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Preface

These notes were written while teaching (and revamping) a one-
semester introductory astronomy course, “Planets and Telescopes”
at Michigan State University during 2015, 2016, and 2017. The back-
ground required was introductory calculus and first-year physics.
The reason for the odd juxtaposition of topics—planets and telescopes—
is that the course was created from the merger of two undergraduate
courses, one of which was a laboratory course. During 2015 and 2016,
Prof. Laura Chomiuk and I co-taught the course, with Laura han-
dling the laboratory component and I the lecture. In 2017 the course
became fully merged under one instructor with a graduate teaching
assistant and undergraduate learning assistants helping to run the
laboratory portion. These notes comprise the lecture materials for the
course.

As described in the white paper detailing the course revisions1, 1 Edward F. Brown, Laura Chomiuk,
Laura Shishkovsky, and Andrew
Bundas. Development of a sophomore
level astronomy course on planets
and telescopes. White paper detailing
revisions to AST 208, MSU, 2015. URL
https://www.authorea.com/19544/

7GTRKXg6i69rNPihL7S99g

the astronomy group at MSU set out learning outcomes for the un-
dergraduate astronomy program that included an increased empha-
sis on analysis and interpretation of data. In response to these goals,
the revised course “Planets and Telescopes” uses “real” data and ob-
servatory archives; introduces rudimentary data analysis in both the
lecture and lab components; and encourages collaborative work via a
flipped classroom model.

In the first iteration of the course we used Lissauer and de Pater2 2 Jack J. Lissauer and Imke de Pater.
Fundamental Planetary Science: Physics,
Chemistry and Habitability. Cambridge
University Press, 2013

and Bennett et al.3 as primary texts. We found, however, that we

3 Jeffrey O. Bennett, Megan O. Donahue,
Nicholas Schneider, and Mark Voit. The
Cosmic Perspective. Addison-Wesley, 7th
edition, 2013

needed to spend more time on fundamentals of astronomy, and so
we subsequently switched to Ryden and Peterson4 and Taylor5 as

4 Barbara Ryden and Bradley M. Pe-
terson. Foundations of Astrophysics.
Addison-Wesley, 2010

5 John R. Taylor. An Introduction to Error
Analysis. University Science Books,
Sausalito, CA, 2nd edition, 1997

primary texts and increased the amount of time spent on basics of
astronomical observation and statistical analysis. In the last version
of the course I taught (2017), about three weeks were spent covering
the material in Appendix C, “Probability and Statistics”. This was
done between Chapter 2, “Light and Telescopes” and Chapter 4,
“Detection of Exoplanets”. This ordering was driven by the desire to
keep the lectures and labs synchronized as much as possible.

This being an introductory course, we often encountered students
who were switching majors and needed a refresher on mathematics,

https://www.authorea.com/19544/7GTRKXg6i69rNPihL7S99g
https://www.authorea.com/19544/7GTRKXg6i69rNPihL7S99g
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particularly trigonometry. I therefore added a mathematics review in
Appendix B.

The text layout uses the tufte-book (https://tufte-latex.
github.io/tufte-latex/) LATEX class: the main feature is a large
margin in which the students can take notes; this margin also holds
small figures and sidenotes. Exercises are embedded throughout
the text. These range from “reading exercises” to longer, more chal-
lenging problems. Because the exercises are embedded with the
text, a list of exercises is provided in the frontmatter to help with
locating material. Some of the notes and exercises on statistics are
written in the form of Jupyter Notebooks; these are in the folder
statistics/notebooks. Their usage is indicated in the text with the
symbol ñ.

Finally, these notes were certainly not produced in a vacuum!
I am grateful for many conversations with, and critical feedback
from, Prof. Laura Chomiuk; graduate teaching assistants Laura
Shishkovsky and Alex Deibel; and undergraduate learning assis-
tants Edward Buie III, Andrew Bundas, Claire Kopenhafer, Pham
Nguyen, and Huei Sears.

These notes are being continuously revised; to refer to a
specific version of the notes, please use the eight-character stamp
labeled “git version” on the front page.

https://tufte-latex.github.io/tufte-latex/
https://tufte-latex.github.io/tufte-latex/
http://jupyter.org
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1
Coordinates: Specifying Locations on
the Sky

1.1 Declination and right ascension

To talk about events in the sky, we need to specify where they are
located. To specify where they are located, we need a point of refer-
ence. This is a bit tricky: we are riding on the Earth, which rotates
and orbits the Sun; the Sun orbits the Milky Way; the Milky Way
moves through the Local Group; and on top of all this the universe is
expanding.

The primary criterion for choosing a coordinate system is con-
venience. We want a system that is easy to use and that describes
the sky straightforwardly. As viewed from Earth, we appear to be
at the center of a great sphere, with celestial objects lying on its sur-
face. When describing locations on the Earth, we use two angles:
latitude, which measures the angle north or south from the equator;
and longitude, which measures the angle east or west from the prime
meridian. Likewise, to describe the apparent position of objects on
this celestial sphere, we also need two angles.

NCP

SCP

Z

celestial equator δ

Figure 1.1: The meridian (red) passing
through our zenith (Z). Our vantage
point is from the center of the sphere.
Also shown are the north celestial pole
(NCP), south celestial pole (SCP) and
the celestial equator (CE). The shaded
region are points below our horizon;
objects in that region are not visible
from our location. A star with negative
declination δ is shown as well.

First, let’s describe our measurement of position on the sky. The
local gravitational acceleration g specifies the local vertical;
this vertical extends upwards and meets the celestial sphere at our
zenith. Our horizon is then defined by points that lie 90◦ from
this zenith, measured along a great circle passing through the zenith.
The zeniths above the north and south poles define the north and

south celestial poles. A great circle connecting the celestial poles
and our zenith defines our meridian (see Fig. 1.1). As the Earth
rotates, celestial objects appear to move westward on circles about the
celestial poles.

Midway between the north and south celestial poles lies the celes-
tial equator. For any star, you specify its declination δ as the angle
north (positive) or south (negative) of the celestial equator along that
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star’s meridian. For example, Betelgeuse, the red star in the shoulder
of Orion, has a declination δ = 7◦ 24′ 25′′. Polaris, the North star, has
δ = 89◦ 15′ 51′′.Declination is quoted in degrees (◦),

arcminutes (′), and arcseconds (′′).
There are 60 arcminutes in 1 degree and
60 arcseconds in 1 arcminute. E X E R C I S E 1 . 1 — How far above our southern horizon will Betelgeuse

be when it crosses our meridian? Our latitude is 42◦ 43′ 25′′N.
Several of the exercises in this chapter
refer to the night sky as viewed from
mid-Michigan in late January.

Declination measures how far north or south of the celestial equa-
tor a given object lies. To specify an east-west location, we need an-
other reference point. Because of the Earth’s rotation, we can’t use a
point on Earth, such as the Greenwich observatory (located on the 0◦

of longitude). We can, however, use the Earth’s motion around the
Sun: as the Earth moves around the Sun, the Sun appears to move
eastwards relative to the fixed stars. This path the Sun takes around
the celestial sphere is known as the ecliptic, and the constellations
that lie along the ecliptic are the zodiac. Because the Earth’s rota-
tional axis is tilted at an angle of 23◦ 16′ with respect to its orbital
axis, the Sun’s declination varies over the course of a year.

Figure 1.2: As Earth orbits the Sun,
the Sun’s declination traces out a path
along the celestial sphere known as the
ecliptic. Over the course of a year, the
Sun appears to move eastward, relative
to distant stars, along the ecliptic.

summer solstice

vernal equinox

autumnal equinox

winter solstice

The Sun reaches its minimum declination, −23◦ 16′, when it ap-
pears to lie in the direction of Sagittarius at the winter solstice.
One quarter orbit later, the Sun crosses the celestial equator; at this
point the Sun is in the direction of Pisces at the vernal equinox.
Another quarter orbit brings the Sun in the direction of Gemini with
declination 23◦ 16′; this is the summer solstice. A further quar-
ter orbit, and the Sun crosses the celestial equator in the direction of
Virgo at the autumnal equinox.

The ecliptic thus intersects the celestial equator at two points
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(Fig. 1.2), the vernal and autumnal equinoxes. We usually associate
the equinoxes with a specific time of year, but they actually define
unique directions on the sky. We can therefore define our second
angular coordinate, right ascension, as the angle between an ob-
jects’ meridian and the vernal equinox, measured eastwards along
the celestial equator.

VE
RA0h

12h

18h
6h

eclip
tic

δ

NCP

Figure 1.3: The right ascension (RA)
and declination (δ) of a celestial object.

Rather than specify the right ascension by degrees, astronomers
instead quote it in terms of hours (and minutes and seconds). The
vernal equinox is therefore at RA = 00h 00m 00s and the autumnal
equinox is at RA = 12h 00m 00s.

E X E R C I S E 1 . 2 — Estimate the Sun’s current right ascension. Indicate
in Fig. 1.3 the approximate current location of the Sun.

E X E R C I S E 1 . 3 — You would like to observe some stars tonight. Pick a
time when you would like to stargaze. It is hard to see objects that are close
to the horizon, so choose a range of angles about your zenith to observe. For
example, you might restrict your telescope to not point more than 60◦ away
from the zenith. Using these constraints, find a range of right ascensions and
declinations that you could observe. Find some celestial objects that satisfy
these criteria.

A note about directions when looking up at the sky: we’ve
drawn our coordinates from the perspective of someone outside the
celestial sphere; our perspective, however, is from the center. When
we look up at the sky, if we face south, so that the direction north-
wards is at the top of our field of view, then the easterly direction is
to our left. Objects of larger right ascension are therefore to our left as
well.

1.2 Precession

As we noted above, at the summer solstice, the Sun is in the direc-
tion of Gemini. On the solstice, the Sun will appear to be directly
overhead at a latitude of 23◦ 16′N, which is known as the Tropic of

Cancer. Why isn’t it called the Tropic of Gemini?
The answer is that the Earth’s rotation axis is not fixed; it pre-

cesses. The north and south celestial poles trace a circle on the sky
relative to distant stars over a 26 000 yr period. The causes the direc-
tion of the equinoxes to move westward along the ecliptic on that
timescale. There are 13 constellations, the zodiac, around the eclip-
tic; in the last two millennia the direction of the summer solstice has
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shifted one constellation over, from Cancer to Gemini. Likewise, the
winter solstice used to be in the direction of Capricorn; now it is in
the direction of Sagittarius.

As a practical matter, this means that the coordinates of right as-
cension and declination, which are based on the direction of the
Earth’s rotation axis, slowly change. To account for this, when giv-
ing the coordinates for an object astronomers specify an epoch—a
reference time to which the right ascension and declination refer.
The current epoch is J2000, which refers to roughly noon UTC on 1

January 2000.

E X E R C I S E 1 . 4 — Brainstorm some possible coordinate systems, and
describe their advantages and disadvantages in comparison to right
ascension and declination.

1.3 Keeping time

Our local noon is when the Sun crosses our meridian1. The time1 The local noon is usually not at
12:00pm: our time zones are only to
the nearest hour, and there is an adjust-
ment for daylight savings time.

between two successive noons is one solar day, which we divide
into 24 hours. This is slightly longer than the time for the earth to
complete one rotation, however: because of the Earth’s motion about
the Sun, the position of the Sun shifts by about one degree over the
course of a day, and the Earth must rotate that amount in addition to
one full rotation before the next noon (Fig. 1.4).

360°
365.24

noon
noon + 1 d

Figure 1.4: The movement of the Earth
from noon to noon. The arrows indicate
the direction towards the Sun.

There are 365.24 solar days between successive solar crossings
of the vernal equinox, which defines a tropical year. Over the
course of this year, the extra rotation on each solar day adds up to
one complete rotation of the Earth. The Earth rotates 366.24 times in
one tropical year, and therefore the rotation period of the Earth is

365.24
366.24

× 24 hr = 23h 56m 04s.

In fact, the tropical year is slightly shorter, by about 20 min = 1 yr/26 000
because of the precession of the Earth’s axis.

Our time—hours and minutes—is tied to the position of the Sun,
which is convenient for daily activity but not so convenient if we
want to know when a particular star is observable. Instead of mark-
ing when the Sun crosses our meridian, we define our local side-
real time relative to our meridian crossing the vernal equinox.
Because we also define right ascension relative to the vernal equinox,
objects with a right ascension near that of the sidereal time will be
high in the sky.

To compute our local sidereal time, first determine the right ascen-
sion of the Sun (Exercise 1.2); this will then fix the offset between the
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local sidereal time and the local noon in UTC. We can then compute
our offset for local noon based on our longitude.

E X E R C I S E 1 . 5 — Local noon at 0◦ longitude corresponds to 12:00 UTC.
Given that our longitude is 84◦ 28′ 33′′W, what is our local noontime in UTC.
What local time would this correspond to today? From this and your
estimate of the Sun’s current hour angle, what is the current sidereal time?

1.4 Parallax

The motion of the Earth around the Sun does cause a small shift in
the apparent angular position of a star, a phenomena known as par-
allax. This effect is exploited to determine the distance to nearby
stars.

1 AU

d

ϖ

Figure 1.5: The parallax angle v of a
star induced by Earth’s motion around
the Sun.The angular shift, v, is related (see Fig. 1.5) to the radius of the

Earth’s orbit, 1 au, and the distance to the star d via

1 au
d

= tan v ≈ v.

When v is expressed in arcseconds, this gives

d =
206 265 au

v/1′′
= 1 pc

(
1′′

v

)
, (1.1)

which defines the parsec. In CGS units 1 pc = 3.086 × 1018 cm,
which is a bit over 3 light-years.

1.5 Angular distances between nearby objects

From our perspective, distant celestial objects appear to lie on the
surface of a great sphere with Earth at the center. Objects on this
sphere appear near to one another if the angle between them is
small—regardless of their true, physical, separation. The question,
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then, is how to compute the angular distance between two points
with RAs η1 ≈ η2 and declinations δ1 ≈ δ2, as shown in Fig. 1.6.

x

z

y

η
1

η
2

δ
2

δ
1

θ
1 2

Figure 1.6: Two locations on the sphere
separated by a distance θ.

If we imagine lying on beach near the equator and staring up
at the zenith, then we can also imagine overlaying a grid of right
ascension and declination coordinates between two nearby stars, as
depicted in Fig. 1.7.

N

E

η1 η2

δ
2

δ
1

1

2

Figure 1.7: Angular distance between
two nearby points near the celestial
equator.

This certainly looks cartesian, and we would be tempted to use the
Pythagorean formula,

θ =
√
(η1 − η2)2 + (δ1 − δ2)2

for the angular distance with the right ascensions and declinations
converted to radians. This won’t work, however, as we move away
from the equator because the coordinate lines for right ascension
converge as we move toward the celestial poles (Fig. 1.8).

η
1

δa

δb

η
2

cosδb (η1– η2)

cosδa (η1– η2)

Figure 1.8: The distance between two
RAs η1 and η2, measured along a circle
of radius cos δ.

If we slice the celestial sphere parallel to the equator, then the
separation between the two meridians η1 and η2 is proportional to
the radius of that slice, which is2 just cos δ. The spacing in the east-

2 Notice our coordinates differ from the
usual spherical polar coordinates: δ is
measured from the x-y plane, not from
the z-axis.

west direction in Figure 1.8 is thus ≈ cos δ(η1 − η2, where δ = (δ1 +

δ2)/2, and the angular distance θ between two nearby points is

θ ≈
√

cos2 δ (η1 − η2)
2 + (δ1 − δ2)

2. (1.2)

This looks like the pythagorean formula; the factor of cos δ accounts
for the lines of constant RA converging as they approach the poles.
Box 1.1 contains a derivation of this formula.

E X E R C I S E 1 . 6 — Atlas A and Electra are two bright stars that lie on
the east and west sides of the Pleiades star cluster. Atlas has right ascension
RA = 03h 49m 09.7s and declination δ = 24◦ 03′ 12′′; Electra has
RA = 03h 44m 52.5s and δ = 24◦ 06′ 48′′. Find the angular distance between
these stars. If the distance to the Pleiades is 136 pc, what is the projected
distance between these stars?

Box 1.1 Computation of the angular separation of points on
the sky

To compute the angular distance between two points on the
sky, we draw two vectors a, b to these points and use

cos θ =
a · b
|a||b| .

Since both a and b lie on the unit sphere, |a| = |b| = 1; the
(x, y, z) components of these vectors are

(cos δ1 cos η1, cos δ1 sin η1, sin δ1)
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Box 1.1 continued

and
(cos δ2 cos η2, cos δ2 sin η2, sin δ2) ,

respectively. Taking the dot product,

cos θ = cos δ1 cos δ2 (cos η1 cos η2 + sin η1 sin η2) + sin δ1 sin δ2

= cos δ1 cos δ2 cos (η1 − η2) + sin δ1 sin δ2. (1.3)

We make heavy use of the sine and cosine addition formula:
cos(x + y) = cos x cos y − sin x sin y, and sin(−y) = − sin y,
cos(−x) = cos(x). See Appendix B for a refresher.

We are usually interested in the angular distance between
two nearby sources. We can therefore use the expansion rule,

cos x ≈ 1− x2

2
, x � 1

on θ and η1 − η2 in equation (1.3):

1− θ2

2
≈ cos δ1 cos δ2

[
1− (η1 − η2)

2

2

]
+ sin δ1 sin δ2

= cos(δ1 − δ2)− cos δ1 cos δ2
(η1 − η2)

2

2
.

We can now expand cos(δ1 − δ2), cancel common factors and
multiply by 2,

θ2 ≈ (δ1 − δ2)
2 + cos δ1 cos δ2(η1 − η2)

2.

Next, we write δ1 = δ + ∆, δ2 = δ − ∆, where δ = (δ1 + δ2)/2
and ∆ = (δ1 − δ2)/2 are the average and difference of the two
declinations. Inserting these into cos δ1 cos δ2 and expanding
gives

cos δ1 cos δ2 = cos2 δ cos2 ∆− sin2 δ sin2 ∆.

Expanding cos ∆ ≈ 1− ∆2/2 and sin ∆ ≈ ∆ and keeping terms
to O(∆2) gives

cos δ1 cos δ2 ≈ cos2 δ− ∆2

so to lowest order in (δ1 − δ2) and (η1 − η2),

θ2 ≈ (δ1 − δ2)
2 + cos2 δ(η2

1 − η2
2)

which is eq. (1.2).





2
Light and Telescopes

What do we actually measure when we observe a star? A star emits
photons with a range of wavelengths over the electromagnetic spec-
trum. The total emitted energy per second over all wavelengths
is the star’s luminosity. For example, the solar luminosity is
L� = 3.86 × 1026 W. A telescope collects only a small fraction of
this power: if a telescope has a collecting area A and is a distance d
from the star, then it intercepts a fraction A/(4πd2) of the star’s light.
We call F = L/(4πd2) the flux. The units of flux are W m−2.

More specifically, F is the bolometric flux, that is, the flux over
all wavelengths. Of course, no telescope detects all wavelengths of
light. Many wavebands, e.g., UV, X-ray, and infrared, do not even
penetrate the Earth’s atmosphere. Moreover, detectors (photographic
plates or CCD’s) are not uniformly efficient at converting photons
into a signal.

In order to have a common standard, (optical) astronomers use
filters, which transmit light only in certain wavelength bands. In
this context, the flux refers to the power per area carried by light with
wavelengths in that band. For historical reasons, astronomers define
magnitudes, which are a relative logarithmic1 scale for fluxes. The 1 In these notes, lg ≡ log10 and ln ≡

loge.difference in magnitude between two stars is defined by

m1 −m2 = −2.5 lg
(

F1

F2

)
(2.1)

where the magnitudes m1, m2 and fluxes F1, F2 refer to light that has
been passed through a particular filter.

Table 2.1: Selected common filters
about the range of visible wavelengths
[Binney and Merrifield, 1998]. Here
“FWHM” means “Full width at half-
maximum.”

Filter λeff/nm FWHM/nm

U 365 66

B 445 94

V 551 88

R 658 138

Note that magnitudes are defined as the ratio of two fluxes. This
is very useful when comparing the relative brightness of two stars;
unfortunately it makes conversion to a physical unit (W m−2 nm−1)
non-trivial. The magnitude scales are typically defined so that the
star Vega has U = B = V = . . . = 0.2 2 But for historical reasons, V(Vega) =

+0.04.
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E X E R C I S E 2 . 1 —

1. Suppose we have two identical stars, A and B. Star A is twice as far away
as star B. What is mA −mB?

2. Suppose a star’s luminosity changes by a tiny amount δ. What is the
corresponding change in that stars’ magnitude?

If we take a ratio of two magnitudes using different fil-
ters from a single star, then we have a rough measure of the
star’s color. This ratio is called a color index. For example,

B−V ≡ mB −mV = −2.5 lg
FB
FV

gives a measure for how blue the star’s spectrum appears.

E X E R C I S E 2 . 2 — Which has the larger B−V index: a red star, like
Betelgeuse, or a blue-white star, like Rigel?

Two stars with the same apparent brightness may have very
different intrinsic brightnesses: one may be very dim and nearby, the
other very luminous and faraway. To compare intrinsic brightness,
we need to correct for the distance to the star3. We define the dis-3 This assumes we know the distance,

which can be difficult!
tance modulus as the difference in magnitude between a given star
and the magnitude it would have if it were at a distance of 10 pc:

DM ≡ m−m(10 pc) = −2.5 lg
[

L
4πd2

4π(10 pc)2

L

]
= −2.5 lg

(
10 pc

d

)2

= 5 lg
(

d
pc

)
− 5.

The magnitude that the star would have if it were at 10 pc distance is
called its absolute magnitude, M ≡ m−DM.

2.1 Light is a wave
cλ

E

Figure 2.1: Schematic of the electric
force (blue arrows) for a wave traveling
towards us at speed c with wavelength
λ.

Charges feel an electric force. When we detect light, what happens
at the atomic level is that the charges in our detector (antenna, CCD,
eye) feel an electric force that oscillates with frequency ν. If we could
set up a grid of detectors and measure the electric force per unit
charge, we would notice a sinusoidal pattern traveling at speed44 This velocity is exact; the meter is

defined in terms of the speed of light. c = 299 792 458 m/s with a wavelength λ = c/ν. We call this force
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per charge the electric field E(x, t). The intensity of the light at our
detector is proportional to |E|2.

In situations in which the wavelength is small (relative to the sys-
tem in question), light propagates along rays. The rule for propaga-
tion is known as Fermat’s principle: the path is that for which the
propagation time is minimized. To illustrate this, we shall use it to
derive the laws for reflection and refraction.

Consider light reflecting from a mirror as shown in the top panel
of Figure 2.2. The time for light to propagate from source to observer
is

τ =
1
c

[√
h2

s + x2 +
√

h2
o + (w− x)2

]
.

To minimize the path length, we compute dτ/dx and set it to zero,

0 =
dτ

dx
=

1
c

[
x√

h2
s + x2

− w− x√
h2

o + (w− x)2

]
=

1
c
[sin i− sin r] .

Hence the light travels such that i = r: the angles of incidence and
reflection are equal.

ri

w

hs

in1

n2 r

ho

x

d

h

w
x

Figure 2.2: Top: reflection of light from
a surface. Bottom: refraction of light as
it passes from a medium with index n1
into a medium with index n2.

For a second example, consider the passage of light from one
medium to another, as depicted in the bottom panel of Figure 2.2.
The interaction of matter with the oscillating electric field causes
the light to travel at a speed c/n, where n is called the index of

refraction and is a property of the material. For the situation in
Fig. 2.2, the propagation time is

τ =
n1

c

√
h2 + x2 +

n2

c

√
d2 + (w− x)2;

minimizing the propagation time with respect to x gives

0 =
n1

c
x√

h2 + x2
− n2

c
w− x√

d2 + (w− x)2
=

1
c
[n1 sin i− n2 sin r] .

This result, n1 sin i = n2 sin r, is also known as Snell’s law.

θ

H

�

θ

�

x

h

d

i

r

Figure 2.3: Change in angular size of an
object in water.

E X E R C I S E 2 . 3 — A small stick of length ` is placed on the bottom of
an empty swimming pool as shown in Fig. 2.3; when you look down on the
stick from a height H above the bottom of the pool, the stick subtends an
angle tan θ = `/H. The pool is then filled with water (n = 4/3) to a depth d.
Because of refraction, the stick will appear to subtend a different angle θ′.
Correct the right hand diagram of Fig. 2.3 to show how the light ray
propagates from the ends of the stick to your eye. Is θ′ larger or smaller than
θ—is the image of the stick magnified or reduced? For the case `� H, so
that θ � 1, use the small angle expansions to derive an expression θ′ = θM,
whereM depends on h, d, and n.
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2.2 Diffraction

A telescope makes an image by focusing the incoming rays of light
onto a detector. Suppose we are at a fixed point and the wave is
propagating past us. In general we would observe an electric field
amplitude of the form

E(t) = A0 cos (2πνt) + B0 sin (2πνt)

where ν = c/λ is the frequency. Let’s check this: in going from t = 0
to t = T = 1/ν, the period of the wave, the argument of the cosine
and sine goes from 0 to 2π, which is one oscillation. To find the net
intensity I from a number of waves, we sum the amplitudes to get
the net electric field E and then take the square |E|2.

Now imagine the electromagnetic wave incident on our telescope.
The source is very distant, so the wavefront (a surface of constant
phase) is a plane—think of sheets of paper moving downward onto
the telescope. To make an image, the telescope focuses the incident
radiation to a point on the detector. There is a limit, however, to
how sharply the image can be focused. Let’s look at a small angle θ

away from the axis. Then the wavefront is incident on the telescope
as shown in Figure 2.4. To keep the math tractable, we’ll make our
telescope opening one-dimensional and we’ll break it into a N + 1
little detectors spaced a distance d = D/N apart.

Figure 2.4: Schematic of a plane wave
incident at angle θ on a detector.

10 2 N

Nd sin θ

d

θ

Because of the angle, the light travels an extra distance d sin θ to
reach detector 1, 2d sin θ to reach detector 2, and so on. As a result, if
the phase at the first detector (number 0) is χ, the phase at detector
1 is χ + 2πd sin θ/λ, at detector 2, χ + 4πd sin θ/λ, and so on. When
we combine the signals from these detectors, the amplitude of the
electric field will have the form

E = A0

[
cos χ + cos

(
χ + 2π

d sin θ

λ

)
+ cos

(
χ + 2π

2d sin θ

λ

)
+
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+ cos
(

χ + 2π
3d sin θ

λ

)
+ . . . + cos

(
χ + 2π

Nd sin θ

λ

)]
+B0

[
sin χ + sin

(
χ + 2π

d sin θ

λ

)
+ . . . + sin

(
χ + 2π

Nd sin θ

λ

)]
.

When θ → 0, the amplitude goes to E → (N + 1) [A0 cos χ + B0 sin χ],
and so the brightness I(θ → 0) = |E|2 is a very large number. That’s
good: the light from the star is focused to a point. Now, how large
does θ have to be before E goes to zero?

To find this, let’s first set χ = 0 to keep things simple. There
are a number of ways to find the sum; a particularly easy way is
to recognize that this sum over cosines looks like adding up the x-
component of vectors, and the sum over the sines looks like adding
the y-component of vectors. We add the vectors by placing them
nose-to-tail as shown in Fig. 2.5. The net amplitude is then A0 times
the x-component of the red vector, plus B0 times the y-component of
the red vector. Clearly if we want both the sum over sines and over
cosines to vanish, we need the vectors to make a complete circle.

ϕ

ϕ

nϕ/2

Figure 2.5: Addition of a series of
vectors with a phase difference φ.

In this addition, each vector has length 1. If N + 1 is large, then
the circumference of the circle is approximately (N + 1) = 2πr. For
small φ = (2πd/λ) sin θ, the radius of the circle is r ≈ 1/φ. Hence the
condition for our vectors to sum to zero becomes

N + 1 =
2π

φ
=

2πλ

2πd sin θ

Now, we assume that N � 1, so that (N + 1)d ≈ Nd = D, the
diameter of our telescope’s aperture. Then, the brightness falls to
zero an angle

sin θ ≈ θ ≈ λ/D

away from the center of the star’s image.
The full form of the intensity as a function of angle from the beam

axis is,

I = I0

[
sin (πD/λ sin θ)

sin (πd/λ sin θ)

]2
. (2.2)

E X E R C I S E 2 . 4 — Write a Python function that computes eq. (2.2) for
different values of N and D/λ. Plot I/(I0n2) against θλ/D. Describe your
findings.

The wave nature of light places a limitation on the resolving

power of a telescope, defined as the angular separation for which
two point sources can be distinguished. Two point-like objects sepa-
rated by an angular distance . λ/D will have their images smeared
into one.
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E X E R C I S E 2 . 5 — What is the resolving power of the Hubble Space
Telescope (D = 2.4 m) and the Keck telescope (D = 10 m) at a wavelength
λ = 570 nm? Estimate the angular resolution of the human eye at that
wavelength. What is the resolving power of the Arecibo radio telescope
(D = 305 m) at a frequency of 3 GHz?

E X E R C I S E 2 . 6 — It is often claimed that some agencies have the
technological capability to read license plates from satellites. Evaluate this
claim: for a telescope in low-Earth orbit, how large an aperture would be
required to resolve the lettering on a license plate? Could Hubble (2.4 m
aperture) do this? Use your best guess the orbital altitude and letter size, but
justify your reasoning.

For ground-based telescopes, an even more severe limitation is the
refraction of light by the atmosphere. The atmosphere is turbulent,
and the swirling eddies contain variations in density that change the
refractive index and distort the wavefront. This distortion smears the
image over an angular scale that is typically larger than 1′′.

E X E R C I S E 2 . 7 — What is the angular size of a solar-sized star
(R� = 6.96× 105 km) at a distance of 1 pc? What is the angular size of Mars
(R♂ = 3 390 km) at a distance of 0.5 au? How would the difference in angular
size affect the appearance of these two objects?

In addition to distorting the wavefront, the air also

attenuates the brightness of the light. The amount of atten-
uation depends on the column, that is, the mass per unit area of air
along the line of sight, which in turn depends on the viewing angle
(Fig. 2.6).

Figure 2.6: Illustration of the greater
column of atmosphere (airmass) that
the light from a star an angle z from the
zenith must traverse.

Astronomers define the airmass m as a function of zenith angle z
by

air mass =

∫
ρ(r)d`∫
ρ(r)dr

where ` is along the line of sight to the star. For a planar atmosphere,
d` = dr/ cos z = sec z dr, and so the airmass is just sec z. The dim-
ming of the star is proportional to exp [−

∫
ρ(r)d`], and therefore the

magnitude of a star at zenith angle z varies as

m(z) = k sec z + c,

where k and c are constants. By measuring the apparent brightness
of the star at several different zenith angles, astronomers can empiri-
cally determine these constants.



3
Spectroscopy

3.1 Electromagnetic radiation is quantized

Electromagnetic radiation—light—is carried by massless particles
known as photons. Being massless, they travel at a speed c in all
frames. The energy of a photon depends on its frequency ν: Eν = hν.
Since ν = λ/c, we can also express the energy of a photon as Eλ =

hc/λ. When matter absorbs or emits radiant energy, it does so by
absorbing or emitting photons.

E X E R C I S E 3 . 1 — On a very dark night, the eye can make out stars
down to visual magnitude V ≈ 6. Given that the sun has V = −26.71 and
that the flux from the sun in V-band is approximately 103 W/m2, estimate
the radiant flux from this V = 6 star. If the V band photons have an average
λ = 550 nm, how many photons from this barely visible star enter your pupil
and strike your retina each second?

Suppose we shine a monochromatic (i.e., comprising a single
wavelength) beam of light at a tinted piece of glass (sunglasses,
for example). The light that emerges on the other side is the same
color—meaning it has the same wavelength—but is dimmer. What
are we to make of this? For the exiting light to be dimmer, some of
the photons must have been absorbed. But if the photons are indis-
tinguishable, why are only some absorbed? Once we have quantiza-
tion, we are forced to adopt a probabilistic viewpoint: each photon
has a certain probability of being absorbed.

3.2 The hydrogen atom

The electrons bound to an atom or molecule can only occupy states
having a discrete set of energies. For example, the electron in a hy-
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drogen atom only has energies

En = −13.6 eV× 1
n2 , (3.1)

where n > 0 is an integer known as the principal quantum number.
These energies are negative, relative to a free electron. For example, it
takes 13.6 eV to remove an electron in its ground state from the atom.

Because the electrons in an atom can only have certain energies,
the atom can only absorb or emit light at specific wavelengths, such
that the energy of the photon matches the difference in energy be-
tween two levels. For example, a hydrogen atom can absorb a photon
of energy

E1→2 = −13.6 eV
(

1
22 −

1
12

)
= 10.2 eV

corresponding to the energy required to move the electron from
n = 1 to n = 2.

The wavelengths that can be emitted or absorbed by a hydro-
gen atom at rest can be found by substituting E = hc/λ into equa-
tion (3.1):

λm→n = λ0

(
1
n2 −

1
m2

)−1
, (3.2)

where λ0 = 91.2 nm. The transitions to the lowest levels are named
after their discoverers: Lyman for m → 1, Balmer for m → 2, Paschen
for m → 3. A greek letter is used to denote the higher state: for ex-
ample Lyman α (abbr. Lyα) means 2 → 1, with λLyα = 121.6 nm. The
first line transition in the Balmer series is 3 → 2, and is designated
Hα: λHα = 656.3 nm. The first 50 lines for the Lyman (m→ 1), Balmer
(m → 2), and Paschen (m → 3) are shown in Fig. 3.1; note the 4 → 3
transition is outside the plot range.

Figure 3.1: Spectral lines of neutral
hydrogen.
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3.3 Diffraction Gratings

To look at the different wavelengths in the light from a source, we
use a diffraction grating, which is a series of fine, closely spaced lines
etched on a surface. When light is projected onto the grating, it is
reflected from the lines in all directions. Along a given direction, the
light from two adjacent lines will travel a slightly different distance:
if the spacing between lines is d, the extra distance traveled from a
neighboring line is d sin θ, where θ is the angle between the incident
and reflected rays. Because of this different path length, a distant de-
tector will in general receive waves of many different phases. When
the waves are added together, the peaks and troughs cancel, and the
result is that the summed wave is greatly reduced in amplitude.

There are, however, certain directions along which the intensity is
maximized. If the extra path length is a multiple of the wavelength
then all the rays reach the distant detector with the same phase, so
the intensity is bright. That is, at angles satisfying

d sin θ = mλ, (3.3)

bright spots are produced.This situation is depicted in Fig. 3.2 for
m = 1. For each line, the path length differs by one wavelength from
its neighbors; as a result, the rays along a direction θ (at the right of
the figure) are in phase. Since different wavelengths produce their
bright spots at different angles, the light is dispersed in wavelength,
producing a spectrum. A good home example of a grating is a com-
pact disk: the tracks on the disk act as the grating.

θ

d

d sin
θ

Figure 3.2: A diffraction grating.



18 planets and telescopes

E X E R C I S E 3 . 2 —

θ

You shine a red laser pointer (λ = 650 nm) onto a face-up CD, and observe
that two dots appear on a blank screen, as shown above. The laser beam is
vertical and the two dots that appear on the screen are at angles 23◦ and 52◦

from the vertical. There are no other dots appearing. From the information
given, calculate the spacing between the tracks on the CD. Suppose we then
shine a green laser pointer (λ = 530 nm) at the disk. At what angles would
dots appear?

For a telescope, there is an additional complication: we don’t have
a single source, but rather an image of the entire field of view. To
restrict our field of view, we overly our grating with a slit, as shown
in Figure 3.3. The width of the slit is matched to the seeing so that
if projects a line of light onto the diffraction grating. The dispersed
light thus makes a two dimensional image, with position along the
slit along one axis, and wavelength along the other axis.

E X E R C I S E 3 . 3 — The Goodman spectrograph on the SOAR telescope
has a grating with 400 lines mm−1. For the first order spectrum (m = 1), find
the dispersion dθ/dλ, in units of arcseconds per nanometer, at λ = 500 nm.

3.4 Absorption and emission lines

Now that we are taking spectra, what do we see? Suppose we look at
a tenuous cloud of hot gas, and there is no light source behind this
cloud. Because the gas is hot, collisions between atoms will excite
electrons into excited states. When these electrons make a transi-
tion to the ground state, a photon is emitted. Thus, when we take
a spectrum of the light from this cloud, we expect to see a series of
discrete, bright lines at those frequencies. This is an emission line

spectrum.
Emission lines are also produced in Earth’s atmosphere from a va-

riety of sources: for example collisions of molecues with cosmic rays
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di�raction grating

CCD

slit

stellar spectra

absorption lines

emission lines
from sky

position along slit

w
av

el
en

gt
h

Figure 3.3: Taking a spectrum of an
astronomical object.

and recombination of ions and electrons that had been photoionized
by sunlight.

Conversely, suppose we have gas that is backlit by a strong source
of photons—think of the atmosphere of a star. As the photons go
through the gas, some are absorbed. Thus, the spectrum is a continu-
ous blend of light, with darker lines corresponding to the absorption
in the atmosphere. This is an absorption line spectrum.

When a gas becomes sufficiently dense that it is opaque, meaning
that no light gets through it, then the surface emits a broad contin-
uous spectrum of light, with the flux peaking at a wavelength that
corresponds to the temperature of the gas. The hotter the gas, the
shorter the peak wavelength.

3.5 The Doppler Shift

In addition to telling us about the intrinsic properties of the medium
producing the spectrum—its temperature, density, and composition—
the spectrum can also tell us about its velocity. Because light has
wave-like behavior, it has properties in common with other waves
you are familiar with, such as sound. One property that is very use-
ful in astronomy is the Doppler effect: the wavelength changes
depending on the motion of the source along your line of sight. We’ll
take v positive for motion away from us.1 To give a concrete example, 1 Note that in physics texts, v is usually

taken as positive if the motion is to-
wards the observer. In that case, replace
v with −v in eq. (3.4) below.

suppose we have a source that is moving away from us with velocity
v, as shown in Fig. 3.4.
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vT

λ+vT

λ

Figure 3.4: The Doppler shift for a
source (red star) moving to the right.

If the source is emitting light with wavelength λ, then the period
(time between successive crests) is T = λ/c. In this time T, however,
the source has moved away from us a distance vT. The tail of the
wave is therefore not at a distance λ from the head, but rather at a
distance λ + vT. As a result, the wavelength we receive is not λ, but
rather

λ′ = λ + vT = λ +
v
c

λ = λ
(

1 +
v
c

)
. (3.4)

In deriving this equation, you may have noticed that the speed of
the light wave c is unaffected by the motion of the source. Unlike
other waves such as sound, a light wave always moves at a speed c
regardless of the motion of either the emitter or the receiver. With
light, only the relative speed of the source and observer matters in
the expression for the doppler shift.

There is one further modification to equation (3.4). A consequence
of c being a constant is that time passes at different rates for the
emitter and receiver. The period of the wave T is what is measured at
the source. The observer, however, measures that interval of time to
be T/

√
1− v2/c2. Since the wavelength is λ = cT, this means there is

an additional redshift to the wavelength as well.
When these changes are made, the formula for the wavelength

observed from a source moving at radial velocity v is

λobs = λsource

[
1 + v/c√
1− v2/c2

]
. (3.5)

In this equation, v is the velocity of the source along the line of sight.
For a source moving towards us, the observed wavelength is short-
ened; as a result, a line in the middle of the visible spectrum (yellow-
green) is shifted toward the blue. We call this a blueshift, irrespec-
tive of the actual wavelength of the light. For a source moving away
from us, a line in the yellow-green is shifted toward the red; we term
this a redshift.
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E X E R C I S E 3 . 4 — A radar detector used by law enforcement measures
speed by emitting a radar beam with frequency 22 GHz and measuring the
frequency of the reflected signal.

1. What is the wavelength λ of the radar beam?

2. If a motorist is going 40 m/s (about 89 miles/hour) away from the officer,
what is ∆λ = λmotorist − λofficer? What is ∆λ/λ?





4
Detection of Exoplanets

4.1 The Difficulty with Direct Detection

Suppose we want to observe exoplanets directly. Let’s first estimate
how far we have to look.

E X E R C I S E 4 . 1 — The density of stars in the solar neighborhood is
0.14 pc−3. Suppose 50% of the stars have planets, and we want a sample of
about 20 planetary systems. What would be the radius (in parsec) of the
volume containing this many systems? Given this radius, what is the average
distance to a star in this sample?

Next let’s estimate the difference in brightness between a planet
and its host star. We shall use our solar system as an example.

E X E R C I S E 4 . 2 — The Sun, which is at a distance of 1 au, has an
apparent V-band magnitude V� = −26.74. At its closest approach of
approximately 4 au, Jupiter has an apparent magnitude VX = −2.94.
Compute the ratio of fluxes in V-band, i.e., FX/F�, if both Jupiter and the
Sun were at the same distance.

Finally, we know that there is a limit to the angular resolution of a
telescope. This limit is imposed by both the atmospheric seeing and
the telescope optics. Let’s estimate how the angular separation of
planet and star compares with a fiducial angular resolution.

E X E R C I S E 4 . 3 — Jupiter’s mean distance from the Sun is 5.2 au.
Suppose we were to view the Sun-Jupiter system from the average distance
derived in exercise 4.1; what would be the angular separation between
Jupiter and the Sun? How does this compare with the atmospheric seeing
under good conditions?

As these exercises illustrate, imaging a planet directly is a daunt-
ing task. Astronomers have therefore resorted to indirect means, in
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which the host star is observed to vary due to the influence of the
planet’s gravitational force. This motivates a review of Kepler’s prob-
lem.

4.2 Planetary Orbits: Kepler

Suppose we have a exoplanet system with a planet p and a star s.
The vector from the star to the planet is rsp = rp − rs, and the force
that the star exerts on the planet is

Fsp = −
GMp Ms

|rsp|3
rsp. (4.1)

The planet exerts a force on the star Fps = −Fsp.
To make this problem more tractable, we shall put the origin of

our coordinate system at the center of mass, as shown in Fig. 4.1,

O

mp

ms

rp
rs

rsp = rp-rs

O

R

mp

ms

xp

xs

Figure 4.1: Center of mass in a star-
planet system.

R =
Msrs + Mprp

Ms + Mp
;

in this frame the star and planet have positions

xs = rs − R = −
Mp

Mp + Ms
rsp (4.2)

xp = rp − R =
Ms

Mp + Ms
rsp (4.3)

and hence accelerations

d2xs

dt2 = −
Mp

Mp + Ms

d2rsp

dt2

d2xp

dt2 =
Ms

Mp + Ms

d2rsp

dt2 .

If we substitute this acceleration into the equation of motion for
the planet,

Mp
d2xp

dt2 = Fsp,

and use eq. (4.1) for Fsp, we get the reduced equation of motion

d2rsp

dt2 = −G
Ms + Mp

|rsp|3
rsp. (4.4)

We recover this same equation if we substitute the accelerations into
the equation of motion for the star. Hence for a two body problem,
we only need to solve equation (4.4) for rsp(t) and then use equa-
tions (4.2) and (4.3) to compute the positions xs(t), xp(t) of the star
and planet.
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E X E R C I S E 4 . 4 — Locate the center of mass for the Sun-Jupiter system:

M�
MX

= 1047; r�X = 5.2 au.

The solution to equation (4.4) is an elliptical orbit (Fig. 4.2) with
the center-of-force at one focus of the ellipse. The period T depends
on the semi-major axis a of the ellipse,

T2 =
4π2

G(Ms + Mp)
a3. (4.5)

Suppose the orbit is circular, so that |rsp| = a is constant. Then by
combining equations (4.5) and (4.2) we can find the orbital speed of
the star,

vs =
Mp

Ms + Mp
× 2πa

T
=

[
GMp

a
Mp

Ms + Mp

]1/2
. (4.6)

This speed is detectable via doppler shift of the stellar absorption
lines.

f

a ea

Figure 4.2: Orbital elements for a body
moving in a gravitational potential
about a fixed center of force, indicated
by the yellow star.

E X E R C I S E 4 . 5 — Compute the orbital speed of the Sun for the
two-body Sun-Jupiter system;

M�
MX

= 1047; r�X = 5.2 au.

E X E R C I S E 4 . 6 — What is the wavelength shift induced by the motion
of the Sun, computed in exercise 4.5, for an absorption line with rest
wavelength 600 nm?

4.3 Transits

In § 3.5 we derived the doppler shift for motion along our line-
of-sight. In general, however, the orbit is not edge-on, but rather
inclined at an angle (Fig. 4.3). In this case the speed that is mea-
sured via doppler shift of stellar lines is vs sin i. Thus, our problem
becomes, given a measurement of period T and projected speed
K = vs sin i, what can we learn about the planet?

We can combine equations (4.5) and (4.6) into the form

M3
p sin3 i

(Ms + Mp)2 =
K3T
2πG

. (4.7)

The right-hand side is in terms of the observed quantities K and T,
and is therefore determined from observations. We expect Ms � Mp,
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Figure 4.3: Schematic of the inclination
of a planetary orbit to our line of sight.

i

and can usually estimate Ms from spectroscopy of the star. Even with
this information, we can only determine Mp sin i.

For systems with sufficiently large inclination, we will observe the
planet to transit the star, that is, to pass in front of the stellar disk.
From Fig. 4.4, ifaRs + Rp

i
to

observer

Figure 4.4: Schematic of a planetary
transit.

cos i <
Rs + Rp

a
,

then the light from the star will be partially blocked during some
part of the orbit.11 We are assuming that the star is

sufficiently far away that we can ignore
the angle subtended by the star.

E X E R C I S E 4 . 7 — For the Sun-Jupiter system (R� = 6.96× 105 km,
RX = 71 400 km, a = 5.2 au), what orbital inclination is required for an
observer in a distant planetary system to witness a transit?

What is the probability distribution of a star’s inclina-
tion? To derive this, let’s imagine each planet’s orbital angular mo-
mentum as a vector having unit length. We don’t care about whether,
from out perspective, the planet orbits counterclockwise or clockwise,
so we put all of the arrows with 0 ≤ i ≤ π/2, as shown in figure 4.5.

Now imagine a huge sample of planetary systems. If the orbits
are randomly distributed, then we expect the arrows to be evenly
distributed over our hemisphere; as a result, the probability of a
planet having inclination in (i, i + di) and azimuthal angle in (φ, φ +

dφ) is the ratio of the area of that little coordinate patch to the area of
the hemisphere,

p(i, φ)di dφ =
sin i di dφ

2π
.

Since we aren’t interested in the azimuthal angle, we can integrate
over φ to find the probability distribution for a planet to have a given
inclination, p(i) = sin i.
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i

di

sin i dφ

Figure 4.5: Schematic of the probability
of the orbital inclination lying within
(i, i + di) and (φ, φ + dφ).

E X E R C I S E 4 . 8 — From a solar-mass star you measure a periodic
doppler shift with T = 3 yr and K = 18 m s−1. What is the probability that
the planet has a mass > 2 MX? What is the probability that the planet has a
mass > 10 MX?

E X E R C I S E 4 . 9 —

a) For an edge-on, circular orbit, show that the fraction of the orbit during
which the planet is in transit is

f =
Ttr

T
=

Rs + Rp

πa
,

where a is the orbital separation.

b) Derive an expression for the transit duration Ttr in terms of a and the
masses and radii of the star and planet.

c) For the Sun-Jupiter system, what is f and Ttr?





5
Beyond Kepler’s Laws

When we studied the two-body problem, we treated the masses as
simple points. In reality, they are complex extended objects. In this
chapter, we’ll explore some of the effects that arise when we go be-
yond the simple problem of two massive point particles orbiting one
another.

5.1 Tidal forces

Because a planet is extended, the gravitational force exerted by an-
other mass on it varies across its diameter. As a warm-up, let’s imag-
ine putting four test masses some distance from the Earth and letting
them free-fall. We have a camera that is aligned with the center of
mass of these four particles and that free-falls with them.

a

a

GM
R2

Figure 5.1: Four freely falling bodies. In
a frame that falls with them, how does
their motion appear?

Figure 5.1 depicts the setup: the particles are a distance a from
the center of mass (indicated with a cross) and the center of mass is
a distance R from the Earth’s center. When we release the particles
and camera, the camera and center of mass both move downward
with acceleration −GM/R2 ẑ. Because each particle feels a slightly
different gravitational force, however, none of the particles falls with
that exact acceleration: the top particle has a lower acceleration and
the bottom, higher; while the left and right particles have some hori-
zontal acceleration toward the center of mass.

E X E R C I S E 5 . 1 — Compute the difference between the acceleration of
each test mass and that of the center of mass. Expand this difference to
lowest order in a/R. This difference is the tidal force. Sketch the tidal
force on each particle from the point of view of the free-falling camera.

For the Earth-moon system (Fig. 5.2), we can decompose the tidal
force exerted by the moon into radial and tangential components.
The Earth-Moon separation is a = 60.3R⊕, so expanding our expres-
sion for the tidal force to lowest order in R⊕/a is a good approxima-
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θ F

Fr

F
θ

R
⊕

a

Figure 5.2: Schematic of the tidal force
on the Earth raised by the Moon.

tion.
Upon expanding the tidal acceleration components to lowest order

in R⊕/a, the components1 are found to be

1 The geometry can be worked out by
consulting Fig. 5.2; it is straightforward,
but tedious, and I won’t go through the
algebra here.

r̂ :
GM$R⊕

a3

(
3 sin2 θ − 1

)
(5.1)

θ̂ :
3GM$R⊕

2a3 sin 2θ. (5.2)

E X E R C I S E 5 . 2 — Sanity check: does the radial component of the tidal
force, eq. (5.1), agree with the calculation in Exercise 5.1?

Figure 5.3: Tidal force field exerted by
the Moon on the Earth.

The ratio of the radial component of the tidal acceleration, neglecting
the angular dependence, to the Earth’s surface gravity is

M$
M⊕

(
R⊕
a

)3
= 5.6× 10−8.

This is quite small, and you might wonder how the tidal force can
produce such large daily flows of water in the ocean. But con-
sider the tangential component, eq. (5.2): it has a maximum at θ =

45◦, 135◦ and, although it is also small, there is nothing to oppose it.

The Earth’s rotational period is shorter than the Moon’s
orbital period. Because of viscosity (resistance to flow) the tidal
bulge is carried ahead of the line joining the centers of the Earth and
Moon (Figure 5.4). As a result, the Moon’s pull exerts a torque on
the Earth and gradually slows its rotation; the oblate Earth in turn
exerts a torque on the Moon and gradually forces it to greater orbital
separation.

5.2 Motion in a rotating frame

To work out the equations of motion in a rotating frame, we start
from an inertial frame in polar coordinates. In this system, the par-
ticle is located at (r, θ); the position vector of the particle is r = rr̂.
After an internal ∆t, the particle’s position is (r + ∆r, θ + ∆θ), as
shown in Fig. 5.5.
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τ

Ω

τ

Figure 5.4: The torque resulting from
the misalignment of Earth’s tidal bulge.

y

x
θ

θ+Δθ

θ+Δθ

θ

r+Δr

r

r

r+Δr

Figure 5.5: Polar coordinates for a
particle.

As the particle moves, both r̂ and θ̂ change as well. Since both r̂
and θ̂ are unit vectors, only their direction changes with their magni-
tude remaining constant. Neither vector changes under purely radial
motion, ∆θ = 0. Under a change in angle ∆θ, however, both r̂ and θ̂

rotate by an angle ∆θ, as shown in Fig. 5.6. In the limit ∆θ → 0,

∆r̂ → ∆θθ̂; ∆θ̂→ −∆θr̂.

Dividing by ∆t and calling ω = dθ/dt the angular velocity, we have
dr̂/dt = ωθ̂ and dθ̂/dt = −ωr̂.

Δθ
Δθ

Δθ
Δr

θ+Δθ

r+Δr

Figure 5.6: Change in the unit vectors
r̂ and θ̂ under a change in the angular
coordinate ∆θ.

We can then differentiate the particle’s position with respect to
time to get its velocity in polar coordinates, and then differentiate
again to get the acceleration.

dr
dt

=
dr
dt

r̂ + rωθ̂; (5.3)

d2r
dt2 =

d2r
dt2 r̂ + 2

dr
dt

ωθ̂+ r
dω

dt
θ̂− rω2r̂. (5.4)

Now suppose further that the angular velocity has two parts: ω =

Ω + ω′, a uniform rotation at velocity Ω plus a remaining portion
ω′. Further, since Ω represents uniform rotation, dΩ/dt = 0 and the
acceleration is

1
m

F =
d2r
dt2 =

(
d2r
dt2 − rω′2

)
r̂ +

(
2

dr
dt

ω′ + r
dω′

dt

)
θ̂

−rΩ2r̂ + 2Ω
(

dr
dt

θ̂− rω′ r̂
)

. (5.5)

Here F is the force in an inertial frame.
Now the first two terms on the right-hand side are just the acceler-

ation d2r′/dt2 that an observer rotating with velocity Ω would write
down (cf. eq. [5.4]). Hence, if we move the last two terms of equation
(5.5) to the left, we are left with the equations of motion in a rotating
frame, We also make the identification

vr = dr/dt, vθ = rω′.
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d2r′

dt2 =
1
m

Frot =
1
m

F + rΩ2r̂︸ ︷︷ ︸
centrifugal

+ 2Ω
(
vθ r̂− vrθ̂

)︸ ︷︷ ︸
Coriolis

. (5.6)

The centrifugal force is outwards (along r̂); the Coriolis force
depends on velocity and deflects the motion of a particle at right
angles to its velocity2. If you’ve ever tried to walk in a straight line on2 That is, if you are moving in the r̂

direction, the Coriolis force is in the θ̂
direction, and vice versa.

a spinning merry-go-round, then you’ve met the Coriolis force.

E X E R C I S E 5 . 3 — Figure 5.7 depicts a merry-go-round rotating
counter-clockwise with velocity Ω > 0. Four points, A–D are moving as
shown. Draw the deflections of their trajectories due to the Coriolis force.

Ω

A

B

C

D

Figure 5.7: Schematic for Exercise 5.3.

5.3 Lagrange and Roche

For analyzing the motion of a test particle in the vicinity of two mas-
sive orbiting bodies, we transform to a frame with an origin at the
center of mass. The bodies have masses M1 and M2, and we take M1

to be the more massive of the two. The bodies are located at coordi-
nates

M1 : x1 = −a
M2

M
, y1 = 0; (5.7)

M2 : x2 = a
M1

M
, y2 = 0, (5.8)

Here M = M1 + M2 is the total mass of the two bodies and a their
separation. Our coordinate system rotates with angular velocity
Ω = GM/a3.

Let’s check that our rotating coordinate system is consistent: since
M2 is at rest, the net force on it vanishes, so from equation (5.6),

−GM1

a2 + a
M1

M1 + M2
Ω2 = 0,

or

P2
orb =

(
2π

Ω

)2
=

4π2

GM
a3.

This is just what we would expect from Kepler’s law.
Now we are in a position to ask, are there any points where a

particle could sit at rest in this frame? Between the two masses, forRemember, “at rest in this frame”
means the particle is co-rotating with
our two masses.

example, we expect that the net force must vanish at some point. The
acceleration of a test mass located at r is

d2r
dt2 = − GM1

|r− r1|3
(r− r1)−

GM2

|r− r2|3
(r− r2) +

G(M1 + M2)

a3 r. (5.9)
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Along the x-axis, points where a particle would feel no acceleration
are given by the roots of the equations

x < x1 :
GM1

(x1 − x)2 +
GM2

(x2 − x)2 +
G(M1 + M2)

a3 x = 0;

x1 < x < x2 : − GM1

(x− x1)2 +
GM2

(x2 − x)2 +
G(M1 + M2)

a3 x = 0;

x2 < x :
GM1

(x− x1)2 +
GM2

(x− x2)2 +
G(M1 + M2)

a3 x = 0.

This is a nasty quintic equation; if, however, we take the limit M2 �
M1 then after some inspired algebra we find that there are three
roots, which are the first three Lagrange points:

L1 xL1 ≈ a

{
M1

M1 + M2
−
[

M2

3(M1 + M2)

]1/3
}

;

L2 xL2 ≈ a

{
M1

M1 + M2
+

[
M2

3(M1 + M2)

]1/3
}

;

L3 xL3 ≈ a
{
−M1 + 2M2

M1 + M2
+

7M2

12M1

}
.

These points are depicted in Fig. 5.8 for a system with M2 = 0.05 M1.
The remaining two Lagrange points L4 and L5 form equilateral trian-
gles with M1 and M2. CM

L4

L5

L2L3
L1

Figure 5.8: Lagrange points for a
system with M2 = 0.1 M1.

We can draw an equipotential surface (in the rotating frame) that
crosses through L1: the surface is dumbbell-shaped and forms two
Roche lobes (Fig. 5.8) that touch at L1. Within each lobe the gradi-
ent of the potential is inward toward the center of the lobe.

E X E R C I S E 5 . 4 — Show that the acceleration vanishes at L4:

a) Find the coordinates of L4;

b) Compute the net gravitational acceleration, due to both M1 and M2, on a
particle at point L4 and show that it points toward the center of mass;
then

c) Show that the gravitational acceleration cancels the centrifugal, so that the
net acceleration vanishes.

From the expressions for L1 and L2 , we notice that they can
be written as 3 3 Recall that

a
M1

M1 + M2
= x2,

the location of body 2.

xL1 ≈ x2 − RH; xL2 ≈ x2 + RH,

with

RH ≈ a
[

M2

3(M1 + M2)

]1/3
.
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Particles within a sphere of radius RH are dominated by the gravita-
tional attraction of M2; RH is called the Hill radius.

E X E R C I S E 5 . 5 — Compute the Hill radius for the Sun-Jupiter system.

E X E R C I S E 5 . 6 — Speculate on what would happen if M2 had an
atmosphere that extended outside its Roche lobe.

5.4 Angular Momentum

There is another way of looking at the spin-orbit interaction of the
Earth and Moon. What is the spin angular momentum of the Earth?
What is the orbital angular momentum of the Moon and Earth? How
do they compare?

The angular momentum of a particle of mass m is

L = r×mv. (5.10)

For a particle in a circular orbit, v = rΩθ̂; using Kepler’s law, we
have

L = mr2Ω = m (GMr)1/2 ,

where r is the distance from the center of mass. The direction of L
is perpendicular to the plane of the orbit. For two bodies orbiting a
common center of mass, the problem is equivalent to a single particle
of mass

µ =
M1M2

M1 + M2

orbiting a fixed mass M1 + M2 at a distance a, where a is the separa-
tion of the two bodies. Hence the orbital angular momentum of the
two-body system is

L = µa2Ω =
M1M2

M1 + M2
[G (M1 + M2) a]1/2 . (5.11)

The orbital angular momentum increases with separation a.
Now for the spin angular momentum. Let’s take a simple case,

that of a sphere of uniform density ρ = 3M/(4πR3). The sphere ro-
tates uniformly with angular velocity Ω. In this case, the spin angular
momentum (see Box 5.1) is

L =
2
5

MR2Ω. (5.12)

If the density is not uniform, but is higher toward the center, then the
angular momentum is reduced. For example, the Earth’s moment of
inertia is4 I⊕ = 0.331M⊕R2

⊕.4 Jack J. Lissauer and Imke de Pater.
Fundamental Planetary Science: Physics,
Chemistry and Habitability. Cambridge
University Press, 2013
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E X E R C I S E 5 . 7 — Compute the orbital angular momentum of the
Earth-Moon system. Compute the spin angular momentum of the Earth.
Compare the two.

E X E R C I S E 5 . 8 — Explain why having a higher density toward the
center of a planet would reduce its moment of inertia.

Box 5.1 Angular momentum of a uniform sphere

To find the total angular momentum, we add up the con-
tributions from infinitesimal bits. To make this easy, we’ll
use the geometry shown below. We’ll divide our sphere into
shells, each a distance r from the center and of thickness dr.
Then we’ll slice each shell into rings of width r dθ. We’ll add
up the angular momentum of the rings to find the angular
momentum of shell, and then sum up the angular momentum
of the shells to get the total.

Consider a cross-section of a ring. The angular momentum
is perpendicular to both r and v; when we add up all of the
pieces around the ring, the horizontal parts cancel, leaving the
vertical part. The mass of the ring is ρ × 2πr sin θ dr rdθ; the
velocity is r sin θ × Ω. The vertical component of the ring’s
angular momentum is therefore

dLring = 2πρΩr4 sin3 θ dθ dr.
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Box 5.1 continued

To get the angular momentum of a shell, we integrate over θ:

dLshell = 2πρΩr4 dr
∫ π

0
sin3 θ dθ.

To do the integral, write sin3 θ = (1− cos2 θ) sin θ; then change
variables to µ = cos θ: in that case dµ = − sinθ dθ, µ(θ = 0) =
1, and µ(θ = π) = −1. The integral is then∫ π

0
sin3 θ dθ =

∫ 1

−1
(1− µ2)dµ =

4
3

,

and the angular momentum of our shell is

dLshell =
8π

3
ρΩr4 dr.

Finally, integrate over r to get the angular momentum of the
sphere,

L =
8π

3
ρΩ

∫ R

0
r4 dr =

8π

15
ρΩR5 =

2
5

MR2Ω. (5.13)

In this last equation we substituted for ρ = 3M/(4πR3).

5.5 Orbital resonances in the solar system

Planets, moons, and other minor bodies in solar system have made
millions to billions of orbits. Suppose an asteroid had an orbital pe-
riod that was one-half that of Jupiter’s—that is, the asteroid made
two orbits for every one orbit of Jupiter. At the point of closest ap-
proach, Jupiter exerts a small gravitational tug on the asteroid. Since
the orbital periods are in a 2:1 ratio, these tugs always happen at the
same point in the asteroid’s orbit and will eventually perturb the or-
bital motion, just as pumping your legs in phase with the period of a
swing will cause it’s amplitude to increase. Even a small perturbing
force, if applied near a natural frequency of a system, can eventually
produce a large response when applied over such a long dynamical
time.

There are many bodies in the solar system that are locked into a
stable resonance. For example, Pluto is locked into a stable 2:3 res-
onance with Neptune (that is, Pluto completes 2 orbits for every 3

of Neptune), and the Jovian moons Io, Europa, and Ganymede are
locked into a 1:2:4 resonance. Resonances can also lead to instability,
in which a body’s orbit is distorted to the point that it crosses the
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orbit of another planet, at which point that body either collides with
the other planet or is scattered out of the solar system. For example,
the Kirkwood gap in the asteroid belt is located at the 3:1 resonance
with Jupiter (see Fig. 2.10 of Lissauer and de Pater5). Numerical cal- 5 Jack J. Lissauer and Imke de Pater.

Fundamental Planetary Science: Physics,
Chemistry and Habitability. Cambridge
University Press, 2013

culations find that the precession of Mercury’s perihelion is coming
into resonance with that of Jupiter, leading to a 1% chance over the
next 5 Gyr of Mercury colliding with the Sun or Venus, and a smaller
possibility of the entire inner solar system becoming unstable6 over 6 J. Laskar and M. Gastineau. Existence

of collisional trajectories of Mercury,
Mars and Venus with the Earth. Na-
ture, 459:817–819, June 2009. doi:
10.1038/nature08096

that time.

Torques exerted on a planet’s equatorial bulge by other
solar system bodies can cause that planet’s obliquity to vary. Saturn’s
large (relative to Jupiter) axial tilt is thought to be caused by a spin-
orbit resonance between the precession of Saturn’s axis the precession
of Neptune’s orbital plane7. Mars’s axial tilt wanders considerably 7 W. R. Ward and D. P. Hamilton. Tilting

Saturn. I. Analytic Model. Astron.
Journ., 128:2501–2509, November 2004.
doi: 10.1086/424533

over a few Myr timescale and has reached tilts as large as 60◦ in the
past. The large moment of inertia of the Earth-Moon system keeps
Earth’s axial tilt from wandering to such extreme values; neverthe-
less, the Earth’s inclination does oscillate by < 1◦ on a 40 000 yr
timescale. This wandering of the inclination, along with variations in
the orbital eccentricity, are thought to explain the quasi-periodic ice
ages on Earth over the last few million years8. 8 J. Zachos, M. Pagani, L. Sloan,

E. Thomas, and K. Billups. Trends,
Rhythms, and Aberrations in Global
Climate 65 Ma to Present. Science, 292:
686–693, April 2001. doi: 10.1126/sci-
ence.1059412





6
Planetary Atmospheres

It’s more important to know whether there will be weather than what
the weather will be. —Norton Juster, The Phantom Tollbooth

6.1 Hydrostatic equilibrium

Let’s consider a fluid at rest in a gravitational field. By at rest, we
simply mean that the fluid velocity is sufficiently small that we can
neglect the inertia of the moving fluid in our equation for force bal-
ance. By a fluid, we mean that the pressure is isotropic1 and directed 1 Meaning the pressure is the same in

all directions.perpendicular to a surface. Let’s now imagine a small fluid element,
with thickness ∆r and cross-sectional area ∆A, as depicted in Fig. 6.1.

ΔA

Δr

ΔA P(r+dr)

ΔA P(r)

Δm g = (ρ ΔA Δr) g

Figure 6.1: A fluid element in hydro-
static equilibrium.

The weight of the fluid element is ∆m g, where g is the gravita-
tional acceleration and ∆m = ∆A × ∆r × ρ is the mass of the fluid
element with ρ being the mass density. The force on the upper face
is ∆A × P(r + ∆r); on the lower face, ∆A × P(r). Here P(r) is the
pressure. For the element to be in hydrostatic equilibrium the forces
must balance,

∆A [−P(r + ∆r) + P(r)− ∆rρg] = 0;

dividing by ∆r and taking the limit ∆r → 0 gives us the equation of
hydrostatic equilibrium:

dP
dr

= −ρg. (6.1)

For an incompressible fluid in constant gravity, the pressure increases
linearly with depth. This is a good approximation to the pressure
in Earth’s oceans: the density of sea water changes by less than 5%
between surface and floor. In general, however, the density ρ depends
on the pressure P, and we need more information to solve for the
atmospheric structure. The SI unit of pressure is the Pascal:

1 Pa = 1 N m−2. The mean pressure at
terrestrial sea level is 1 atm = 1.013×
105 Pa. Other common units of pressure
are the bar (1 bar = 105 Pa) and the
Torr (760 Torr = 1 atm).
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E X E R C I S E 6 . 1 — Water is nearly incompressible and has a density of
103 kg m−3. How deep would you need to dive for the pressure to increase
by 1 atm = 1.013× 105 Pa? The gravitational acceleration at Earth’s surface is
9.8 m s−2.

Let’s look at this in a bit more detail. Suppose we take our fluid
layer to be thin, so that g is approximately constant. Then we can
write equation (6.1) as ∫ P(z)

P0

dP = −g
∫ z

0
ρ dz.

Now consider a cylinder of cross-section ∆A that extends from 0 to z.
The mass of that cylinder is

m(z) = ∆A×
∫ z

0
ρ dz.

and its weight is m(z)g.

P(z) ΔA

P(0) ΔA

mg = g ΔA ∫ρ(z) dz’

Figure 6.2: The mass of a column of
fluid.

The difference in pressure between the bottom and top of the
cylinder is just

P0 − P(z) = gm(z)/∆A,

that is, the weight per unit area of our column. Let’s apply this to
our atmosphere: if we take the top of our column to infinity and the
pressure at the top to zero, then the pressure at the bottom (sea level)
is just the weight of a column of atmosphere with a cross-sectional
area of 1 m2.

6.2 The ideal gas

To solve equation (6.1) we need at a minimum a relation between
pressure and density. A relation between pressure, density, and tem-
perature is called an equation of state. For an ideal gas2 of N

2 By ideal gas, we mean that the particles
are non-interacting; as a result, the
energy of the gas only depends on the
kinetic energy of the particles and in
particular is independent of the volume.

particles in a volume V at pressure and temperature P and T, the
equation of state is

PV = NkT (6.2)

where k = 1.381× 10−23 J K−1 is Boltzmann’s constant.
In chemistry, it is convenient to count the number of particles by

moles. One mole of a gas has NA = 6.022× 1023 particles3, and the3 The constant NA is known as Avo-
gadro’s number. number of moles in a sample is n = N/NA. If we divide and multiply

equation (6.2) by NA, then our ideal gas equation becomes

PV = n [NAk] T ≡ nRT,

where R = NAk = 8.314 J K−1 mol−1 is the gas constant. This is
perhaps the most familiar form of the ideal gas law—but it is not in a
form useful to astronomers.
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We astronomers don’t care about little beakers of fluid—we have
whole worlds to model! Let’s take our ideal gas law and introduce
the molar weight m as the mass of one mole of our gas. Then the
ideal gas law can be written

P =

(
mN/NA

V

)
kNA

m
T ≡ ρ

kNA

m
T. (6.3)

The quantity in parenthesis is the mass per volume, or density ρ,
of our fluid. This is the same mass density that appears in equa-
tion (6.1). Equation (6.3) is the form most convenient for fluid dy-
namics, because it is in terms of intrinsic fluid properties rather than
in terms of a laboratory quantity like volume.

6.3 The scale height

Let’s take a first stab at modeling Earth’s atmosphere with equa-
tion (6.1). We’ll take Earth’s atmosphere to be an ideal gas and for
simplicity we’ll assume the temperature doesn’t change with al-
titude4. The molar weight of dry5 air is 0.02897 kg mol−1. Using

4 This isn’t true, of course, but let’s keep
things simple and see how we do.

5 The water vapor content of air varies
considerably depending on ambient
conditions.

equation (6.3) to eliminate ρ in equation (6.1), we obtain

1
P

dP
dz

= − mg
NAkT

, or
dP
P

= − mg
NAkT

dz.

Integrating from z = 0, where P(z = 0) = P0, to a height z gives us an
equation for the pressure as a function of height,

P(z) = P0 exp
[
− mgz

NAkT

]
. (6.4)

Since the argument of the exponential is dimensionless, we see that
we can write P(z) = P0e−z/HP , where

HP =
NAkT

mg

is the pressure scale height—the height over which the pressure
decreases by a factor 1/e.

E X E R C I S E 6 . 2 — Evaluate HP for dry air at a temperature of 288 K
(15 ◦C). Check that your answer is reasonable based on your experience. In
fact, this value of HP is overly large because the temperature in the
troposphere does, in fact, decrease with height at an average lapse rate of

dT
dz

= −6.5 ◦C km−1.
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6.4 The adiabatic thermal gradient

Hot air rises. This simple phenomenon sets the lapse rate, dT/dz, in
the troposphere. Sunlight is absorbed by the land and water, which
warms the overlying atmosphere. This warm surface then rises, while
colder air sinks. This movement is sufficiently rapid that there is little
exchange of heat between the warm, rising air and the cool, sinking
air. As a result, the fluid motions are adiabatic. To understand
what this means, recall the first law of thermodynamics6, which6 Enrico Fermi. Thermodynamics. Dover,

1956 relates the change in internal energy dU and in volume dV to the
heat transferred dQ:

dQ = dU + PdV, (6.5)

where P is the pressure. During an adiabatic process, dQ = 0, and
one can show that

PVγ = const.,

where γ = CP/CV is the ratio of specific heats (Table 6.1). Hence, if

Table 6.1: Specific heats for ideal gases. gas Cρ CP = Cρ + kNA/m γ = CP/Cρ

monatomic (3/2)kNA/m (5/2)kNA/m 5/3
diatomic (5/2)kNA/m (7/2)kNA/m 7/5

the pressure and volume (of some specified mass of air) at the bottom
of the atmosphere are P0 and V0, then the pressure and volume of
that mass at elevation is given by

PVγ = const = P0Vγ.
0

Now, let’s use the ideal gas law (eq. 6.2) to express V = NkT/P; for a
fixed N, this gives

P1−γTγ = P1−γ
0 Tγ

0 ,

or

T = T0

(
P
P0

)(γ−1)/γ

. (6.6)

Equation (6.6) tells us how the temperature changes with pressure
along an adiabat for an ideal gas.

E X E R C I S E 6 . 3 — Use equations (6.6) and (6.1) to compute the lapse
rate dT/dz at sea level. Dry air is composed of mostly diatomic gases with a
molar weight 0.02897 kg mol−1. You should find an answer around
−10 ◦C/km, which is almost twice as large as the value quoted earlier. Can
you guess why the value you calculated might be off? (Hint: there is a process
we haven’t yet accounted for. If you want a hint, go outside and look up.)
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Box 6.1 Adiabatic motion

We begin with the first law of thermodynamics, eq. 6.5:

dQ = dU + PdV.

Now, we aren’t using volume to describe our fluid (cf.
eq. [6.3]) so let’s apply this equation to 1 mol of our fluid,
and divide both sides by the mass m × 1 mol, where m is the
molar mass. Then Q refers to the heat transferred per kilogram,
and U refers to the internal energy per kilogram. The differen-
tial dV becomes d[V/(1 mol × m)] = d(1/ρ) = −ρ−2dρ. Our
first law, rewritten in terms of mass-specific quantities, is thus

dQ = dU − P
ρ2 dρ. (6.7)

Suppose we wish to express quantities in terms of tempera-
ture T and density ρ: then

dU =

(
∂U
∂T

)
ρ

dT +

(
∂U
∂ρ

)
T

dρ,

and

dQ =

(
∂U
∂T

)
ρ

dT +

[(
∂U
∂ρ

)
T
− P

ρ2

]
dρ.

Hence the heat needed to raise the temperature of one kilo-
gram of fluid when holding density fixed is

Cρ ≡
(

∂Q
∂T

)
ρ

=

(
∂U
∂T

)
ρ

. (6.8)

For an ideal gas, U = U(T) and Cρ is approximately constant;
hence we may integrate equation (6.8) to obtain U = CρT +

const..
In Eq. (6.7), the last term is −(P/ρ)dρ/ρ = −(P/ρ)d ln ρ.

This illustrates a useful trick: take the logarithm of the equa-
tion of state, ln(P) = ln(ρ) + ln(T) + ln(kNA/m), and then
take the differential to obtain

dP
P

=
dρ

ρ
+

dT
T

.

Now eliminate dρ/ρ in the equation

dQ = CρdT − P
ρ

dρ

ρ

to obtain an expression for the heat transferred as a function
of temperature and pressure,

dQ =

[
Cρ +

P
ρT

]
dT − 1

ρ
dP =

[
Cρ +

kNA

m

]
dT − 1

ρ
dP.
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Box 6.1 continued

From this we see that the heat needed to raise the temperature
of one mole when holding pressure fixed is

CP ≡
(

∂Q
∂T

)
P
= CV +

kNA

m
. (6.9)

The specific heat of one mole of various ideal gases is given in
Table 6.1. It is important to remember that these relations for
the specific heats are for an ideal gas and are not universally
true.

During convection, hot air rises and cool air de-
scends, and both move adiabatically. By adiabatically,
we mean that there is no heat exchange:

0 = dQ = CPdT − 1
ρ

dP.

Using the ideal gas equation of state we can eliminate
1
ρ = (kNA/m)T/P and write

dT
T

=
kNA

mCP

dP
P

=
CP − CV

CP

dP
P

=
γ− 1

γ

dP
P

.

Integrating both sides of the equation gives

ln T =
γ− 1

γ
ln P + const.,

which is equivalent to eq. (6.6).

6.5 Atmospheric circulation on a rotating Earth

The Sun heats the Earth unevenly; this in turn creates pressure gra-
dients that drive a circulation of the atmosphere and a transfer for
heat from the equator polewards. The Coriolis force deflects the hor-
izontal motion of the air, and this sets up large-scale features in the
atmosphere.

Because of the Earth’s rotation, in the frame of a particular location
on Earth there is both a Coriolis and a centrifugal acceleration:

Coriolis aCor = −2Ω× v (6.10)

centrifugal acen = −Ω× (Ω× R) (6.11)

where R is the location of our particle and Ω is the rotation vector of
the Earth.
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The centrifugal component just depends on the latitude λ and
causes the Earth to bulge at the equator to compensate. It doesn’t,
however, change the motion of air currents. The vertical component
of the Coriolis acceleration will be quite small compared to g, so
we can neglect it as well. For the horizontal component, if we are at
latitude λ,

λ

Ω

Ωsinλ

v a

Figure 6.3: Motion in a horizontal layer
in a small region at latitude λ.

aCor = 2Ωv sin λ.

This acceleration is to the right in the northern hemisphere and to the
left in the southern. At the equator it vanishes.

E X E R C I S E 6 . 4 — Suppose we have a river flowing at 3 km/hr. At our
latitude, how does the Coriolis acceleration compare to the centripetal
acceleration if the river has a bend with radius of curvature r? How large
would r need to be for the Coriolis force to dominate?

In addition to the Coriolis acceleration from the Earth rotation,
horizontal pressure gradients will also produce an acceleration

−1
ρ
∇P.

A typical horizontal gradient for a weather system is about 0.03 mbar/km.
Consider a cyclone in which the winds swirl counterclockwise
about a low. Let’s look at a small parcel of fluid a distance r from the
center of the cyclone, which has a height H. The mass of our fluid
parcel is ∆S ∆r H ρ, and the acceleration of the fluid is −v2/r r̂. The
equation for force and acceleration along r̂ is therefore

L

P(r+Δr)

ρv2/r
P(r)

v

v

Δr

ΔS

�Ωsinλ

2Ωvsinλ

Figure 6.4: Forces on a parcel of air
circulating about a low.

[P(r)− P(r + ∆r)]∆S H + 2∆S ∆r H ρ Ωv sin λ = −∆S ∆r H ρ
v2

r
.

or
v2

r︸︷︷︸
centripetal

+ 2vΩ sin λ︸ ︷︷ ︸
Coriolis

− 1
ρ

dP
dr︸ ︷︷ ︸

pressure

= 0. (6.12)

E X E R C I S E 6 . 5 —

a) When r is sufficiently large, we can neglect the centripetal term in
equation (6.12). In that case, for a pressure gradient of 3 mbar/100 km,
what is a velocity satisfying this equation. Does this seem realistic? Recall
that 1 bar = 1.013× 105 Pa. The density of air at sea level is 1.3 kg m−3.

b) Using the velocity you found in part a, determine the size r of the
weather system at which the centripetal term becomes comparable to the
Coriolis term.
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In tropical regions the latent heat released from condensing wa-
ter vapor in rising updrafts can produce a strong pressure gradi-
ent around a low—a tropical depression. If the pressure gradient is
strong enough, a hurricane forms. In this case the pressure gradient
can be as strong as 0.3 mbar/km, and the centripetal term cannot be
neglected. If we consider a hurricane located at latitude λ = 20◦ and
take the eye region to have r = 100 km, then solving equation (6.12)
gives

v = −rΩ sin λ +

√
(rΩ sin λ)2 +

r
ρ

dP
dr
≈ 46 m/s,

which is typical of hurricane-strength winds.

E X E R C I S E 6 . 6 — You may have wondered why the strongest storms
are associated with low-pressure systems. Repeat the analysis leading to
equation (6.12) for air circulating in an anti-cyclone around a pressure high.
There is one crucial difference in the equation which leads to a limitation on
the pressure gradient and velocities in this case; explain this difference.

E X E R C I S E 6 . 7 — In a strong thunderstorm, the updraft (vertically
rising air current in the center of the storm) can have an upward velocity in
excess of 150 km/hr (42 m/s).

1. For such a storm in mid-Michigan (latitude 42.7◦), in what direction
would the Coriolis acceleration deflect this rising column of air?

2. After a parcel of air has risen in an updraft to a height of 10 km, how
large would its sideways velocity from the Coriolis acceleration be?



A
Constants and Units

A.1 Selected constants

constant symbol value in MKS

speed of light c 2.998× 108 m s−1

Newton constant G 6.674× 10−11 m3 kg−1 s−2

Planck constant h 6.626× 10−34 J s
Planck constant, reduced h̄ 1.055× 10−34 J s
Boltzmann constant k 1.381× 10−23 J K−1

Stefan-Boltzmann constant σ 5.670× 10−8 W m−2 K−4

a = 4σ/c 7.566× 10−16 J m−3 K−4

mass, hydrogen atom mH 1.673× 10−27 kg
atomic mass unit mu 1.661× 10−27 kg
electron mass me 9.109×10−31 kg
electron volt eV 1.602× 10−19 J

Astronomical
solar mass M� 1.989× 1030 kg
solar radius R� 6.960× 108 m
solar luminosity L� 3.842× 1026 W
solar effective temperature Teff,� 5780 K
astronomical unit AU 1.496× 1011 m
parsec pc 3.086× 1016 m
year yr 3.154× 107 s

A.2 Properties of selected stellar types

Spectral Type Teff (K) M/M� L/L� R/R� V mag.

B5 15 400 5.9 830 3.9 -1.2
G0 5 940 1.05 1.4 1.1 4.4
M5 3 170 0.21 0.0066 0.27 12.3
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A.3 Planets of the solar system

Planet symbol a (AU) M (1024 kg) R (km) I/(MR2)

Mercury ' 0.387 0.330 2 440 0.353

Venus ♀ 0.723 4.869 6 052 0.33

Earth ♁ 1.000 5.974 6 371 0.331

Mars ♂ 1.524 0.642 3 390 0.365

Jupiter X 5.203 1900 69 900 0.254

Saturn Y 9.543 569 58 200 0.210

Uranus Z 19.192 86.8 35 400 0.23

Neptune [ 30.069 102 24 600 0.23



B
Mathematics Review

B.1 Trigonometric definitions

You may remember memorizing the definitions of the sine, cosine,
and tangent of an angle in a right triangle. The sin x is the ratio of the
side of the triangle opposite the angle x to the hypotenuse; the cos x
is the ratio of the side adjacent the angle x to the hypotenuse; and
the tan x is the ratio of the side opposite the angle x to the side adja-
cent the angle x. A useful mnemonic is S O H - C A H - T O A: Sine-
Opposite-Hypotenuse — Cosine-Adjacent-Hypotenuse — Tangent-
Opposite-Adjacent.

x

O

A

H

You may have wondered why the tangent, for instance, is
called by that name. Now that you are a collegiate sophisticate, we
can delve more deeply into how the sine, cosine, tangent, cotangent,
secant, and cosecant are constructed. Draw a circle with a radius of
unit length. Now draw a line from the origin O to intersect the circle
at a point A, as shown in Fig. B.1. Denote by x the length along the
arc from the horizontal to point A.

From the point A, we draw a vertical line to the horizontal. The
length of this line AB is sin x. Likewise, we draw a horizontal line
from point A to the vertical; the length of this line, which is equal to
OB, we call cos x.

Next, we construct a line tangent to the arc at point A and extend
this tangent to where it intersects the horizontal axis, at point C,
and to where it intersects the vertical axis, at point D. We call the
length of the line AC tan x; the length of the line AD we call cot x.

1

D

O
x

B C

A

cos x

cot x

tan x

cs
c 
x

sec x

sin x

Figure B.1: Construction of the sine,
tangent, secant, cosine, cotangent, and
cosecant from the unit circle.

Finally, we draw from the origin O lines along the horizontal to
intersect the tangent at point C and along the vertical to interest the
cotangent at point D. The line from the origin O to point C is the se-
cant and we call the length OC sec x. The line OD is the cosecant

and its length is csc x.
The relationships between these quantities can be deduced by
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studying Fig. B.1. First, the triangle ABC is similar to the triangle
OBA. The ratio of AC to AB is therefore equal to the ratio of OA to
OB,

AC
AB

=
tan x
sin x

=
OA
OB

=
1

cos x
, so tan x =

sin x
cos x

. (B.1)

Likewise, the triangle OAC is similar to OBA; therefore

OC
OA

=
sec x

1
=

OA
OB

=
1

cos x
, so sec x =

1
cos x

. (B.2)

Finally, the triangle DAO is similar to OBA, giving

DO
AO

=
csc x

1
=

OA
BA

=
1

sin x
, so csc x =

1
sin x

, (B.3)

DA
OA

=
cot x

1
=

OB
BA

=
cos x
sin x

, so cot x =
cos x
sin x

=
1

tan x
. (B.4)

Some further relations follow immediately from the Pythagorean
theorem:

sin2 x + cos2 x = 1

tan2 x + 1 = sec2 x

cotx x + 1 = csc2 x.

At small angles x, we see from the diagram that sin x < x < tan x,
and cos x < 1. Further, one can show1 that1 Richard Courant, Herbert Robbins,

and Ian Stewart. What is Mathematics?
Oxford University Press, 2d edition,
1996

lim
h→0

sin h
h

= 1 and (B.5)

lim
h→0

cos h− 1
h

= 0. (B.6)

B.2 Trigonometric addition formulae

To develop the formulae for sin(x + y) and cos(x + y), consider the
schematic in Figure B.2. Here both OA and OC have unit length.
The length of OF is cos(x + y) and the length of CF is sin(x + y). By
construction, CE = sin y and OE = cos y.

x
y

O

A

C

D E

F G B
Figure B.2: Schematic of the addition of
two angles x and y.

The length CF = sin(x + y) is the sum of DF = EG and CD. Now
triangle CDE is similar to OBA; hence

CD
CE

=
CD
sin y

=
OB
OA

=
cos x

1
, so CD = sin y cos x.

By a similar argument, EG = cos y sin x. Hence

CF = sin(x + y) = sin x cos y + cos x sin y. (B.7)

To construct cos(x + y) = OF = OG− FG, we use a similar approach
to find that FG = DE = sin y sin x and OG = cos y cos x; therefore

cos(x + y) = cos x cos y− sin x sin y. (B.8)
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B.3 Trigonometric derivatives

We can now use equations (B.5), (B.6), (B.7), and (B.8) to establish
formulae for the derivatives of the sine and cosine. For the sine,
using limh→0 sin h/h = 1 and limh→0(cos h− 1)/h = 0,

d sin x
dx

= lim
h→0

sin(x + h)− sin x
h

= lim
h→0

sin x cos h + cos x sin h− sin x
h

= lim
h→0

(
cos x

sin h
h

+ sin x
cos h− 1

h

)
= cos x. (B.9)

Likewise,

d cos x
dx

= lim
h→0

cos(x + h)− cos x
h

= lim
h→0

cos x cos h− sin x sin h− cos x
h

= − sin x. (B.10)

The formulae for the derivatives of the tangent, cotangent, secant,
and cosecant can be derived by using the chain rule on equations (B.1)–
(B.4).

B.4 The Taylor Expansion

Suppose we wish to approximate a function f (x) in the neighbor-
hood of some point x0 by a power series. That it, we wish to write for
some h� 1,

f (x = x0 + h) = c0 + c1h + c2h2 + c3h3 + c4h4 + . . .

We assume that f (x) is differentiable, and all those derivatives
exist—no discontinuities or places where the derivative blows up.
To find the constants c0, c1, c2, c3, . . ., we first set h = 0 and obtain

f (x0) = c0,

which fixes the first constant. Next, we take the derivative and set
h = 0, x = x0

d f (x)
dx

∣∣∣∣
x=x0

=
[
c1 + 2c2h + 3c3h2 + 4c4h3 . . .

]
h=0

= c1.

For the next term, we take another derivative,

d2 f (x)
dx2

∣∣∣∣
x=x0

=
[
2c2 + 3 · 2c3h + 4 · 3c4h2 . . .

]
h=0

= 2c2.
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Thus our expansion out to the term in h2 is

f (x0 + h) = f (x0) +
d f (x)

dx

∣∣∣∣
x=x0

h +
1
2

d2 f (x)
dx2

∣∣∣∣
x=x0

h2 +O(h3).

Here the expressions O(h3) means that the remaining terms are of
the same size as h3.

Applying this expansion to sin x and cos x about the point x0 = 0,
we have to order h2,

sin h = sin(0) + cos(0)h− 1
2

sin(0)h2 + . . . ≈ h, (B.11)

cos h = cos(0)− sin(0)h− 1
2

cos(0)h2 + . . . ≈ 1− h2

2
(B.12)

since sin(0) = 0, cos(0) = 1.



C
Probability and Statistics

The true logic of this world is in the calculus of probabilities. —James
Clerk Maxwell

Astronomical observations produce data—sets of numbers
from measurements. To advance our understanding of astronomy,
we must compare this data to an underlying hypothesis or model. To
make this comparison, we compute some statistic s from the data
{D} and assess the likelihood of the value of s given our hypothesis.

As a naive example, we might sum over the differences between
the predictions P = {pi} of a model and the observations {Di}:

s = ∑
i
(pi − Di)

2 .

The data Di could be the transit times for an exoplanet, and pi would
be our predicted transit times given a model of the orbit. In this case,
s = 0 would signify perfect agreement. Nothing is ever perfect,
however; what would we make of s being small but non-zero? We
need a figure-of-merit1: given some small value of s, is it likely that 1 And of course, we want to find the

best choice of statistic s for assessing
how well the model fits the data.

the model is consistent with the data? If we judge the value of s to be
implausible, we say that the model, or hypothesis, is not supported
by the data.

The converse case of s having a value with a high probability
does not, however, “rule in” the hypothesis—at best, the hypothesis
is consistent with observations, but other hypotheses may also be
consistent. The goal is to amass an ever larger body of evidence
supporting the hypothesis, but one can never prove it conclusively.

C.1 Basic Rules of Probability and Combinatorics

Having motivated the problem, we now step back and ask, what is
meant by probability? We are familiar with many examples from our
everyday experience. What is the probability of drawing an ace from
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a deck of cards? What is the probability of rain tomorrow? What is
the probability that our candidate will win the election?

E X E R C I S E C . 1 — Think of some different situations in which you
might use the word “probability”. How does the definition of probability
differ among these situations?

It is not immediately obvious that different usages of the term are
consistent. To give two examples:

1. A “fair” die is cast; we say that the probability of rolling a • is
P(•) = 1/6. What does this mean? We may mean that if we
were to roll the die a very large number of times N, or roll a large
number N of dice, then the number of those tries yielding a •
tends toward22 This definition carries the prior as-

sumption that all sides are equally
likely and that 0 ≤ P ≤ 1. P(•) = lim

N→∞

N(•)
N

=
1
6

.

Note that this is an assertion: if we did this experiment and found
that Pexp(•) 6= 1/6, we would claim the die is loaded!

2. The Newtonian constant of gravitation is

G = (6.67384± 80)× 10−11 m3 kg−1 s−2.

What does the “±80” mean? It signifies that the value of G has
some specified probability of lying in the interval 6.67304 ≤ G ×
1011 ≤ 6.67464. This is a different sense of probability than that in
the first example: the value of G has a single, definite value, and
here the probability reflects the degree of certainty we attach to its
measured value.

To start making this more precise, let’s introduce some terms3:3 Richard Durrett. The Essentials of
Probability. Duxbury Press, Belmont,
CA, 1994

For an experiment or observation there is a set of all possible out-
comes, called the sample space. A subset of possible outcomes is
an event. We describe our events as subsets of a sample space Ω,
as shown in Figure C.1. We write, e.g., A ⊂ Ω. An impossible event
is ∅, the empty set. When we say “not A” we mean Ac, the comple-
ment of A (shaded region in Fig. C.2). When we say “A or B” we
mean “A or B or both” and denote this by A ∪ B (Fig. C.3). Finally,
when we say “A and B” we write A ∩ B (Fig. C.4). If “A and B are
mutually exclusive” then we write A ∩ B = ∅ and we say that the
sets are disjoint, like A and B in Fig. C.1.

For example, if we roll two dice, there are 6× 6 = 36 possible out-
comes. This is our sample space. Suppose we wish to have the sum
of our two dice be seven; we’ll call this event A. There are six such
possibilities for event A: {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Now
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denote by event B those rolls in which at least one die is a 2 (how
many possibilities are there for event B?); then A∩ B = {(2, 5), (5, 2)}.
Suppose event C is rolling a sum of 11, for which there are two possi-
bilities: {(5, 6), (6, 5)}. In this case, C ∩ B = ∅.

E X E R C I S E C . 2 — We have a deck of cards consisting of 4 suits (♣, ♦,
♥, ♠) with 13 cards per suit (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K). Suppose we
draw one card. There are 13× 4 = 52 possible outcomes.

1. How many events draw a ♠?

2. How many events draw a 4?

3. How many events draw a 4♠?

4. How many events draw a 4 or a ♠?

Ω
B

A

Figure C.1: Sets in Ω.

Ω

A

Figure C.2: The complement of A ⊂ Ω.

Ω

B

A

Figure C.3: A ∪ B.

Ω

A

B

Figure C.4: A ∩ B.

A probability is a rule that assigns a number P(A) to an event A
and obeys the following conditions:

1. 0 ≤ P(A) ≤ 1

2. P(Ω) = 1

3. For a set of disjoint (mutually exclusive) events4 {Ai},

4 We’ll need to be careful when we deal
with continuous, rather than discrete,
sets.

P (∪i Ai) = ∑
i
P(Ai) :

P (A1 ∪ A2 ∪ . . . ∪ AN) = P(A1) + P(A2) + . . . + P(AN).

4. If A and B are independent—meaning that the outcome of A
has no influence on the outcome of B, and vice versa—then the
probability of both events occurring is P(A ∩ B) = P(A)P(B).

For an example of independent events, consider drawing a 4♠,

P(“drawing a 4 and a ♠”) = P(4∩♠) = P(4)P(♠) = 1
13

1
4
=

1
52

.

As another example, suppose we roll a die. Each of the possible
outcomes are mutually exclusive, so by rules 2 and 3,

1 = P ({1, 2, 3, 4, 5, 6}) = P(1) + P(2) + . . . + P(6).

If we assert that all outcomes are equally likely, P(1) = P(2) = . . . =
P(6) = p, then 6p = 1, so p = 1/6.

There are a few other properties of sets that are useful to know.

A ∪ B = B ∪ A, A ∩ B = B ∩ A;

A ∩ (B ∩ C) = (A ∩ B) ∩ C, A ∪ (B ∪ C) = (A ∪ B) ∪ C;

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

A ∪ Ac = Ω, A ∩ Ac = ∅;

Ω ∩ A = A, ∅ ∩ A = ∅.
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Using these properties and our rules for assigning probabilities,
we can deduce a few more formulae. For example, P(Ac ∪ A) =

P(Ac) + P(A) = P(Ω) = 1; therefore, P(Ac) = 1−P(A). Likewise,
we can show that P(∅) = 0. Finally, we can show that if A and B are
not mutually exclusive, but have some overlap, then

P(A ∪ B) = P(A) + P(B)−P(A ∩ B).

We encountered an instance of this last rule in exercise C.2: P(4 ∪
♠) = P(4) + P(♠)−P(4∩♠).

E X E R C I S E C . 3 — Suppose we draw 1 card from each of 2 decks. Find
the probability that at least one card is an ace, using the following two
formulae:

P(“from deck 1 or from deck 2”) = P(“from deck 1”) + P(“from deck 2”)

−P(“from both deck 1 and deck 2”).

P(“at least one ace”) = 1−P(“drawing no ace”).

We next need to consider different arrangements of items

in a set. For example, suppose we want to put 5 people in a line.
How many ways are there to do this? For the first spot there are 5

choices. After assigning this first spot, we move to the second for
which there are now 4 choices. Proceeding along in this fashion, the
number of possible arrangements is 5 · 4 · 3 · 2 · 1 ≡ 5!.The factorial fcn. is recursively defined

by m! = m · (m− 1)!, with 0! = 1, 1! = 1. Suppose we are not picking everything in our set; for example, in a
class of 32 we may wish to select just 3 people for different jobs. The
number of possibilities is

P(32, 3) = 32 · 31 · 30 =
32 · 31 · 30 · 29 · . . . · 1

29 · . . . 1
=

32!
(32− 3)!

. (C.1)

Here P(n, k) means we are picking k items from a set of n items.
Now suppose we aren’t picking individuals for distinct jobs,

but just 3 individuals. In this case, the order of how we pick is
irrelevant—Autumn, Brook, and Collin is the same as Brook, Collin,
and Autumn. To avoid over-counting different arrangements, we
divide P(32, 3) from equation (C.1) by 3!, giving

“32 choose 3” ≡
(

32
3

)
≡ C32

3 =
32!

(32− 3)!3!
. (C.2)

More formally, (n
m) is the number of ways of choosing m objects from

a set of n, without regard to order.
One example you may have seen often is the expansion of a bino-

mial. For example, suppose we wish to expand (a + b)5. There are a
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total of 25 = 32 terms of the form a5b0, a4b, a3b2, and so on:

(a + b)5 = S5a5 + S4a4b + S3a3b2 + S2a2b3 + S1ab4 + S0b5.

For S5, there is only one way to get a5: we must take one a from each
of the terms. As a result, S5 = 1. For S4, we pick an a from four of
the terms, and a b from the fifth. There are five ways to do this, so
S5 = 5. To get S3, we must pick an a from 3 of terms. We don’t care
about order, so there are (5

3) = 5!/(2!3!) = 5 · 4 · 3/(3 · 2) = 10 ways to
do this. Following this line of reasoning, our coefficients are

m term Sm

5 a5 (5
5) = 1

4 a4b (5
4) = 5

3 a3b2 (5
3) = 10

2 a2b3 (5
2) = 10

1 a1b4 (5
1) = 5

0 b5 (5
0) = 1

and so

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

These coefficients (n
m) obey several neat recurrence relations. When

we are picking our m objects, we have a choice: to pick or not to pick
the last item, item number n. If we pick the last item, then we must
pick the remaining m− 1 objects from the set n− 1. There are (n−1

m−1)

ways to do so. If we do not pick the last item, then we must pick
all m objects from the set n − 1. There are (n−1

m ) ways to do so. The
number of ways for both of these choices must add up to the total
number of ways of picking m from n:(

n
m

)
=

(
n− 1
m− 1

)
+

(
n− 1

m

)
. (C.3)

We can make a nice table by putting the coefficients for each n on a
row, with n increasing as we go down the table. If m < 0 or m > n in
one of the terms in equation (C.3), we take that term to be 0. Also, we
stagger the entries, so that the terms on the RHS of equation (C.3) are
diagonally to the left and right above (n

m), like so:

(n−1
m−1) (n−1

m )

(n
m)

.

This gives us the following arrangement, known as Pascal’s trian-
gle:
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

. . .

E X E R C I S E C . 4 — Show that(
n

m + 1

)
=

(
n
m

)
n−m
m + 1

.

Then use this recurrence relation to derive ( 6
m), m = 1, . . . 6, starting from

(6
0) = 1.

We now have enough machinery to compute the probabil-
ity of drawing certain hands in poker. To make this concrete,
we insist on no wild cards. If we draw 5 cards from a deck, there are(

52
5

)
=

52 · 51 · 50 · 49 · 48
5 · 4 · 3 · 2 · 1 = 2 598 960

different possible hands. What is the probability of getting a full
house (3 of a kind plus one pair; e.g., 3 eights and 2 kings)? First,
there are 13 possibilities for the 3 of a kind: we could have 3 ones, or
3 twos, or 3 jacks, and so on. For our 3 of a kind, there are 4 cards of
that type in the deck, and we are selecting 3 of them. After drawing
our 3 of a kind, we have 12 choices for the pair. Once we set the type
of card for the pair, we then select 2 of the 4 possible cards of that
type. The number of such full house combinations is therefore

13 ·
(

4
3

)
· 12 ·

(
4
2

)
= 13 · 4 · 12 · 6 = 3744

and the probability of drawing a full house is therefore 3744/2 598 960 =

0.0014.
What is the probability of getting two pair (e.g., 2 eights, 2 sixes,

and a random card)? First, we have to select two types of cards for
our pairs. Unlike in the full house, the order is unimportant: 2 eights
and 2 sixes is the same as 2 sixes and 2 eights. We therefore choose
2 types of cards out of 13 possible, (13

2 ), for our pairs. For each pair,
we are picking 2 of the 4 possible cards. After doing this, there are
11 possibilities for the remaining card, and for each type there are 4
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suits. Thus the number of two pair combinations is(
13
2

)
·
(

4
2

)2
· 11 · 4 = 123 552

and the probability of drawing two pair is therefore 123 552/2 598 960 =

0.0475.

E X E R C I S E C . 5 — What is the probability of drawing a flush (5 cards of
the same suit)? To avoid complications, don’t worry about whether the
combination is a straight flush (cards are in numerical sequence) or a royal
flush (cards are A,K,Q,J,10).

C.2 A Probability Distribution: The Random Walk

We are now ready to tackle a problem that occurs frequently in
physics5: the random walk. Imagine a person who flips a coin before 5 For example, when modeling molecu-

lar motioneach step—heads to go right, tails to go left. On average, this person
doesn’t go anywhere, but from experience you know that sometimes
you will get several heads or tails in a row; you wouldn’t want to try
this random walk if you were a few steps from the edge of a cliff!

We wish to find the probability Bn(m; p) that after n steps, m will
have been to the right and (n−m) to the left, for a net displacement
m − (n − m) = 2m − n steps6. To formulate this problem, call the 6 A positive distance means to the right;

negative, to the left.probability to go right p; the probability to go left is then (1 − p).
Clearly Bn(m; p) = 0 for m > n or m < 0. Since each step is inde-
pendent of the others, we can use rule 4 to obtain the probability for
a specific sequence, e.g., RRLRLLRRRL:

Pn(RRLRLLRRRL)

= p · p · (1− p) · p · (1− p) · (1− p) · p · p · p · (1− p)

= p6(1− p)4, (C.4)

since there were 6 steps to the right and 4 to the left. Of course, any
sequence of 6 steps to the right and 4 steps to the left has the same
probability, so to get the total probability P10(6) of having 6 steps out
of ten be to the right, we must multiply p6(1− p)4 by the number
of ways of picking 6 steps out of 10 total, which is just (10

6 ). More
generally, the probability of taking m steps out of n to the right, with
each step having a probability p to be to the right, is

Bn(m; p) =
(

n
m

)
pm(1− p)n−m. (C.5)

This function Bn(m; p) is called the binomial distribution.
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For example, suppose you flip a coin 20 times. What is the proba-
bility of getting exactly 10 heads, assuming even odds for heads:tails?

Answer: B20(10; 1/2) =
(

20
10

)(
1
2

)20
= 0.176.

E X E R C I S E C . 6 — Compute B20(m; 1
2 ) for m = 0 . . . 20. What is the

probability of getting 9, 10, or 11 heads? What is the probability of getting
between 7 and 13 heads? ñ See the accompanying notebook binomial.ipynb.

Of course, as the next exercise illustrates, this probability distribu-
tion occurs in many contexts, not just in the context of flipping coins
or staggering home.

E X E R C I S E C . 7 — A student takes an exam with 10 multiple choice
questions, each with 4 possible responses. Suppose the student guesses
randomly for each question. What is the probability the student gets 5 or
more correct? ñ See the accompanying notebook binomial.ipynb.

C.3 Describing the distribution

The mean

You are probably familiar with taking a simple average of a set of
numbers: sum over the set and divide by the number of items in the
set. A related quantity for a probability distribution is the mean,More formally, we can define taking the

moment of a distribution with respect
to a function f (x) as

〈 f (x)〉 = ∑ f (x)P(x).

In general, 〈 f (x)〉 6= f (〈x〉).

〈m〉 ≡
n

∑
m=0

mBn(m; p). (C.6)

To show that this behaves as expected, there are some mathemati-
cal preliminaries we need to address. First, let’s demonstrate that
∑Bn(m; p) = 1. The easiest way to show this is to take a concrete
example, say n = 5. Then

5

∑
m=0
B5(m; p) =

5

∑
m=0

(
5
m

)
pm(1− p)n−m

= p5 + 5p4(1− p) + 10p3(1− p)2 + 10p2(1− p)3

+5p(1− p)4 + (1− p)5.

Look familiar? You should convince yourself that this is the binomial

5

∑
m=0
B5(m; p) = (p + q)5

∣∣∣
q=1−p

= [p + (1− p)]5 = 1.
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We can use this identity, ∑Bn(m; p) = ∑ (n
m)pmqn−m = (p + q)n with

q = 1− p, to help us evaluate various sums over the distribution.
To evaluate the mean, we first notice that each term in the sum

of equation (C.6) can be written mBn(m; p) = (n
m)mpmqn−m. Now

q = 1− p; but if we temporarily let q and p vary independently, we
can write By ∂ f /∂x, we mean, “the derivative

of f with respect to x, holding other
variables fixed.” For example, if f =
f (x, y) = x2yey, then ∂ f /∂x = 2xyey

and ∂ f /∂y = x2(1 + y)ey. Sometimes
we write (∂ f /∂x)y just to make it clear
we are holding y fixed.

mBn(m; p) =
(

n
m

)
p
(

∂

∂p

)
q

pmqn−m = p
(

∂

∂p

)
q

[(
n
m

)
pmqn−m

]
.

Hence, the mean is

〈m〉 =
n

∑
m=0

mBn(m; p)

=

[
p
(

∂

∂p

)
q

n

∑
m=0

(
n
m

)
pmqn−m

]
q=1−p

=

[
p
(

∂

∂p

)
q
(p + q)n

]
q=1−p

=
[

pn (p + q)n−1
]

q=1−p
= np. (C.7)

This makes sense: if we flip a fair coin n times, we expect the average
number of heads to be n/2. Notice also that for this distribution the
mean is the value for which the probability is highest.

The standard deviation

Although the mean 〈m〉 = np gives the most likely value, you know
from exercise C.6 that there is a substantial probability of getting val-
ues other than 〈m〉. What we want to develop is a measure for how
tightly the distribution is clustered about the mean. We might want
something like 〈m− 〈m〉〉—that is, what is the average difference
from the mean—but this won’t do: from the definition of the mean,

〈m− 〈m〉〉 = 〈m〉 − 〈m〉 = 0.

We could choose something like 〈|m− 〈m〉|〉, which gives a positive- From the definition of the mean,

〈a + bx〉 = ∑ [(a + bx)P(x)]

= a ∑P(x) + b ∑ xP(x)

= a + b 〈x〉 ,

since ∑P(x) = 1.

definite measure of the width; a more convenient measurement,
however, is the root-mean-square (rms) width

√
〈(m− 〈m〉)2〉. To

calculate this, let’s first expand the square:〈
(m− 〈m〉)2

〉
=
〈

m2 − 2m 〈m〉+ 〈m〉2
〉
=
〈

m2
〉
− 〈m〉2 .

To calculate
〈
m2〉 for the binomial distribution, we use a similar trick

from the calculation of 〈m〉:

m2Bn(m; p) = p
(

∂

∂p

)
q

{
p
(

∂

∂p

)
q

[(
n
m

)
pmqn−m

]}
.
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Therefore〈
m2
〉

=
n

∑
m=0

m2Bn(m; p)

=

{
p
(

∂

∂p

)
q

[
p
(

∂

∂p

)
q

n

∑
m=0

(
n
m

)
pmqn−m

]}
q=1−p

=

{
p
(

∂

∂p

)
q

[
p
(

∂

∂p

)
p
(p + q)n

]}
q=1−p

= p
(

∂

∂p

)
q

[
pn (p + q)n−1

]
q=1−p

= np + n(n− 1)p2.

Our expression for the rms width is therefore[〈
(m− 〈m〉)2

〉]1/2
=

[
np + (np)2 − np2 − (np)2

]1/2

= [np(1− p)]1/2 . (C.8)

Notice that although the width of the distribution increases with n,
the ratio of the width to the average value decreases, width/mean ∝
1/
√

n. Thus the relative size of fluctuations about the mean decreases
as n becomes larger.

C.4 The Poisson distribution

A common limiting case is to have a very small p and a very large
n. For example, suppose we are receiving X-rays from a dim source
with a photon countrate 36 hr−1; that is, in one hour we receive on
average just 36 photons. In any given second the probability of re-
ceiving a photon is 36 hr−1 × 1 hr/3600 s× 1 s = 0.01. If we point our
detector at the source for 500 s, however, we can expect to receive on
average λ = 500 s× 0.01 s−1 = 5 photons.

0 1 2 3 4 5
m

0.0

0.1

0.2

0.3

0.4

P λ
(m

)

λ=2.3

λ=1.2

Figure C.5: The Poisson distribution for
λ = 2.3 (thick gray lines) and λ = 1.2
(thin black lines).

Let’s take the binomial distribution, eq. (C.5), in the limit of p � 1
while holding np = λ = const., so that n = λ/p� 1:

lim
p→0,np→λ

Bn(m; p)

= lim
p→0,np→λ

n!
(n−m)!m!

pm(1− p)n−m

= lim
p→0,np→λ

m terms︷ ︸︸ ︷
n(n− 1) . . . (n−m + 1)

m!
pm (1− λ/n)n

(1− p)m

= lim
p→0,np→λ

(np)m

m!

[(
1− 1

n

)
. . .
(

1− m− 1
n

)]
(1− λ/n)n

(1− p)m

=
λm

m!
lim

n→∞

(
1− λ

n

)n
.
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Recognizing that the last term is just e−λ, we obtain the Poisson

distribution:

P(m, λ) =
λm

m!
e−λ. (C.9)

Thus in our example, if we have an average photon countrate of
36 hr−1 = 0.01 s−1 and we stare at our source for 500 s, then λ = 5 is
our expected number of photons, and P(3, λ) would be the probabil-
ity of receiving 3 photons in that time.

Not surprisingly, the mean number of events 〈m〉 is

〈m〉 =
∞

∑
m=0

m
λm

m!
e−λ

= e−λλ
d

dλ

∞

∑
m=0

λm

m!

= λ.

The standard deviation is

Recall the expansion

eλ =
∞

∑
m=0

λm

m!
.

σ =

√〈
(m− 〈m〉)2

〉
=

√
〈m2〉 − 〈m〉2 =

[
e−λ

(
λ

d
dλ

)2 ∞

∑
m=0

λm

m!
− λ2

]1/2

=

[
e−λλ

d
dλ

(
λeλ
)
− λ2

]1/2

=
√

λ

As with the normal distribution, the ratio of width to mean, σ/ 〈m〉 =
1/
√

λ, decreases as the mean number of events increases.

E X E R C I S E C . 8 — A high school graduating class has 400 students.
What is the probability that 2 people in that class have a birthday on January
1? What about 3 students?

E X E R C I S E C . 9 — ñ For a photon countrate of 0.01 s−1, how many
seconds of observation are required so that the mean number of photons
received is more than 3σ greater than 0? The notebook
signal-to-noise.ipynb explores the extraction of a weak signal from a noisy
background in more detail.

A historical example of a Poisson distribution is from WWII, when
London was targeted by V-1 flying bombs. A total of 537 V-1 bombs
hit London. To look at where the bombs hit, Clarke7 divided London 7 R. D. Clarke. An application of the

poisson distribution. Journal of the
Institute of Actuaries, 72(3):481, 001 1946.
doi: 10.1017/S0020268100035435

into 576 districts, each of 0.25 km2 area. The distribution of bomb
strikes went as follows.

no. bombs 0 1 2 3 4 > 5
no. districts 229 211 93 35 7 1
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That is, 229 districts were unscathed, 211 districts were hit once, and
so on, with one unfortunate district being hit by 7 bombs. Question:
were certain districts of London deliberately targeted? Suppose in-
stead that the bombs were just launched in the general direction of
London and fell randomly over the area. In that case, the probability
of a district being hit by any one bomb is small—1/576 to be exact.
The average number of bombs per district is λ = 537/576 = 0.9323,
so we would expect a Poisson distribution if the bombs were dis-
tributed randomly, with the expected number of districts hit by m
bombs as follows.

N (m) = 576×Pλ(m) = 576× λm

m!
e−λ,

m 0 1 2 3 4 5

Pλ(m) 0.3937 0.3670 0.1711 0.0532 0.0124 0.0023

N (m) 227 211 99 31 7 1

This matches the observed distribution well, and the pattern of hits
is therefore consistent with the bombs being scattered randomly over
the London area.88 This was probably small consolation to

the residents of the districts hit multiple
times.

Box C.1 An alternate derivation of the Poisson distribution

The Poisson distribution is frequently encountered when
observing in X- or γ-rays: the probability of receiving a single
photon in any given second is small, but over a long period
of time (several thousands of seconds, e.g.) there will be a
sizable number of photons collected. What is the probability
of receiving N photons in a given time interval? In this case,
we can derive the Poisson distribution independently from the
binomial distribution.

To do so, assume that our time intervals dt are sufficiently
short that the chance of receiving more than one photon in
dt is negligible. Then in dt we either receive one photon with
probability µdt � 1 or we receive no photons with probability
(1− µ)dt. Let us take µ to be a constant, and assume that non-
overlapping intervals of time are statistically independent—
that is, the chance of receiving a photon in a given interval
doesn’t depend on what happened in the previous interval.
Then there are two ways to receive m photons in a time t + dt:
we can receive m photons in a time t and no photons in the
interval (t, t + dt); or we can receive m − 1 photons in a time
t and one photon in the interval (t, t + dt). The probability of
receiving m photons in a time t + dt is the sum of the proba-



probability and statistics 65

Box C.1 continued

bilities of these two scenarios:

Pµ(m; t + dt) = (1− µ dt)Pµ(m; t) + µ dtPµ(m− 1; t).

Rearranging terms and taking the limit dt → 0 gives us a dif-
ferential equation,

dPµ(m; t)
dt

= lim
dt→0

Pµ(m; t + dt)−Pµ(m; t)
dt

= µ
[
Pµ(m− 1; t)−Pµ(m; t)

]
. (C.10)

The probability of getting no events in t + dt is

Pµ(m = 0; t + dt) = (1− µ dt)Pµ(m = 0; t),

which gives the differential equation

dPµ(0; t)
dt

= −µPµ(0; t)

with solution Pµ(m = 0; t) = e−µt. We fix the constant of inte-
gration by setting Pµ(m = 0; t = 0) = 1.

Now that we have Pµ(m = 0; t) = e−µt, we can solve the
differential equation (C.10) for Pµ(m = 1; t),

dPµ(m = 1; t)
dt

= µ
[
e−µt −Pµ(m = 1; t)

]
,

with solution Pµ(m = 1; t) = (µt)e−µt, as you can verify. We
can then find a solution for Pµ(m = 2; t); and continue in that
fashion to find the Poisson distribution:

Pµ(m; t) =
λm

m!
e−λ (C.11)

with λ = µt.

E X E R C I S E C . 1 0 — Show that Pµ(m; t) (eq. [C.11]) satisfies the
recursion relation, equation (C.10). Since Pµ(m = 1; t) also satisfies
the equation, this proves via induction that equation (C.11) is the
correct distribution.

C.5 The normal, or Gaussian, distribution

The Poisson distribution represents one limit, in which the probabil-
ity p of any one event is quite small, but np remains finite. Another
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limit is for n to become large while keeping p fixed, so that the mean
number of events np also becomes large. In particular, this means we
can no longer assume that 〈m〉 � n. To handle the factorials, we will
make use of Stirling’s formula, which is increasingly accurate at
large n,Stirling’s formula is quite accurate even

for small n: at n = 10, it is off by 1%; at
n = 20, it is off by only 0.4%. n! '

√
2πn

(n
e

)n
. (C.12)

The symbol ‘'‘ means that rhs of eq. (C.12) approaches n! as n → ∞.
Using Stirling’s formula, the combinatorial factor in Bn(m; p) is(

n
m

)
' 1√

2π

nn+1/2

mm+1/2(n−m)n−m+1/2 em+(n−m)−n

=
1√
2πn

(
n−m

n

)−(n−m+1/2) (m
n

)−(m+1/2)

The factors of e cancelled, and we multiplied top and bottom by
nm+1; the reason for this was to put the factors of n− m and m into
ratios with n since we are going to take the limit n→ ∞.

Now for the factor of pm(1− p)n−m. Since the mean value of m is
np, we’d like to put p and (1− p) in the denominators of m/n and
(n−m)/n; multiplying and dividing by

√
p(1− p) gives

Bn(m; p) ' 1√
2πnp(1− p)

[
n−m

n(1− p)

]−(n−m+1/2) [ m
np

]−(m+1/2)
.

We showed earlier that the standard deviation
[〈

(m− 〈m〉)2
〉]1/2

=

[np(1− p)]1/2 increases as
√

n, so that the ratio of the width of the
distribution relative to the mean is

[np(1− p)]1/2

np
∝

1√
n

.

As a consequence the distribution becomes increasingly peaked as
n increases. We therefore expand m about its mean value np: we
substitute m = np + h, where h� np. To deal with the exponents, we
take their logarithms,

Bn(m; p) ' 1√
2πnp(1− p)

× exp
{

−
[(

n(1− p) +
1
2

)
− h
]

ln
[

1− h
n(1− p)

]
−
[(

np +
1
2

)
+ h
]

ln
[

1 +
h

np

]}
.

We then expand the logarithms in powers of h/[n(1 − p)] andRecall that

ln(1 + u) = u− u2/2 + u3/3− . . .

for small u.

h/(np) and multiply through. We neglect the factor of 1/2 compared
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to n(1− p) and np; the argument of the exponential is then

{·} = h +
h2

2n(1− p)
− h2

n(1− p)
− h3

2n2(1− p)2

−h +
h2

2np
− h2

np
+

h3

2n2 p2 .

The terms linear in h cancel; keeping the lowest-order terms, ∝ h2, we
finally obtain

lim
n→∞

Bn(m; p) =
1√

2πnp(1− p)
exp

[
− m2

2np(1− p)

]
. (C.13)

We now introduce the parameters µ = np and σ = np(1− p) and
substitute h = m − np; the result is the normal, or Gaussian,
distribution:

p(m; µ, σ) =
1√
2πσ

exp

[
− (m− µ)2

2σ2

]
. (C.14)

In taking this limit we have implicitly made the shift from m being
discrete (integer-valued) to being continuous (real-valued).

We are now ready to explore the probability distribution

for a continuous variable. To motivate our discussion, suppose
we wish to find the average location of a particle doing a random
walk (think of a CH4 molecule released into the room). Our par-
ticle travels on average a distance ` before it collides with another
molecule and goes off in a random direction. For m steps, out of n, To keep things conceptually simple,

we’ll assume all motion is along a line.to the right the position9 of the particle is x = `[m − (n − m)] =
9 We are taking steps to the right as a
positive displacement.(2m − n)` with mean value 〈x〉 = (2 〈m〉 − n)` = n`(2p − 1).

The distance between having m steps to the right and m + 1 steps
to the right is [2(m + 1) − n]` − [2m − n]` = 2`. Since each incre-
ment of m away from the mean value moves the particle a distance
of 2`, the width of the distribution of particle positions is given by
2`
[〈
(x− 〈x〉)2〉]1/2

= 2`
√

np(1− p).
The first conceptual hurdle is that it makes no sense to ask: “What

is the probability Pn(x) of the walker being at exactly x = 0.2914578329?”
There are an innumerable infinity of real numbers, so the probability
of hitting any particular real number exactly is vanishingly small.
What we instead must ask is, “What is the probability Pn(x; ∆x) =

p(x)∆x of being in some interval ∆x about x”? We call p(x) the
probability density or probability distribution and assume
that P(x) ∝ ∆x for sufficiently small ∆x. In our example, if we are
talking about a molecule moving about in a room, then the distance
` is on a microscopic scale, much smaller than the dimensions of the
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room. In that case, our ∆x—the resolution of a measuring appara-
tus, say—would be much larger than `. Hence, when we ask for the
probability of being in an interval ∆x about x, there are ∆x/(2`) val-
ues of m. But m is large, so the difference in p(m + 1) and p(m) will
be small, so we can approximate the probability of landing in this
interval as

p
(

m =
1
2

[
n +

x
`

]) ∆x
2`

.

Substituting this value for m into the expression for p(m), eq. (C.13),
and simplifying gives

p(x; µ, σ)dx =
1√

2π
√

4`2np(1− p)
exp

[
− (x− n`[2p− 1])2

8`2np(1− p)2

]

=
1√
2πσ

exp
[
− (x− µ)2

2σ2

]
dx. (C.15)

Here we’ve defined the parameter µ = n`(2p − 1) as the mean
displacement of the particle and σ = 2`

√
np(1− p) as the standard

deviation of the particle’s displacement. The peak, or most probable
value, of this distribution is at x = µ.

Now suppose that the steps are not all of the same length, but
have some random distribution with mean length 〈`〉. In this case,
the distribution of final position of our particle still follows eq. (C.15)
with µ = n 〈`〉 (2p − 1) and σ = 2 〈l〉

√
np(1− p). This is a conse-

quence of the central limit theorem
10, which holds that sum10 The proof of which is beyond the

scope of this text, of independent random variables (e.g., each step, which doesn’t de-
pend on the previous one) tends toward a normal distribution as the
number of steps increases.

Having derived the normal probability distribution, we

should check its properties. First, the distribution should be
normalized: if we integrate over all possible positions,Recall that∫ ∞

−∞
e−βx2

dx =

√
π

β
.

∫ ∞

−∞
p(x; µ, σ)dx = 1.

The factor 1/(
√

2πσ) ensures that the probability has the correct
normalization. Second, the mean of the normal distribution is µ:
letting z = x− µ,∫ ∞

−∞

x√
2πσ

exp

[
− (x− µ)2

2σ2

]
dx =

∫ ∞

−∞

z√
2πσ

exp
[
− z2

2σ2

]
dz +

∫ ∞

−∞

µ√
2πσ

exp
[
− z2

2σ2

]
dz

The first term on the RHS vanishes because it is odd in z; that is,∫ 0

−∞

z√
2πσ

exp
[
− z2

2σ2

]
dz = −

∫ ∞

0

z√
2πσ

exp
[
− z2

2σ2

]
dz.
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The second term is just µ
∫ ∞
−∞ p(z)dz = µ.

4 2 0 2 4 6

x

0.0

0.1

0.2

0.3

0.4

p
(x

;µ
,σ

)

σ= 1. 0

µ= 0. 0

µ= 2. 0

µ= 4. 0

Figure C.6: Normal, or Gaussian,
probability distribution for different
values of µ with σ = 1.

To compute the standard deviation,
√
〈(x− 〈x〉)2〉 =

√
〈x2〉 − 〈x〉2,

we use the following trick:

∫ ∞

−∞
x2e−βx2

dx = − ∂

∂β

∫ ∞

−∞
e−βx2

dx = − ∂

∂β

√
π

β
=

1
2

√
π

β3/2 .

To use this, we first change variables to z = x− µ; then

〈
x2
〉
− 〈x〉2 =

∫ ∞

−∞

z2 + 2zµ + µ2
√

2πσ
exp

[
− z2

2σ2

]
dz− µ2

=
∫ ∞

−∞

z2
√

2πσ
exp

[
− z2

2σ2

]
dz + 2µ

∫ ∞

−∞

z√
2πσ

exp
[
− z

2σ2

]
dz

+µ2
{∫ ∞

−∞

1√
2πσ

exp
[
− z

2σ2

]
dz− 1

}
.

You should convince yourself that the last term (in { }) is zero; also,
the middle term vanishes because it is odd in z. We then use our
trick to evaluate the first term and obtain,〈

x2
〉
− 〈x〉2 =

∫ ∞

−∞

z2
√

2πσ
exp

[
− z2

2σ2

]
dz

=

√
π

2
(2σ2)3/2 1√

2πσ
= σ2.

Plots of the normal distribution for different values of σ and µ = 0
are shown in Figure C.7.

ñ The notebook mean-standard-deviation.ipynb explores the prop-
erties of the normal distribution in more detail.
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µ= 0. 0

σ= 1. 0

σ= 2. 0

σ= 3. 0

Figure C.7: Normal distribution for
µ = 0 and varying values of σ.

C.6 The cumulative probability distribution

Now that we have our probability distribution, we can ask questions
such as, “For a mean value µ and standard deviation σ, what is the
probability that a < x < b?” or “What is the probability that x < c?”

To answer questions like these, we integrate p over the range of
interest:

P(a < x < b) =
∫ b

a

1√
2πσ

exp
[
− (x− µ)2

2σ2

]
dx,

P(x < c) =
∫ c

−∞

1√
2πσ

exp
[
− (x− µ)2

2σ2

]
dx.

A common application is to assess the probability that a measure-
ment will lie within some range about µ: for example, “What is the
probability of measuring x in a range (µ− σ, µ + σ)?”
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As shown in Figure C.8, the 1σ region (light gray) contains 68% of
the probability; that is, for a normal distribution you would expect
about 2/3 of your measurements to lie within µ ± σ. For the range
µ± 2σ (dark gray), the probability is 95%; that is, you would expect
only 1 in 20 measurements to lie outside this range.

4 2 0 2 4

x/σ

0.0

0.1

0.2

0.3

0.4
p
(x

)

Figure C.8: The 2σ (dark gray) and
1σ (light gray) probability regions,
comprising 95% and 68% probability,
respectively.

C.7 Measurements with random fluctuations

Taking a measurement is not a simple affair. Suppose, for example,
we want to measure the brightness of a star. First, we do not directly
measure the brightness; what happens instead is that the light from
the star is focused on a charge-coupled device (CCD)—a semiconduc-
tor chip—that converts the photons into electric charge. The charge
is read out from a chip, and we relate that charge to the flux of light
incident on the chip. Now, the power supply to the CCD is not per-
fect but has some fluctuations in voltage. There is turbulence in the
atmosphere that refracts the starlight. The telescope is a big mechani-
cal device that vibrates. And so on. If we take a set of measurements
of some quantity, we will have a distribution of values; our task is to
estimate the most likely value for that quantity given the measured
values.

It is plausible that each of these fluctuations produces an upward
or downward error in our measurement, and the size of each fluctua-
tion varies randomly. We can therefore think of our measurement as
being like a random walk: each source of variation contributes “one
step”, and the end result is that the value x that we measure has a
probability to lie in (x, x + dx) of

p(x)dx =
1√
2πσ

exp
[
− (x− µ)2

2σ2

]
dx.

In this case µ is the “true” value of the signal, which we don’t know a
priori. We also don’t know beforehand the value of σ, which indicates
the precision of our measurement. Our next task, then, is to devise
methods of estimating these values from the data.

Suppose we make N measurements with values xi, i = 1, . . . , N.
What is the best estimate of µ and σ2? Intuitively we expect that
these should beWe use E(µ) to mean, “The expected

value of µ”, and likewise for E(σ2).

E(µ) = 1
N ∑ xi and E(σ2) =

1
N ∑ (xi − x̄)2 ,

respectively. To put our expectations on a firmer footing, we note
that since the probability to measure a value x is P(x) and the N
measurements x1, x2, . . . , xN are independent, the probability that we
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measured the set {xi}i=1,...,N is

P
(
{xi}i=1,...,N

)
= P(x1)P(x2)× . . .×P(xN)

=
N

∏
i=1

1√
2πσ

exp
[
− (xi − µ)2

2σ2

]
dxi

= (2π)−N/2 σ−N exp

[
− 1

2σ2

N

∑
i=1

(xi − µ)2

]
dx1 . . . dxN .

In the absence of additional information, our best guess for µ and σ The symbol ∏ indicates a product,

N

∏
i=1

ai ≡ a1 × a2 × . . .× aN .
is to pick values that maximize the probability of our measurements.

To find µ, for example, we take the derivative of P
(
{xi}i=1,...,N

)
with

respect to µ and set it to zero to find the maximum,

0 =
∂

∂µ
P
(
{xi}i=1,...,N

)
= P

(
{xi}i=1,...,N

)
×
[

1
σ2

N

∑
i=1

(xi − µ)

]

= P
(
{xi}i=1,...,N

) 1
σ2 ×

[(
N

∑
i=1

xi

)
− Nµ

]
.

For this derivative to vanish, the quantity in [ ] must vanish. We Recall that

d exp[ f (x)]
dx

= exp[ f (x)]× d f
dx

.therefore find the value of µ that maximizes the probability of this
set of measurements:

E(µ) = 1
N

N

∑
i=1

xi ≡ x̄. (C.16)

E X E R C I S E C . 1 1 — By maximizing the probability of making a set of
measurements, show that

E(σ2) =
1
N

N

∑
i=1

(xi − µ)2 .

You may notice that E(σ2) depends on µ, which we don’t know a
priori. (That’s the point of making the measurement!) The best we can
do is to use our estimate x̄. When we do this, however, we need to
make the estimated uncertainty slightly larger:

E(σ2) =
1

N − 1

N

∑
i=1

(xi − x̄)2 . (C.17)

One way to justify the denominator N − 1 is to ask what would hap-
pen if we just had one measurement. If we knew the true value µ,
then we could use the difference between our measurement x1 and
µ as an estimate of the uncertainty. Since we don’t know µ, how-
ever, we use x1 as our best guess for µ, but then we have no way of
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independently assessing the uncertainty. The fact that eq. (C.17) re-
quires N ≥ 2 reflects this constraint. See Box C.2 for a derivation of
eq. (C.17).

In practice, the difference in the denominator between N and
N − 1 is not usually important11.11 To quote Press et al. [2007], “if the

difference between N and N − 1 [in the
formula for E(σ2)] ever matters to you,
then you are probably up to no good.”

ñ The notebook distribution.ipynb explores further how one as-
sesses the quality of these estimates of the mean and standard deviation
from a set of measurements. This is followed by fitting-data.ipynb,
which looks at how one tests how well a set of measurements conforms
to a hypothesis.

Box C.2 A derivation of E(σ2)

To understand why the denominator of eq. (C.17) is N − 1
instead of N, let’s imagine that there is an infinitude of copies
of our universe, and in each copy, our set of measurements
is performed. The mean (averaged over all universes) of x̄ is
then

〈x̄〉 =
〈

1
N

N

∑
i=1

xi

〉
=

1
N

N

∑
i=1
〈xi〉 = 〈x〉 = µ.

(Since each variable is drawn from the same distribution,
∑N

i=1 〈xi〉 = N 〈x〉.) This is what we expect, and further justi-
fies our using x̄ as an estimate for µ. It doesn’t mean, however,
that x̄ = µ for our universe.

Now, let’s do the same thought experiment for ∑N
i=1(xi −

x̄)2. Expanding the square,〈
N

∑
i=1

(xi − x̄)2

〉
=

〈
N

∑
i=1

(
x2

i − 2xi x̄ + x̄2
)〉

=

〈
N

∑
i=1

x2
i − Nx̄2

〉
.

(C.18)
Here

N

∑
i=1

2xi x̄ = 2x̄
N

∑
i=1

xi = 2Nx̄2

and
N

∑
i=1

x̄2 = Nx̄2.

Next, we expand x̄2. There are N2 terms:

x̄2 =
1
N
(x1 + x2 + . . . + xN)×

1
N
(x1 + x2 + . . . + xN)

=
1

N2


N terms︷ ︸︸ ︷(

x2
1 + x2

2 + . . . + x2
N

)
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Box C.2 continued

+ (x1x2 + x1x3 + . . . + x1xN + x2x1 + x2x3 + . . .)︸ ︷︷ ︸
N(N − 1) terms


=

1
N2

[
N

∑
i=1

x2
i +

N

∑
i=1

∑
j 6=i

xixj

]
. (C.19)

Multiplying eq. (C.19) by N and inserting into eq. (C.18), we
obtain〈

N

∑
i=1

(xi − x̄)2

〉
=

(
1− 1

N

) N

∑
i=1

〈
x2

i

〉
− 1

N

N

∑
i=1

∑
j 6=i

〈
xixj

〉
.

Since σ2 =
〈

x2〉− 〈x〉2 =
〈

x2〉− µ2, the first sum is just

N

∑
i=1

〈
x2

i

〉
= N

(
σ2 + µ2

)
;

in the second sum, since xi and xj are independent,
〈

xixj
〉

=

µ2, so
N

∑
i=1

∑
j 6=i

〈
xixj

〉
= N(N − 1)µ2.

Inserting these expressions into eq. (C.19) gives〈
N

∑
i=1

(xi − x̄)2

〉
=

(
1− 1

N

)
N
(

σ2 + µ2
)
− N(N − 1)

N
µ2

= (N − 1)σ2.

We often want to know the probability distribution for

a function of several random variables. For example, we
might measure the volume of a block as V = L ×W × H, where L,
W, and H are the measured length, width, and height, respectively,
and each has an associated uncertainty σL, σW , and σH . What is the
resulting uncertainty in V?

To make this general, suppose f ({xi}) is a function of the N inde-
pendent random variables x1, x2, . . . , xN . If the relative values of the
uncertainties are small, that is σi/xi � 1, then we can expand f about
the values xi = µi:

f ({xi}) ≈ f ({µi}) +
N

∑
i=1

∂ f
∂xi

∣∣∣∣
xi=µi

(xi − µi) . (C.20)
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To find the width of our distribution, we will compute

σ2
f = 〈( f − 〈 f 〉)2〉

In the limit of a large number of measurements, we assume that
〈 f 〉 ≈ f ({µi}); then

f − 〈 f 〉 ≈
N

∑
i=1

∂ f
∂xi

∣∣∣∣
x=µi

(xi − µi)

and the width σ2
f is

〈
( f − 〈 f 〉)2

〉
=

〈[
N

∑
i=1

∂ f
∂xi

∣∣∣∣
x=µi

(xi − µi)

]2〉
.

We then expand the square of the term in [ ] to obtain〈
N

∑
i=1

(
∂ f
∂xi

)2

(xi − µi)
2 + ∑

i 6=j

∂ f
∂xi

∂ f
∂xj

(xi − µi)
(
xj − µj

)〉

=
N

∑
i=1

(
∂ f
∂xi

)2 〈
(xi − µi)

2
〉

+∑
i 6=j

∂ f
∂xi

∂ f
∂xj

〈
(xi − µi)

(
xj − µj

)〉
. (C.21)

Now, if the variables xi are completely independent, then〈
(xi − µi)

(
xj − µj

)〉
= 〈(xi − µi)〉

〈(
xj − µj

)〉
= 0

and therefore

σ2
f = 〈( f − 〈 f 〉)2〉 =

N

∑
i=1

(
∂ f
∂xi

)2
σ2

i (C.22)

This is an important result: it tells us how to propagate uncertainties.
To go back to our example, suppose we measure the length L, width
W, and height H of a block with associated uncertainties σL, σW , and
σH . The uncertainty in our volume is then

σ2
V =

(
V
L

)2
σ2

L +

(
V
W

)2
σ2

W +

(
V
H

)2
σ2

H (C.23)

orWe use the relation ∂V/∂L = W × H =
V/L, and so on for the derivatives w.r.t.
W and H.

σV
V

=

√(σL
L

)2
+
(σW

W

)2
+
(σH

H

)2
.

Using equation (C.22) we can derive general rules for propagating
uncertainties.
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E X E R C I S E C . 1 2 — Demonstrate the following rules for propagating
uncertainties. In these equations, x and y are independent random variables,
and a and b are constants.

1. For f = ax + by, show that

σf =
√

a2σ2
x + b2σ2

y .

2. For f = xayb, show that

σf

f
=

√
a2
(σx

x

)2
+ b2

(
σy

y

)2
.

E X E R C I S E C . 1 3 —

1. Given g and t with uncertainties σg and σt, find σs with

s =
1
2

gt2.

2. Given V and v with uncertainties σV and σv , find σM with

M = V + 5− 5 log
(

1
v

)
.

3. Given A and P with uncertainties σA and σP, find σz with

z = A sin
(

2πt
P

)
.

An interesting special case of equation (C.22) is when we
make a number of repeated measurements xi, i = 1, . . . , N and we
wish to compute their average

x̄ =
1
N

N

∑
i=1

xi.

Since each measurement has the same uncertainty σ, the uncertainty
in our average—the error in the mean—is

σx̄ =
1
N

√√√√ N

∑
i=1

σ2 =
1
N

√
Nσ2 =

σ√
N

. (C.24)

By making many repeated measurements, the uncertainty in the mean due
to random fluctuations can be made much less than the uncertainty of any
single measurement.
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E X E R C I S E C . 1 4 — Suppose during an election ten independent polls
each show that candidate A is leading with 50.3% of the vote. Since the
margin of error—the uncertainty—in each poll is ±1%, the news anchor
reports that the election is a dead heat. Is this correct? What is the
probability of candidate A receiving more than 50% of the vote, assuming
that the errors in the polls follow a normal (Gaussian) distribution with
σ = 1%?

Now we can generalize our discussion to the case of making
N measurements, but with each measurement xi having a different
uncertainty σi. What is our estimate for µ, and what is our estimate
of σµ, the uncertainty in µ? To answer, we go back to finding the
value of µ that maximizes the probability of us obtaining a sequence
of measurements {xi}i=1,...,N ,

0 =
∂

∂µ
P
(
{xi}i=1,...,N

)
=

∂

∂µ
P(x1)P(x2) . . .P(xN)

= P
(
{xi}i=1,...,N

)
×

N

∑
i=1

xi − µ

σ2
i

Hence the expected (most likely) value of µ is

E(µ) = ∑N
i=1 xi/σ2

i

∑N
i=1 1/σ2

i
. (C.25)

Note that in the limit σi → σ, then E(µ)→ ∑ xi/N, as it should.
We can compute the uncertainty in E(µ) from equation (C.22),

σ2
µ =

N

∑
i=1

(
∂µ

∂xi

)2
σ2

i =
∑N

i=1 1/σ2
i(

∑N
i=1 1/σ2

i

)2 =
1

∑N
i=1 1/σ2

i
. (C.26)

As before, in the limit σi → σ, σµ → σ/
√

N.
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