2.balance, but with a radius much larger than its main-sequence value and
a cool temperature. We observe such pre-main sequence stars in star-
forming regions, such as in the Rho Ophiuchi complex (Fig. 2.4). The
average age of the newly formed stars in this complex is estimated to be
∼ 30 000 yr.

Figure 2.4: Star forming regions in the
Rho Ophiuchi cloud. Image credit: NASA,
JPL-Caltech, WISE.

What happens to this object? The pre-main sequence star is in hy-
drostatic balance, so it doesn’t collapse. But the interior, and hence the
surface, is warm, so it radiates energy. The only source of energy is grav-
itational, so the pre-main sequence star must contract. As we shall show,
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this contraction is quite slow; so slow, in fact, that the pre-main sequence
star is always in hydrostatic equilibrium to an excellent approximation.
How long does the contraction take? To estimate this, we compute the
total energy of the star and divide by its luminosity. For our sun, the total
energy is

E⊙ = K +Ω = Ω/2 ≈ −
GM2

⊙
R⊙

;

the time to radiate this energy away is

tKH =
|E⊙|
L⊙
≈

GM2
⊙

R⊙L⊙
≈ 3× 107 yr. (2.26)

This timescale is called the KELVIN-HELMHOLTZ TIMESCALE. Since tKH ≫
tdyn = (Gρ̄)−1/2 the star is indeed in hydrostatic equilibrium, to an
excellent approximation, throughout the whole contraction.

E X E R C I S E 2 . 1 0 — Using the constant density model (constant here means
“constant throughout the star at any given time”) of exercise 2.5 and the virial
relations, give a qualitative sketch for how the pressure, density, temperature,
radius, and total energy change with time as the protostar contracts.

Following the development of thermodynamics in the mid- to latter-
half of the nineteenth century, gravitational contraction was proposed
to explain the source of the sun’s luminosity. It was quickly realized,
however, that the short Kelvin-Helmholtz timescale was in conflict with
geological estimates of the age of the earth. This tension was finally
resolved with the discovery of nuclear reactions in the 1930s.



3
Edge of Darkness

We saw in chapter 2 that the equilibrium central temperature of a self-
gravitating object—such as a star—with an ideal gas EOS depends solely
on the mass, radius, and composition of that star. For the sun, this tem-
perature is ≈ 15 MK and is much higher than the surface effective tem-
perature Teff,⊙ = 5780 K. We don’t see X-rays coming from the interior
of the sun; the photons emitted from the sun are all coming just from the
cooler surface layers.

PHOTONS IN A PLASMA, SUCH AS IN THE INTERIOR OF THE SUN, TRANSPORT
ENERGY. Were the sun transparent, these photons would immediately
stream out, and the sun would release its stored energy in a fiery blast.
This doesn’t happen: a photon can only travel a short distance before
being scattered or absorbed. The net effect is that photons generated in
the core must travel a tortuous path, rather like a pinball, before reaching
the surface and escaping.

3.1 Interaction of radiation and matter

How far does a photon—or any particle, for that matter—travel, on aver-
age, in the interior of the sun? Imagine a particle traveling with speed v.
Draw a cylinder, of length ℓ and cross-sectional area A, around its path,
as shown in Fig. 3.1. What the particle “sees” is that the cylinder is partly
blocked by obstacles—other particles in its path.

l

σ

A

v

Figure 3.1: Schematic of a particle incident
on a group of scattering or absorbing
particles.

What is the probability of our particle making it through the cylinder
unscathed? The probability of the particle hitting an obstacle is the ratio

P =
total area covered by obstacles

area of cylinder

Denote the cross-sectional area of each particle by σ. If the density of
particles is n, then the number of obstacles in the cylinder is n× (Aℓ), and
therefore the fraction of the area blocked by the obstacles is We are taking ℓ and A sufficiently small

that we don’t have to worry about parti-
cles overlapping.P =

n× (Aℓ)× σ

A
= nσℓ. (3.1)
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The particle will suffer a collision when P → 1, or when

ℓ =
1

nσ
. (3.2)

We call ℓ the “mean free path”: it is the mean distance the particle travels
freely before colliding.

1

L

L

Figure 3.2: Schematic for Exercise 3.1

E X E R C I S E 3 . 1 — Suppose we have a flat, slippery surface on which hockey
pucks are sliding around, as shown in Fig. 3.2. The pucks bounce off the walls as
they slide around. Suppose there are N pucks, each with unit diameter, and the
table is square with sides of length L. Estimate the mean free path of a puck.

Although we have motivated this derivation with a classical picture,
since the cross-section σ is just related to the probability of an interaction
we can define it for quantum mechanical systems as well.

E X E R C I S E 3 . 2 — In the sun, free electrons scatter photons; the cross-section
for this is

σTh =

(
8π
3

)(
e2

4πϵ0 mec2

)2

= 6.65 × 10−29 m2.

What is the mean free path against this process for a photon at the average
density of the solar interior?

As the ray of light traverses a small distance ∆s through some matter,
the probability of a photon being absorbed is P = nσ∆s. Thus, out
of every N photons, ∆N = N × P = N × nσ∆s are absorbed. Since
the intensity Iν is proportional to the number of photons, the change in
intensity across ∆s is just

∆Iν = −nσIν∆s.

Dividing by ∆s and taking the limit ∆s → 0, we obtain an equation for
the absorption of light,

dIν
ds

∣∣∣∣
absorption

= −nσIν . (3.3)

Rather than work with the microscopic cross-section, it is convenient to
define the ABSORPTION OPACITY,

κabs
ν =

nσ
ρ
,

so that dIν/ds = −ρκabs
ν Iν . We use a subscript ν to indicate that theThe units of opacity are m2/kg.

opacity is a function of frequency. In terms of the opacity, the photon
mean free path is ℓ = (ρκabs

ν )−1.
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E X E R C I S E 3 . 3 — A ray of light crosses a slab of absorbent material.
Calculate the intensity Iν as a function of distance traveled. Your expression
should be in terms of ρ and κabs

ν . How far does the ray go before its intensity has
dropped to 1/e of its original value?

IN ADDITION TO ABSORBING PHOTONS, MATTER CAN ALSO SPONTANEOUSLY
EMIT THEM. Denote the power emitted per wavelength per volume per
steradian by ρjν . After traveling a distance ∆s through matter with this The units of jν are W kg−1 Hz−1.

EMISSIVITY, the ray will increase in intensity by ρjν∆s; dividing by ∆s
and taking the limit ∆s→ 0,

dIν
ds

∣∣∣∣
emission

= ρjν . (3.4)

E X E R C I S E 3 . 4 — Suppose a ray traverses matter that both absorbs (opacity
κabs
ν ) and emits (emissivity jν ), so that

dIν
ds

= ρjν − ρκabs
ν Iν .

Solve for Iν(s) assuming ρ, jν , and κν are constant, and show that Iν → jν/κabs
ν as

s → ∞.

FINALLY, MATTER CAN ALSO SCATTER LIGHT. This removes photons from
a ray, similar to absorption, but the photons are redirected into a ray
propagating in a different direction. If we assume that the direction into
which the photon is scattered is random and isotropic (as is most often
the case), then if the intensity in our ray Iν is greater than the angle-
average Jν = (4π)−1 ∫ Iν dΩ, scattering will cause a net reduction in
intensity as more photons are scattered out of the ray than are scattered
into it. Conversely, if Iν < Jν , then more photons will be scattered into the
ray than out of it. Thus, the effect of scattering can be described via

dIν
ds

∣∣∣∣
scattering

= −ρκsca
ν (Iν − Jν) . (3.5)

The effect of scattering is to drive the intensity towards its angle-averaged
value.

3.2 The equation of radiative transfer

Combining our expressions for absorption, emission, and scattering gives
the full expression for how the intensity changes along a ray,

dIν
ds

= −ρ
(
κabs
ν + κsca

ν

)
Iν + ρjν + ρκsca

ν Jν . (3.6)
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This is a complicated INTEGRODIFFERENTIAL equation: it contains both the
derivative dIν/ds of the intensity as well as its integral Jν .

In general, eq. (3.6) must be solved numerically; but conditions in the
deep interior of the star and near the surface allow us to make simpli-
fying approximations and to obtain a solution that gives some insight
into the physics. Before doing that, let’s clean up eq. (3.6): define a new
quantity, the OPTICAL DEPTH τν , via

dτν
ds

= ρκν ≡ ρ(κabs
ν + κsca

ν ).

Next, divide through by ρκν = ρ(κabs
ν + κsca

ν ),

1
ρκν

dIν
ds

=
1

dτν/ds
dIν
ds
− Iν +

[
jν + κsca

ν Jν
κν

]
,

and change variables, dIν/ds = (dIν/dτν) · (dτν/ds) so the left-hand side
is just dIν/dτν . Finally, define the SOURCE FUNCTION

Sν ≡
[

jν + κsca
ν Jν

κν

]
.

Doing all that gives us the deceptively simple-looking equation,

dIν
dτν

= −Iν + Sν . (3.7)

This prettifying doesn’t advance us any closer to the solution, of course,
but notice! The optical depth has a simple meaning:

τν =

∫ s

0
ρκν ds =

∫ s

0
nσν ds =

∫ s

0

ds
ℓ
.

That is, the optical depth measures distance along the ray in units of
mean free path. Said differently, to travel one optical depth is to travel
one mean free path.

E X E R C I S E 3 . 5 — For the electron scattering cross-section (Exercise 3.2),
estimate the optical depth between the solar center and the solar photosphere.

The other advantage of organizing eq. (3.6) is that this can help de-
velop our intuition about how the solutions should behave, and this will
guide our analysis in § 3.3. Although Sν depends on the integral of Iν ,
we can get a feel for the general behavior by considering a simple model
where Sν is a known function of τν .

E X E R C I S E 3 . 6 — Suppose that Sν were constant, and solve eq. (3.7) for
Iν(τν) with boundary condition Iν(τν = 0) = Iν,0. How does Iν behave in the
limiting cases τν ≪ 1 and τν ≫ 1?
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The solution to the simple case of exercise 3.6 should make sense. If
we have a ray of intensity Iν,0 incident on an object with τν ≪ 1, then
photons will hardly be absorbed or scattered (cf. exercise 3.3). If we
are deep inside an object with τν ≫ 1, then we shouldn’t expect any
incident light to matter, so Iν shouldn’t depend on Iν,0; further if τν ≫ 1,
then going one mean free path shouldn’t affect our solution, meaning
dIν/dτν → 0, or Iν → Sν (cf. exercise 3.4).

SUPPOSE WE ARE IN A CAVITY IN WHICH THE RADIATION AND MATTER
ARE IN A STEADY-STATE. That is, the matter is neither gaining nor losing
energy to the radiation. Maintaining a steady-state requires balancing the

energy emitted per unit volume = ρ

∫
jν dν dΩ

with the

energy absorbed per unit volume = ρ

∫
κabs
ν Iν dν dΩ,

so that ∫ ∞

0

(
jν − κabs

ν Jν
)

dν = 0. (3.8)

We don’t include scattering in this expression because scattering doesn’t
transfer energy between the radiation and the gas.

If in addition to being in steady-state, the matter and radiation are also
in thermal equilibrium,1 so that Jν = Bν , then eq. (3.8) implies that 1 meaning they at the same temperature

with each having a thermal distribution of
statesjν

κabs
ν

= Bν(T). (3.9)

Now jν and κabs
ν are properties of the matter, and do not depend on the

state of the radiation field. Hence, equation (3.9), known as DETAILED
BALANCE, must hold whenever the matter is in equilibrium, regardless of
the state of the ambient radiation.

3.3 Radiative diffusion θ

r
ds

dr
 =

 μ
 ds

Figure 3.3: Schematic of the coordinate
system used for solving the radiative
transport equation.

We can now examine how heat transport works in the deep interior of a
star. First, we need to establish our coordinate system. In equation (3.6),
the coordinate s is distance along a ray; but it is more convenient to use
coordinates that are tied to the star. We therefore use radial distance r as
a coordinate, and measure the optical depth along it: dτν = ρκν dr. Since
dr = µds, where µ = cos θ is the cosine between ds and dr (Fig. 3.3), the
equation of transfer becomes

µ
dIν
dr

= −ρκν (Iν − Sν) . (3.10)
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LET’S EXAMINE THE TYPICAL SCALES OF TERMS IN THE RADIATIVE TRANSFER
EQUATION, FOR CONDITIONS IN THE DEEP SOLAR INTERIOR. We’ll start by
indicating some expected scales for eq. (3.6):

µ
dIν
dr︸ ︷︷ ︸

∼Iν/R⊙

= − ρκν Iν︸ ︷︷ ︸
∼Iν/ℓ

+ρκνSν .

If we are far from the surface of the star, then we should expect the inten-
sity to change over lengthscales comparable to R⊙. Of course, it won’t be
exactly this, but—as we’ll show—the exact value doesn’t matter so long
as |dIν/dr| is in the ballpark of Iν/R⊙. Notice the enormous disparity in
scales:

|dIν/dr|
ρκν Iν

∼ ℓ

R⊙
.

The left-hand side of eq. (3.6) is smaller than the terms on the right by
the ratio of the mean free path to the solar radius. This implies that con-
ditions in the deep solar interior are nearly homogeneous. They are also
isotropic, so that Iν = Jν . We expect that collisions are fast enough so that
the matter is in thermal equilibrium and jν = κabs

ν Bν . We also know from
exercise 3.4 that Iν → jν/κabs

ν = Bν . From eq. (3.7) it follows that Sν = Bν

as well.
We can’t have Iν = Bν exactly, however, since in that case there is

no net flux! We’ll therefore treat the intensity as being thermal plus a
perturbation:

Iν = Bν + I(1)ν ,

where the superscript “(1)” indicates that this is a small correction. In-
serting this expansion into eq. (3.6) and keeping only the lowest-order
terms on each side gives

I(1)ν = −µdBν

dτν
. (3.11)

Bν is a function of the temperature T, so dBν/dτν = dBν/dT · dT/dτν . To
get the flux, multiply eq. (3.11) by µ and integrate over angles:

Fν =

∫
µI(1)ν dΩ = −

∫
µ2 dBν

dT
dT
dτν

dΩ = −4π
3

dBν

dT
dT
dτν

.

Switching variables from τν back to r gives

Fν = −4π
3

[
1

ρκν

∂Bν

∂T

]
dT
dr

. (3.12)

The flux Fν is therefore proportional to the temperature gradient dT/dr,
and the term in [·] controls which frequencies have the largest flux and
are therefore most responsible for energy transport.
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Figure 3.4: The specific flux for a hypo-
thetical opacity

E X E R C I S E 3 . 7 — Let’s examine the term [·] in eq. (3.12) more closely.
Fig. 3.4 shows Bν and dBν/dT (top panel) and a hypothetical κν (middle). Sketch
Fν on the bottom panel. For which frequencies is it maximum?
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To get the total flux, we integrate Fν over all frequencies.

F =

∫ ∞

0
Fν dν = −4π

3

[∫ ∞

0

1
ρκν

∂Bν

∂T
dν
]

dT
dr

≡ −4π
3

1
ρκR

∂

∂T

[∫ ∞

0
Bν dν

]
dT
dr

.

Here we’ve defined the ROSSELAND MEAN of the opacity:

1
κR

=

(∫ ∞

0

∂Bν

∂T
dν
)−1 ∫ ∞

0

1
κν

∂Bν

∂T
dν. (3.13)

This is a weighted average of κ−1
ν with weight ∂Bν/∂T. Since (eq. [1.6])∫

Bν dν = σSBT4/π = caT4/4π, we can write the equation for the flux as

F = − 1
3

c
ρκR

d
dr

aT4. (3.14)

Equation (3.14) is known as the equation for radiative diffusion, for rea-
sons that will become apparent in the next section.

If we multiply the flux by the surface area of a shell in the star we
obtain the luminosity L = 4πr2F; we can therefore recast eq. (3.14) into an
equation for the thermal gradient:

dT
dr

= − 3ρκR

4acT3
L(r)
4πr2 . (3.15)

E X E R C I S E 3 . 8 — Let’s dissect eq. (3.14) to see how it sets the luminosity.

1. To keep the algebra simple, assume that F is constant throughout the star and
that aT4 is linear in r—that is, aT4 = aT4

c (1 − r/R). Since F is constant, you can
express it in terms of the luminosity at the surface L. Use this to transform
eq. (3.14) into an expression for L in terms of R and Tc (along with ρ, κR, and
c).

2. Write the luminosity as L = Eγ/τ , where Eγ is the total radiative energy of the
star, and τ some as-yet-undetermined diffusion timescale. Give an estimate of Eγ

in terms of the mean temperature T and the radius R of the star.

3. Finally, assume that the photon mean free path ℓ = (ρκR)
−1 is constant.

Substitute the results from parts 1 and 2 into equation (3.14). After
simplifying, you should end up with a simple expression for τ in terms of c, R,
and ℓ. For Thomson scattering, what is τ (express in years)?

3.4 Diffusion

In the presence of scattering or absorption, photons take short hops
averaging one mean free path ℓ in length. Imagine a small cube with
sides of length ℓ and filled with photons. The total radiant energy in the
cube is ∆E. In a time ∆t = ℓ/c, all of the photons will leave this cube.
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The total luminosity of the cube is thus ∆E/∆t = c∆E/ℓ. If everything
is isotropic, then the flux out of any one face is 1/6 of the luminosity,
divided by the area of that face:

F =
1

6ℓ2
c∆E
ℓ

=
1
6

cU,

where U = E/ℓ3 is the radiative energy density.
Now place two of these cubes against one another, with their common

face located at position x. The energy density of the two cubes need not
be the same; the energy density of the left cube is U(x−ℓ) and of the right
cube is U(x + ℓ) (see Fig. 3.5). The net flux traveling in the x-direction
through the common face is then

F =
1
6

cU(x− ℓ)− 1
6

cU(x + ℓ) ≈ − 1
3

cℓ
dU
dx

.

This is an expression for a DIFFUSIVE FLUX. Although we gave a heuristic
explanation, the formula is in general true:

(flux of something) = − 1
3
× (speed of carriers)× (MFP of carriers)

×∇(density of something) (3.16)

For radiation, the “something” is “radiative energy” and the carriers are
photons.

xx−l x+l
Figure 3.5: Illustration of net flux crossing
a face between regions with slightly
different energy densities.

E X E R C I S E 3 . 9 — Compare this diffusion equation,

F = − 1
3

cℓ
dU
dr

,

with eq. (3.14) and use eq. (3.13) to write an expression for the average mean free
path of a photon (the “mean mean free path”?). Can you give a physical
interpretation for the weighting function used in computing the average (cf.
exercise 3.7)?

Figure 3.6: Schematic of a random walk of
50 steps.

FOR AN ALTERNATE VIEW ON PHOTON DIFFUSION, imagine a photon
random-walking throughout the stellar interior. The photon moves at
speed c, but it can only go one mean free path ℓ before being absorbed or
scattered, at which point it is sent off in a random direction. The path of
the photon will therefore look something like that in Fig. 3.6.

We will just do our calculation for motion along a diameter, with the
photon starting at the center. On each hop, the photon either goes left
or right with equal probability. On average, the photon doesn’t go any-To keep things simple, we’ll imagine that

after absorption the atom immediately
emits an identical photon in a random
direction.

where; but after enough hops, there is some probability for the photon to
reach the edge of the star and escape. Figure 3.7 shows the distribution
of positions for walks of length n = 10, 30, 100, 300 steps, with each step
having length 1.0. Suppose the edge of the star is at x = ±10 (red dotted
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lines). Although the average position is at x = 0, for n ≳ 100 steps, there
is a reasonable probability of the photon eventually escaping.

10 5 0 5 10
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0.8

1.0

n
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rm

. 
d
is

t.

=

10 5 0 5 10

=

10 5 0 5 10

=

10 5 0 5 10

= Figure 3.7: Distribution of positions after
n steps in a random walk.

Recall that a random walk is described by a binomial distribution:
after n steps, the probability that m of them were to the right is

Pn(m; p) =
n!

m!(n− m)!
pm(1− p)n−m. (3.17)

Here p is the probability of any single step being to the right. The mean
and root variance of m are

⟨m⟩ = np (3.18)[〈
(m− ⟨m⟩)2

〉]1/2
= [np(1− p)]1/2

. (3.19)

In exercise 3.10, you will use these quantities to estimate the diffusion
timescale τ .

E X E R C I S E 3 . 1 0 —

1. Show from equation (3.18) that the mean distance traveled by the photon after
n steps is ⟨d⟩ = ℓ(2np − n), so for p = 1/2, ⟨d⟩ = 0.

2. If all the steps were in the same direction, how many steps would be needed
to reach the edge, at a a distance R from the center? Assume all steps have the
same length ℓ.

3. We want the distribution of steps (Fig. 3.7) to be wide enough to reach the
edge. Set the root variance—a measure of the width of the probability
distribution—equal to the number of steps found in part 2 and use
equation (3.19), [⟨

(m − ⟨m⟩)2
⟩]1/2

= [nedgep(1 − p)]1/2 ,

to find nedge in terms of R and ℓ.

4. What is the total distance traveled by the photon after nedge steps? If the photon
traveled at speed c, how long did it take? Compare your answer with that for
part 3 of exercise 3.8.
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3.5 The photosphere

We are now ready to investigate heat transport near the star’s edge,
where the optical depth τν ≲ 1 and photons begin to freely escape. Near
the edge, we cannot use the approximation of radiative diffusion, because
conditions are changing over distances of order one mean free path. We
therefore return to equation (3.6) for radiative transport:

dIν
ds

= −ρ
(
κabs
ν + κsca

ν

)
Iν + ρjν + ρκsca

ν Jν .

This is difficult to solve: for some frequencies, the atmosphere is nearly
transparent, while for other frequencies it is quite opaque. Rather than
develop the numerical machinery to solve this equation, we shall make
a few simplifying assumptions (indicated by highlighted bold text in
the margins) to obtain an approximate solution for the temperature of the
stellar atmosphere.

Opacities are gray First, we assume that the opacity is gray—that is, independent of
frequency. Although unphysical, the solutions for temperature and pres-
sure near the stellar photosphere will still have the correct qualitative
behavior. Because the opacity is gray, we shall drop the “ν” subscript in
κ and τ .

E X E R C I S E 3 . 1 1 — Does matter with a gray opacity in thermal equilibrium
also have a gray emissivity jν = j?

We next define a coordinate system. Since we are in a thin layer near
the edge of the star, we will adopt planar coordinates, with z being the
altitude above some point. We’ll pick z = 0 to be a point deep enough in
the star that Iν ≈ Bν . Then we define the optical depth as

τ(z) =
∫ ∞

z
ρ
(
κabs + κsca) dz; (3.20)

differentiating this expression gives

dτ
dz

= −ρ
(
κabs + κsca) ≡ −ρκ.

Note the “−”: in these coordinates, as z gets larger, τ gets smaller. Alter-
natively, you can view τ as being the optical depth for a photon traveling
into the star.

Using eq. (3.20), we then rewrite the equation of hydrostatic balance
(2.1) as

−ρg =
dP
dz

=
dP
dτ

dτ
dz

= −ρκdP
dτ

,

dP
dτ

=
g
κ
. (3.21)
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Since we are in a thin layer, we can take the gravitational acceleration g to
be approximately constant. By integrating hydrostatic equilibrium from
where τ = 0,P = 0 to where τ = 1, we obtain an approximate value of
the photospheric pressure,

Pph =

∫ Pph

0
dP =

∫ 1

0

g
κ

dτ ≈ g
κ
.

The surface gravity sets the pressure at the photosphere, the location where the
optical depth is of order unity and where photons can escape from the star.

E X E R C I S E 3 . 1 2 — Suppose you observe a star that has a 10% larger mass
and 10% larger radius than the sun. All else being equal, how does the pressure
at the photosphere of this star compare to that of the sun?

For our second approximation, we assume that the matter is in LO-
CAL THERMAL EQUILIBRIUM (LTE). This means there is a well-defined
temperature at each depth. Furthermore, the emissivity is related to the
absorption opacity,

Atmosphere is in steady-state LTE

jν = κabsBν .

Note that this does not imply the radiation field is actually Planckian.
We then take the radiative transfer equation (3.6) and substitute our

definition of optical depth (eq. [3.20]) to obtain

µ
dIν
dτ

= Iν − Sν . (3.22)

Here

Sν =
jν + κscaJν

κ
=

κabsBν + κscaJν
κ

.

If, in addition, the matter is in steady-state, then the rate at which energy
is absorbed from the radiation field,

∫
κabsIν dν dΩ, must equal the rate at

which energy is emitted,
∫

jν dν dΩ:∫ (
jν − κabsIν

)
dν dΩ = κabs

∫
(Bν − Iν) dν dΩ

= 4πκabs
∫

(Bν − Jν) dν = 0.

In this expression we use the LTE expression for jν and we pull κabs from
the integral because it is independent of frequency.

Since J =
∫

Jν dν =
∫

Bν dν = B, it follows that S =
∫

Sν dν = B as
well.

For a gray atmosphere in steady-state, local thermal equilibrium, the integrated
source function and mean intensity equal the Planck value:

S(τ) = J(τ) = B(τ),
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Note that this does not imply that Iν = Bν or Jν = Bν : it only means their
frequency-integrated averages are equal.

If we integrate eq. (3.22) over all angles,∫
µ

dIν
dτ

dΩ =

∫
Iν dν −

∫
Sν dΩ

dFν

dτ
= 4π (Jν − Sν) ,

and then integrate over all frequencies and use the steady-state, LTE
relation,

dF
dτ

=
d

dτ

∫
Fν dν = 4π

∫
(Jν − Sν) dν = 0.

We thus have the remarkable result:

For a steady-state gray atmosphere in local thermal equilibrium, the total flux F =∫
Fν dν is constant.

That is, the atmosphere does not add to, or detract from, the radiation
flowing through it.

We still have the problem that eq. (3.22) includes both the derivative
and integral of Iν . To get around this, we expand Iν in Legendre polyno-
mials2,2 see Box 3.1

Iν(τ, µ) = Iν,0(τ)P0(µ) + Iν,1(τ)P1(µ) + Iν,2(τ)P2(µ) + . . .

and only retain the first two terms, P0(µ) = 1,P1 = µ. That is, we assume
Iν is linear in µ: Iν = Iν,0(τ) + Iν,1(τ)µ.Intensity is linear in µ

In terms of this expansion, the angle-averaged specific intensity is

Jν(τ) =
1

4π

∫
Iν dµdϕ = Iν,0(τ),

and hence the specific energy density is Uν = 4π/c · Jν = 4π/c · Iν,0. The
specific flux is

Fν(τ) =

∫
µIν dµdϕ =

4π
3

Iν,1(τ).

We can therefore use these relations for Iν,0 and Iν,1 to express the inten-
sity as

Iν(τ) =
c

4π
Uν(τ) +

3µ
4π

Fν(τ). (3.23)

Box 3.1 Expansion in Legendre polynomials

You may recall from electrostatics that we can decompose
the field from a set of charges into a sum of moments: dipole,
quadrupole, and so on. The basis functions for this expansion are
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Box 3.1 continued

the Legendre polynomials Pn(cos θ), defined via

1√
1− 2µz + z2

≡
∞∑

n=0

Pn(µ)zn,

for −1 < µ < 1, |z| < 1. The first four polynomials are

P0(µ) = 1 P2(µ) =
1
2
(3µ2 − 1)

P1(µ) = µ P3(µ) =
1
2
(5µ3 − 3µ),

and the first eight Legendre polynomials are plotted below.
= = = =

= = = =

As n increases, the angular variations become finer.
The Legendre polynomials are orthogonal in the following

sense: ∫ 1

−1
Pn(µ)Pm(µ)dµ =

{
0 m ̸= n

2
2n+1 m = n

. (3.24)

As a result of this orthogonality, we can decompose the radiative
intensity into multipoles:

I =
∞∑

n=0

InPn(µ). (3.25)

E X E R C I S E 3 . 1 3 — Use eq. (3.24) to show that (4π)−1 ∫ I dΩ = I0

and
∫
µI dΩ = (4π/3)I1, for I = I0 + I1µ.

Since the flux in the atmosphere is constant, it must be equal to its
value far from the star where τ → 0: F(τ = 0) = σSB T4

eff. We can therefore
integrate eq. (3.23) over frequency and substitute for F:

I(µ, τ) =
c

4π
U(τ) +

3µ
4π

σSBT4
eff. (3.26)
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To solve for U(τ), integrate eq. (3.22) over frequency, µdI/dτ = I − S,
substitute for I on the left-hand side using eq. (3.26), then multiply by µ

and integrate over all angles:

d
dτ

∫
µ2I dΩ =

∫
µI dΩ−

∫
µS dΩ

c
4π

d
dτ

∫
µ2U dΩ+

3
4π

σSBT4
eff

∫
µ3 dΩ = F−

∫
µS dΩ

c
3

dU
dτ

= F = σSBT4
eff (3.27)

The integrals over µ3 and µS vanish because S is independent of an-
gle and

∫ 1
−1 µdµ =

∫ 1
−1 µ

3 dµ = 0. Also, U is independent of µ, and∫
µ2 dΩ =

∫ 2π
0

∫ 1
−1 µ

2 dµdϕ = (4π/3).
Equation (3.27) is a first-order ODE, which upon integration yields

U(τ) =
3
c

F(τ + τ0) =
3
c
σSBT4

eff(τ + τ0), (3.28)

where τ0 is an integration constant. Substituting this back into the ex-
pression for the intensity, eq. (3.26), gives

I(µ, τ) =
3

4π
σSBT4

eff (τ + τ0 + µ) .

To fix the integration constant τ0, evaluate this expression at τ = 0. Far
outside the star, all of the radiation must be outward-bound. Hence if we
integrate µI(µ, τ = 0) over 0 ≤ µ ≤ 1, we should recover the flux:

σSBT4
eff =

∫ 2π

0

∫ 1

0
µI(µ, τ = 0)dµdϕ =

3
4
σSBT4

eff

(
τ0 +

2
3

)
,

which fixes τ0 = 2/3.
We are almost finished! To recap, we now have the expressions for the

intensity, flux, and radiative energy density under the assumption of a
gray atmosphere in steady-state, local thermal equilibrium and under the
approximation of the intensity being linear in µ:

I =
3

4π
σSBT4

eff

(
τ + µ+

2
3

)
F = σSBT4

eff

U =
3
c
σSBT4

eff

(
τ +

2
3

)
.

To finish this, we note that in the atmosphere J = B since we are in
steady-state local thermal equilibrium. The radiative energy density can
thus be written as U(τ) = (4π/c)J(τ) = (4π/c)B(τ) = (4σSB/c)T4(τ).
Substituting this into eq. (3.28) gives us an expression for the temperature
in terms of optical depth,

T4(τ) =
3
4

T4
eff

(
τ +

2
3

)
. (3.29)
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This equation, along with eq. (3.21), determines the structure of the
stellar atmosphere.

Box 3.2 Decomposition of intensity into moments

Our integration of the radiative-transfer equation (3.22) is
known as taking a MOMENT of the equation. A moment is simply
a weighted average, where the weight is a power of µ. For exam-
ple, to take the zeroth-order moment of the radiative intensity, we
multiply Iν by µ0 = 1, integrate over all angles, and divide by 4π:

Jν =
1

4π

∫ 2π

0

∫ 1

−1
Iν dµdϕ.

To take the first-order moment Hν , we use a weight µ1:

Hν =
1

4π

∫ 2π

0

∫ 1

−1
µIν dµdϕ.

To take the second-order moment Kν , we use a weight µ2:

Kν =
1

4π

∫ 2π

0

∫ 1

−1
µ2Iν dµdϕ.

The first three moments have physically interpretable mean-
ings: the specific radiative energy density, flux, and pressure are
Uν = (4π/c)Jν , Fν = 4πHν , and Pν = (4π/c)Kν , respectively.

By taking moments of the radiative-transfer equation (3.22),
we reduce the complicated integro-differential equation into a
simpler ordinary differential equation. This comes at a cost, how-
ever; because the left-hand side contains µd/dτ , the left hand side
will have a higher-order moment than the right-hand side. By
multiplying eq. (3.22) by successively higher powers of µ and in-
tegrating, we generate an infinite series of ODE’s for successively
higher moments of Iν . The trick to this procedure is to adopt a
CLOSURE RELATION that truncates this series. The classic scheme,
attributed to Eddington, is to take K = J/3. The Eddington closure
scheme is equivalent to expanding the radiative intensity to terms
linear in µ.

E X E R C I S E 3 . 1 4 — Show that if we approximate the intensity as
Iν(µ, τ) = Iν,0(τ) + µIν,1(τ) (eq. [3.23]), then Kν = Jν/3 identically.
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E X E R C I S E 3 . 1 5 — Deep in the star, we expect the radiation to be nearly
isotropic, while it becomes outward-bound as τ → 0. Let’s investigate this. We’ll
measure the anisotropy of the radiation field using the first two moments of the
intensity (Box 3.2).

1. Demonstrate that Hν/Jν = 0 if the radiation is isotropic.

2. Next, suppose the radiation is completely anisotropic: all the photons are
headed in a narrow cone about the direction µ = 1. To make this precise, let

Iν(µ) =

{
Iν,0 1 − ε ≤ µ ≤ 1,
0 otherwise,

where Iν,0 is a constant. Show that Hν/Jν → 1 as ε → 0.

3. Now compute H(τ)/J(τ) for our gray atmosphere.What is the degree of
anisotropy at τ = 0? at τ = 2/3? at τ = 10?



4
Rainbow in the Dark

Now that we’ve discussed radiative transport in the star, we’ll explore
how the emergent spectrum of a star serves as a diagnostic of ambient
conditions in the photosphere.

4.1 Overview

If light from the sun is passed through a grating (a piece of glass with
finely etched lines), the light is dispersed in wavelength and creates a
spectrum, such as the highly detailed one shown in Fig. 4.1. Superposed
on the slow variation from red to violet are dark ABSORPTION LINES.
The ions, atoms, and molecules in the solar atmosphere absorb light at
specific frequencies and create these lines.

Figure 4.1: Visible spectrum of the sun.
Frequency increases along a row from left
to right, and by rows from top to bottom.
Image credit & copyright: N.A.Sharp (NSF),
FTS, NSO, KPNO, NOAO/AURA/NSF.

Beginning in the late 1800’s, astronomers began classifying stars by the
observed absorption lines in the spectra. At this time, Edward Pickering
and Williamina Fleming of the Harvard College Observatory began
amassing a vast catalog of stellar spectra. They classified these spectra
according to the strength of observed hydrogen Balmer lines (the first
four are Hα: 657 nm; Hβ: 486 nm; Hγ: 434 nm; Hδ: 410 nm). Stars, such
as Vega, with the strongest Balmer lines were classified as type “A”,
those with the next strongest were type “B”, and so forth. Annie Jump
Cannon, who would later succeed Fleming as curator of astronomical
photography at the observatory, simplified and reorganized the scheme,
and added decimal subdivisions (0 . . . 9) for each type1. When stellar 1 For example, the sun’s type is G2

color is taken into account, the ordering of stars, from blue to red, is
“OBAFGKM”.

The classification of large numbers of stars allowed for comparison of
brightness and spectral type for stars in clusters (and hence at the same
distance). Hertzsprung and Russell independently noticed2 that most 2 Ejnar Hertzsprung. Über die Sterne

der Unterabteilungen c und ac nach
der Spektralklassifikation von An-
tonia C. Maury. Astronomische
Nachrichten, 179(24):373, January 1909.
DOI: 10.1002/asna.19081792402; and
Henry Norris Russell. Relations Between
the Spectra and Other Characteristics of
the Stars. Popular Astronomy, 22:275–294,
May 1914

stars tended to lie along a band, termed the MAIN SEQUENCE, in a plot
of absolute magnitude (or luminosity) against stellar type (now known
as a HERTZSPRUNG-RUSSELL DIAGRAM). Figure 4.2 shows some standard
main-sequence stars, along with their stellar type and approximate color.
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The classification of stars based on spectra was put on a firm physical
foundation with the influential PhD thesis of Cecilia Payne-Gaposhkin3,3 C. H. Payne. Stellar Atmospheres; a Con-

tribution to the Observational Study of High
Temperature in the Reversing Layers of Stars.
PhD thesis, RADCLIFFE COLLEGE., 1925

who applied the Boltzmann and Saha equations to show that different
stellar spectra were consistent with changes in temperature, rather than
composition, of the stellar photosphere. The sequence of stellar types is
therefore a temperature sequence, with “O” stars being the hottest.
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Figure 4.2: Hertzsprung-Russell diagram
showing standard main-sequence stars.
Colors are approximate translations of the
spectra [Harre and Heller, 2021].

In the 1990’s the “L” and “T” classes were added4 for cool stars and

4 J. D. Kirkpatrick, I. N. Reid, J. Liebert,
et al. Dwarfs Cooler than “M”: The
Definition of Spectral Type “L” Using
Discoveries from the 2 Micron All-Sky
Survey (2MASS). ApJ, 519:802–833, July
1999

brown dwarfs (stellar-like objects that do not reach central temperature
sufficient for fusion of hydrogen into helium). With the introduction
of the “Y” stellar type5, this classification was further extended to even

5 Michael C. Cushing, J. Davy Kirkpatrick,
Christopher R. Gelino, et al. The Dis-
covery of Y Dwarfs using Data from
the Wide-field Infrared Survey Explorer
(WISE). ApJ, 743:50, December 2011. DOI:
10.1088/0004-637X/743/1/50

cooler objects having Teff ≲ 500 K.

4.2 The hydrogen atom

To understand why the Balmer lines are strongest in a certain range of
temperatures, we first need to review the workings of a hydrogen atom.

The electrons bound to an atom or molecule can only occupy states
having a discrete set of energies. For example, the electron in a hydrogen
atom only has energies

En = −13.6 eV× 1
n2 , (4.1)

where n > 0 is an integer known as the PRINCIPAL QUANTUM NUMBER.
These energies are negative, relative to a free electron. For example, the
ground state (n = 1) has energy −ERy = −13.6 eV, meaning that 13.6 eV is
required to remove an electron in its ground state from the atom.

Because the electrons in an atom can only have certain energies, the
atom can only absorb or emit light at specific wavelengths, such that
the energy of the photon matches the difference in energy between two
levels. For example, a hydrogen atom in its ground state can absorb a
photon of energy

E1→2 = −ERy

(
1
22 −

1
12

)
= 10.2 eV

corresponding to the energy required to excite the electron from level
n = 1 to n = 2. The wavelengths that can be absorbed by a hydrogen
atom at rest can be found by substituting E = hc/λ into equation (4.1):

λm→n = λ0

(
1

m2 −
1

n2

)−1

, (4.2)

where λ0 = 91.2 nm and n > m. The transitions from the lowest levels
are named after their discoverers: Lyman for 1 → n, Balmer for 2 → n,
Paschen for 3 → n. A greek letter is used to denote the higher state: for
example Lyman α (abbr. Lyα) means 1 → 2, with λLyα = 121.6 nm. Note
that λm→n > λ0; photons with wavelengths λ < 91.2 nm have sufficient
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energy to knock the electron out of the atom, thereby producing a hydro-
gen ion and a free electron. The first line transition in the Balmer series
is 2 → 3, and is designated Hα: λHα = 656.3 nm. The first 20 lines for
each of the Lyman, Balmer, and Paschen series are shown in Fig. 4.3; note
the 3 → 4 transition is outside the plot range. The Balmer lines lie in the
visible range.
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Figure 4.3: Spectral lines of neutral
hydrogen

4.3 The Boltzmann Equation

In order to produce a Balmer absorption line, we must have some hydro-
gen atoms in the photosphere with electrons in the energy level n = 2.
The more atoms in a state n = 2, the more absorption and the stronger
the line. To find the number of atoms with energy level n = 2, we make
use of a fundamental result, due to Boltzmann, from statistical (thermal)
physics; namely, that if our sample of atoms is in thermal equilibrium,
then the ratio of the number of atoms with energy Ei to the number of
atoms with energy Ej is

Ni

Nj
=

gi

gj
exp

(
−

Ei − Ej

kBT

)
. (4.3)

Here the number gn gives the number6 of quantum mechanical states 6 gn is known as the degeneracy of a given
level nhaving energy En = −ERy/n2. For an energy level n, there are n2 possible

states, each having a different angular momentum. For each of these n2

states, both the electron and proton may each have 2 possible spins. The
total number of states for energy En is therefore gn = 2× 2× n2.

Suppose we wish to know the fraction of atoms in a given state i: that
is, we wish to know

xi =
Ni

N1 + N2 + . . .+ Ni + . . .
.

Using equation (4.3), we can express xi as

xi =
gie−Ei/kBT

g1e−E1/kBT + g2e−E2/kBT + . . .+ gie−Ei/kBT + . . .

≡ gie−Ei/kBT

Q
, (4.4)

where the quantity

Q =
∑

n

gn exp
(
− En

kBT

)
(4.5)

is the partition function. Loosely speaking, the partition function indicates
the number of ways the sample of atoms can be partitioned among the
different energy levels.
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Box 4.1 The partition function for neutral hydrogen

The partition function for neutral hydrogen, eq. (4.5), diverges
as n → ∞. To see this, substitute gn = 4n2 and En = −ERy/n2 and
factor out common terms to obtain

Q = 4eβERy
∑

n

n2e−βERy(1−1/n2),

with β = (kBT)−1. The sum evidently diverges, since for n ≫ 1 the
individual terms approach n2e−βERy . In practice, this divergence
isn’t a problem, as there is an upper limit on n set by ambient
conditions. For example, the mean distance of the electron from
the nucleus is ≈ aBn2, where aB = 5.29 × 10−11 cm is the Bohr
radius. As a result, each atom takes up a volume ≈ a3

Bn6; if the
atoms are not to overlap, then the volume per atom, V/N ≡ 1/ξ,
must be larger than this by some factor. To make this concrete, set
the volume of an atom to be less than half of that available in our
gas:

a3
Bn6 ≲ 1

2
V
N

=
1

2ξ
.

Thus the maximum level is n < (2a3
Bξ)

−1/6. For a typical A-star
photospheric density ξ ∼ 1015 cm−3, the energy level cutoff is n ≈
35. In practice the cutoff will be even lower because of collisions.

You might worry that this estimate for the maximum value
of n is a bit sloppy. Fortunately, the precise maximum value of
n is unimportant for most applications. The reason is that the
terms in the partition function increase only slowly. As an exam-
ple, the terms and cumulative sum in the partition function at a
temperature T = 104 K are as follows.

n n2e−βERy(1−1/n2) 4
∑n

i=1 i2e−βERy(1−1/i2)

1 1.00e+00 4.0000
2 2.88e-05 4.0001
3 7.23e-06 4.0001

...
26 9.62e-05 4.0038

...
52 3.78e-04 4.0274

...
268 9.99e-03 7.5901

As we can see from the cumulative sum (rightmost column), the
value of the partition function is insensitive to cutoff until n is
quite large; indeed, for many applications it is reasonably accurate
to just use Q ≈ 4eβERy .
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E X E R C I S E 4 . 1 — Assuming that the first term g1e−E1/kBT dominates the sum
in the partition function (see Box 4.1), plot the fraction of neutral hydrogen in its
n = 2 state as a function of temperature, for 5 000 K < T < 20 000 K.

4.4 Ionization: The Saha equation

As the temperature in the gas rises, there are more photons with suf-
ficient energy to eject electrons from an atom. In addition, collisions
between atoms also become sufficiently energetic to ionize the atom. In
astronomical nomenclature, the ionization state is denoted by a small Ro-
man numeral: Fe I denotes neutral iron, Fe II denotes singly-ionized iron
(charge +1), Fe III denotes doubly-ionized iron (charge +2), and so on. In
thermal equilibrium, the rate at which atoms are ionized must equal the
rate at which ions and electrons recombine: for example, in a gas consist-
ing of hydrogen atoms, hydrogen ions (i.e., protons), and electrons the
reaction

H II + e←→ H I

is in equilibrium. We’d like to extend equation (4.3) to find the ratio of
two ionization states Ni+1/Ni. Although deriving this equation, termed
the SAHA EQUATION7, is beyond the scope of the course, what we shall do 7 Derived by Meghnad Saha in 1920

is take the equation apart and try to understand how it works. The Saha
equation for the ratio of the populations of two ionization states 8 Ni+1 8 In this context, Ni+1/Ni refers to ratios

such as NFe II/NFe I. Each population
N can be divided into sub-populations
based on the different electron energy
levels. For example, NH I = NH I,1 +
NH I,2 + . . ., where NH I,2 are the number
of hydrogen in ionization state I with an
electron in the second energy level.

and Ni is
Ni+1

Ni
=

[
2
ne

(
mekBT
2πℏ2

)3/2
]
Qi+1

Qi
. (4.6)

In this equation, ne denotes the electron density—the number of free
electrons per unit volume—and me is the electron mass. The termsQi+1

andQi are the partition functions for the two states, both measured with
respect to the same zero-point for energy. To understand better what this
equations means, let’s consider each of the color-coded factors in turn.

Start with the term Qi+1/Qi. If both partition functions are dominated
by the ground state term9 then 9 see Box 4.1

Qi+1

Qi
=

gi+1,1

gi,1
e−β(Ei+1,1−Ei,1)

=
gi+1,1

gi,1
e−β Eion

Here Eion = Ei+1,1 − Ei,1 is the energy needed to remove an electron from
an ion in state i and we use the common shorthand β = (kBT)−1. Thus
Qi+1/Qi resembles the Boltzmann equation (4.3).

The additional factor in [·] in eq. (4.6) arises because we also need to
allow for the number of free electron states. When the atom is ionized,
each electron quickly acquires an average kinetic energy (3/2)kBT. There
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are many different states having this energy: the electron can be in differ-
ent locations and moving in different directions, for example.

You might think that there would be an infinitude of possible electron
states. Quantum mechanics, however, sets limitations on this number.
First, we have the Pauli exclusion principle: no two electrons can be
in the same location with the same momentum and same spin. What
do we mean by same location and momentum? Recall the Heisenberg
uncertainty principle: the electrons x-position and x-momentum are
spread about a range of values ∆x and ∆px, and these uncertainties are
related via

∆x∆px ≳ h.

Thus, if we imagine dividing our volume into little boxes of volume

∆V = ∆x∆y∆z ≈ h3

∆px ∆py ∆pz
,

each box can hold two electrons.10 Suppose we have a volume V; how10 Because electrons have spin 1/2, we can
put two electrons into the same position
and momentum state if their spins are
oppositely directed.

many boxes are there? The number of available boxes is

V
∆V
≈

V ∆px ∆py ∆pz

h3 .

To estimate the size of ∆px ∆py ∆pz, let’s take ∆px ∼ px and similarly
for ∆py and ∆pz; further, if everything is isotropic then px ≈ py ≈ pz on
average, so ∆px ∆py ∆pz ∼ p3

x . Now the kinetic energy of the electron
is p2/2me, and p2 = p2

x + p2
y + p2

z ≈ 3p2
x . Hence the kinetic energy is

(3/2)p2
x/me; in thermal equilibrium, however, the kinetic energy has an

average value of (3/2)kBT. The value of p2
x is therefore

p2
x ≈ mekBT,

and the number of boxes is

V
∆V
∼ V

p3
x

h3 ∼ V
(mekBT)3/2

h3 .

If our volume V contains Ne electrons, then the number of states electron
is

2V
Ne∆V

∼ 2V
Ne

(mekBT)3/2

h3 .

The factor of 2 appears because each box can hold 2 electrons. Recogniz-
ing that Ne/V = ne, we see that this number of states per free electrons
corresponds to the factor in [·] in equation (4.6). When the numerical
calculation is done correctly, the additional factor of 2π arises.

The number of states per free electron plays an important role in
setting the temperature at which a species ionizes. You might expect,
since a term e−Eion/kBT appears in the ratio Ni+1/Ni, that a species would
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ionize at a temperature Eion/kB. In fact the ionization temperature is
much lower. To see how this works, define

ζ = ln

[
1
ne

(
mekBT
2πℏ2

)3/2
]
.

We can then write eq. (4.6)—with the approximation that the partition
functions are dominated by the ground state—as

Ni+1

Ni
=

2gi+1,1

gi,1
exp (ζ − βEion) .

Now the factor gi+1,1/gi,1 is of order unity. Hence, when the gas ionizes
and Ni+1,1 ≈ Ni,1, we must have that ζ ≈ βEion; put differently, the
ionization temperature will not be Eion/kB but rather Eion/kBζ . Under
conditions in the photosphere of an A star (T ≈ 104 K, n ∼ 1015 cm−3),
ζ ≈ 15.

In more intuitive terms, when an electron is ejected from an atom, it
has an enormously large number ∼ e15 number of different states avail-
able. To rejoin with an ion requires being in the right place at the right
time with the right energy. The large number of available states makes
this unlikely, so the electron must wander lonely through a vast and des-
olate phase space until at long last it reunites with an ion. In a sense, the
large number of available states per electron makes ionization easier than
recombination; as a result the temperature at which ionization occurs is
considerably lower than Eion/kB.

E X E R C I S E 4 . 2 — Let nI be the density of H I and nII be the density of H II.
Denote the fraction of neutral hydrogen as x = nI/(nI + nII), so that
1 − x = nII/(nI + nII) is the fraction of ionized hydrogen. Take nI + nII = 1015 cm−3,
and assume that all free electrons come from the ionization of hydrogen, so that
ne = nII. Plot x as a function of temperature for 7 500 K ≤ T ≤ 15 000 K, and find
the temperature at which x = 1/2. Then multiply x by the fraction n2/n1, as set by
the Boltzmann equation, to find the fraction of hydrogen in the n = 2 level.

As shown in exercise 4.2, the Balmer lines, which correspond to transi-
tions 2 → 3, 2 → 4, …, are most prominent in A stars. These stars have
Teff = (7 500–9 500)K. At lower temperatures, the population of hydro-
gen atoms in the level n = 2 decreases as e−E2/kBT and the lines become
weak. At higher temperatures, the number of neutral hydrogen atoms
decreases; most of the hydrogen is ionized, and the Balmer lines again
become weaker.

These arguments apply to other species present in the stellar photo-
sphere. Figure 4.4 displays spectra for selected stellar types at optical
wavelengths. In the hottest stars (type O: Teff > 30 000 K), hydrogen is
mostly ionized and the lines are from He II and multiply-ionized met-
als. As the temperature cools into the B and A series, the hydrogen lines
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increase in strength. Going from F into G (Teff = (5 000–6 000)K), the hy-
drogen lines decrease, while lines from singly-ionized and neutral metals
such as Ca II, Ca I, and Fe I become strong. At still lower temperatures in
the K and M (Teff < 3 500 K) types, absorption from molecules such as
TiO becomes prominant. An example is the broad trough seen in the K
spectrum near λ = 500 nm.

Figure 4.4: Spectra from main-sequence
stars of spectral types O–K. Data from
Jacoby et al. [1984].
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4.5 Pressure broadening of lines

We’ve now demonstrated how stars may be classified by the absorption
lines in their spectra, and how this classification gives us the photosphere
effective temperature. We can also obtain information about the pressure
at the photosphere, and hence the surface gravity of the star, by looking
at the shape of the absorption lines. A zoomed-in view of the Hγ line
(2 → 5 transition in H I) from a main-sequence A1 star is shown in
Fig. 4.5. The line is spread over a few nanometers, compared against a
central value of 434 nm.
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Figure 4.5: Hγ absorption line observed
from the main-sequence A1 star HD16608.
Spectrum from Jacoby et al. [1984].

TO UNDERSTAND WHAT SETS THE SHAPE, AND WIDTH, OF THE ABSORPTION
LINE, we need to model our atomic transition. Consider an electronic
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transition in an atom between two energy levels, Em and En. The natural
frequency of this transition is ν0 = |En − Em|/h. Light incident on the
atom with frequency ν ̸= ν0 drives the electron at frequency ν.

Since the transition between two states has a definite frequency as-
sociated with it, let’s start with a simple harmonic oscillator, which is
described by an equation

d2x
dt2 + ω2

0x = 0.

Here ω0 = 2πν0. Light is described as an electromagnetic wave, so
classically the electron feels a force eE cos(ωt), where ω = 2πν. An accel-
erating electron radiates, which damps the acceleration of the electron.
The damping can be modeled as a force that is proportional to the ve-
locity, −mΓdx/dt. Classically, the transition in an atom can therefore
be modeled as an electromagnetic oscillator with damping and driving
terms,

d2x
dt2 + Γ

dx
dt

+ ω2
0x =

eE
m

cos(ωt).

This has a well known solution (see Box 4.2). The amplitude of oscillation
is proportional to the energy removed from the incident light, which is
proportional to the cross-section. The classical cross-section for absorp-
tion of radiant energy by an electromagnetic oscillator is thus

σ =

(
πe2

mec

){
Γ/4π

(ν0 − ν)2 + (Γ/4π)2

}
. (4.7)
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Figure 4.6: Comparison of a Lorentzian
(L, solid line) and a Gaussian (G, dotted
line), both with FWHM = 1. The area
under each curve is unity.

The function

L(ν; Γ) = 1
π

Γ/4π
(ν0 − ν)2 + (Γ/4π)2

is known as a LORENTZIAN. In contrast to a Gaussian, a Lorentzian is
characterized by broad “wings” (Fig. 4.6) away from the central fre-
quency ν0. The actual value of the cross-section must be calculated using
quantum mechanics. The overall shape of the cross-section is still in the
form of equation (4.7), however, so the opacity is just

ρκν = nion,m

(
πe2

mec

)
fmn

{
Γ/4π

(ν0 − ν)2 + (Γ/4π)2

}
. (4.8)

In this equation, fmn is a number, called the oscillator strength, that results
from the calculation of the transition probability from state m to state
n, and nion,m is the density of atoms in state m. The key point is that fmn

depends only on the details of the transition: the energies, spins, and
parities of the atomic states. It does not depend on environmental param-
eters such as temperature and pressure. As a result, fmn can be measured
or computed once and then tabulated.
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Box 4.2 The driven damped oscillator

Let’s begin with a simple system: a mass m attached to a spring
with force F = −kx.

If we put the origin of our coordinate system where the mass is
at rest with the spring relaxed, then the equation of motion of the
mass is

d2x
dt2 +

k
m

x = 0. (4.9)

You have solved this equation before: the most general solution is

x(t) = x0 cos(ω0t) +
v0

ω0
sin(ω0t) (4.10)

with ω2
0 = k/m and with x0 and v0 being the initial position and

velocity of the mass. The angular frequency ω0 is related to the
period of oscillation T as ω0 = 2π/T = 2πν.

NOW LET’S PUSH ON OUR MASS WITH AN OSCILLATING FORCE,
F cos(ωt) WITH ω ̸= ω0. A real world example would be hold-
ing a vibrating tuning fork near another fork tuned to a different
frequency. The equation of motion is now

d2x
dt2 + ω2

0x =
F
m

cos(ωt). (4.11)

You can verify by substitution that a general solution is

x(t) =
F/m

(ω2
0 − ω2)

cos(ωt) + A cos(ω0t) + B sin(ω0t).

Let’s start with our harmonic oscillator at rest (v0 = dx/dt|t=0 =

0) and at x|t=0 = 0. With these conditions, we can determine the
constants A and B; the solution is

x(t) =
F/m

(ω2
0 − ω2)

[cos(ωt)− cos(ω0t)] .

Let’s recast this by defining ∆ = ω0−ω and ωm = (ω0+ω)/2. Then

ω2
0 − ω2 = (ω0 − ω)(ω0 + ω) = 2∆ωm,

cos(ω0t) = cos (ωmt +∆t/2) ,

cos(ωt) = cos (ωmt−∆t/2) ;
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Box 4.2 continued

using the cosine addition rules and combining terms, we can
write the solution as

x(t) =
[

F/m
∆ωm

sin(∆t/2)
]
sin(ωmt). (4.12)

This illustrates the phenomena of BEATS: the oscillation consists of
a carrier signal at frequency ωm with the amplitude modulated at
the slower frequency ∆/2. Notice that the amplitude increases as
∆→ 0, i.e., ω → ω0.

NOW LET’S MAKE OUR MODEL EVEN MORE REALISTIC. We add a fric-
tional force that is proportional to velocity, Ffriction = −mΓdx/dt.
Our complete equation of motion is then

d2x
dt2 + Γ

dx
dt

+ ω2
0x =

F
m

cos(ωt). (4.13)

The solution to this is straightforward to find, although the alge-
bra is tedious (trust me on this). The general solution for initial
conditions x|t=0 = x0 and dx/dt|t=0 = v0 is

x(t) =
F(ω2

0 − ω2)/m
(ω2

0 − ω2)2 + Γ2ω2 cos(ωt) (4.14)

+
ΓωF/m

(ω2
0 − ω2)2 + Γ2ω2 sin(ωt)

+

[
x0 −

F(ω2
0 − ω2)/m

(ω2
0 − ω2)2 + Γ2ω2

]
e−Γt/2 cos(ωΓt)

+

[
v0

ωΓ
− ΓωF/m

(ω2
0 − ω2)2 + Γ2ω2

ω

ωΓ

]
e−Γt/2 sin(ωΓt),

with

ωΓ = ω0

(
1− Γ2

4ω2
0

)1/2

.

Let’s simplify this a bit. First, the last two terms decay as e−Γt/2:
these are transients set by the initial conditions. After a time
t ≫ 2/Γ, therefore, only the first two terms, which oscillate at the
driving frequency ω, will remain.

We can simplify these first two terms even further: if we write

cos(ωt) =
eiωt + e−iωt

2
, sin(ωt) =

eiωt − e−iωt

2i
,

we can combine them and obtain

x(t) =
F

2m

[
1(

ω2
0 − ω2

)
+ iΓω

]
eiωt
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Box 4.2 continued

+
F

2m

[
1(

ω2
0 − ω2

)
− iΓω

]
e−iωt

= ℜ

{
F
m

[
1(

ω2
0 − ω2

)
+ iΓω

]
eiωt

}
. (4.15)

We use the symbol “ℜ” to denote taking the real part of a com-
plex quantity. The oscillation is thus described as the real part of
a complex quantity Aeiωt, with

A =
F
m

[
1(

ω2
0 − ω2

)
+ iΓω

]

being the (complex) amplitude.
For ω ≈ ω0, we approximate (ω2

0 − ω2) ≈ 2ω0(ω0 − ω) and take
the square of the amplitude to find,

|A|2 =

(
F

2mω0

)2 1
(ω0 − ω)2 + (Γ/2)2

=
π

2Γ

(
F

mω0

)2{ 1
π

Γ/2
(ω0 − ω)2 + (Γ/2)2

}
(4.16)

We rewrote the amplitude in the second line so that the term in
{·} is normalized; in fact, it is the Lorentzian function L(ω; Γ) in
terms of the driving frequency ω.

IN A STELLAR ATMOSPHERE, THE WIDTH Γ IS SET BY COLLISIONS. For exam-
ple, when an electron passes close by our atom, the electric field shifts
the energy levels of the atom11. The greater the collision rate, the larger11 This is an application of the Stark

effect that you learn about in quantum
mechanics.

the width. If we have two stars of the same photospheric temperature (so
that both stars have the same lines), then a way to increase the collision
rate is to increase the pressure. Recall, however, that in the stellar atmo-
sphere P = (g/κ)τ ; as a result, stars with a higher surface gravity will
have broader lines. The inset in Figure 4.7 illustrates the broadening of
the Balmer Hγ line (2 → 5) in the spectrum of a main-sequence A1 star
compared with that of a supergiant A1 star.
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Figure 4.7: Spectra of two A1 stars, HD
16608 (a main sequence star) and SAO
12149 (a supergiant star). Spectra are from
Jacoby et al. [1984].
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Burn

To recap, we have established a description for the basic features of a
self-gravitating fluid:

1. For a set mass and radius, hydrostatic equilibrium (balance of pres-
sure and gravity) is established on the time needed for a sound wave
to cross the star. Once this equilibrium is established, the central pres-
sure, density, and temperature are established.

2. The gradient in temperature from center to surface drives a luminos-
ity, which is controlled by the opacity of material in the stellar interior.

3. The ambient pressure and temperature near the stellar photosphere
(where τ ∼ 1) are set by the surface gravity and opacity.

In this chapter we now discuss how the luminosity is generated by nu-
clear reactions in the core of a star, and the conditions needed to generate
that luminosity.

5.1 The nucleus

Experimentally, nuclei are on the order of femtometers1 in size. Like an 1 1 fm = 10−15 m. This unit is sometimes
called a FERMI.atom, the nucleus also has excited states; typical energies for these states2
2 1 MeV = 106 eV; an ELECTRON VOLT
(eV) is the energy acquired by an electron
being accelerated through a potential
difference of 1 volt.

are on the order of MeV. It therefore makes sense to use fm and MeV as
our units of length and energy. In these units, the combination

ℏc = 197 MeV fm

to three significant digits. In quantum field theory, the strength of the
electromagnetic interaction is characterized by the dimensionless FINE
STRUCTURE CONSTANT

α =
e2

4πϵ0ℏc
=

1
137

,

again to three significant digits. From these two quantities, we find the
electron (or proton) charge in these units,

e2

4πϵ0
= αℏc = 1.44 MeV fm.
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Put another way, the Coulomb potential energy between two protons
separated by 1 fm is 1.44 MeV.

The strong nuclear force differs from electromagnetism and grav-
ity in several ways. First, the strong nuclear force is short-range: the
interaction vanishes for distances ≳ 2 fm. It is weakly attractive for dis-
tances 1 fm ≲ r ≲ 2 fm and becomes strongly repulsive at distances
≪ 1 fm. The potential between the neutron and proton in a deuterium
(2H) nucleus (called a deuteron) therefore looks something like that
sketched in Fig. 5.1. The deuteron’s ground state (black dotted line) is at
Ed = −2.2 MeV, so the nucleus is weakly bound (|Ed| ≪ |V|, where V is
the depth of the potential well).

1 2
 (fm)

, 
 (M

eV
)

Figure 5.1: Schematic of the nuclear
potential for a deuteron (2H). The binding
energy of the deuteron is shown as a
black dotted line.
In our units of MeV and fm, some relevant
masses are

mn = 939.6 MeV/c2

mp = 938.3 MeV/c2

mu = 931.5 MeV/c2

me = 0.5110 MeV/c2

E X E R C I S E 5 . 1 — We can estimate the depth of the well in Fig. 5.1. Since this
is a two-body problem, transfer to center-of-mass coordinates and solve for a
single particle with a reduced mass mpmn/(mp + mn) ≈ mn/2. Use the uncertainty
principle, with ∆x being the width of the well, to get an estimate of p ∼ ∆p and
from this estimate the kinetic energy of the particle. Finally, use the small value of
the binding energy (sum of potential and kinetic energies) to estimate the depth
of the potential well.

Also unlike electromagnetism and gravity, the strong nuclear force
does not obey superposition: we cannot write the energy of the nucleus
as a sum over the potential between all pairs of nucleons. Further, the
strong nuclear force is not a central force, meaning that it depends on
more than just the distance between any two nucleons. The atomic nu-
cleus is thus much more complicated to describe than the electronic
structure of the atom.

DESPITE THESE COMPLICATIONS, WE CAN CONSTRUCT A PHENOMENOLOG-
ICAL FORMULA FOR THE NUCLEAR MASS THAT IS REASONABLY ACCURATE.
Let us write the mass of a nucleus with A nucleons—Z protons and
N = A− Z neutrons—as

M(Z,N) = Zmp + Nmn − B(Z,N)/c2,

where B(Z,N) is the BINDING ENERGY—the amount of energy that must
be supplied to the nucleus in order to break it into its constituent protons
and neutrons. Because the nuclear force is weakly attractive for separa-
tions 1 fm ≲ r ≲ 2 fm and repulsive at shorter distances (Fig. 5.1), there
is a characteristic spacing between nucleons that is a bit larger than 1 fm.
In a large nucleus, we therefore expect the nucleons to have a roughly
constant density, so that the volume of the nucleus is proportional to A;
experimentally, the radius of the nucleus is roughly33 The value of the radius depends on how

it is measured; scattering with various
light particles (protons, neutrons, alpha,
electrons) agree, however, that rA ∝ A1/3. rA = (1.1 to 1.8) fm× A1/3.
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Notice that because the nucleon-nucleon potential is short-ranged, nu-
cleons in a large nucleus only interact with their nearest neighbors.
Indeed the nucleon-nucleon interaction is similar in form to the po-
tential between molecules in a fluid, such as a water drop. This moti-
vates developing a simple formula that gives a decent approximation for
the binding energy. For the first term, we estimate the binding energy
of a large nucleus as just the (constant) binding energy of a single nu-
cleon multiplied by the number of nucleons. Experimentally, it is found
that for large nuclei this is the case: the binding energy per nucleon is
roughly constant. We say that the nuclear interaction SATURATES, so that
B(Z,N) ∝ A = (Z + N).

E X E R C I S E 5 . 2 — To see how the nuclear force differs from the long-range
Coulomb and gravitational forces, suppose instead that the nuclear force acted
like a super-gravity: that is, the potential was ∝ 1/r. Use the results from our
constant-density model of a star (eq. [2.22]) to derive how the binding energy
would scale with A in this case.

It is energetically favorable to have equal numbers of neutrons and
protons. We therefore define an asymmetry parameter η ≡ (N− Z)/(N +

Z) = 1 − 2Z/A, so that −1 ≤ η ≤ 1. The nuclear contribution to the
binding energy is maximized for η = 0 (equal numbers of protons and
neutrons). Because the nuclear force does not distinguish between neu-
trons and protons, the binding energy is quadratic in η, so that B doesn’t
depend on the sign of η. Thus our first approximation for the binding
energy is B ≈ (aV − aAη

2)A. Here aV and aA are as-yet-undetermined
coefficients.

In a fluid drop there is a correction for the surface tension. Heuristi-
cally, we imagine that nuclei in the surface have fewer neighbors and are
therefore not as bound. We therefore subtract from our formula a term
proportional to the surface area, ∝ r2

A ∝ A2/3. The next iteration of our
liquid-drop approximation is thus B ≈ (aV − aAη

2)A− aSA2/3.
Finally, the protons in the nucleus are charged and therefore repel one

another. This Coulomb repulsion also reduces the binding energy. We
therefore subtract a term ∝ Z2/rA ∝ Z2/A1/3 from our mass formula to
obtain

B =
(
aV − aAη

2)A− aSA2/3 − aC
Z2

A1/3 . (5.1)

This is a version of the SEMI-EMPIRICAL MASS FORMULA, also known as
the BETHE-WEIZSÄCKER MASS FORMULA. The coefficients aV, aA, aS, aC are
found by fitting the formula to measured nuclear masses (Table 5.1).

Table 5.1: Coefficients for the fit to nuclear
masses, (5.1), in units of MeV.

aV aA aS aC
15.5 22.7 16.6 0.71This fit should have another term to account for the pairing of neutrons

and protons, so that the binding energy is increased for even Z and N.
We omit that term here for simplicity.
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E X E R C I S E 5 . 3 — For a given nuclear mass number A, derive an
expression for the charge number Z⋆(A) that maximizes the binding energy
(eq. [5.1] with coefficients from Table 5.1).

1. Plot the ratio Z⋆/A for 4 ≤ A ≤ 128. Give a physical explanation for the
behavior of Z⋆/A.

2. Plot the binding energy per nucleon B/A as a function of Z⋆ and A, for
4 ≤ A ≤ 128.

3. Find the atomic number Z and atomic mass A of the nucleus with the
maximum B/A.

5.2 Nuclear reactions

From mass-energy conservation, the heat evolved during a nuclear re-
action equals the change in mass of the reacting system. For example, in
the reaction

3He + 3He→ 4He + p + p,

the binding energy of 3He is 7.718 MeV and that of 4He is 28.296 MeV;
the heat evolved by this reaction is therefore

2
[
2mp + mn − B(3He)

]
−
[
2mp + 2mn − B(4He)

]
− 2mp

= B(4He)− 2B(3He)

= 28.296 MeV− 15.437 MeV

= 12.859 MeV.

E X E R C I S E 5 . 4 — Fusion of hydrogen into helium entails converting 4
hydrogen atoms (including the 4 electrons) into 1 helium atom (2 protons, 2
neutrons, 2 electrons) with B = 28.296 MeV. What is the heat evolved per hydrogen
atom? Assume that the sun has been shining with its current luminosity over its
life. What mass of hydrogen atoms would need to undergo fusion to supply this
energy? How large is this mass relative to the total mass of the sun?

Table 5.2: Selected atomic mass excesses,
taken from Tuli [2011].

isotope ∆/MeV
n 8.071
1H 7.289
4He 2.425
12C 0.000
16O −4.737
28Si −21.493
56Fe −60.606

Because stellar reactions often involve electrons, it is convenient to
define the ATOMIC MASS EXCESS ∆(Z,A) =M(Z,A) − Amu, whereM is
the atomic mass, including electrons. Some common mass excesses are

From the definition of the atomic mass
unit mu, ∆(12C) ≡ 0.

listed in Table 5.2. Neglecting the electron binding energy (∼ eV), we
can relate the atomic mass excess to the binding energy viaM(Z,A) =

Amu +∆(Z,A) = M(Z,N = A− Z) + Zme.
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E X E R C I S E 5 . 5 — Compute the energy released by the following reactions:

4He + 4He + 4He → 12C
12C + 4He → 16O
16O + 16O → 28Si + 4He.

YOU MIGHT THINK THAT BECAUSE THE NUCLEAR INTERACTION IS SHORT-
RANGE, THE CROSS-SECTION IS SOMETHING LIKE πr2

n, WHERE rn ≈ (1 TO 2) fm×
A1/3. Things are a bit more subtle, however, and in this section we shall
explore how the reaction rate works. First, the “size” of a particle is in
general proportional to the “size” of the wavefunction. From the uncer-
tainty principle,

π∆x2 ≈ π

(
ℏ
∆p

)2

= π
ℏ2

2mE
.

where we’ve taken ∆p ∼ p. Notice that if we multiply and divide by c2,
then we can estimate the area of the wavepacket as

(ℏc)2

mpc2
1
E
∼ 4× 104 fm2 ×

(
keV

E

)
= 400 b

(
keV

E

)
.

Here we’ve introduced a convenient unit for nuclear cross-sections, the
BARN4 (b), with 1 b = 10−28 m2 = 100 fm2. 4 as in hitting the broad side of

The key point is that the size of the wave packet is ∝ 1/E, which is in
general true. This geometrical size of the wave packet is then multiplied
by the probability of the nucleons forming a bound state, so we write the
nuclear portion of the cross-section as

σnuclear(E) =
S(E)

E
. (5.2)

The function S(E) contains the details of the nuclear interaction and is in
general measured experimentally.

The final part of the cross-section concerns the Coulomb potential.
Because protons repel one another, at large separations the nuclei interact
only via the Coulomb potential. Consider the case of two nuclei with
masses5 A1mu and A2mu. Transform to the center-of-mass frame; the 5 When doing kinematics, we shall make

the approximation m ≈ Amu.problem then reduces to that of one particle, mass Amu = A1A2/(A1 +

A2) × mu, moving in a potential (Fig. 5.2) that at large separations is
purely Coulomb,

Z1Z2e2

4πϵ0r
=

Z1Z2αℏc
r

= 1.44 MeV× Z1Z2

(
1 fm

r

)
.

Although the nuclear interaction forms a deep potential well (blue Vn,
Fig. 5.2) at short distances, outside the nucleus the Coulomb potential
(red VC, Fig. 5.2) dominates.

, 
, 

Figure 5.2: Tunneling through the
Coulomb potential barrier. Not to scale.
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E X E R C I S E 5 . 6 — For the sun, typical center-of-mass energies are E ∼ 1 keV
(horizontal black line in Fig. 5.2). Suppose we have two protons heading towards
one another with this kinetic energy. What is their distance of closest approach?

As shown in Exercise 5.6, the turning radius rE at typical stellar ener-
gies is much larger than the nuclear radius. Classically the particle can’t
penetrate the region rn < r < rE where E < V (dotted black line, Fig. 5.2);
under classical physics, there would be no nuclear reactions at typical
stellar temperatures because two particles would never find themselves
close enough to be bound by the nuclear force.

The world is quantum, however, and the uncertainty in a particle’s
position means there is a small probability for the nucleons to be close
enough for the nuclear force to come into play. In the classically forbid-
den region rn < r < rE, the particle wavefunction (thin gray line, Fig. 5.2)
decreases exponentially, and the probability to reach r ∼ 1 fm is

P ≈ exp
[
−2π2 rE

λ

]
where λ = h/p is the particle’s wavelength and p is the momentum. It
is convenient to rewrite the argument of the exponential in terms of the
particle’s energy,

2π2rE

λ
= 2π2

(
Z1Z2e2

E

)(p
h

)
=

[
π

Z1Z2e2
√

2m
4πϵ0ℏ

](
1
E

)1/2

,

so that the probability of “tunneling” through the Coulomb barrier is

P ≈ exp

[
−
(

EG

E

)1/2
]
, (5.3)

with

EG ≡ “Gamow Energy” =

[
2π2Z2

1 Z2
2e4m

(4πϵ0)2ℏ2

]
= Z2

1 Z2
2A× 979 keV.

Combining eqs. (5.2) and (5.3), we write the reaction cross-section as the
nuclear cross-section multiplied by the probability of tunneling:

σ(E) =
S(E)

E
exp

[
−
(

EG

E

)1/2
]
. (5.4)

For many reactions S(E) is nearly constant over the range of typical ener-
gies in a stellar plasma. This is useful, as the reaction cross-section can be
measured in the lab at higher energies and then extrapolated to the much
lower stellar energies using eq. (5.4).

TO GET THE REACTION RATE FROM THE CROSS-SECTION, recall that the
mean-free path of a particle is ℓ = (nσ)−1, where n is the density of tar-
gets. For definiteness, let us consider a plasma with two species present,
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type 1 and type 2. The mean-free path of any given nucleus of type 1
against reactions with nuclei of type 2 is ℓ = (n2σ)

−1. If the nuclei are
traveling with relative speed v = |vvv1 − vvv2|, then the mean time between
collisions is ℓ/v. Thus in a large ensemble of nuclei, the mean rate of
reactions is

r12 =
n1v
ℓ

= n2n1⟨σv⟩. (5.5)

Here ⟨σv⟩ is the mean value of σv for all pairs of nuclei in the plasma. For
reactions between nuclei of the same type, we replace n1n2 with n2/2; the
factor of 1/2 is to avoid double-counting.

A detailed calculation of the thermally averaged cross-section ⟨σv⟩
is presented in Box 5.1; here we’ll just give a brief physical explanation
for its value. There are two competing terms. First, the cross-section
(eq. 5.4) has an exponential term exp[−(EG/E)1/2] that increases rapidly
with energy: more energetic particles have a much higher probability
of tunneling through the Coulomb barrier. On the other hand, in ther-
mal equilibrium the number of particles with energy E decreases as
exp(−E/kBT). As a result, reactions predominately occur in a narrow
window of energies about a sort of geometric mean between EG and kBT:

Epk =
E1/3

G (kBT)2/3

41/3 .

The reaction rate is suppressed for E ≪ Epk because the probability
of penetrating the Coulomb barrier is so small; the reaction rate is sup-
pressed for E ≫ Epk because there are so few nuclei with those energies.
Using this approximation the rate can be evaluated, with ⟨σv⟩ being
given by eq. (5.10).

Box 5.1 The thermally averaged reaction cross-section

Since the cross-section depends on energy, the rate at which
any given nucleus of type 1, traveling with velocity vvv1, will react
with nuclei of type 2 having velocities vvv2 in a range d3v2 is

n2σ|vvv1 − vvv2|
(

m2

2πkBT

)3/2

exp
(
−m2v2

2
2kBT

)
d3v2.

The extra terms are because the nuclei have a Maxwell-Boltzmann
distribution of velocities. To get the total rate per unit volume, we
then have to multiply by the number of nuclei of type 1 having
velocities vvv1 in a range d3v1 and integrate over d3v1 d3v2:

r12 = n1n2

[
m1m2

(2πkBT)2

]3/2

×
∫
σ(E)v exp

(
−m1v2

1
2kBT

− m2v2
2

2kBT

)
d3v1 d3v2. (5.6)
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Box 5.1 continued

Now E and v are the relative energies and velocity in the center-
of-mass frame. We can change variable using the relations

vvv1 = VVV− m2

m1 + m2
vvv

vvv2 = VVV +
m1

m1 + m2
vvv.

where V is the center-of-mass velocity. It is straightforward to
show that dv1,x dv2,x = dVxdvx, and likewise for the y, z direc-
tions. Furthermore, m1v2

1 + m2v2
2 = (m1 + m2)V2 + mv2, and

multiplying and dividing the integral in equation (5.6) by m1 + m2

allows us to write

r12 = n1n2

(
m1 + m2

2kBT

)3/2( m
2kBT

)3/2

×
∫

d3V
∫

d3vσ(E)v exp
[
− mv2

2kBT

]
exp

[
− (m1 + m2)V2

2kBT

]
.

The integral over d3V can be factored out and is normalized to
unity. Hence we have for the reaction rate between a pair of nu-
clei of types 1 and 2,

r12 = n1n2

{(
m

2πkBT

)3/2 ∫ ∞

0
σ(E)v exp

(
− mv2

2kBT

)
4πv2 dv

}
.

≡ n1n2⟨σv⟩. (5.7)

The term in {} is the averaging over the joint distribution of the
cross-section times the velocity, and is usually denoted as ⟨σv⟩.
Note that if nuclei 1 and 2 were identical, then we would need to
divide r12 by 2.

Changing variables to E = mv2/2 in equation (5.7) and insert-
ing the formula for the cross-section, equation (5.4), gives

⟨σv⟩ =
(

8
πm

)1/2( 1
kBT

)3/2 ∫ ∞

0
S(E) exp

[
−
(

EG

E

)1/2

− E
kBT

]
dE.

(5.8)
Now, we’ve assumed that S(E) varies slowly; but look at the
argument of the exponential. This is a competition between a
rapidly rising term exp[−(EG/E)1/2] and a rapidly falling term
exp(−E/kBT). As a result, the exponential will have a strong peak,
and we can expand the integrand in a Taylor series about the
maximum. Let

f(E) = −
(

EG

E

)1/2

− E
kBT

.
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Box 5.1 continued

Then we can write∫ ∞

0
S(E) exp

[
−
(

EG

E

)1/2

− E
kBT

]
dE

≈
∫ ∞

0
S(Epk) exp

[
f(Epk) +

1
2

d2f
dE2

∣∣∣∣
E=Epk

(
E− Epk

)2
]

dE.

Here Epk is found by solving (df/dE)|E=Epk = 0. By expand-
ing the argument of the exponential, we have approximated the
integrand by a Gaussian,

exp
[
−
(E− Epk)

2

2ς2

]
where

1
ς2 = − d2f

dE2

∣∣∣∣
E=Epk

.

This trick of approximating a steeply peaked function as a Gaus-
sian is known as the METHOD OF STEEPEST DESCENT.

Solving for Epk, we get

Epk =
E1/3

G (kBT)2/3

22/3 ,

and

exp
[
f(Epk)

]
= exp

[
−3
(

EG

4kBT

)1/3
]
.

Further,

1
2

d2f
dE2

∣∣∣∣
E=Epk

= − 3
2(2EG)1/3(kBT)5/3 = − 3

4EpkkBT
.

Defining a variable ∆ = 4(EpkkBT/3)1/2, our integral becomes

⟨σv⟩ =
(

8
πm

)1/2( 1
kBT

)3/2

S(Epk)

× exp

[
−3
(

EG

4kBT

)1/3
]∫ ∞

0
exp

[
−
(E− Epk)

2

(∆/2)2

]
dE. (5.9)

Another simplification can be made because both the Gaussian
and the original integrand go to zero as E → 0. As a result, we
can extend the lower bound of our integral (eq. [5.9]) to −∞,
which allows us to evaluate the integral analytically and obtain

⟨σv⟩ ≈
(

8
m

)1/2( 1
kBT

)3/2

S(Epk) exp

[
−3
(

EG

4kBT

)1/3
]
∆

2

=
213/6
√

3m
E1/6

G S(Epk)

(kBT)2/3 exp

[
−3
(

EG

4kBT

)1/3
]
. (5.10)



64 TO BUILD A STAR

The rate has the temperature dependence

r ∝ T−2/3 exp

[
−3
(

EG

4kBT

)1/3
]
;

since EG ∝ Z2
1 Z2

2A, at any given temperature lighter nuclei typically have
much faster reaction rates. Also note that at stellar energies, reaction
rates are incredibly sensitive to temperature. To quantify this, approxi-
mate the rate at a given temperature as a power-law, r(T) ∝ Tn. Then the
exponent is

n(T) =
∂ ln r
∂ ln T

= −2
3
+

(
EG

4kBT

)1/3

, (5.11)

as you can verify for yourself (Exercise 5.7). Table 5.3 lists EG, Epk, and n
for some common reactions. In the table, the peak reaction energy Epk

and exponent n(T) are evaluated at T = 107 K (kBT = 0.86 keV). Note the
large value of n(T) at stellar temperatures—this is a consequence of the
largeness of EG/kBT.

Table 5.3: Parameters for non-resonant
reactions

p + p p + 3He 3He + 3He p + 7Li p + 12C
EG (MeV) 0.489 2.94 23.5 7.70 32.5
Epk|T=107 K (keV) 4.5 8.2 16.3 11.3 18.2
n(T = 107 K) 4.6 8.8 18.3 12.4 20.5

E X E R C I S E 5 . 7 — Suppose we wish to approximate a function f(x) at a point
x0 with a power-law, p(x;A, n) = Axn. Impose the condition p(x0;A, n) = f(x0)

and dp/dx|x=x0 = df/dx|x=x0 to find the parameters A and n, and show that

n =
d ln f
d ln x

.

Apply this to the reaction rate, eq. (5.10), and thus derive eq. (5.11).

5.3 Stellar nuclear reactions

Hydrogen burning via pp reactions: the weak nuclear interaction

In the previous section, we established that lighter nuclei, because of
their lower Coulomb repulsion, will tend to fuse at lower temperatures.
Thus we expect that the first reaction that can occur is p + p and therein
lies a problem: there is no bound state of 2He. The only possible way for
two protons to fuse is for one of the protons to transmute into a neutron,
giving the reaction

p + p→ 2H + e+ + νe. (5.12)

This reaction is possible because there are two nuclear forces: the strong
and the weak. The strong is what binds nuclei together; the weak medi-More precisely, what the strong force

mainly does is bind quarks into neutrons
or protons.
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ates the conversion of a neutron into a proton (and vice versa). Two lep-
tons are also involved (either emitted or absorbed) in this type of weak
reaction: an electron (or its anti-particle, the positron) and an electron
neutrino (or anti-neutrino). Three conservation laws determine which
particles are involved:

1. the number of nucleons is conserved;

2. the charge is conserved; and

3. the number of leptons is conserved.

With regard to item 3, electrons (e−) and electron neutrinos (νe) have
lepton number +1 while positrons (e+) and anti-electron neutrinos (ν̄e)
have lepton number −1. Neutrinos, as the name implies, do not carry
charge.

Applying these rules to the reaction (5.12), the number of nucleons on
both sides of this reaction is the same, so rule 1 is satisfied. The positron
on the right hand side balances charge to satisfy rule 2. Finally, the emis-
sion of an electron neutrino ensures that the lepton number on the right-
hand side is zero to satisfy rule 3.

E X E R C I S E 5 . 8 — Complete the following reactions. Note that the symbol
A
ZEl indicates that nuclide “El” has atomic charge number Z and atomic mass
number A.

56
27Co + → 56

26Fe + νe

13
6 C + 4

2He → n +

14
6 C → + + ν̄e

21
10Ne + 4

2He → p +

The weak cross section goes roughly as σweak ∼ 10−20 b (E/keV), so
that

σweak

σnuc
∼ 10−23

(
E

keV

)
.

As a result the characteristic temperature for reaction (5.12) to occur is
≈ 1.5× 107 K, much higher than the temperature at which p + 2H occurs;
at this temperature, the lifetime of a proton to forming deuterium via
capture of another proton is about 6 Gyr. Once a deuterium nucleus is Because the weak cross section is so

small, the first reaction that occurs in a
contracting pre-main sequence star is
2H + p → 3He; in fact, this reaction can
occur in objects as small as ≈ 12 MJupiter.
The small primordial abundance of
deuterium prevents this reaction from
doing anything more than slowing
contraction slightly.

formed, it is immediately destroyed via 2H + p → 3He. The reaction
p + 3He→ 4Li cannot occur because 4Li is unbound and decays back into
p + 3He with a lifetime of 10−22 s. The nucleus 6Be is likewise unbound
(τ ∼ 5 × 10−21 s), but it decays into two p and a 4He nucleus. As a result,
the next reaction that occurs is 3He+3He→ p+p+4He. Despite having a
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much greater Gamow energy than p + p, this reaction is still much faster
than p + p owing to the small weak cross-section.

In addition to capturing another 3He, it is also possible for 3He to react
with 4He and trigger the reactionsIn eq. (5.13) and (5.14), τ refers to the

half-life for the nucleus on the left.
3He + 4He → 7Be + γ

7Be + e− → 7Li + νe (τ = 53 d)
7Li + p → 4He + 4He + γ; (5.13)

furthermore, at slightly higher temperatures 7Be can capture a proton
instead of an electron to yield

7Be + p → 8B + γ

8B → 8Be + e+ + νe (τ = 770 ms)
8Be → 4He + 4He (τ = 10−16 s). (5.14)

The end result of these chains is the conversion of hydrogen to helium.
Although the conversion to hydrogen to helium involves many dif-

ferent reactions, the slowest step by far is the p + p reaction, so we can
use this as a good approximation to the net reaction rate r. From eq. (5.5),
r = n2

p⟨σv⟩p/2, where the factor of 2 avoids double counting. Since each
pp reaction destroys 2 hydrogen, however, the rate at which hydrogen is
depleted is 2r = n2

p⟨σv⟩pp. To get the net heating rate εpp, we multiply the
rate at which hydrogen is destroyed by the heat released per hydrogen
(see exercise 5.4).

Because the solar interior is transparent to neutrinos, εpp is reduced
slightly because the neutrinos carry away some energy. The amount of
energy carried away by neutrinos differs from one chain to the next, so
the net energy release varies slightly with temperature.

Hydrogen burning via the CNO cycle

As we saw in the previous section, the smallness of the p+p cross-section
means that proton captures onto heavier nuclei can occur at similar,
or even faster rates, than p + p despite the larger Coulomb barrier. At
T6 = 10, p + 12C has a comparable cross-section to p + p; at T6 = 20,T6 ≡ T/106 K

p + 16O has a comparable cross-section. Thus at temperatures slightly
greater than that in the solar center, the following catalytic cycle66 known as the CNO CYCLE

12C + p → 13N
13N → 13C + e+ + νe

13C + p → 14N
14N + p → 15O

15O → 15N + e+ + νe

15N + p → 12C + 4He



BURN 67

becomes possible. The net result of this cycle (indicated by nuclei in
red) is the ingestion of 4 protons and release of 1 helium. The reaction
14N + p → 15O is by far the slowest step in the cycle; as a result, all of the
CNO elements in a sufficiently hot stellar core are quickly converted into
14N, and this reaction controls the net heating rate εCNO. At T = 2× 107 K,
∂ ln εCNO/∂ ln T = 18; in contrast the p + p reaction has a temperature
exponent of only 4.5. This rapid increase with temperature ensures that
consumption of hydrogen via the CNO cycle is the dominant source of
energy for stars more massive, and therefore having hotter cores, than
the sun.

5.4 The luminosity equation

Suppose we have a shell of mass ∆m = 4πr2ρ∆r lying between surfaces
r and r + ∆r (Fig. 5.3). Nuclear reactions in the shell heat it at a rate
∆m× ε, where ε is the heating rate per unit mass. In addition, heat enters
the shell from the bottom at a rate L(r) and leaves from the top at a rate
−L(r + ∆r). If the shell is neither gaining or losing heat, then all these
terms must balance:

Δm
 =

 4π

r2ρ
 Δr r

r + Δr

L(r
)

L(r
+Δr

)

Figure 5.3: Heat balance in a shell ∆m.

4πr2ρε∆r + L(r)− L(r +∆r) = 0.

Dividing by ∆r and taking the limit ∆r → 0 produces our fourth equa-
tion of stellar structure,

dL
dr

= 4πr2ρε.

At the center, L(r)r→0 → 0, while at the surface L(r)r→R → 4πR2σSBT4
eff.
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Star

We now have almost all of the physics necessary to describe the structure
of a star. We only need two additional items: we must consider whether
the fluid can slowly circulate and thereby trasnport heat, and we must
discuss how the equation of state deviates from that of a classical ideal
gas at high densities and at high temperatures. The changes in the equa-
tion of state at high densities are important for low-mass stars and set the
minimum stellar mass; the changes at high temperatures are important
for high-mass stars and set the maximum stellar mass.

6.1 Convection

We’ve established that in the interior of the star a temperature gradient,

dT
dr

= − 3ρκR

4acT3
L(r)
4πr2 ,

arises to transport heat outward (cf. eq. [3.15]). This gradient becomes
steeper as we increases either the flux L/4πr2 or the mean opacity κR.
There is a limit, however, to the magnitude of |dT/dr|: if the gradient is
too steep, the warm fluid becomes buoyant relative to the cooler fluid
above it and begins to rise. You are familiar with this phenomenon:
picture a hot summer day. As the ground absorbs sunlight, it warms
the air just above the ground. The warm air rises and forms updrafts.
You have perhaps seen hawks circling as they are carried aloft by these
updrafts. This circulation of fluid induced by a temperature gradient is
known as CONVECTION.

You can do a home demonstration of convection. Brew tea, and pour As a bonus, you can drink the results of
this demonstration.the hot tea into a saucepan that is on an unlit burner. Use a straw to inject

a layer of cold milk under the hot tea in the saucepan. The temperature
difference between the tea and milk inhibits premature mixing. Light the
burner, and watch for the development of convection—you will know it
when you see it (Fig. 6.1).

Convection can also occur in stars, in regions of high flux and/or high
opacity. During convection, the fluid velocities in question are typically
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Figure 6.1: Onset of convection in a
tea-milk mixture.

quite subsonic, so hydrostatic equilibrium abides. But the fluid mo-
tions do make an enormous difference to heat transport! Warm fluid is
carried upward and cool fluid sinks. The net result is that heat is trans-
ported upward much faster than it would have been if only diffusion had
been operating. This upward transport of heat modifies the temperature
gradient. In this chapter, we shall derive the condition for the onset of
convection, and the value of the temperature gradient in the presence of
subsonic, efficient convection.

The onset of convection

To understand when convection starts, it helps to recall why a parcel of
warm air rises. Recall Archimedes’ law:

The buoyant force on an object, either wholly or partially immersed in a fluid under a
constant gravitational acceleration, equals the weight of the fluid it displaces.

What does this mean? When floating (buoyant force equals weight), a
boat of mass m displaces (pushes aside) a volume v of water of density
ρw. The weight of this displaced water, ρwvg, must equal the weight of
the boat mg, so that v = m/ρw.

E X E R C I S E 6 . 1 — Suppose we have a toy boat carrying a weight and floating
in a tank as shown in the top panel of Fig. 6.2. The depth of the water in the tank
is d. The weight is then removed from the boat and allowed to sink to the bottom
of the tank (bottom panel, Fig. 6.2). Does the depth of water in the tank increase,
decrease, or stay the same? Explain your reasoning.

Figure 6.2: A boat with a weight in a tank.

We can use Archimedes’ law—which is just an application of hydro-
static equilibrium—to determine whether a fluid in planar geometry and
hydrostatic equilibrium,

dP
dr

= −ρg, (6.1)

and with a temperature gradient is unstable to convection. We start
with a fluid at rest in hydrostatic equilibrium in spherical symmetry,
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so P, ρ, and T depend on radial position r. Imagine moving a blob of
fluid upwards from r to r + h. We raise the blob slowly enough that it
is in hydrostatic equilibrium with its new surroundings,1 Pb(r + h) = 1 We’ll use the subscript b to denote

properties of the blob; quantities without
a subscript refer to the background fluid.

P(r + h). We do move the blob quickly enough, however, that it doesn’t
exchange heat with its surroundings and therefore doesn’t remain in
thermal equilibrium with its new environment.

As a result of this lack of heat exchange, the upward motion of the
blob is ADIABATIC. To understand what this means, recall the first law of Pressure equilibrium in the blob is

established over the time a sound wave
takes to cross the blob. Thus, moving the
blob slowly enough to maintain pressure
equilibrium means that the motion is
quite subsonic. Moving the blob quickly
enough to prevent heat transport means
(cf. exercise 3.10) that the blob is much
larger than a mean free path so the time
for photons to random walk across the
blob is longer than time taken to raise the
blob.

thermodynamics, which relates the change in internal energy dU and in
volume dV to the heat transferred dQ = T dS:

dQ = T dS = dU + P dV, (6.2)

where P is the pressure, T the temperature, and S the entropy. During an
adiabatic process, dQ = T dS = 0. The entropy of the blob is therefore
constant, Sb(r + h) = Sb(r) = S(r), and is therefore not equal, in general,
to the entropy of the surrounding gas at r + h: Sb(r + h) ̸= S(r + h).

As in our discussion of the equation of state (cf. eq. [2.2]), it isn’t really
convenient to write things in terms of volume. To put eq. (6.2) into a
more convenient form, divide both sides by the mass of the blob mb =

ρV:

d
(

Q
mb

)
= T d

(
S

mb

)
= d

(
U
mb

)
+ P d

(
V
mb

)
T ds = du + P d

(
1
ρ

)
T ds = du− P

ρ2 dρ (6.3)

Here we denote the entropy per mass and the energy per mass by s and u
respectively; and we identify the volume per mass with 1/ρ, where ρ is
the mass density. Equation (6.3) is the first law of thermodynamics as
written for fluid dynamics. P(r)

P(r+h)

S(r+h) S(r+h)S(r) S(r)> <

stable convective

dS
/d
r =

 0

dS
/d
r =

 0
Figure 6.3: Illustration of criteria for
convective instability. On the left, raising
a blob a distance h adiabatically and in
pressure balance with its surrounding
results in a higher density Vb < V, or
ρb > ρ. This is stable: the blob will sink
back. On the right, the blob is less dense
and hence buoyant: it will continue to
rise.

The blob expands as it moves upward from r to r + h:

ρb(r + h) = ρ[Pb(r + h), sb(r + h)] = ρ[P(r + h), s(r)].

Here we’ve written the density as a function of pressure and entropy,
ρ(P, s). Now we can apply Archimedes’ law: if the density of the blob at
r + h is greater than that of the surrounding fluid, then the buoyant force
will be less than the weight of the blob; as a consequence, the blob will
sink back to its original location. The fluid is thus stable. In contrast, if
the density of the blob at r + h is less than that of the surrounding fluid,
then the buoyant force is greater than the weight of the blob; as a result,
the blob will continue to rise. In this case, the fluid is unstable: a small
perturbation leads to the acceleration of the blob upwards. Figure 6.3 has
a schematic of this criterion.
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Thus, for the fluid to be stable, we require that the density of the
displaced blob be greater than that of the surrounding fluid:

ρb(r + h) > ρ(r + h)

ρ[P(r + h), s(r)] > ρ[P(r + h), s(r + h)]. (6.4)

If condition (6.4) is satisfied, then the blob will be restored to its original
location after a perturbation, and the system is stable. If condition (6.4) is
not satisfied, then the blob will continue to rise following a perturbation,
and the system is unstable.

We take h to be an infinitesimal displacement, so we can expand the
right-hand side of eq. (6.4) about ρ[P(r + h), s(r)]:

ρ[P(r + h), s(r + h)] ≈ ρ[P(r + h), s(r)] +
(
∂ρ

∂s

)
P

ds
dr

h.

Here the notation (∂ρ/∂s)P means taking the derivative of ρ with respect
to s while holding P fixed. After canceling common factors, equation (6.4)
therefore reduces to (

∂ρ

∂s

)
P

ds
dr

h < 0. (6.5)

We can put eq. (6.5) into a more useful form by changing variables from
entropy ρ to temperature T via(

∂ρ

∂T

)
P
=

(
∂ρ

∂s

)
P

(
∂s
∂T

)
P
=

(
∂ρ

∂s

)
P

CP

T
,

where we introduce the specific heat at constant pressure, CP ≡ T(ds/dT)P.
Inserting this expression into eq. (6.5) and dropping h (since it is positive
by construction) gives

T
CP

(
∂ρ

∂T

)
P

ds
dr

< 0,

Now, (∂ρ/∂T)P is negative (gas expands on being heated), while CP is
positive; hence eq. (6.5) will be satisfied wherever

ds
dr

> 0. (6.6)

In a convectively stable star, the entropy must increase with radius.

If this condition is not satisfied—if ds/dr < 0—then convection ensues:
high-entropy material is buoyant and rises upward, while lower-entropy
material sinks inward. Eventually this circulation mixes the rising high-
entropy fluid with the sinking low-entropy fluid and drives the entropy
gradient toward the marginally stable configuration ds/dr = 0.

The adiabatic thermal gradient

Although succinct, the condition (6.6) for convective stability is not di-
rectly useful since our equations of stellar structure do not directly in-
volve the entropy. We’d instead like to express the criterion for the onset
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of convection in terms of pressure and temperature, since those quanti-
ties appear in our stellar structure equations.

Box 6.1 Along an adiabat

To describe adiabatic processes, let’s start from the first law
expressed in terms of mass-specific quantities (eq. [6.3]):

dq = T ds = du− P
ρ2 dρ.

We write the energy u as a function of temperature T and density
ρ, u = u(ρ,T), and take the differential,

du =

(
∂u
∂T

)
ρ

dT +

(
∂u
∂ρ

)
T

dρ.

We insert this expression for du into eq. (6.3) and find

dq = Tds =
(
∂u
∂T

)
ρ

dT +

[(
∂u
∂ρ

)
T
− P

ρ2

]
dρ.

Hence the heat needed to raise the temperature of one kilogram
of fluid while holding density fixed is

Cρ ≡ T
(
∂s
∂T

)
ρ

=

(
∂u
∂T

)
ρ

. (6.7)

For an ideal gas Cρ is a constant and the internal energy u = u(T)
is independent of density. In what follows, we’ll specialize to the
case of an ideal gas.

To express the first law in terms of T and P, rather than T and
ρ, write eq. (6.3) as

T ds = CρdT− P
ρ

dρ
ρ
. (6.8)

Then take the logarithm of the ideal gas equation of state, ln(P) =

ln(ρ) + ln(T) + ln(kB/µmu), and differentiate to find

dP
P

=
dρ
ρ

+
dT
T
.

Use this to eliminate d ln ρ in eq. (6.8) to obtain an expression for
the heat transferred as a function of temperature and pressure,

T ds =
[

Cρ +
P
ρT

]
dT− 1

ρ
dP =

[
Cρ +

kB

µmu

]
dT− 1

ρ
dP. (6.9)

The heat needed to raise the temperature of a mass of fluid while
holding pressure fixed is therefore

CP ≡ T
(
∂s
∂T

)
P
= Cρ +

kB

µmu
. (6.10)
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Box 6.1 continued

For a plasma of ions and electrons, the specific heats are

Cρ =
3
2

kB

µmu
, (6.11)

CP =
5
2

kB

µmu
; (6.12)

the ratio of these specific heats is

γ =
CP

Cρ
=

5/2
3/2

=
5
3
. (6.13)

This value of γ is for an ideal, monatomic gas and does not hold
universally.

DURING ADIABATIC MOTION, THERE IS NO HEAT EXCHANGE: hence, the
entropy is constant and eq. (6.9) relates temperature and pressure:

Tds = dq = 0 = CPdT− 1
ρ

dP. (6.14)

Rearranging terms and using the ideal gas equation of state to eliminate
1/ρ, we obtain

CPdT =
kB

µmu

T
P

dP;

dT
T

=
CP − Cρ

CP

dP
P

=
γ − 1
γ

dP
P
. (6.15)

Here we’ve used the ratio of specific heats γ, eq. (6.13), and the equation
of CP, eq. (6.10) for an ideal gas. Integrating eq. (6.15) gives us T(P) along
an adiabat2:2 We used a similar relation in determin-

ing the sound speed (Box 2.1).
T = T0

(
P
P0

)(γ−1)/γ

. (6.16)

Here T0 and P0 are the temperature and pressure at the beginning of the
adiabatic process.

E X E R C I S E 6 . 2 — Use equation (6.16) and the equation of state of an ideal
gas to derive a relation between temperature and density, as well as a relation
between density and pressure, during an adiabatic process.

In a convectively stable star, ds/dr > 0 (eq, 6.6]), and so

CP
dT
dr

=
1
ρ

dP
dr

+ T
ds
dr

>
1
ρ

dP
dr

. (6.17)
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Now, dP/dr = −ρg because the fluid is in hydrostatic equilibrium;
and this is true even if convection is occurring, so long as the convective
motions are quite subsonic. Since the pressure P decreases monotonically
with radius, we can use the equation of hydrostatic balance to write
dT/dr = (dT/dP)(dP/dr). Inserting this into equation (6.17), changing
the direction of the inequality since dP/dr < 0, and rearranging slightly
gives

dT
dP

<
1

ρCP

P
T

dT
dP

<
P

CPρT
=

γ − 1
γ

=
P
T

(
∂T
∂P

)
s
. (6.18)

Although we derived eq. (6.18) for the case of an ideal gas, it is in general
true. The left-hand side is the relation between temperature and pressure
in the star, as set by radiative conduction; the right-hand side is the rela-
tion between temperature and pressure along an adiabat. The condition
for stability, eq. (6.18), can be more succinctly written as

∇rad ≡
d ln T
d ln P

<

(
∂ ln T
∂ ln P

)
s
≡ ∇ad. (6.19)

for the fluid to be stable against convection.

E X E R C I S E 6 . 3 — The figure shows some hypothetical runs of temperature
with respect to pressure in a gas in hydrostatic equilibrium. Indicate which of
these situations is convectively unstable, and explain why. Draw on that plot the
pressure-temperature relation that would ensue once convection sets in.
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When convection is absent, the temperature gradient in the star is
(eq. [3.15])

dT
dr

= − 3ρκ
4acT3

L(r)
4πr2 .



76 TO BUILD A STAR

Here κ is the opacity and L(r) is the luminosity at radius r: L/4πr2 is
the flux. If this thermal gradient, |dT/dr|, becomes too steep, however,
then—just as in the pot of tea and milk on the stove, Fig. 6.1—the fluid
becomes unstable: warm fluid begins to rise while cold fluid sinks. Over
a wide range of stellar conditions this mixing drives the temperature
gradient in the convectively unstable region to the adiabatic relations
(eqs. [6.15]–[6.16]). As an example, the sun has a convective region in its
outer region, Fig. 6.4.

Figure 6.4: Solar convection cells,
imaged with the Hinode Solar Op-
tical Telescope. Image credit: Hinode
JAXA/NASA/PPARC.

E X E R C I S E 6 . 4 — The figure below indicates the central density and
temperature (triangle) for 3 hypothetical stars: (left) a star that is fully convective;
(center) a star with a radiative (i.e., stable against convection) core (densities
greater than 10 kg m−3) and a convective envelope; (right) a star with a convective
core and a radiative envelope. For each star, sketch a plausible run of temperature
with density within the star. In the center and right panels, the boundary
between radiative and convective regions is marked with a vertical solid line.
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WE CAN NOW COLLECT THE EQUATIONS DESCRIBING THE STRUCTURE OF
A STAR IN STEADY-STATE. Previously, we established the relations for the
enclosed mass,

dm
dr

= 4πr2ρ, (6.20)

the pressure,
dP
dr

= −ρGm
r2 , (6.21)

and the luminosity,
dL
dr

= 4πr2ρε. (6.22)

To these we add the equations for the temperature,

dT
dr

= − L
4πr2

3ρκ
4acT3 where radiative; and (6.23)

dT
dr

≃ T
P

(
∂ ln T
∂ ln P

)
S

dP
dr

where convective. (6.24)

Equations (6.20)–(6.24), or equivalently (6.25)–(6.29), are supplemented
by an equation of state P = P(ρ,T, {X}), opacity κ = κ(ρ,T, {X}), and
heating rate ε = ε(ρ,T, {X}). Here {X} refers to the mass fractions of
the various isotopes. Note that to have a full description we would also
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need to include equations for the change in composition (dX/dt) due to
nuclear burning, as well as terms containing dr/dt to describe expansion
or contraction.

Box 6.2 The equations of stellar structure in Lagrangian form

In general, the equations (6.20), (6.21), (6.23)-(6.24), and (6.22)
must be solved numerically. In practice, the radius r is not the
most convenient variable to use as a coordinate. In one dimen-
sion, the mass in each shell remains distinct, so the enclosed mass

m(r) =
∫ r

0
4πr2ρdr

makes a useful coordinate. Using the enclosed mass as a co-
ordinate is called a LAGRANGIAN description of the star. Upon
changing variables from r to m, the structure equations become

dr
dm

=
1

4πr2ρ
(6.25)

dP
dm

=
dP
dr

dr
dm

= − Gm
4πr4 (6.26)

dL
dm

= ε (6.27)

dT
dm

= − 3κL
64π2r4acT3 where radiative (6.28)

dT
dm

≃ −T
P

(
∂ ln T
∂ ln P

)
S

Gm
4πr4 where convective. (6.29)

6.2 Contraction to the main sequence

Stars are formed when clouds of gas and dust fall out of pressure balance
and become unstable to gravitational collapse. Often, the cloud frag-
ments into a myriad of small collapsing regions, such as in the Soul and
Tauris Nebulae pictured in Fig. 6.5. In the center of these dense knots,
a core comes into hydrostatic equilibrium and grows in mass as matter
continues to infall. Much of this process is obscured from view by the
surrounding clouds of gas and dust.

Figure 6.5: (Top) Image of the Soul
Nebula (IC 1848) in the constellation
Cassiopeia. Image credit: José Jiménez
Priego (Astromet). (Bottom) The Taurus
molecular cloud. At right are million-
year old pre-main sequence stars still
embedded in dust clouds. Image credit &
copyright: Lloyd L. Smith, Deep Sky West.

While the nebula thins out, the pre-main sequence star contracts
slowly on a Kelvin-Helmholtz timescale, eq. (2.26), since the core is too
cool for nuclear reactions to generate sufficient power. As the central
temperature rises, the nuclear reaction rate increases rapidly until the
heat released by reactions balances that radiated from the surface. At that
point the star joins the ZERO-AGE MAIN SEQUENCE (ZAMS). Of course, not
all collapsing stellar-like objects reach the ZAMS—objects that are too
low in mass will not ignite hydrogen fusion, while objects that are too
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high in mass tend to be unstable and eject mass. We’ll now explore these
limits in turn.

E X E R C I S E 6 . 5 — This exercise revisits problem 2.10. In that exercise you
modeled how the density and temperature changed as a pre-main-sequence star
contracted. Table 6.1 gives central densities and temperatures of stars at the onset
of hydrogen fusion (known as the ZERO-AGE MAIN SEQUENCE). These central
temperatures and densities are plotted below and labeled by stellar mass.
Assume an ideal-gas equation of state and use the virial relations for the
temperature and central density to plot the tracks in this plane each star followed
during its contraction.
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You will use this plot for exercises 6.7 and 6.10 as well.

Table 6.1: Selected central densities and
temperatures of zero-age main-sequence
stars, computed with the MESA stellar
evolution code [Paxton et al., 2011].

M/M⊙ log(ρc/kg m−3) log(Tc/K)
0.09 5.70 6.60
0.15 5.35 6.75
0.30 5.00 6.87
2.0 4.80 7.30

10.0 4.00 7.50
25.0 3.60 7.55

100.0 3.25 7.63

Degeneracy

As a star contracts, the particles within it are packed ever closer together.
As we saw from our discussion of ionization, quantum mechanics enters
the description of particle behavior when the separation between parti-
cles is of the order of the uncertainty in their positions. Said differently,
our classical description breaks down when the particle density exceeds
roughly

n >
1 particle
(∆x)3 =

(
∆p
h

)3

≈
(

mkBT
h2

)3/2

. (6.30)

Another way to put this is that quantum effects become important when
there is more than roughly 1 particle in a normalized phase space volume



STAR 79

d3x d3p/h3.
If the particles are this densely packed, their wavefunctions overlap

and we must describe the system as a single quantum state. Suppose
we have two identical particles in a quantum state. Since the particles
are identical, if we exchange them the wavefunction can only change
by a phase factor3 eiδ . If we exchange the particles again, we are back to 3 See Box 6.3

our original state; as a result, e2iδ = 1, and therefore δ = 0 or π. Hence
upon the exchange of particles, the wavefunction either is unchanged
(δ = 0, eiδ = 1) or it changes sign (δ = π, eiπ = −1).

There are two types of wavefunctions in this world: those that change sign under
exchange; and those that don’t.

Particles whose wavefunctions don’t change sign under exchange are
called BOSONS and have integer spin. Photons (spin = 1) are bosons.
Particles whose wavefunctions change sign under exchange are called
FERMIONS and have half-integer spin. Electrons, neutrinos, protons, and
neutrons (spin = 1/2) are all fermions.

A consequence of the fermion wavefunction changing sign when any
two particles are exchanged is that the wavefunction vanishes if any two
particles are in the same state—that is, they have the same position, mo-
mentum, and spin. For spin-half particles like electrons, this means we
can put at most two such electrons in the same position and momentum
state; we do this by having their spins antiparallel.

Box 6.3 Identical particles

To understand how the interchange of identical particles works
in more detail, let’s start by recalling some features of quantum
mechanics. This discussion is based on Feynman et al. [1989]. We
denote a particle’s state as |a⟩, where a is just a label. For exam-
ple, a could be ”electron with such-and-such properties”. The
probability of finding the electron in some other state |ϕ⟩ is given
by | ⟨ϕ| a⟩ |2, where ⟨ϕ| a⟩ is a complex number known as the
probability amplitude formed via an inner product of |ϕ⟩ and |a⟩.

Now suppose we have two particles, a and b, and we scatter
them so that one particle ends up in detector 1 and the other ends
up in detector 2. There are two ways this can go, as shown here.

a a
b b

1

2

1

2
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Box 6.3 continued

Classically, we would argue that the probability of getting either
particle in detector 1 is just

P(a or b in 1) = P(a in 1) + P(b in 1). (6.31)

If particles a and b are different—e.g., one is a 12C nucleus and the
other is an 16O nucleus—then this holds in quantum mechanics as
well. Quantum mechanically, we write

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩ |2 + | ⟨2| a⟩ ⟨1| b⟩ |2. (6.32)

If the particles are identical, however—for example, if a and b are
two electrons with identical spin—then this picture is wrong.

Because of the uncertainty principle, we cannot follow the tra-
jectories of a and b with infinite precision to see which is which;
instead, the situation is more analogous to the depiction shown
here.

a a
b b

1

2

1

2

There are now two indistinguishable ways of arriving at the fi-
nal state—in this case, an electron in detector 1 and an electron
in detector 2. According to quantum mechanics, we must there-
fore sum the amplitudes for getting to the final state, before taking
the square. That is, the probability for one particle to end up in
detector 1 and the other to end up in detector 2 is

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩+ ⟨2| a⟩ ⟨1| b⟩ |2 (6.33)

= | ⟨1| a⟩ ⟨2| b⟩ |2 + | ⟨2| a⟩ ⟨1| b⟩ |2

+
[
⟨1| a⟩∗ ⟨2| b⟩∗ ⟨2| a⟩ ⟨1| b⟩+ ⟨2| a⟩∗ ⟨1| b⟩∗ ⟨1| a⟩ ⟨2| b⟩

]
.

The probability of scattering one electron into detector 1 and the
other into detector 2 is the value for distinguishable particles,
eq. (6.32), plus an interference term in [·].

TO SEE THE EFFECT OF THIS INTERFERENCE TERM ON THE THERMAL
PROPERTIES OF THE SYSTEM, let’s imagine putting two particles into
the same small volume. To do this, we imagine the detectors 1
and 2 sliding together until they overlap, as shown here.
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Box 6.3 continued

a

b

1
2

Since detectors 1 and 2 are approaching one another, we must
have

| ⟨1| a⟩ ⟨2| b⟩ |2 = | ⟨2| a⟩ ⟨1| b⟩ |2. (6.34)

For short, let’s call | ⟨1| a⟩ ⟨2| b⟩ |2 ≡ |ab|2. For distinguishable par-
ticles, we add probabilities, so from eq. (6.32),

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩ |2 + | ⟨2| a⟩ ⟨1| b⟩ |2 = 2|ab|2.

For indistinguishable particles, however, the amplitudes can dif-
fer by a phase factor, ⟨2| a⟩ ⟨1| b⟩ = eiδ ⟨1| a⟩ ⟨2| b⟩. We argued
that since interchanging the particles twice brings us back to the
original state, we must have eiδ = ±1.

If eiδ = 1, so that ⟨2| a⟩ ⟨1| b⟩ = ⟨1| a⟩ ⟨2| b⟩, then from equa-
tion (6.33)

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩+ ⟨2| a⟩ ⟨1| b⟩ |2 = 4|ab|2. (6.35)

This is twice the classical value: the probability of the particles
entering the same state is enhanced.

In contrast, if eiδ = −1 and ⟨2| a⟩ ⟨1| b⟩ = −⟨1| a⟩ ⟨2| b⟩, then
equation (6.33) implies that

P(a or b in 1) = | ⟨1| a⟩ ⟨2| b⟩+ ⟨2| a⟩ ⟨1| b⟩ |2 = 0 (6.36)

We cannot put 2 identical particles into a state with with the same mo-
mentum, position, and spin if their wavefunction changes sign when the
particles are exchanged.

Particles with integer spin (i.e., their angular momentum is an
integer multiple of ℏ) have wavefunctions that do not change sign
under exchange; these particles are said to obey BOSE-EINSTEIN
STATISTICS and are called BOSONS. Particles with half-integer spin
have wavefunctions that do change sign under exchange; these
particles are said to obey FERMI-DIRAC STATISTICS and are called
FERMIONS. Photons are bosons; electrons, protons, neutrons, and
neutrinos are fermions.
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TO ACCOUNT FOR FERMI-DIRAC STATISTICS WITHIN THE EQUATION OF
STATE, imagine a small volume containing N electrons. Motivated by
eq. (6.30), divide the phase space into cells,The denominator h3 can be derived from

the density of states for a free particle in a
box with periodic boundary conditions. d3x d3p

h3 ,

and into each cell place 2 electrons with opposing spins. We always add
the electrons to the lowest open energy level, and repeat the process
until we have added all N electrons. This procedure is represented by the
equation

N =
2
h3

∫
V

d3x
∫ EF

0
d3p (6.37)

In this equation EF, the Fermi energy, is the energy of the last electron
added and is the largest filled energy level.

If our volume is isotropic, then we can change variables: first, to spher-
ical momentum coordinates, d3p = 4πp2 dp; second, from dp to dε. Since
p =
√

2mε, where ε is the energy of a single electron,

dp =

√
m
2ε

dε;

upon changing variables and integrating over ε from 0 to EF we obtain

N =
8π
h3 V

∫ EF

0

√
2m3/2ε1/2 dε =

8π
3h3 V(2m)3/2E3/2

F .

Solving for the Fermi energy gives

EF =
h2

2m

(
3

8π
N
V

)2/3

. (6.38)

What is the total energy of our system? We again integrate over phase
space, with each electron multiplied by its energy ε:

E =
8π
h3 V

∫ EF

0

√
2m3/2ε3/2 dε =

8π
5h3 V(2m)3/2E5/2

F . (6.39)

Using eq. (6.38) to substitute for EF in eq. (6.39), we can find the energy
per unit volume,

E
V

=
3
5

(
3

8π

)2/3 h2

2m
n5/3 =

3
5

nEF,

where n = N/V is the density of electrons.
For a non-relativistic gas the pressure is P = (2/3)(E/V). Hence the

pressure of our electron gas is

P =
2
3

E
V

=
2
5

nEF =
2
5

(
3

8π

)2/3 h2

2m
n5/3. (6.40)

Notice that the pressure is independent of the temperature.
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In a stellar plasma, there is a mix of electrons and nuclei. The density
at which a gas becomes degenerate, eq, (6.30), depends on the mass of the
particles in questions. Since electrons are more than 1000 times lighter
than nuclei, they become degenerate at a lower density than nuclei. For
most cases, we can treat the nuclei in the stellar plasma as a classical gas.
As the electrons become degenerate, their pressure increases over the
classical value, and once the star is degenerate, we can treat the pressure
as being provided solely by the electrons to a good approximation. It’s
useful to express eq. (6.40) in terms of the mass density ρ. To do this,
suppose our composition consists of isotopes with charge Zi and mass
number Ai. Then the number of electrons per unit volume4 is 4 assuming complete ionization

ne =
∑

i

niZi =
ρ

mu

∑
i

Xi
Zi

Ai
.

By analogy with the mean molecular weight, we define an electron mean
weight

µe ≡

(∑
i

Xi
Zi

Ai

)−1

(6.41)

so that ne = ρ/(muµe). Equation (6.40) then provides a relationship
between pressure and density for a given µe.

E X E R C I S E 6 . 6 — Express the pressure as a function of mass density ρ and
µe. Then use the virial scalings for P(M,R) and ρ(M,R) to obtain a relation R(M)

for a degenerate object.

As you found in exercise 6.6, when the star becomes degenerate, there
is a unique radius for a given mass and composition. This is in contrast to
the non-degenerate case, for which a star of a given mass can have a wide
range of possible radii depending on the internal temperature.

Consider a contracting pre-main-sequence star. Initially, the star has
a low density and the equation of state is that of an ideal non-degenerate
gas. According to the virial theorem, as the radius decreases, both the
central temperature and density increase. The radius decreases be-
cause the star is radiating away energy, and a star with an ideal, non-
degenerate equation of state has a total energy that depends on its radius.

At some density, the equation of state will become degenerate. At
this point, contraction comes to a halt. The star continues to radiate
energy, but instead of contracting, the star simply cools while remaining
at constant radius. If the contracting pre-main-sequence star is to become
a main-sequence star, then, it must reach temperatures sufficient for
hydrogen fusion to occur before becoming degenerate.
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E X E R C I S E 6 . 7 — The equation of state becomes degenerate roughly where
kBT = EF, with EF begin given by eq. (6.38). From this and eq. (6.41), assuming a
H-He composition with XH = 0.7 and XHe = 0.3, derive a relation between log(T)
and log(ρ). Plot this relation on the phase diagram in exercise 6.5, and on the plot
indicate which side of the relation is degenerate. Given that contraction halts
when the equation of state becomes degenerate, what does this plot imply for the
minimum mass required to initiate hydrogen fusion?

AS SHOWN IN EXERCISE 6.7, THERE IS A MINIMUM MASS NEEDED TO INITIATE
HYDROGEN FUSION. Contracting star-like objects of lower mass are known
as BROWN DWARFS. Although dim, they are observable with spectral
types “L”, “T” or “Y”5.5 J. D. Kirkpatrick, I. N. Reid, J. Liebert,

et al. Dwarfs Cooler than “M”: The
Definition of Spectral Type “L” Using
Discoveries from the 2 Micron All-Sky
Survey (2MASS). ApJ, 519:802–833, July
1999; and Michael C. Cushing, J. Davy
Kirkpatrick, Christopher R. Gelino, et al.
The Discovery of Y Dwarfs using Data
from the Wide-field Infrared Survey
Explorer (WISE). ApJ, 743:50, December
2011. DOI: 10.1088/0004-637X/743/1/50

E X E R C I S E 6 . 8 — You might notice that the degenerate mass-radius relation
you found in exercise 6.6 can’t hold for very light objects (or very heavy ones, for
that matter). Earth, for example has a much larger mass than Mars, and also has a
larger radius, contrary to what the degenerate relation predicts. What happens is
that at low pressures, the Coulomb force comes into play—the atomic and
molecular bonds that add variety to life. These bonds set the size and spacing of
atoms, and therefore fix the density of matter. Let’s model this. The typical size of
an atom is the Bohr radius,

aB =
4πε0ℏ2

mee2 = 5.29 × 10−11 m.

1. Assume a solar composition, XH = 0.7,XHe = 0.3 with one average nuclear
mass per volume a3

B. What is the density? Is it plausible?

2. For an object with this density, what is R(M)?

3. You should find from part 2 that when the Coulomb force is important, more
massive objects have larger radii, unlike the case from exercise 6.6 when
degeneracy dominates. At what mass do these two relations meet? This sets
the mass scale at which degeneracy becomes important for a cold object.
Compare the planetary masses in our solar system with this mass scale; are
there any that are near or above it?

Radiation pressure

Figure 6.6: Image of the massive star Eta
Carinae. Image credit: J. Morse (Arizona
State U.), K. Davidson (U. Minnesota) et
al., WFPC2, HST, NASA.

Radiation in thermal equilibrium exerts a pressure (eq. 1.11): Prad =

aT4/3. Because of its strong dependence on temperature, radiation exerts
an increasingly large fraction of the total pressure for massive stars.
Stars that are radiation-pressure dominated tend to be unstable: they
have strong winds and violent fits of mass ejection (see the image of Eta
Carinae, Fig. 6.6). As a result, they lose copious amounts of mass while
on the main sequence. This mass-shedding effectively sets a rough upper
limit on the range of main-sequence stellar masses.
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E X E R C I S E 6 . 9 — Use the virial relations for density and temperature to
estimate how the ratio Prad/Pgas depends on the mass of the star.

E X E R C I S E 6 . 1 0 — The equation of state becomes dominated by radiation
roughly where P(ideal gas) ≈ P(radiation). Derive from this criterion a relation
between log(T) and log(ρ), and plot this relation on the figure for exercise 6.5.
Indicate which side of this relation is radiation-pressure dominated. What do
your findings in this exercise imply for the mass range of main-sequence stars?

6.3 Life on the main-sequence

With the initiation of hydrogen fusion, the star settles into thermal and
mechanical equilibrium, with its structure described by the solution of
equations6 (6.20)–(6.22), along with the equation of state and prescrip- 6 Or, in Lagrangian form, (6.25)–(6.27).

tions for the opacity κ and heating rate ε.
The reason for star’s stability on the main sequence is a consequence

of the relation, derived in exercise 2.8, between the star’s total energy
and temperature. If the reaction rate were to increase and deposit more
energy into the star, then since the total energy is ∝ −GM2/R, the star
would expand. This expansion would cause the central temperature to
decrease, thereby reducing the reaction rate.

The star is not in complete equilibrium, however, as hydrogen in the
core is gradually being converted to helium. The timescale over which
the composition changes is much longer than the dynamical timescale
(sets hydrostatic equilibrium), the radiative diffusion timescale (sets
thermal gradient), and the Kelvin-Helmholtz timescale (sets core tem-
perature via growth or contraction of stellar radii). The gradual build-up
of a helium-rich core does not, therefore, affect the stability of the star,
but it does lead to a slow brightening of the star over its main sequence
lifetime. For our sun, the gradual enrichment of the core in helium causes
a slow increase in luminosity of ≈ 10% for each billion years. Although this slow increase in luminosity

is not a drastic change, it has significant
implications for life on Earth. The ex-
pected warming is sufficient to make
Earth uninhabitable within about a billion
years from now.

E X E R C I S E 6 . 1 1 — You computed in exercise 5.4 the energy released from
the conversion of 4 hydrogen atoms into helium. Express this number in terms of
the energy released per mass of hydrogen burned; this number should be in units
of J/kg. Now assume that the sun’s luminosity comes from the fusion of
hydrogen into helium in the innermost 10% of the sun’s mass. For a composition
that is 70% hydrogen by mass, how long would it take to deplete the hydrogen in
the solar core? This sets the main-sequence lifetime of the sun.

The cool outer layers of low-mass stars have large opacities: for exam-
ple many elements are not ionized, so there are many potential lines for
absorption. As a result, stars with M ≲ M⊙ have convective regions in
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their outer parts. The fraction of the star that is convective is larger for
low-mass, cool stars; and stars with M ≲ 0.3 M⊙ are fully convective, so
that the whole interior lies along an adiabat. For more massive, hotter,
stars, the opacities are lower, and as a result, the outer convective region
vanishes for stars with M ≳ M⊙.

E X E R C I S E 6 . 1 2 — We can estimate how the luminosity depends on stellar
mass for stars that have a mostly radiative structure. Start with equation (6.23) for
the temperature gradient and approximate dT/dr ≈ −Tc/R, ρ ≈ ρ̄,
L/4πr2 ≈ L/4πR2, and T ≈ Tc. Take the opacity κ to be constant, use the virial
estimate for the central temperature Tc and express the mean density ρ̄ in terms
of stellar mass M and radius R. After some algebra, you should find that the
luminosity L depends on M to some power. Compare this scaling against the data
in Table 2.2. Obtain an expression for the stellar lifetime as a function of mass,
and calibrate it to the sun’s main-sequence lifetime, τ⊙ ∼ 10 Gyr.

STARS MORE MASSIVE THAN THE SUN HAVE SUFFICIENTLY HIGH CORE TEM-
PERATURES FOR HYDROGEN TO BE CONSUMED VIA THE CNO CYCLE. The
strong temperature dependence of the CNO burning has two effects on
the structure of the star. First, it makes the central temperature nearly
constant over a wide range of stellar masses for M > 1 M⊙—a small rise
in temperature is sufficient to raise the heat production ε to match the
rise in luminosity. A nearly constant central temperature implies, via the
virial theorem, that R ∝ M on the upper main sequence. The second con-
sequence is that nearly all of the star’s luminosity is generated in a small
region about the stellar center. The flux, L/4πr2, in this small region is
enormous, and this makes the core of the star convective. The convection
can mix hydrogen fuel into the core, which makes the lifetime somewhat
longer than the estimate from exercise 6.12. A summary of the structure
of main sequence stars is contained in Table 6.2.

Table 6.2: Characteristics of main-
sequence stars

M ≲ M⊙ M ≳ M⊙
4p → 4He… pp CNO
core is… radiative convective
envelope is… convective radiative



7
End of the Line

The depletion of hydrogen in the core heralds the end of the star’s placid
main-sequence life. We shall first give an overview of the changes that
ensue. Fusion of helium requires a temperature ≳ 108 K, substantially
higher than that required for the fusion of hydrogen. As a result, when
the hydrogen is used up helium burning cannot immediately begin,
and the core contracts, similar to what happened before the star was
born, with one crucial difference. As the helium core contracts, hydrogen
continues to fuse in a shell surrounding the core. This shell burning
intensifies as the core contracts and causes drastic changes to the star’s
radius, surface temperature, and luminosity.

Once the core becomes sufficiently hot, helium fuses into carbon, and
the core again reaches a state of thermal and mechanical equilibrium.
After a brief helium-burning phase, the core becomes depleted in helium
and must again contract. As with pre-main sequence stars, the critical
question is whether the core becomes degenerate before the next fusion
reaction can ignite. For stars with main-sequence masses ≲ (8–10)M⊙,
the core becomes degenerate before the onset of 12C fusion, which re-
quires temperatures ≈ 8 × 108 K. Indeed, for stars around a solar mass,
the fusion of 4He occurs under moderately degenerate conditions.1 As 1 Stars with masses ≲ 0.5 M⊙ will become

degenerate before reaching temperatures
sufficient for helium to fuse; the main-
sequence lifetime of such stars is much
greater than the age of the universe, so
making a helium white dwarf requires
some kind of mass loss, such as in a
binary.

a result, the cores of low-mass stars end up composed of carbon and
oxygen (or perhaps oxygen and neon) and supported by degenerate
electrons; such objects are known as WHITE DWARFS.

For stars with masses ≳ (8–10)M⊙, the core is hot enough to avoid
degeneracy until reactions in the core have made heavier isotopes up to
56Fe. At this point the matter reaches its maximum binding energy2, so 2 see exercise 5.3

further heating from nuclear reactions is curtailed. A degenerate core
forms and grows in mass due to reactions in shells surrounding the core.
There is a maximum mass, known as the CHANDRASEKHAR MASS, that
can be supported by electron degeneracy pressure. When the core ex-
ceeds this mass, it violently implodes. The implosion halts when matter
reaches nuclear density and the repulsive strong nuclear force provides
pressure support. In this implosion, most of the electrons and protons
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combine, e− + p → n + νe. The resulting torrent of neutrinos injects
energy into the outer layers of the star; in many cases this is sufficient to
eject the outer layers of the star and produce a SUPERNOVA. Left behind
will be the core, now composed mostly of neutrons3 and known as a3 At densities substantially above that of

an atomic nucleus other constituents, such
as hyperons, may appear.

NEUTRON STAR.
If the envelope is not ejected, matter will fall back onto the neutron

star. The maximum mass that can be supported by the nuclear force is
uncertain, but is somewhere between (2–3)M⊙; when this maximum
mass is exceeded, the neutron star collapses into a black hole. Having
sketched the various end-of-life scenarios, we shall now explore them in
more detail.

7.1 Low-mass stars

Ascent of the red-giant branch

With the depletion of hydrogen in the core, the core contracts. During
this contraction, hydrogen fusion continues in a shell surrounding the
core. The shell hydrogen fusion produces helium, which adds to the core
mass. As the core contracts its temperature rises. The rising temperature
and pressure at the base of the hydrogen-burning shell causes the reac-
tions in the shell to go at an ever-increasing rate. The resulting increase in
luminosity inflates the envelope, now fully convective, to large radii and
hence to a low surface temperature: the star becomes a red giant. The
high luminosity, combined with the low surface gravity of the distended
envelope, drives a strong wind so that the star loses a substantial amount
of mass during the giant phase.

Figure 7.1: Color-magnitude diagram
for the globular cluster M55. Image credit:
B.J. Mochejska, J. Kaluzny (CAMK), 1m
Swope Telescope.

Figure 7.1 shows a color-magnitude diagram for the globular cluster
M55. The figure plots the absolute V-band magnitude against the (B− V)
index—brighter and bluer stars at top left, dimmer and redder stars at
lower right. The surface effective temperatures is indicated along the top
axis, and the luminosity in solar units is indicated along the right axis.

Each dot on the plot represents a star, and the colors indicate how the
star would appear. The main sequence forms a band running from the
lower right to the center of the figure. At the time of the cluster’s birth,
the main-sequence would have continued on to the upper left of the
plot. Stellar mass increases as one moves upwards and leftwards along
the main-sequance, and since more massive stars evolve faster, those
bright, blue stars originally on the upper left of the main sequence have
ended their hydrogen-burning tenure and moved on. From the location
of the main-sequence turn-off, the age of the cluster is estimated4 to be4 Don A. VandenBerg and P. A. Denis-

senkov. Constraints on the Distance
Moduli, Helium and Metal Abundances,
and Ages of Globular Clusters from their
RR Lyrae and Non-variable Horizontal-
branch Stars. III. M55 and NGC 6362. ApJ,
862(1):72, July 2018. DOI: 10.3847/1538-
4357/aaca9b

12.9 ± 0.8 Gyr. The red giant branch arcs from the center of the plot
towards the upper right. As stars turn away from the main sequence and
their helium core mass grows, the stars move up the red giant branch
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becoming redder and more luminous.

Helium burning: the horizontal branch

There are no stable isotopes with mass number A = 5 or A = 8, which
makes the fusion of 4He somewhat tricky. Although unstable, the isotope
8Be is relatively long-lived (10−16 s) compared to a nuclear timescale5. As 5 Roughly the time for a pion to cross a

nucleus, ∼ 10−22 s.a result, when the core temperature reaches ≈ 108 K, the reaction
The mass of a 8Be nucleus is 91 keV greater
than the mass of two 4He nuclei; at a
temperature ≈ 108 K, the kinetic energy of
the 4He nuclei is just enough to make up
the difference.

4He + 4He←→ 8Be

builds up a minute abundance of 8Be. This abundance is sufficient for the
reaction

8Be + 4He←→ 12C∗

to make a small abundance of 12C in an excited state (denoted by the ∗).
While most of the 12C∗ decays back into 8Be+ 4He, a small fraction decays
instead to the ground state, 12C∗ → 12C+γ. The net result is 3 4He→ 12C,
known as the TRIPLE-ALPHA REACTION.

Once core 4He has ignited, the star settles onto a “helium main se-

The triple-alpha reaction is in-
credibly temperature-sensitive:
∂ ln ϵ3α/∂ ln T ≈ 40 at T = 108 K.
This sensitivity, combined with the mildly
degenerate conditions of the core, makes
the ignition of 4He somewhat unstable for
solar-mass stars.

quence;” observationally this is the HORIZONTAL BRANCH, so called be-
cause these stars lie in a clump on a Hertzsprung-Russell diagram. The
luminosity on the horizontal branch is about (30–100) L⊙. The higher
luminosity and the much lower energy release from the triple-alpha re-
action make the horizontal branch lifetime much shorter than that of the
main-sequence (e.g., the horizontal branch lifetime is ∼ 108 yr for a solar-
mass star). The horizontal branch is clearly visible as the blue arc in the
upper-left quadrant of Fig. 7.1.

E X E R C I S E 7 . 1 — Use the result of exercise 5.5 to find the heat released per
kilogram from fusing 3 4He nuclei into 12C. Take the core mass to be 0.45 M⊙ (the
minimum core mass needed for the ignition of helium), and find the lifetime for
core helium burning for a horizontal branch luminosity of 30 L⊙.

The asymptotic giant branch and emergence of a white dwarf

As the mass of 12C builds up in the core, the reaction 12C + 4He → 16O
begins to compete with the triple alpha reaction. As a result, the core
becomes composed of a 12C/16O mixture. With the depletion of 4He, the
core—now composed of 12C and 16O—again contracts, while the growing
luminosity from the H- and He-burning shells again inflate the enve-
lope to large radii. Observationally, this phase is the ASYMPTOTIC GIANT
BRANCH: the stars move away from the horizontal branch and become
redder and more luminous. This branch can be observed in Fig. 7.1 arc-
ing from the horizontal branch and asymptotically approaching the red
giant branch at upper right.
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During the ascent of the asymptotic giant branch, the star’s hydrogen-
rich envelope is consumed at its base by the H- and He-burning shells
and expelled at the surface by an increasingly strong wind. The ex-
pelled envelope resembles a nebula and is termed a PLANETARY NEBULA
(Fig. 7.2). After the envelope has dispersed, the hot core—observed as a
white dwarf—slowly cools. For a solar-mass star, the expected final mass
of the core, and hence of the white dwarf, is ≈ 0.6 M⊙.

Figure 7.2: The planetary nebula
NGC 2392. Image credit: NASA, ESA,
Hubble, Chandra; Processing & cb

License: Judy Schmidt.

7.2 Massive stars

For stars with main-sequence masses ≳ (8–10)M⊙, the fusion of 12C
commences while the core is non-degenerate and at a temperature ≈
8×108 K. At this temperature, electron-positron pairs form and annihilate
(e− + e+ ←→ γγ); occasionally instead of decaying into photons, the
reaction

e− + e+ −→ νe + ν̄e

occurs instead and generates a neutrino-antineutrino pair. The mean
free path for the neutrinos is larger than the radius of the star; as a result,
the neutrinos stream out and take energy from the core. Because the
neutrinos can easily leave the star, they end up carrying away the bulk of
the heat from the core at these high core temperatures.

Within the core, 12C is consumed by the reactions

12C + 12C→

{
23Na + p

20Ne + 4He
.

The p and 4He capture onto other nuclei that are present. At slightly
higher temperatures, 20Ne + γ → 16O + 4He releases 4He nuclei that
subsequently capture onto other 16O, 20Ne, and 24Mg. As the temperature
increases, the next significant burning stage is

16O + 16O→

{
31P + p

28Si + 4He
;

as with 12C + 12C, the p and 4He combine with ambient nuclei with the
end result being a distribution of isotopes about 28Si.

E X E R C I S E 7 . 2 — At the onset of 16O burning in a 25 M⊙ star, the central
density (Table 7.1) is 3.6 × 109 kg m−3. What is the dynamical time of the core?

The strong Coulomb barrier inhibits the fusion of nuclei beyond 16O;
instead, photodissociation reactions such as 28Si + γ → 24Mg + 4He
liberate n, p, and 4He. These light nuclei then capture onto heavier nu-
clei, and the composition gradually becomes composed of isotopes about
56Fe. This is NUCLEAR STATISTICAL EQUILIBRIUM: the composition is in the

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/


END OF THE LINE 91

lowest energy state (most bound) for the ambient density and tempera-
ture. As a result, there is no further release of nuclear energy possible.
The (mostly 56Fe) core contracts and becomes degenerate; its mass gradu-
ally increases from the burning of surrounding material.

The amount of energy available from the reactions with heavy nuclei
is low; as a consequence, the time required for the core to deplete the
available fuel grows shorter and shorter, with the final stages occurring
in a day (column labeled τ in Table 7.1). After the ignition of carbon,
the core evolves too quickly for the envelope to keep up. Thus the ex-
ternal appearance of the star provides no window into the final days of
burning.

hydrogen
MZAMS Tc ρc L Lν τ

M⊙ 107 K 103 kg m−3 103 L⊙ L⊙ Myr
15 3.53 5.81 28 — 11.1
25 3.81 3.81 110 — 6.7

helium
MZAMS Tc ρc L Lν τ

M⊙ 108 K 106 kg m−3 103 L⊙ L⊙ Myr
15 1.78 1.39 41 1 1.97
25 1.96 0.76 182 20 0.84

carbon
MZAMS Tc ρc L Lν τ

M⊙ 108 K 109 kg m−3 103 L⊙ 103 L⊙ kyr
15 8.34 2.39 83 90 2.03
25 8.41 1.29 245 2600 0.52

oxygen
MZAMS Tc ρc L Lν τ

M⊙ 109 K 109 kg m−3 103 L⊙ 106 L⊙ yr
15 1.94 6.66 87 2 2.58
25 2.09 3.60 246 6000 0.40

silicon
MZAMS Tc ρc L Lν τ

M⊙ 109 K 1010 kg m−3 103 L⊙ 106 L⊙ d
15 3.34 4.26 87 105 18.3
25 3.65 3.01 246 106 0.7

Table 7.1: Nuclear burning timescales for
massive stars. Values taken from Woosley
et al. [2002]; neutrino luminosities are
taken from Weaver et al. [1978] and do
not exactly correspond to the same stellar
models for the other parameters.

Figure 7.3: A reconstructed image of
Betelgeuse made using interferome-
try. Image credit: Xavier Haubois et al.
(Observatoire de Paris)

The best-known example of an evolved massive star is Betelgeuse,
which is large enough and close enough to be resolved (Fig. 7.3 shows
a reconstructed image made with interferometry). Betelgeuse proba-
bly started as a blue main-sequence star of approximately 20 M⊙ and is
currently burning helium in its core. The extended envelope, ≈ 5 au in
radius, has large convective cells (bright spots in image) and pulsates vi-
olently. As can be inferred from Table 7.1, in less than 1 Myr Betelgeuse’s
core will reach nuclear statistical equilibrium; no more nuclear energy
will be available and Betelgeuse will transform into either a neutron star
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or black hole, as we describe next.

Core collapse

When the core of a massive star reaches nuclear statistical equilibrium,
there are no further sources of energy available. Fusion reactions in the
shells surrounding the core add mass to it, causing it to contract. The
increasing density raises the electron Fermi energy. When the Fermi
energy approaches the rest mass of the electrons—mec2 = 0.511 MeV—the
electrons move relativistically. This dramatically alters the equation of
state.

A particle’s energy, including rest mass, is

E =
√

p2c2 + m2c4 = mc2
[
1 +

( p
mc

)2
]1/2

;

when p≪ mc, we can expand this as E ≈ mc2+p2/2m—that is, as the sum
of the rest mass and the Newtonian kinetic energy. In the opposite limit,
when p ≫ mc, E ≈ pc. Let’s see how this relativistic limit affects the de-
generate equation of state. Recall that we fill energy states, starting with
the lowest open levels until we have added all N electrons (eq. [6.37]):

N =
2
h3

∫
V

d3x
∫ EF

0
d3p.

Change variables, d3p = 4πp2 dp = 4πc−3ε2 dε, where ε = pc is the
energy of a single, relativistic electron:

N =
8π

h3c3 V
∫ EF

0
ε2 dε =

8π
3h3c3 VE3

F.

This gives the Fermi energy,

EF = hc
(

3
8π

N
V

)1/3

.

To get the total energy, multiply each electron by its energy ε and inte-
grate over phase space:

E =
8π

h3c3 V
∫ EF

0
ε3 dε =

1
4

8π
h3c3 VE4

F =
3
4

NEF.

For a relativistic gas, the pressure is P = (1/3)(E/V) (cf. Box 1.2), so that

P =
1
4

nEF =
1
4

(
3

8π

)1/3

hcn4/3, (7.1)

with n = ρ/µemu. Instead of P ∝ ρ5/3, as for a non-relativistic gas,
P ∝ ρ4/3.
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The Chandrasekhar mass

In exercise 6.6, we constructed a mass-radius relation for white dwarfs by
combining the virial relations,

P ∝ GM2

R4

ρ ∝ M
R3

and the equation of state for a non-relativistic, degenerate, ideal gas. We
found that R ∝ M−1/3. If we try that with our relativistic equation of
state, eq. (7.1), we get

GM2

R4 ∝ P =
1
4

(
3

8π

)1/3

hc
(

ρ

muµe

)4/3

∝ hc

m4/3
u

M4/3

R4 .

The radius R cancels, and what we have is a relation M ∝ (hc/G)3/2/m2
u.

This is rather odd: a gas with a relativistic equation of state in hydro-
static balance has a characteristic mass defined in terms of fundamental
constants.

Let’s investigate this further. Suppose we have a box with adjustable
sides, which we pack with N degenerate electrons. We add some nuclei
for mass, so that the total mass in the box is µemuN. The volume of the
box V ∼ R3, and since the electrons are degenerate, the volume per
electron is roughly λ3, where λ ∼ h/p is the wavelength of the electrons.
As a result, N = (R/λ)3; further, the momentum of an electron is

p ∼ h
λ
∼ h

N1/3

R
.

If our electrons were non-relativistic, the total, kinetic plus gravitational,
energy of our box would be

Etotal = N
p2

2me
− GM2

R
∼ N5/3 h2

R2me
− GN2µ2

e m2
u

1
R
.

For a given N, we can adjust R to make Etotal < 0, and indeed, if we satisfy
the virial theorem, we will recover the R ∝ M−1/3 scaling.

If, however, the electrons are relativistic then the total energy is

Etotal = Npc− GM2

R
=

1
R

[
hcN4/3 − GN2(µemu)

2
]

= G(µemu)
2 N4/3

R

[
hc

G(µemu)2 − N2/3
]
.

Look at the term in [·]. If N < [hc/G/(µemu)
2]3/2, then Etotal > 0; by

making R larger, however, we can lower the energy until the electrons are
no longer relativistic, and then we can again recover the virial scaling. If
N > [hc/G(µemu)

2]3/2 then Etotal < 0; by making R smaller, however, we
can keep reducing Etotal indefinitely.
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There is no bound state with finite R for M > (hc/G)3/2(µemu)
−2.

Box 7.1 Instability for a relativistic equation of state

There is another way of looking at the onset of instability
which is instructive (this treatment follows that in Cox [1980]). In
exercise 2.9 you found that during a contraction or expansion, the
equation of motion for a thin layer at the star’s surface was

δ̈R =
GM
R2 [4− 3γ]

δR
R
.

Here M and R are the total stellar mass and radius, and the adia-
batic pressure-density relation is P ∝ ργ .

For a non-relativistic gas with γ = 5/3, we have δ̈R ∝ −δR: the
star oscillates with a period that is comparable to the dynamical
timescale of the star. If, however, γ < 4/3 the equation of motion
is δ̈R ∝ δR, which has an exponential solution: squeeze the star
slightly, and it will implode!

Let’s work out a more physical explanation for what is happen-
ing. Suppose we have a star in virial equilibrium, with the central
pressure and density

P ∝ GM2

R4

ρ ∝ M
R3 .

Now if the star contracts by a small amount, say δR/R = −1%,
then the density increases by an amount δρ/ρ = −3δR/R = 3%.
How does the pressure respond? If the star contracts slowly,
on a Kelvin-Helmholtz timescale, then there is time for heat
to radiate away, so that the internal pressure can increase by
the amount needed to maintain virial equilibrium: in this case
δP/P = −4δR/R = 4%. Under an adiabatic contraction, however,
there is not enough time for the star to radiate away excess heat;
as a consequence, the pressure and density are linked, so that
δP/P = γδρ/ρ = −3γδR/R.

If the adiabatic index is γ = 4/3, then during an adiabatic com-
pression of δR/R = −1%, the density increases by 3|δR/R| = 3%
and the pressure increases by 3γ|δR/R| = 4%, which is precisely
the increase needed to maintain mechanical equilibrium. As a
result, the star remains in hydrostatic balance at its new, smaller
radius. This is why there was no mass-radius relation for γ = 4/3;
it takes no energy to contract (or expand) the star.

For γ > 4/3, the central pressure increases during contraction
by 3γ|δR/R| > 4|δR/R|. As a result, the pressure becomes greater
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Box 7.1 continued

than the amount needed for hydrostatic balance. This excess
pressure pushes the star outward and acts as a restoring source.
During an expansion, the pressure falls below the amount needed
for hydrostatic equilibrium, so gravity halts the expansion and
forces the star to contract. Hence, for γ > 4/3, the star responds
to a radial perturbation by oscillating with a period comparable to
the dynamical timescale (cf. exercise 2.9).

In contrast, if γ < 4/3 the increase in pressure during contrac-
tion is 3γ|δR/R| < 4|δR/R|. The gas pressure does not increase
enough to maintain hydrostatic equilibrium, and so the star’s
contraction accelerates. A small perturbation inwards leads to
implosion.

Thus, there is a limit to the total mass that can be supported in hydro-
static equilibrium by degenerate electrons. An exact calculation for the
maximum mass of a cold, degenerate star yields

MCh = 1.456
(

2
µe

)2

M⊙. (7.2)

When the mass reaches this limiting value, known as the CHANDRASEKHAR
MASS6, the electrons become relativistic and ∂P/∂ρ → 4/3; the star be- 6 Derived by S. Chandrasekhar at age 20(!)

while traveling from India to England in
1930

comes unstable and collapses.
When the core of a massive star begins its collapse, the electron Fermi

is ∼ MeV, which is sufficient to induce electron captures on iron-group
nuclei. These captures increase µe and reduce MCh. As the core begins
the final plunge, the rapidly rising temperature induces the photodisso-
ciation of iron-group nuclei into neutrons, protons, and helium nuclei.
This process is endothermic, which further robs the core of pressure
support and accelerates the collapse. The effective γ = ∂P/∂ρ < 4/3
on account of the photodissociation and electron captures, and the core
implodes.

As the core density approaches 0.16 fm−3, the nucleons begin to repel the density of an atomic nucleus

one another on account of the strong nuclear force. This abruptly halts
the collapse and launches a shockwave outwards. The core now consists
mostly of neutrons and is termed a NEUTRON STAR.

E X E R C I S E 7 . 3 — What is the mass density if the number density of
nucleons is 0.16 fm−3? What is the gravitational binding energy for an object with
a mass 1.4 M⊙ at this density?

The outward traveling shockwave soon stalls as the outer layers of the
star fall inward. The energy needed to blow the envelope off is about 1%
of the gravitational binding energy of the core, so there is plenty of en-
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ergy available to disperse the envelope if this energy can be tapped. Most
of the gravitational binding energy released by the imploding core is car-
ried outwards by neutrinos. This has been confirmed observationally7. In7 W. David Arnett, John N. Bahcall,

Robert P. Kirshner, and Stanford E.
Woosley. Supernova 1987a. Annual
Review of Astronomy and Astrophysics, 27
(1):629–700, 1989. DOI: 10.1146/an-
nurev.aa.27.090189.003213. URL
https://doi.org/10.1146/
annurev.aa.27.090189.003213

February 1987 the star Sk -69 202, a B3 supergiant in the Large Magellanic
Cloud, became supernova 1987A. Just before the optical brightening, a
burst of neutrinos were detected in the Kamiokande II (Japan) and IMB
(Ohio) water Cherenkov detectors.

During the collapse, the neutrino mean free path becomes smaller
than the core radius for two reasons: the weak interaction cross-section
increases as the nucleons reach temperatures ≳ 1010 K, and the mean
free path ℓ = (nσ)−1 decreases as the density rises. As a result, the
neutrinos become trapped and must diffuse out of the collapsing core.
As the neutrinos diffuse out, they transfer a small fraction of their energy
to the material, which heats it. This heating tends to push the shock
outward, and a competition arises between the ram pressure of infalling
matter and the heating from the neutrinos. If the neutrinos can transfer
enough energy to the envelope, then the envelope will be blown off in
a supernova. If not, then matter will continue to accumulate onto the
neutron star. The maximum mass of a neutron star is uncertain8, but8 By timing pulsars (next section) in a

binary system, the orbital parameters and
hence the mass of the neutron star can be
deduced; the largest measured mass is
2.14+0.10

−0.09 M⊙ [Cromartie et al., 2020].

on physical grounds is likely < 3 M⊙. If the shock is not re-energized,
then conceivably the entire star could implode into a black hole—the star
would disappear without a corresponding luminous supernovae. There
is evidence that this has happened9.9 S. M. Adams, C. S. Kochanek, J. R. Gerke,

K. Z. Stanek, and X. Dai. The search for
failed supernovae with the Large Binoc-
ular Telescope: confirmation of a disap-
pearing star. MNRAS, 468:4968–4981, July
2017. DOI: 10.1093/mnras/stx816

7.3 Stellar resurrection

In the previous section, we learned that stars with M ≲ (8–10)M⊙

eventually become white dwarfs composed of carbon and oxygen and
supported by electron degeneracy pressure; and that more massive stars
have cores that collapse, either to form neutron stars supported by the
strong nuclear interaction or to collapse fully into black holes.

Both the white dwarfs and neutron stars that emerge from the ashes
of isolated stars slowly cool and dim. The cooling of white dwarfs can be
modeled accurately enough that observations of white dwarfs in clusters
can be used to infer the ages of and distances to their host clusters. No
such capability is possible with isolated neutron stars: most are too dim
to be observed, and there are vast uncertainties about the composition of
the deep interior, where the density is several times higher than that of
an atomic nucleus. Rather, efforts have been on using observations of the
handful of isolated neutron stars with measured surface temperatures to
constrain models of nuclear matter.

Figure 7.4: Schematic of a pulsar. The
white lines indicate the dipole magnetic
field, the green line is the rotation axis,
and the light blue beams are the radiation.
Image credit: Made by Mysid in Inkscape,
based on Pulsar schematic.jpg by
Roy Smits. cba.

Many observed neutron stars are endowed with strong magnetic
fields, with a surface dipole field strength ≳ 108 T. If the neutron star
spins rapidly enough and the dipole is misaligned with the spin axis, a

https://doi.org/10.1146/annurev.aa.27.090189.003213
https://doi.org/10.1146/annurev.aa.27.090189.003213
https://creativecommons.org/licenses/by-sa/3.0/
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tremendous voltage is generated at the surface that accelerates charges
above the polar caps. These accelerated charges emit photons that fan
outward from the poles, as illustrated in Fig. 7.4. As the neutron star
spins, the beams of radiation are swept around; a distant observer there-
fore observes light pulsing at the rotation frequency of the star. These
systems, known as PULSARS, were discovered by Jocelyn Bell10 and An- 10 Jocelyn Bell was a 24 year old graduate

student at Cambridge at the timethony Hewish in 196711.
11 A. Hewish, S. J. Bell, J. D. H. Pilkington,
P. F. Scott, and R. A. Collins. Observation
of a Rapidly Pulsating Radio Source.
Nature, 217(5130):709–713, February 1968.
DOI: 10.1038/217709a0
The radio emission from several pulsars,
including the Crab, was independently
detected by Airman C. Schisler at the
Ballistic Missile Early Warning Site, Clear
Air Force Station, Alaska.

E X E R C I S E 7 . 4 — The Crab pulsar spins at 33 Hz. For a star of 1 M⊙, find the
maximum radius such that material at the equator remains bound to the star
when spinning at that rate. Based on these results, argue that the Crab pulsar
cannot be a white dwarf.

MANY STARS ARE IN BINARY SYSTEMS. If the binary happens to survive
the evolution off the main sequence, it can often happen that the orbit
is close enough for matter to be tidally stripped from the companion
and ACCRETED onto the compact star (i.e., white dwarf, neutron star, or
black hole). As matter falls into the gravitational potential, it liberates a
considerable amount of energy. This makes the system bright.

E X E R C I S E 7 . 5 — Let’s estimate the luminosity and surface temperature of
an accreting neutron star. Assume a mass of 1.4 M⊙ and a radius of 10 km.

1. Compute the gravitational energy (in MeV) released when a proton falls onto
the surface (use a Newtonian approximation for the gravitational potential).
How does this compare to the energy released (per proton) from the fusion of
hydrogen into helium?

2. Now suppose the neutron star is accreting 1014 kg s−1, which is a typical rate
for many observed systems. What would be the luminosity generated by this
accretion?

3. Suppose the luminosity were emitted thermally from the surface of the
neutron star. What would be the surface effective temperature? In what band
(e.g., visible, IR, UV, X-ray) would you want to observe this system?

When sufficient material12 has accumulated on the surface of a white 12 The accreted matter is usually mostly
hydrogen, but if the companion star is
evolved it could be enriched in helium
or even, if the companion star is itself a
white dwarf, carbon and oxygen.

dwarf or neutron star, thermonuclear reactions can ignite in the accreted
layer. This ignition is typically thermally unstable and leads to an explo-
sion. On a white dwarf, this explosion presents as a NOVA13 as the white

13 from the Latin novus meaning “new”dwarf abruptly brightens and then dims over several weeks to months.
The mass of the burning layer is typically

(
10−5 to 10−4)M⊙; at typi-

cal accretion rates ≲ 10−9 M⊙ yr−1 the time between the explosions is
thousands of years or longer. The amount of mass necessary for ignition
decreases strongly with the mass of the white dwarf, however, so that
the time between explosions can be years to decades. In these systems
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the novae are observed to reoccur and they are called—appropriately
enough—RECURRENT NOVAE. On a neutron star, the explosion is observed
as an X-RAY BURST that lasts (10–100) s. The strong gravity makes the
amount of material needed for ignition much less than on a white dwarf:
roughly 10−12 M⊙. As a consequence, the time between bursts can be as
short as hours to days.

SOME NEUTRON STARS AND BLACK HOLES ARE IN TIGHT (SHORT ORBITAL
PERIOD) BINARIES with another neutron star or black hole. In this case, the
system has an oscillating mass quadrupole; further, just as an oscillat-
ing electrical dipole radiates electromagnetic waves (light), the orbiting
stars will radiate GRAVITATIONAL RADIATION. The gravitational radiation
carries energy away from the binary and forces the orbit to shrink. As
the orbit shrinks, the emission of gravitational radiation intensifies, and
the rate of orbital shrinkage increases. Monitoring of the orbital period
of the binary pulsar PSR 1913+1614 found that the orbital period, and14 R. A. Hulse and J. H. Taylor. Dis-

covery of a pulsar in a binary system.
ApJ, 195:L51–L53, January 1975. DOI:
10.1086/181708

hence the semi-major axis, were indeed decreasing at a rate consistent
with predictions from General Relativity15.

15 J. H. Taylor and J. M. Weisberg. A new
test of general relativity - Gravitational
radiation and the binary pulsar PSR
1913+16. ApJ, 253:908–920, February 1982.
DOI: 10.1086/159690

Direct detection of gravitational radiation was finally achieved in 2015
by the LIGO16 and Virgo gravitational wave observatories. The event

16 Laser Interferometer Gravitational-Wave
Observatory

GW150914 was the merger of two black holes with masses 36+5
−4 M⊙ and

29+4
−4 M⊙

17. Two years later LIGO and Virgo observed the merger of two

17 B. P. Abbott et al. Observation of grav-
itational waves from a binary black
hole merger. Phys. Rev. Lett., 116:
061102, Feb 2016. DOI: 10.1103/Phys-
RevLett.116.061102

neutron stars, GW17081718. The event was also detected in the γ-ray,

18 B. P. Abbott et al. GW170817: Observa-
tion of Gravitational Waves from a Binary
Neutron Star Inspiral. Phys. Rev. Lett.,
119(16):161101, October 2017. DOI:
10.1103/PhysRevLett.119.161101

X-ray, optical and infrared bands19. The fading afterglow of the merger

19 B. P. Abbott et al. Multi-messenger
observations of a binary neutron star
merger. The Astrophysical Journal, 848
(2):L12, oct 2017. DOI: 10.3847/2041-
8213/aa91c9

is consistent with the ejecta containing large amounts of high-opacity
lanthanides. This suggests that the copious amounts of heavy elements
were formed in the merger, and that perhaps such mergers are the origin
of elements such as gold, platinum, and lead. Your jewelry may be a
souvenir of the violent merger of two neutron stars long ago.
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Computing is now ubiquitous in science and technology, and forms
a triad with theory and experiment. Stellar modeling has a long and
storied history in this area. Of course, libraries of numerical routines
are now widely available, and for research it is far better to use a well-
written and well-tested routine than trying to build your own. One still
needs to have a basic understanding, however, of how a computational
technique works! In this appendix, we wish to give a flavor of a few
common numerical techniques.

A.1 Numerical precision

Before diving into the sea of computational techniques, we need to wade
a bit in the shallows of floating-point arithmetic. Numbers are stored
in base-2 (binary) format: a sequence of 1’s and 0’s known as BITS. The
number of bits in this sequence is fixed1, and the processor and compiler 1 On most modern systems the default is

64 bits.define a particular model2 to represent numbers.
2 Notation used here follows Metcalf et al.
[2018].In symbols, an integer d can be written, using N bits, as

d = (−1)s ×
N−1∑
k=1

dk2k−1.

Here s is the SIGN BIT and dk = 0, 1. The largest integer in this rep-
resentation is 2N−1 − 1. For example, suppose we are using N = 4
bits; one bit is reserved to indicate the sign, and with the remaining
3 bits we represent the positive integers from 0 to 24−1 − 1 = 7 as

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

.

Real numbers can be modeled as follows: for x ̸= 0, The IEEE 754 64-bit model uses 11 bits
for representing the exponent ε and
the remaining 53 for the fractional part,
known as the MANTISSA. Because f1 = 1
always, it is not stored to make room for
the sign bit.

x = (−1)s × 2ε ×
p∑

k=1

fk × 2−k. (A.1)

Here the exponent εmin ≤ ε ≤ εmax and fk = 0, 1 with f1 = 1. For example,
if ε = −6 and fk = 11010000 . . . (i.e., fk = 1 for k = {1, 2, 4} and is 0
otherwise), then x = 2−6 × (2−1 + 2−2 + 2−4) = 0.0126953125.
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E X E R C I S E A . 1 — What is the floating point number 10.0 in the model
representation, eq. (A.1)? Specify ε and the fk.

Using the numerical inquiry functions in Fortran 2018, I wrote a small
program to report on the arithmetic on my MacBook Pro (Intel Core i5
processor) for 64-bit floating-point arithmetic. The results are as follows.

exponent = [-1021, 1024]
digits = 53

[tiny, huge] = [ 2.2251E-308, 1.7977E+308]
precision = 15

epsilon = 2.2204E-16

Let’s understand what these numbers mean. First, the exponent, ε in
eq. (A.1), ranges over −1021 ≤ ε ≤ 1024; given this, what is the smallestIf you are counting, it may seem that εmin

should be -1023; however, a couple special
values of ε are reserved to indicate ex-
ceptions: NaN (not a number), e.g.,

√
−1;

±Infinity, e.g., 1/0; or underflow—the
number is too small to be represented in
this model with f1 = 1.

positive number, tiny, that can be represented by the model (eq. [A.1])?
Since in the model f1 = 1, the smallest representable number has ε = εmin

and fk̸=1 = 0:

tiny = 2εmin × 2−1 = 2−1022 = 2.2251× 10−308.

What is the largest positive number, huge, that can be represented by
eq. (A.1)? This number has ε = εmax and fk = 1, ∀k = 1, . . . , p, and p = 53
(digits):In this expression use the formula for the

sum of the geometric series,
p∑

k=1
r−k =

1 − r−p

r − 1

with r = 2.

huge = 2εmax ×
53∑

k=1

2−k = 2εmax × (1− 2−53) = 1.7977× 10308.

Finally, we can ask: what is the smallest number that, when added to
one, gives a number different than one? The number one is represented
with ε = 1 and fk = 10000 . . ., i.e., f1 = 1 and fk ̸=1 = 0. The next
number larger than one that can be represented in the model (eq. [A.1])
has fk = 10000 . . . 00001; that is, f1 = fp = 1 and all other fk = 0. Hence,
the closest number to 1.0 that we can model with eq. (A.1) differs from
1.0 by epsilon = 2× 2−p = 2−52 = 2.2204× 10−16; our precision in
decimal format is therefore about 15 digits.

E X E R C I S E A . 2 — Using the representation of exercise A.1, what is the
nearest number to 10.0 that can be represented in the model of eq. (A.1)?

A.2 Finding the root of a function

A common task in computation is to find the root of a function: that is,
given a function f(x) defined on an interval a ≤ x ≤ b with f(a) and f(b)
having opposite signs (f(a)× f(b) < 0), find r ∈ [a, b] such that f(r) = 0.
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Bisection

A robust method for finding r is BISECTION. We find the midpoint m =

(a+b)/2 and compute f(m) (red dot, left, Fig. A.1). We then determine the
interval—[a,m] or [m, b] in which the root lies. For example, in Fig. A.1,
the root lies in [m, b] since f(m) and f(b) have opposite signs. We thus
reset the bounds of our interval—in this case, setting a = m—and repeat
the process (right, Fig. A.1).

( )

( )

0

( )

( )

( )
0

( )

Figure A.1: During the first iteration (left),
we bisect the interval and determine
whether the root of the function lies in
[a,m] or [m, b]. For the second iteration,
we move the left-boundary a to m and
compute the next midpoint.

( )

0

( )

1

2

3
45

Figure A.2: The first five bisections
illustrating the convergence to the root.

On the second iteration, the root is found to lie in [a,m], so for the
third iteration, we set b = m. The midpoints gradually converge toward
the root, as shown in Fig. A.2. The midpoint represents the current best
estimate for the root; the uncertainty in this estimate is given by the
width of the interval ∆ = |b− a|. On each iteration this uncertainty in our
root is halved: if the uncertainty at the start is ∆0, then after one iteration
the uncertainty is ∆0/2; after two iterations, ∆0/22; after n iterations,
∆0/2n. If our desired TOLERANCE is ϵ—that is, the root is known to lie in
an interval of width ϵ—then we should stop iterating when 2−n∆0 < ϵ,
or after

n > log2

(
∆0

ϵ

)
iterations.

Note the log2: on each iteration, we gain another bit of precision on the
root. Since our precision is limited to roughly 53 bits (§ A.1), this sets the
upper limit on how many iterations we need, depending on the initial
width of our bracket.

Newton’s method

Bisection is robust: it is guaranteed to converge to a root that is bracketed
on some interval a ≤ x ≤ b. It converges to the root at a rather plodding
pace, however, and you might wonder: can we speed up convergence a
bit? If we can evaluate the derivative of our function, f ′(x), then a classic
method for rapidly converging to a root from a good initial guess is
NEWTON’S METHOD. In this method, on each iteration n with a trial root
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xn, evaluate f(xn) and f ′(xn). To get the next guess, xn+1, for the root,
construct a line through (xn, f(xn) and having a slope f ′(xn); and solve for
where this line crosses the x-axis:

f(xn)− 0
xn − xn+1

= f ′(xn),

xn+1 = xn −
f(xn)

f ′(xn)
.

Fig. A.3 illustrates the first iteration to determine x1 from an initial guess
x0. We then repeat this process to get x2, x3, and so on, with each one
hopefully ever closer to the root.

0
( )

( )

Figure A.3: Starting from an initial guess
x0, we extend a line (red dotted line) of
slope f ′(x0) to where it crosses y = 0, thus
giving our next guess x1.

Compared with bisection, Newton’s method converges quite rapidly:
|xn+1 − r| ∼ |xn − r|2—that is, the number of decimal places of precision
of the guess roughly doubles on each iteration. Thus, for f(x) = x4 − 4
with x0 = 2, only 6 iterations3 are needed to find the root to a tolerance3 that is, ≈ log2 p iterations, where p = 53

is the number of bits of precision, see
eq. (A.1)

< 10−15. Nothing comes for free, however; if the initial guess is too far
from the root, then Newton’s method may converge much slower than
bisection, or perhaps not even converge at all (what happens if x0 is near
the left end of the curve in Fig. A.3?). For this reason, Newton’s method
is generally not preferred.Newton’s method is useful for quickly

estimating roots of numbers: for example,
given a guess xn for a square root of
a number r, an improved estimate is
xn+1 = (x2

n + r)/(2xn). Often one can
do one or two iterations mentally and
thus estimate the root within a percent or
so. For example, to estimate

√
2: x0 = 1;

x1 = 3/2; and x2 = 17/12, which is
accurate to 0.2%.

Brent’s method

BRENT’S METHOD4 is a rapidly converging, robust routine for finding

4 Richard P. Brent. Algorithms for Mini-
mization without Derivatives. Prentice-Hall,
1973

roots. Like bisection, it requires that the root be bracketed on an interval
x ∈ [a, b]. Rather than use the midpoint as a guess for the root, however,
Brent’s method instead uses, when possible, either linear or quadratic
interpolation (see Box A.1) to construct the next guess for the root.

Box A.1 Interpolation

Through any two points (x0, y0), (x1, y1) with x1 ̸= x0, we can fit a
unique line, y = ax + b, with

a =
y1 − y0

x1 − x0

b =
y0x1 − y1x0

x1 − x0
.

Through any three points (x0, y0), (x1, y1), (x2, y2) with x0, x1, and
x2 distinct, we can fit a unique quadratic q = ax2 + bx + c, with
a, b, c determined by the equations

ax2
0 + bx0 + c = y0

ax2
1 + bx1 + c = y1

ax2
2 + bx2 + c = y2.
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Box A.1 continued

Continuing, through any 4 distinct points we can fit a polynomial
of degree 3: p3(x) = ax3 + bx2 + cx + d; and so on. The formula for
a polynomial of degree N passing through N + 1 distinct points is
known as the LAGRANGE POLYNOMIAL,

pN(x) =

N∑
i=0

yiℓi(x), (A.2)

ℓi(x) =

N∏
k=0,k ̸=i

x− xk

xi − xk
. (A.3)

For example,

p1(x) = y0
x− x1

x0 − x1
+ y1

x− x0

x1 − x0
; (A.4)

p2(x) = y0
x− x1

x0 − x1
· x− x2

x0 − x2
+ y1

x− x0

x1 − x0
· x− x2

x1 − x2

+y2
x− x0

x2 − x0
· x− x1

x2 − x1
; (A.5)

p3(x) = y0
x− x1

x0 − x1
· x− x2

x0 − x2
· x− x3

x0 − x3

+ y1
x− x0

x1 − x0
· x− x2

x1 − x2
· x− x3

x1 − x3

+ y2
x− x0

x2 − x0
· x− x1

x2 − x1
· x− x3

x2 − x3

+ y3
x− x0

x3 − x0
· x− x1

x3 − x1
· x− x2

x3 − x2
. (A.6)

( )

( )

( )

Figure A.4: A secant (thin red line) is
constructed through the endpoints of an
interval containing the root; where this
secant crosses the x-axis is used as the
next guess (red dot) for the root.

Fig. A.4 shows the first iteration of Brent’s method. Our test problem
is to find the root of sin(x) on the interval [1.3, 4.5]. We orient the interval
so that |f(b)| < |f(a)|, so that b is the “best guess” for the root. We then
use eq. (A.4) to construct a line, known as a SECANT, connecting a and
b and determine the point s where that line crosses the x-axis. In this
example, s becomes the new best guess for the root, so we set b = s and
store the previous best guess as c.

For the next iteration, we have three points: a, b (the current best
guess), and c (the previous best guess). We can therefore fit a parabola
(Fig. A.5) through the three points (a, f(a)), (b, f(b)), and (c, f(c)), us-
ing eq. (A.5). Instead of fitting a parabola y = p2(x), however, we fit
x = p2(y); the reason is that we can simply set y = 0 in eq. (A.5)—with
x, y exchanged—to find the next guess.

( )

( )

( )

( )

Figure A.5: A parabola x = p2(y) (thin
red curve) is fit through the previous
guesses that bracket a root, and where
this parabola intersects y = 0 is used as
the next guess s (red dot) for the root.

The new guess for the root s (Fig. A.6) is on the same side of the root
as a; hence the previous best guess becomes a, and we set b = s. We are
then ready to perform a linear interpolation to determine the next guess,
Fig. A.6. After this third iteration, our new guess s is quite close to the
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root, |s− r| = 5× 10−4. To reach machine precision for this problem took
only 6 iterations.

( )

( )
( )

Figure A.6: Brent’s method is repeated
on the restricted interval [m, b] using the
points m, g, b to fit a new parabola and
determining the next guess (red dot) for
the root.

Although the use of linear and quadratic interpolation can converge
rapidly, for some cases the interpolation can fail. By keeping track of
the previous best guesses for the root, Brent’s method can test whether
the best guesses for the root are converging as rapidly as bisection. If
the guesses aren’t improving quickly enough, or if the guess is out of
bounds, the method falls back to taking a bisection step. This combi-
nation of rapid convergence and robustness makes Brent’s method a
workhorse routine for finding roots.

A.3 Numerically solving a system of ordinary differential equations

Another common numerical task is to integrate a system of first-order or-
dinary differential equations (ODEs). That is, given a system of equations

dz
dt

= f(t, z) (A.7)

with specified initial conditions z(t = t0), find z(t). Here z is shorthand
for an array of variables: z(t) = {z0(t), z1(t), z2(t), . . .}. Likewise, f(t, z) is
an array of known, specified functions: f(t, z) = {f0(t, z), f1(t, z), f2(t, z), . . .}.

A prominent example is Newton’s equation of motion,

d2rrr
dt2 =

FFF
m
. (A.8)

You may object that this is a second-order differential equation; but
notice that if we define

vvv =
drrr
dt

then we can recast this single second-order differential equation into a
system of two5 first-order differential equations of the form (A.7):5 Strictly speaking, this is a system of six

ODEs: three components of rrr and three
components of vvv. drrr

dt
= vvv (A.9)

dvvv
dt

=
FFF
m
. (A.10)

As a worked example, we’ll now show how to obtain an approximate
numerical solution for the following system of ODEs,

dz0

dt
= 2πz1 (A.11)

dz1

dt
= −2πz0, (A.12)

with boundary conditions

z0(t = 0) = 0, z1(t = 0) = 1. (A.13)
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The solution to equations (A.11)–(A.12) is

z0 = sin(2πt), (A.14)

z1 = cos(2πt).. (A.15)

as you can easily verify.

SUPPOSE WE KNOW z(t) AT SOME POINT t and we wish to make a numeri-
cal estimate of z at a nearby point t + h. We have the values of z and we
therefore wish to implement eq. (A.7) for equations (A.11)–(A.12) into a
single function.

Box A.2 Functions

What is a function in the context of a program? Basically, a
function is a self-contained group of statements that you name.
For example, to implement dz/dt = f(t, z) for equations (A.11)–
(A.12), we might write (in Python)

def f(t,z):
”””
RHS of equation dz/dt = f(t,z)
”””
# this makes an array of length 2,
# each element of which is zero
dzdt = np.zeros(2)

# equation (A.5)
dzdt[0] = 2.0*np.pi*z[1]
# equation (A.6)
dzdt[1] = -2.0*np.pi*z[0]
return dzdt

In this listing we give our function the uninspired name f. A
function may receive information, which is listed in the parenthe-
ses after the function name: (t,z). Thus, the first line

def f(t,z):

says “bundle the following list of statements together and call it f.
The statements expect as input two variables, called ARGUMENTS,
which will be referred to in the function as t and z.” This func-
tion then does three things: it creates an array dzdt of length 2,
sets the first element of this array to 2.0*np.pi*z[1], and sets
the second element to -2.0*np.pi*z[0]. The final statement

return dzdt
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Box A.2 continued

says “finish, and provide the value of dzdt” to whatever CALLED
the function. Thus, for example, after defining the function, you
could write

k = f(x,y)

where x and y are variables you had already defined. Python
would interpret this as: “Execute the statements in the function
f. In those statements, set the value of t to be that of x and the
value of z to be that of y. After executing those statements, store
the value of the function variable dzdt in k and carry on.”

With the definition of a function f, we can compute the right-hand side
of equation (A.7). Our problem can thus be stated as follows: given z(t),
construct an estimate for z(t + h). If we can do this, then we can advance
the solution stepwise from the initial condition z(t = t0). We’ll now
present three algorithms for doing so, starting with the least accurate.
Our example will use t = h = 0.12; Fig. A.7 shows the solution for z0(t)
over this interval.

+ / +

( )

( + )

Figure A.7: Solution (A.14) for z0 in the
system of equations (A.11)–(A.12) from
t = 0.12 to t + h = 0.24.

Forward Euler

The first, and simplest, method goes back to Euler. Suppose at time t we
know the solution z(t) to eq. (A.7). We can expand z(t) as a Taylor series
about this point to obtain

z(t + h) = z(t) + h
dz
dt

∣∣∣∣
t
+

h2

2!
d2z
dt2

∣∣∣∣
t
+ . . .

But dz/dt = f(t, z) is a known function. So to O(h2),

z(t + h) ≈ z(t) + h
dz
dt

∣∣∣∣
t
.

= z(t) + h f(t, z)|t . (A.16)

Figure A.8 displays a schematic of a forward Euler step. We first compute
the slope f(t, z) and then use this to extend the solution to a point t + h.
By repeating this step over and over, we can march our solution along.

+ / +

( )

( + ) ( , )

Figure A.8: Schematic of a single forward
Euler step, in which we compute the slope
f(t, z) and extrapolate the solution from t
to t + h.

How accurate is this FORWARD EULER algorithm? From its definition,
the error on each step comes from truncating the Taylor series and is
O(h2). What do we mean by this? For sufficiently small h, reducing the
step by a factor of 2 should reduce the error in a single step by a factor of
4. Another way to put this is that the forward Euler reproduces z(t) ex-
actly if z is a linear function of t. Unfortunately, errors tend to compound
with each step, and the smaller the stepsize, the more steps are required.
To integrate over a fixed interval T takes T/h steps; if the error on a given
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step is E ∼ O(h2), then the total integration error will be something like
T/h × E ∼ O(h). We therefore call this forward Euler method a first-
order method. Reducing the stepsize by a factor of 2 only reduces the
integration error by a factor of 2.

Second-order Runge-Kutta

The forward Euler algorithm is not accurate unless the step size h is kept
small; as a consequence, a large number of steps are required, which is
computationally inefficient. We can improve efficiency if the numerical
solution agreed with the solution’s Taylor series to a higher order in h.

E X E R C I S E A . 3 — Suppose we have managed to construct a sequence of
numerical solutions ϕn to the ODE, eq. (A.7), such that ϕn = z(tn = n × h). To find
the solution ϕn+1 at tn+1 = (n + 1)h, we write ϕn+1 in terms of the solutions at
t = tn and t = (n − 1)h:

ϕn+1 = ϕn + h [af(tn, ϕn) + bf(tn−1, ϕn−1)] . (A.17)

Find the parameters a and b such that ϕn+1 agrees with z(tn+1) to second order in
h, that is, so the truncation error is O(h3). Equation (A.17) is called the
SECOND-ORDER ADAMS-BASHFORTH METHOD.

+ / +
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Figure A.9: In the first stage of a second-
order Runge-Kutta step (left), we compute
the slope f(t, z) and extrapolate the
solution to the midpoint t + h; in the
second stage (right), we compute the
slope of our approximate midpoint
solution f(t + h/2, zmp) (left) and use this
slope to extend the solution across the
interval [t, t + h].

A higher-order method stars with using forward Euler to take a step to
the midpoint of the interval (Fig.A.9, left),

zmp

(
t +

h
2

)
= z(t) +

h
2

f[t, z(t)]. (A.18)

Here zmp is our estimate of the solution at t + h/2. We then compute the
derivative f at t + h/2, zmp, and use this corrected value of f to take a step
across the entire interval (Fig. A.9, right):

z(t + h) = z(t) + hf
(

t +
h
2
, zmp

)
. (A.19)

One can show that equations (A.18) and (A.19), which are known as the
SECOND-ORDER RUNGE-KUTTA method, yield a numerical estimate z(t+h)
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that agrees with the actual solution to O(h3). When integrating over
an interval T and taking T/h steps, the solution then has a global error
∼ O(h2). Reducing the stepsize by a factor of 2 reduces the integration
error by a factor of 4.

Fourth-order Runge-Kutta

An even better method is the classic FOURTH-ORDER RUNGE-KUTTA algo-
rithm. In this method, the integration of z from t to t + h is done in four
steps, as illustrated in Fig. A.10.

Figure A.10: Stages of the fourth-order
Runge-Kutta method.
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1. A forward Euler step with slope k1 is taken to the midpoint t + h/2
and the solution estimated there (Fig. A.10), just as in the second-order
method.

2. This solution at the midpoint is used to make a second estimate of the
slope k2 = f(t+ h/2, z+ k1h/2). Using k2, we take a new step from t just
to the midpoint t + h/2 again (Fig. A.10).

3. A new value of the slope f at the midpoint is then computed: k3 =

f(t + h/2, z + k2h/2). Using k3, we then step across the full interval,
from t to t + h (Fig. A.10).

4. The slope k4 = f(t + h, z + hk3) at the endpoint t + h is then computed.
The full solution z(t + h) is then constructed from a weighted sum of
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the ki,

z(t + h) ≈ z(t) +
h
6
(k1 + 2k2 + 2k3 + k4) , (A.20)

with

k1 = f(t, z(t))

k2 = f
(

t +
h
2
, z(t) +

h
2

k1

)
k3 = f

(
t +

h
2
, z(t) +

h
2

k2

)
k4 = f (t + h, z(t) + hk3) .

Notice that the ki are not independent of one another: each one de-
pends on the intermediate value of z computed in the previous step. The
fourth-order Runge-Kutta scheme “sniffs” the behavior of f(t, z) over the
interval (t, t + h) and constructs a weighted approximation for dz/dt.
One can show that this method produces solutions with a global trunca-
tion error ∼ O(h4). That is, reducing the stepsize by a factor of 2 should
reduce the error by a factor 24 = 16.

The fourth-order Runge-Kutta scheme is a good general-purpose basic
algorithm for integrating systems of ordinary differential equations. It
has several limitations, however, three of which we’ll discuss here. First,
although the truncation error is ∼ O(h4), we have no way of knowing
a priori the size of the error. Integrators with ADAPTIVE STEPSIZES use
Runge-Kutta steps with different orders to estimate the size of the error
and adjust h to maintain the accuracy to some desired tolerance. Second,
the method doesn’t know anything about underlying symmetries in the
systems of ODEs. SYMPLECTIC INTEGRATORS are constructed so that errors
in position and momentum will tend to offset when computing the total
energy, so that conservation of energy is maintained to high accuracy.
Finally, the methods we in this section are EXPLICIT: the solution is ad-
vanced using an explicit formula in terms of the current values of t, z.
For systems with a large dynamical range (e.g., the difference between
the dynamical time and Kelvin-Helmholtz time in a star), the steps must
be kept quite small, perhaps prohibitively so, to avoid the numerical
solution diverging exponentially.

A.4 Cubic splines

The final commonplace numerical task we’ll discuss is interpolation of
values in a table of data. In stellar physics, this is often done for opaci-
ties or equation of state: one computes, or measures, the opacity under
a limited set of composition, temperature, and density and tabulates
these values. From this table, we then interpolate to obtain values of the
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opacity at conditions that lie between table entries. Interpolation us-
ing polynomials is discussed in Box A.1; in this section we’ll illustrate a
commonly used interpolation method, cubic splines.

Through any 4 points (xi, yi)i=0,...,3 we can fit a unique cubic polyno-
mial y = p3(x) (eq. [A.6]). Alternatively, we can fit a cubic polynomial
between two points (xi, yi) and (xi+1, yi+1) if we also specify the first
derivatives ki and ki+1 at xi, xi+1: with mi = (yi+1 − yi)/(xi+1 − xi) defined
as the mean slope across the interval, the cubic polynomial is

qi(x) = yi
xi+1 − x
xi+1 − xi

+ yi+1
x− xi

xi+1 − xi
+

(x− xi)(xi+1 − x)
xi+1 − xi

×
[

xi+1 − x
xi+1 − xi

(ki − mi)−
x− xi

xi+1 − xi
(ki+1 − mi)

]
. (A.21)

An example of a cubic between (x0, y0) and (x1, y1) with k0 = 0 and
various k1 is shown in Fig. A.11.

Figure A.11: Cubic polynomials between
points (x0, y0) and (x1, y1); the slope at x0
is k0 = 0, and the slope k1 is varied (red
dotted lines).

E X E R C I S E A . 4 — Verify that qi(xi) = yi and qi(xi+1) = yi+1 in eq. (A.21); also
verify that q′i (xi) = ki and q′i (xi+1) = ki+1.

Now suppose we have a sequence of N + 1 points x0, x1, . . . , xN with
data values y0, y1, . . . , yN. On each interval [xi, xi+1] we can construct
a spline qi, subject to the requirement that the splines and their first
derivatives are continuous at the interior points. As an example, we
take one of the curves from Fig. A.11 and cut it into two intervals. We
then clamp the derivatives at the endpoints—k0 and k2—and allow the
first derivative at the interior point, k1, to vary, with the requirement
that the first derivative is continuous at that point (Fig. A.12). The dark
curve shows the case where the first derivative is fixed to the value from
original spline shown in Fig. A.11.

Figure A.12: Two splines spanning [x0, x1]

and [x1, x2], with the slope at the inner
point, k2, is allowed to vary.

As the slope k1 is varied, the splines to left and right become more
tortuous. The second derivative of the spline characterizes this tight
bending. In Fig. A.13 we plot the second derivative for three cases: one
where k1 is fixed to the value from the original spline (solid line), and
two with k1 less than (dashed line) and greater than (dotted line) this
value. Note that in general the second derivative is not continuous at x1.
In contrast, the original, least contorted, spline does have a continuous
second derivative.

(
)

Figure A.13: Second derivatives of our
spline functions.

This motivates constructing a smooth curve by requiring that both
the first and second derivatives be continuous at the junction points
x1, . . . , xN−1. Let’s check if this gives us enough conditions. For N + 1
points x0, x1, . . . , xN with data values y0, y1, . . . , yN, there are N splines:
q0(x) on x0 ≤ x ≤ x1, q1(x) on x1 ≤ x ≤ xn, and so on to qN−1(x) on
xN−1 ≤ x ≤ xN. Each spline has 4 free parameters, so we have a total
of 4N parameters. To solve for these parameters, we have the following
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conditions:

qi(xi) = yi, i = 0, . . . ,N− 1 (N conditions)

qi(xi+1) = yi+1, i = 0, . . . ,N− 1 (N conditions)

q′i(xi) = q′i−1(xi), i = 1, . . . ,N− 1 (N− 1 conditions)

q′′i (xi) = q′′i−1(xi), i = 1, . . . ,N− 1 (N− 1 conditions).

Our format of the spline, eq. (A.21), automatically satisfies the first two of
these. Adding in the continuity of the first and second derivatives brings
us to a total of 4N − 2 equations and leaves us with two free parameters,
namely k0 and kN, the derivatives at the endpoints. We could specify the
slopes at the ends (known as a CLAMPED SPLINE), but we usually don’t
have any way of knowing them a priori. A popular choice is to set the
second derivative at x0 and xN to zero (known as a NATURAL spline). A third choice is the NOT-A-KNOT condi-

tion, in which we also require the third
derivative at x1 and xN−1 to be continu-
ous.

Let’s consider the case of a natural spline. Taking the second deriva-
tive of eq. (A.21) and evaluating at x = xi and x = xi+1 gives

q′′i (xi) = − 2
xi+1 − xi

[2ki + ki+1 − 3mi] ; (A.22)

q′′i (xi+1) =
2

xi+1 − xi
[ki + 2ki+1 − 3mi] . (A.23)

Defining ∆i = (xi+1−xi)
−1 and equating second derivatives at the interior

points xi, i = 1, . . . ,N − 1 then yields the following N − 1 equations for
the ki, i = 1, . . . ,N− 1:

∆i−1ki−1 + 2 (∆i−1 +∆i) ki +∆iki+1 = 3 (mi−1∆i−1 + mi∆i) (A.24)

Setting the second derivatives to zero at x0, xN gives the additional equa-
tions

2k0 + k1 = 3m0 (A.25)

kN−1 + 2kN = 3mN−1. (A.26)

This system of equations is termed a TRIDIAGONAL system because i con-
tains only ki−1, ki, and ki+1. It can be efficiently solved with two iterations
over the equations (see Box A.3). After solving for ki, if we then wish to
interpolate a value y(x), we simply need to find i such that xi < x < xi+1

and then insert xi,i+1, yi,i+1, and ki,i+1 into equation (A.21) to interpolate
y(x).

0.0 0.5 1.0

0.4
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0.0

0.2
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Figure A.14: Spline fit (dotted curve) to
the function (solid curve) cos(2πx)/2
using 5 evenly spaced points.

Fig. A.14 illustrates a spline for the function cos(2πx)/2 using just
5 points. The largest deviation is at the ends where our imposition of
a vanishing second derivative bows the spline (dotted curve) upwards
from the true function (solid curve).
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Box A.3 Solving a tridiagonal system

The N+ 1 equations (A.25)–(A.26) for the N+ 1 ki can be written
as the matrix equation

b0 c0

a1 b1 c1
. . . . . . . . .

ai bi ci
. . . . . . . . .

aN−1 bN−1 cN−1

aN bN





k0

k1
...
ki
...

kN−1

kN


=



d0

d1
...
di
...

dN−1

dN


,

with ai = ∆i−1, bi = 2(∆i−1 +∆i), ci = ∆i, and di = 3(mi−1∆i−1 +

mi∆i), for i = 1, . . . ,N − 1. At the ends, b0 = bN = 2, c0 = aN =

1, d0 = 3m0, and dN = 3mN−1. This TRIDIAGONAL matrix equation
can be efficiently solved as follows.

1. Divide row 0 by b0 so that it becomes

0
[

1 c′0 0 . . . 0 d′0
]

with c′0 = c0/b0 and d′0 = d0/b0.

2. Now we zero out the ai as follows. Assume that we’ve done
this for row i − 1 and that we already divided row i − 1 by bi−1,
so that its diagonal element is 1. Thus rows i− 1 and i look like

i−1

i

[
. . . 0 1 c′i−1 0 . . . . . . d′i−1
. . . 0 ai bi ci 0 . . . di

]

We then multiply row i− 1 by ai and subtract it from row i. This
eliminates ai:

i−1

i

[
. . . 0 1 c′i−1 0 . . . . . . d′i−1
. . . 0 0 bi − aic′i−1 ci 0 . . . di − aid′i−1

]

We then divide row i by bi − aic′i−1, giving us

i−1

i

[
. . . 0 1 c′i−1 0 . . . . . . d′i−1
. . . 0 0 1 c′i 0 . . . d′i

]

with
c′i =

ci

bi − aic′i−1
, d′i =

di − aid′i−1
bi − aic′i−1

.
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Box A.3 continued

We then repeat this with row i + 1 and march down the rows;
this transforms the matrix equation into

1 c′0
1 c′1

1 c′2
. . . . . .

1 c′i
. . . . . .

1 c′N−1
1





k0

k1

k2
...
ki
...

kN−1

kN


=



d′0
d′1
d′2
...
d′i
...

d′N−1
d′N


.

3. We now set kN = d′N and then, starting with row N−1, we work
backwards zeroing out the c′i : if row i and i + 1 are

i

i+1

[
. . . 0 1 c′i 0 . . . . . . d′i
. . . 0 0 1 0 0 . . . ki+1

]

then we multiply row i+1 by c′i and subtract it from row i to ob-
tain

i

i+1

[
. . . 0 1 0 0 . . . . . . d′i − c′iki+1

. . . 0 0 1 0 0 . . . ki+1

]
;

we then read off ki = d′i − c′ik′i+1.
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