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Preface

These notes are from a graduate-level course on radiative processes in
astrophysics at Michigan State University. Because the course is taught
in fall semesters of alternating years, the only preparation assumed is
that the students have completed an undergraduate degree in physics or
astronomy.

The notes are meant as a supplement to the main text, Rybicki and
Lightman1, and the secondary text, Shu2. The coverage therefore ex- 1 George B. Rybicki and Alan P. Lightman.

Radiative Processes in Astrophysics. Wiley,
1979
2 Frank H. Shu. Radiation, volume I of The
Physics of Astrophysics. University Science
Books, 1991

pands upon topics covered in those texts, rather than aiming to be a
standalone monograph. The first two chapters are meant to fill in a gap
between this course and undergraduate coursework on quantum mechan-
ics and electromagnetism, since astronomy students at Michigan State
do not typically take graduate-level quantum or a second semester of
electromagnetism prior to taking this course.

Some of the topics and the style of presentation were inspired by
three courses taught at UC-Berkeley in the mid-90’s: Fluid Mechanics,
taught by Professor J. Graham; Radiation Astrophysics, taught by the late
Professor D. Backer; and Physics of the Interstellar Medium, taught by
Professor C. McKee. I also am grateful for extensive notes on these topics
from Professor J. Arons. Finally, I am indebted to the students who are
taking the MSU course for their questions, feedback, and encouragement.

The text layout uses the tufte-book3 LATEX class: the main feature is a 3 https://tufte-latex.github.io/
tufte-latex/large right margin in which the students can take notes; this margin also

holds small figures and sidenotes. Exercises are embedded throughout
the text. These range from “reading exercises” to longer, more challeng-
ing problems.

These notes are under active development; to refer to a specific
version, please use the eight-character stamp labeled “git version” on the
copyright page.

https://tufte-latex.github.io/tufte-latex/
https://tufte-latex.github.io/tufte-latex/
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1
From Coulomb to Ampère to Faraday

1.1 Maxwell’s Equations for Electromagnetism

Radiation is an electromagnetic phenomenon. It is useful, therefore, to
give a brief review of the governing equations of electromagnetism. As
we do so, we will also indicate how the units for the actors in electromagnetism—
charges and fields—are defined. Unlike much of physics and engineering,
astronomy does not use the Système International (SI) units, but rather
the Gaussian system of units. Hopefully this brief introduction, based
on the discussion in Jackson [1975], will ease the transition from under-
graduate coursework1. 1 For further information on different

systems of units, see Appendix A.The equations of electromagnetism are based on a few experimental
relations. The first experimental relation is Coulomb’s law,

FFFC = kC
q1q2
d2

eeer, (1.1)

which establishes that the force FC on charge q2 due to charge q1 is in-
versely proportional to the square of the distance d between them. Here
kC is a constant of proportionality. The unit vector eeer points along the
line connecting q1 and q2.

In general, describing a system of charges in terms of the forces be-
tween pairs of particles is cumbersome. It is more useful to define the
electric field of a charge q,

EEE = kC
q
d2

eeer,

as the force on a test charge at a given position in the limit of an in-
finitesimally small test charge. It is found experimentally that the fields
obey superposition: the electric field at a given point is the linear sum of
the electric field produced by individual charges. To be completely gen-
eral, we could have defined the electric field as being proportional to the
force, so that EEE = kEkCq/d2 eeer. In all commonly used systems of units,
however, the electric field is defined so that kE ≡ 1; we shall not bother
with this distinction any further.

If we have a system of many small, numerous charges, such that Δq
is the charge in an infinitesimal volume ΔV located at position xxx, then
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we can define a charge density ρ(xxx) = Δq/ΔV. Integrating the electric
field over a surface enclosing a volume dV and converting to a differential
relation gives the first Maxwell equation,

∇ · EEE = 4πkCρ. (1.2)

The second experimental relation is Ampère’s law for the force per unit
length between two infinitely long, parallel wires a distance d apart and
carrying currents I1 and I2:

dFFFA

dl
= −2kA

I1I2
d

eeer. (1.3)

Here kA is another proportionality constant and the factor 2 is foresight.
The force points along a vector eeer from wire 1 to wire 2 and is perpendicu-
lar to the wires. The force is attractive if the currents in the wires flow in
the same direction.

Most systems of units define current as charge per time2 I = dq/dt,2 In modified Gaussian units,
I = c−1dq/dt, so that current and
charge manifestly form a 4-vector.

so charge has dimension [current × time]. In analogy with the charge
density, we define a current density JJJ(xxx, t) as the current per unit area.
Conservation of charge means that the change in charge density at a
point must be accounted for by a net divergence of the current density:

∂ρ
∂t

+∇ · JJJ = 0. (1.4)

With this definition of current, we compute the dimensionless ratio
FC/FA and find that kC/kA must have dimension [length/time]2. Exper-
imentally this ratio is found to be kC/kA = c2; we can therefore choose
either kC or kA and then the other constant is fixed.

The magnetic field is defined as the force per unit length per unit of
current,

B = kB
dFA

dl
1
I
= −2kAkB

I
d
.

The ratio of the electric and magnetic fields therefore has dimension[
E
B

]
∼
[
length
time

]
1
kB

.

We need the constant of proportionality kB to allow for BBB having different
dimensions from EEE.

The lack of magnetic monopoles—our third experimental relation—
implies that

∇ · BBB = 0, (1.5)

which is the second Maxwell equation. The third Maxwell equation is
Faraday’s law that the electromotive force—the integral of the electric
field around a circuit—is proportional to the rate of change of the mag-
netic flux threading that circuit. In vector form,

∇× EEE = −kF
∂BBB
∂t

(1.6)
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From this equation, the dimension of kF is

[kF] ∼
[

time
length

]
·
[
E
B

]
∼
[

1
kB

]
.

From the general relation between BBB and a system of currents we
obtain an equation for magnetostatics,

∇× BBB = 4πkAkBJJJ. (1.7)

When dealing with time-dependent phenomena, such as charging a
capacitor, the four equations (1.2), (1.5), (1.6), and (1.7) do not give
consistent results. Maxwell realized that the fix was to enforce charge
conservation by replacing JJJ in equation (1.7) with

JJJ → JJJ+
1

4πkC
∂EEE
∂t

.

This completes Maxwell’s equations:

∇ · EEE = 4πkCρ ∇ · BBB = 0

∇× EEE = −kF
∂BBB
∂t

∇× BBB = 4πkAkBJJJ+
kAkB
kC

∂EEE
∂t

If the charge density ρ and current density JJJ are zero, then the two equa-
tions for∇× EEE and∇× BBB can be combined to give a wave equation for
BBB and EEE,

∇2

{
BBB
EEE

}
=

kAkBkF
kC

∂2

∂t2

{
BBB
EEE

}
. (1.8)

The wave propagation speed is√
kC

kAkBkF
=

c√
kBkF

.

Since electromagnetic waves do indeed propagate with velocity c, we
must have kF ≡ k−1

B . The vectors EEE, BBB, and direction of propagation kkk
form a right-handed triad (Fig. 1.1).

k
λ

E

B

Figure 1.1: Propagation of an electromag-
netic wave in free space.

Finally, from the two homogeneous equations∇ · BBB = 0 and∇× EEE+

kF∂BBB/∂t = 0, we can define potentials (Φ,AAA) such that BBB = ∇× AAA and
EEE = −∇Φ − kF∂AAA/∂t. These potentials will be used in Ch. 2 when we
quantize the electromagnetic field.

We have two independent constants to specify our system
of electromagnetic units: kF and either kC or kA. For the SI system
of units, the original definition of current was based on the mass of silver
deposited per unit time by electrolysis in a standard silver voltameter.
Because this is an independent definition of current, the constant kA
must be defined so that Ampère’s law is consistent. The unit of current,
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known as the Ampère (A), is now defined as the amount of current that
when flowing through two infinitely long wires 1m apart produces a
force per unit length of exactly 2 × 10−7 Nm−1. With this definition,
kA = 10−7 NA−2 and kC = c2kA. For convenience, SI introduces the
vacuum permeability

μ0 = 4πkA = 4π × 10−7 NA−2

and the vacuum permittivity

ϵ0 = 1/(4πkC) = (4πkAc2)−1 = (c2μ0)
−1.

Finally, in SI kF = 1; this implies that the electric and magnetic fields
have different dimensions.

With these choices for kF and kA, Maxwell’s equations are written as

∇ · EEE =
ρ
ϵ0

∇ · BBB = 0

∇× EEE = −∂BBB
∂t

∇× BBB = μ0JJJ+ μ0ϵ0
∂EEE
∂t

The force on a charged particle traveling with velocity vvv is

FFF = q (EEE+ vvv× BBB) .

This system of units is convenient for dealing with laboratory and engi-
neering applications. The unit of charge is given by 1 A · s and is called a
Coulomb (C). The charge of a single electron is 1.602× 10−19 C.

For problems involving the interaction of individual particles and
photons, it is more convenient to adopt the Gaussian system of units. In
this system, the speed of light c appears explicitly. We set kF = c−1, so
that in Maxwell’s equations, time derivatives are multiplied by c−1 and
EEE and BBB have the same dimensions. Second, we choose kC = 1, so that
kA = c−2. With these choices, Maxwell’s equations are written

∇ · EEE = 4πρ ∇ · BBB = 0

∇× EEE = −1
c
∂BBB
∂t

∇× BBB =
4π
c
JJJ+

1
c
∂EEE
∂t

and the force on a charged particle traveling with velocity vvv is

FFF = q
(
EEE+

vvv
c
× BBB

)
.

For historical reasons, the units of mass, length, and time in this system
are the gram, the centimeter, and the second. Because kC = 1, the unit of
charge is therefore (erg · cm)1/2 and is termed a statcouloub.

1.2 Propagation in matter: elementary treatment

When an electromagnetic wave passes through some medium, the oscil-
lating electric field perturbs the charges in the medium; those oscillating
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charges in turn emit electromagnetic radiation. Some of this radiation
may be sent back along the path of the original, incident wave, forming
a reflected wave; some of this radiation adds to the forward-propagating
wave and modifies it, thereby forming a refracted wave.

We shall develop a more thorough picture of the interaction of radi-
ation and matter in this course; for now, however, we will just review
the simplest case. Suppose the effect of the electric field is to induce an For the remainder of these notes, we work

with Gaussian units.average dipole moment ⟨ppp⟩ on each atom, so the net polarization per unit
volume is PPP = n⟨ppp⟩, where n is the density of atoms. In a macroscopically
small volume (but still large enough to contain many microscopic diploes)
centered at xxx′, the potential due to the dipoles is

Φ(xxx) =
∫

PPP(xxx′) · (xxx− xxx′)
|xxx− xxx′|3

dV =

∫
PPP(xxx′) · ∇′

(
1

|xxx− xxx′|

)
dV.

Integrating by parts gives

Φ(xxx) = −
∫ ∇′ · PPP(xxx′)

|xxx− xxx′|
dV.

This expression is just the standard formula for the potential, if we iden-
tify the induced charge density as ρ = −∇ · PPP. We can obtain an even
simpler formula, if we assume the polarization is proportional to the elec-
tric field, PPP = χEEE, with χ a scalar constant. Then Coulomb’s law becomes3 3 We are assuming here that there are no

“free” charges present.∇ · EEE = −4π∇ · PPP or

(1+ 4πχ)∇ · EEE ≡ ε∇ · EEE = 0.

There is an analogous relation for the induced magnetic moment per unit
volume; if the response is again linear and isotropic, Maxwell’s equations
become

∇ · EEE = 0 ∇ · BBB = 0

∇× EEE = −1
c
∂BBB
∂t

∇× BBB =
με
c
∂EEE
∂t

.

The solution to this system of equations is again a traveling wave, but
with propagation speed c/

√με. Hence the index of refraction (the ratio
of the speed of light in vacuum to the speed in a medium) is n =

√με.
For most non-ferromagnetic materials, |μ − 1| ≪ 1 and n ≈

√
ε =√

1+ 4πχ.
In physical terms, the electric field generated by the induced dipoles,

when added to the “external” electric field, shifts the phase of the wave
such that the effective propagation speed is modified.

1.3 Geometrical optics: propagation along rays

We have an intuitive feel for the propagation of light along straight
paths, or rays. Our experience is based on optical wavelengths (∼ 500nm)
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being much smaller than ourselves. The propagation along rays is clearly
not an accurate description of light when our system is small, e.g., an
atom or molecule. Let’s therefore examine the propagation of light when
the scales over which external conditions change are much longer than
the wavelength of the light itself.

In the absence of interactions with matter, we know that the light
propagates as a free wave: if f is some quantity that characterizes our
electromagnetic disturbance, then we can write

f(xxx, t) = ξ exp [i (kkk · xxx− ωt)] .

Now, in the presence of matter the propagation is not so simple; more
generally,

f(xxx, t) = a(xxx, t) exp [iψ(xxx, t)] . (1.9)

Here ψ is the phase.
We are in the limit that the wavelength λ is much smaller than some

macroscopic length scale. Then we can expand ψ about xxx = 000, t = 0,

ψ(xxx, t) ≈ ψ0 + xxx · ∇ψ + t∂tψ. (1.10)

Note that since ψ changes by 2π over a distance λ, we need ψ0 ≫ 2π.
Inserting equation (1.10) into equation (1.9), we obtain

f ≈
[
aeiψ0

]
exp [ixxx · ∇ψ + it∂tψ] .

Thus, if a is also slowly varying, our variable f looks like a wave with
wavenumber and frequency

kkk = ∇ψ (1.11)

ω = −∂tψ, (1.12)

respectively. For this approximation to be valid, we need kkk · kkk = ω2/c2, or

(∇ψ)2 −
(
1
c
∂ψ
∂t

)2

= 0. (1.13)

This is the eikonal equation, which determines the path of the ray. To
define a ray, we construct at a given time surfaces of constant phase
(Fig. 1.2). A given ray is tangent to the perpendicular of each surface.

ψ0 ψ1 ψ2

Figure 1.2: A ray (arrow) is tangent to
the⊥ of each surface of constant phase ψ
(labeled here ψ0, ψ1, ψ2).

Do equations (1.11) and (1.12) look familiar? As a hint, multiply
their right-hand sides by ℏ/i; then you might be reminded of quantum
mechanics with ψ the wavefunction, ppp = (ℏ/i)∇ψ the momentum and
H = −(ℏ/i)∂tψ the Hamiltonian. The formulation of mechanics in terms
of a Hamiltonian implies that we can bring in the machinery of advanced
classical mechanics to derive a better description of the path followed by
a ray of light.
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In classical mechanics, the analogous equations to (1.11) and (1.12)
are

ppp =
∂S
∂qqq

H = −∂S
∂t

.

Here ppp and qqq are the generalized momenta and coordinates, and

S =

∫ 2

1
L dt

is the action, with L = ppp · q̇qq− H being the Lagrangian. The path a particle
takes between points 1 and 2 (Fig. 1.3) is the one that minimizes S.

1

2

Figure 1.3: Possbile paths between two
points at times t1 and t2.

Suppose we write the action as a function of the coordinates: S =

S(qqq, t) where qqq = qqq(t2); then when we vary S we obtain

δS =
∂S
∂t

δt+
∂S
∂qqq

δqqq = −H δt+
∂S
∂qqq

δqqq.

Since we are fixing qqq, the second term vanishes and δS = −H δt.
For all paths, let the time when the particle leaves point 1 be t1 and

the time when the particle arrives at point 2 be t2. Further, let H be
constant4. Then, 4 This requires that there be no explicit

dependence on time.

S =

∫ 2

1
L dt =

∫ 2

1
(ppp · q̇qq− H) dt =

∫ 2

1
ppp · dqqq− H (t2 − t1) . (1.14)

But, t = t2 − t1, so when we vary S,

δS = δ
∫ 2

1
ppp · dqqq− H δt.

Since δS = −H δt, we must have

δ
∫ 2

1
ppp · dqqq = 0 (1.15)

for the path taken by a particle. Translating equation (1.15) to our optics
language (ppp → ∇ψ), the path a ray takes between points 1 and 2 is
determined by

δ
∫ 2

1
∇ψ · dxxx = 0. (1.16)

Equation (1.16) is a generalization of Fermat’s principle, which you
learned about in introductory optics.

ri

w

h

in1

n2 r

Figure 1.4: Top: reflection of light from a
surface. Bottom: refraction of light as it
passes from a medium with index n1 into
a medium with index n2.

E X E R C I S E 1 . 1—

1. Suppose we reflect light as shown in the top panel of Fig. 1.4. Show that in the
geometrical optics limits, i = r: the angles of incidence and reflection are
equal.

2. Consider a ray of light incident on a pool of water as shown in the bottom
panel of Fig. 1.4. Show that equation (1.16) implies Snell’s law.
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E X E R C I S E 1 . 2— Many atmospheric optical effects are caused by small
droplets of water. Suppose we have a ray of light that enters a droplet of water,
reflects from the back surface, and re-emerges as depicted in Figure 1.5. The ray
enters with angle of incidence i and exits with angle of incidence i′; the angle
between the entering and exiting rays is ϕ. We shall assume the droplet of water
is sufficiently large that we may work in the geometrical optics limit.

1. Show that i′ = i, and derive a formula for ϕ in terms of i and r.

2. Use Snell’s law to relate r in terms of the angle of incidence i and index of
refraction n. For water, n ≈ 4/3; use this to plot ϕ(i). Argue that the
backscattered light is most intense at the maximum value of ϕ.

3. Now redo part (2) for red light (n = 1.330 at λ = 700 nm) and violet light
(n = 1.342 at λ = 400 nm). What is the difference ϕred − ϕviolet?

4. Verify that your calculations are correct against observations.

i

i’

φ

r

Figure 1.5: Scattering of light by water
droplet with one internal reflection.

1.4 Phase and Group Velocity

A pure wave propagates at a phase velocity vvvphase = dxxx/dt|phase. In reality,
sources emit a spread of wavevectors Δk about some central k0. As shown
in the previous section, the presence of a medium may alter the propa-
gation speed of the electromagnetic wave. Typically, the speed becomes
wavelength dependent, so that after traversing the medium waves of
different frequencies will be at a different phase.

Such a wave packet will have spatial extent∼ 1/Δk. The center of the
wave will move at the group velocity (see exercise 1.3)

vgroup =
dω
dk

. (1.17)

Outside of the packet, the waves will tend to cancel out, so that the am-
plitude decays away. Since the energy density is∝ |A|2, the energy car-
ried by the packet also travels at the group velocity.
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E X E R C I S E 1 . 3— Let’s construct a one-dimensional wave packet centered
on x = 0 at time t = 0. The amplitude of each component wave k follows a
Gaussian distribution,

A0 exp
[
− (k− k0)2

2Δ2

]
.

The (complex) wave amplitude at a position x and time t is then

A(x, t) = A0

∫ ∞

−∞
exp

[
− (k− k0)2

2Δ2

]
exp [ikx− iωt]

dk
2π

. (1.18)

Here ω = ω(k), so that the components do not travel at the same velocity.

1. Expand ω(k) about k0 to second-order:

ω(k) ≈ ω0 + V(k− k0) +
D
2
(k− k0)2,

where ω0 = ω(k0), V = dω/dk|k=k0
, and D = dV/dk|k=k0

. Insert this
expansion into equation (1.18) and derive an expression of the amplitude,

A(x, t) = A0eik0x−iω0t
∫ ∞

−∞
exp

[
−κ2

(
1

2Δ2 + i
Dt
2

)
+ iκ(x− Vt)

]
dκ
2π

, (1.19)

where κ = k− k0.

2. Evaluate the integral (1.19) and show that

|A(x, t)| = (A∗A)1/2 ∝ exp
[
− (x− Vt)2

2L2

]
,

where
L =

1
Δ

[
1+ (DΔ2t)2

]1/2
.

3. Interpret this: What is the spatial extent of the packet at t = 0? Derive an
expression for the distance the packet center travels in the time it takes to
double in width. Apply this to ocean swells, for which the dispersion relation
is ω =

√
gk, where g is the gravitational acceleration. A typical wavelength is

100m. How narrow a spread in wavelengths, Δ/k0, is required for a wave
packet to travel 1 000 km without doubling in size?

Modified from an exercise in Thorne and
Blandford [2017].





2
FromMaxwell to Planck to Einstein

2.1 Solution to Maxwell’s equations in vacuum

The electromagnetic field (EEE,BBB) is described by Maxwell’s equations,
which in Gaussian units are

∇× EEE+
1
c
∂BBB
∂t

= 0 (2.1)

∇ · BBB = 0 (2.2)

∇ · EEE = 4πρ (2.3)

∇× BBB− 1
c
∂EEE
∂t

=
4π
c
JJJ. (2.4)

From the source-free equations (2.1) and (2.2), we can introduce the
potentials (Φ,AAA) such that

BBB = ∇× AAA,

EEE = −∇Φ − 1
c
∂AAA
∂t

.

In the absence of source charges and currents (ρ = 0, JJJ = 000), we sub-
stitute for the fields EEE,BBB in Equation (2.4) to obtain an equation for the
potentials, [

1
c2

∂2

∂t2
−∇2

]
AAA+∇

[
1
c
∂Φ
∂t

+∇ · AAA
]
= 0. (2.5)

The potentials are not uniquely specified: the fields EEE,BBB are unchanged if
we make the gauge transformation AAA → AAA + ∇ψ, Φ → Φ − c−1∂tψ,
in which ψ is some scalar field. This gives us enough freedom to choose
ψ so that the second term in Equation (2.5) vanishes and leaves us with
a wave equation for AAA. By substituting for (EEE,BBB) into Equation (2.3)
and applying the same gauge condition, we obtain a wave equation for
Φ as well. More generally, we can recognize that (Φ,AAA) is a four-vector
and then we can bring in the machinery of relativity; for now, though,
we’ll keep time and space separate and use our gauge freedom to force
Φ = ∇ · AAA = 0.
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2.2 Decomposition into modes: photons

Since AAA satisfies a wave equation, we can expand the solution into normal
modes,

AAA(rrr, t; kkk, qqq) = αkkk,qqqqqqeik
kk·rrr−iωt + α∗

kkk,qqqqqq
∗e−ikkk·rrr+iωt. (2.6)

In this expression, qqq is a direction vector (|qqq| = 1); because qqq is complex
it also contains phase information1. By substituting Equation (2.6) into1 By writing qqq = |qqq|eiθ, the terms in

Eq. (2.6) become α|qqq|eikkk·rrr−iωt+iθ. Equation (2.5) with the condition∇·AAA = 0, we determine that we require

ω = ck, (2.7)

qqq · kkk = 0 (2.8)

to have a solution to the wave equation. The wave therefore propagates
with phase velocity c, and the polarization—the direction of qqq—is or-
thogonal to the direction of propagation kkk.

The energy density of the electromagnetic field is given by u = (|EEE|2 +
|BBB|2)/(8π) and the rate of energy transport is given by the Poynting
vector, SSS = (c/4π)EEE×BBB. Using our solution, Eq. (2.6), and averaging over
many cycles gives for a mode (kkk, qqq) the energy density,

ukkk,qqq =
ω2

2πc2
|αkkk,qqq|2, (2.9)

and the flux,

SSSkkk,qqq =
ω2

2πc
|αkkk,qqq|2 k̂kk = ukkk,qqqc k̂kk. (2.10)

Here k̂kk is the unit direction vector. The total energy density and flux are
found by summing over modes (kkk, qqq).

E X E R C I S E 2 . 1— Define the variables

QQQkkk,qqq =
1

2
√

πc2

[
αkkk,qqqqqqe

ikkk·rrr−iωt + α∗
kkk,qqqqqq

∗e−ikkk·rrr+iωt
]

PPPkkk,qqq =
−iω

2
√

πc2

[
αkkk,qqqqqqe

ikkk·rrr−iωt − α∗
kkk,qqqqqq

∗e−ikkk·rrr+iωt
]
,

and show that the energy density of the mode kkk, qqq can be written as

ukkk,qqq =
1
2

ω2QQQ2
kkk,qqq +

1
2
PPP2

kkk,qqq ≡ Hkkk,qqq.

Further show that QQQkkk,qqq and PPPkkk,qqq obey Hamilton’s equations:

∂Hkkk,qqq

∂PPPkkk,qqq
= Q̇QQkkk,qqq,

∂Hkkk,qqq

∂QQQkkk,qqq
= −ṖPPkkk,qqq.

Hence argue that the radiation field is (formally) equivalent to a collection of
harmonic oscillators of various kkk, qqq.
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As a computational aid, we’ll take our domain to be a box
of volume V with periodic boundary conditions. We therefore write
αkkk,qqq = Akkk,qqq/

√
V, so that we get the correct potential upon integrating

over the box’s volume. Our general solution may then be written as a
sum over modes,

AAA(rrr, t) =
∑
kkk,qqq

[
Akkkqqqqqq√

V
eikkk·rrr−iωt +

A∗
kkkqqqqqq

∗

√
V

e−ikkk·rrr+iωt
]
, (2.11)

with total energy

E = uV =
∑
kkk,qqq

|Akkkqqq|2
ω2

2πc2
. (2.12)

At this point, there are several routes to a description of the field in
terms of spin-one particles known as photons. A classic method2 is to 2 W. Heitler. TheQuantumTheory of

Radiation. Dover, 1984construct the Hamiltonian for the electromagnetic field and perform a
canonical transformation to the Hamiltonian of a harmonic oscillator
(Exercise 2.1). One then imports the quantum mechanical description of
the harmonic oscillator (Box 2.1).

Box 2.1 Quantizing the harmonic oscillator

For the harmonic oscillator Hamiltonian,

Ĥ =
1
2
mω2x̂2 +

1
2m

p̂2,

we can construct the operator

â =

√
mω
2ℏ

x̂+ i
p̂√

2mℏω

with adjoint

â† =
√

mω
2ℏ

x̂− i
p̂√

2mℏω
Their commutator is[

â, â†
]
= − i

2ℏ
[x̂, p̂] +

i
2ℏ

[p̂, x̂] = 1 (2.13)

where in the last step we used [x̂, p̂] = −[p̂, x̂] = iℏ. Although the
operator â is not Hermitian, the operator

N̂ ≡ â†â =
mω
2ℏ

x̂2 +
p̂2

2mℏω
− i

2ℏ
[p̂, x̂] (2.14)

is. Further, Eq. (2.14) implies that the Hamiltonian of the simple
harmonic oscillator can be written as

Ĥ = ℏω
(
N̂+

1
2

)
.

Hence we can find the eigenstates of energy by finding the eigen-
states of N̂.
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Box 2.1 continued

What can we infer about the eigenvalues of N̂? Let
|λ⟩ be an eigenstate with eigenvalue λ. Since λ = ⟨λ| N̂ |λ⟩ =

(⟨λ| â†)(â |λ⟩) = |â|2, all eigenvalues are positive: λ ≥ 0. What
about the operator â acting on |λ⟩? Using the commutator rela-
tion (2.13) we have

N̂â |λ⟩ = (â†â)â |λ⟩ = (ââ† − 1)â |λ⟩ = â(â†â− 1) |λ⟩
= (λ − 1)â |λ⟩ .

If |λ⟩ is an eigenstate of N̂ (and hence Ĥ), then â |λ⟩ is also, with
eigenvalue λ − 1. Since (⟨λ| â†)(â |λ⟩) = λ, we can determine the
normalization: â |λ⟩ =

√
λ |λ − 1⟩.

By a similar argument, we find that

N̂â† |λ⟩ = â†(â†â+ 1) |λ⟩ = (λ + 1)â† |λ⟩ ,

with
â† |λ⟩ =

√
λ + 1 |λ + 1⟩ .

Since all λ ≥ 0, the λ must be integers, so that â |1⟩ = |0⟩ and
â |0⟩ = 0, which truncates the descent.

In summary, the oscillator has energy states En = ℏω(n + 1/2),
where n is the mean number of quanta. The energy of the oscilla-
tor changes via the destruction (â) or creation (â†) of quanta.

E X E R C I S E 2 . 2— Show that the operator N̂ = â†â is Hermitian.

Here we’ll simply note that numerous phenomena—e.g., the pho-
toelectric effect, Compton scattering, electron-positron production—
suggest that the electromagnetic energy is quantized into discrete units
called photons, and that the energy of an individual photon is propor-
tional to its frequency. The electromagnetic field is thus specified by
giving the occupation numbers Nkkkqqq for the various modes. A photon la-
beled by (kkk, qqq) has momentum ppp = ℏkkk and energy E = ℏ|kkk|c = ℏω. The
total energy of the field is then

E =
∑
kkk,qqq

Nkkkqqqℏω.

Comparing this expression with Equation (2.12), we find that

Nkkkqqq = |Akkkqqq|2
ω

2πℏc2
: (2.15)

the occupation number is proportional to the amplitude of the mode. The
relation of the energy to |Akkkqqq|2, along with the description of the field as
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a collection of harmonic oscillators (ex. 2.1) suggests writing our field
coefficients as operators,

Âkkkqqq =

√
2πℏc2

ω
âkkk,qqq, Â†

kkkqqq =

√
2πℏc2

ω
â†kkk,qqq

where âkkk,qqq, â
†
kkk,qqq are the lowering and raising operators for each oscillator

mode kkk, qqq.

To relate the photon spin to the polarization states, first
notice that although qqq has three components, the constraint (2.8) kkk · qqq =

0 means only two are independent. Suppose we take our z-axis along the
direction of propagation k̂kk and choose as our basis positive and negative
helicity states

qqq+ =
1√
2
(êeex + îeeey),

qqq− =
1√
2
(êeex − îeeey),

where êee are unit directional vectors. If we then rotate our coordinate
system by an angle θ about êeez, the polarization basis vectors in the new
coordinate system (denoted by a ′) are

qqq′+ = eiθqqq+
qqq′− = e−iθqqq−.

This transformation under rotation is precisely the behavior of the eigen-
functions of a spin-one particle with its spin axis along êeez. We there-
fore identify the quantized excitations of the electromagnetic field—
photons—as being spin-one particles.

2.3 Emission and absorption of photons; Einstein coefficients

In non-relativistic classical mechanics, the Hamiltonian for a particle in
an electromagnetic field is

H =
1
2m

[
ppp− e

c
AAA(rrr, t)

]2
+ eΦ(rrr, t).

Here e is the charge of the particle. You can find a discussion about
the appearance of AAA with the momentum and gauge invariance in any
good mechanics text; suffice it to say that the expression in [ ] is gauge-
invariant.

Treating the radiation classically for the moment, we translate the
classical Hamiltonian translates over to the quantum mechanical opera-
tor, which expands to

Ĥ =
p̂2

2m
+

[
− e

2mc
(p̂pp · AAA+ AAA · p̂pp) + e2

2mc2
A2 + eΦ

]
. (2.16)
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Since AAA depends on position, p̂pp and AAA do not commute.

E X E R C I S E 2 . 3— Consider a photon of wavelength λ incident on an atom.
Show that in order-of-magnitude,

(e/mc)|ppp · AAA|
(e2/mc2)A2 ∼ E0

E
aB
λ

α−1

where E is the perturbing electric field (E ∼ A/λ), E0 = e/a2B is a typical electric
field strength in an atom (aB is the Bohr radius), and α = e2/(ℏc) is the fine
structure constant. Hence the term∝ A2 in equation (2.16) is typically negligible
compared to the terms∝ ppp · AAA.

As shown in Exercise 2.3, the term∝ A2 can be neglected; and if we
work in the transverse, or Coulomb, gauge then Φ = 0. Suppose we
have a large number of particles (index ℓ) with position and momentum
operators r̂rrℓ and p̂ppℓ: then we can write the Hamiltonian as a sum over ℓ.
The first term in the [ ] of eq. (2.16) becomes

−e
c

∫ [
1
2

∑
ℓ

p̂ppℓ
mℓ

δ(rrr− r̂rrℓ) + δ(rrr− r̂rrℓ)
p̂ppℓ
mℓ

]
· AAA(rrr, t) dV ≡ −e

c

∫
ĴJJ · AAA dV

(2.17)
where the term in [ ] is the operator of particle current ĴJJ.

We then expand AAA using equation (2.11) and treat it as a time-dependent
harmonic perturbation (Box 2.2); from equation (2.22) we see that the
terms (Akkkqqq/

√
V)qqqeikkk·rrr−iωt with ℏω = En − Em will induce an upward

transition from a state |m⟩ to a state |n⟩ with a rate for each mode (kkk, qqq)

Γkkkqqq
m→n =

2π
ℏ

e2

Vc2
∣∣Akkkqqq

∣∣2 |⟨n| JJJkkk · qqq |m⟩|2 δ(En − Em − ℏω)

=
4π2e2

Vω
Nkkkqqq |⟨n| JJJkkk · qqq |m⟩|2 δ(En − Em − ℏω). (2.18)

In this equation, JJJkkk =
∫
dVJJJeikkk·rrr is the Fourier transform of the particle

current ĴJJ. The rate is proportional to the density of photons Nkkkqqq/V in
mode (kkk, qqq).Box 2.2 follows the treatment in Baym

[1990].

Box 2.2 Time-dependent perturbation theory

Suppose we have a system in a state |Ψ⟩ acting under a Hamil-
tonian Ĥ0. The system evolves in time according to

iℏ
∂

∂t
|Ψ⟩ = Ĥ0 |Ψ⟩ ; (2.19)

we wish to analyze the behavior under a perturbation V̂. Specif-
ically, we are interested in an oscillatory potential, which we’ll
increase in amplitude as time increases from t → −∞:

V = V̂eηt [e−iωt + eiωt] . (2.20)
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Box 2.2 continued

Here η > 0 is an arbitrary parameter for that we’ll eventually take
η → 0. One can show that the result doesn’t really depend on how
the perturbation is turned on; but having the exponential cutoff
ensured that the integrals are doable.

To proceed, we first factor out the time dependence from the
unperturbed Hamiltonian by writing |Ψ⟩ = e−iĤ0t/ℏ |ψ⟩ and
substituting into the perturbed equation

iℏ
∂

∂t
|Ψ⟩ =

(
Ĥ0 + V

)
|Ψ⟩ ;

as a result, we remove the evolution due to Ĥ0 and obtain

iℏ
∂

∂t
|ψ⟩ = eiĤ0t/ℏVe−iĤ0t/ℏ |ψ⟩ . (2.21)

If we start in an eigenstate |ψ(t → −∞)⟩ = |m⟩ of Ĥ0 with energy
Em, then we can get an approximation to |ψ⟩ by substituting |ψ⟩ ≈
|m⟩ on the right-hand side of equation (2.21):

|ψ(t)⟩ = − i
ℏ

∫ t

−∞
dt eiĤ0t/ℏVe−iĤ0t/ℏ |m⟩ .

The amplitude for the system to be in an eigenstate |n⟩ of Ĥ0 with
energy En at time t is

⟨n| ψ⟩ = − i
ℏ

∫ t

−∞
dt ⟨n| eiĤ0t/ℏVe−iĤ0t/ℏ |m⟩ ;

furthermore, since e−iĤ0t/ℏ |m⟩ = e−iEmt/ℏ |m⟩ and ⟨n| eiĤ0t/ℏ =

⟨n| eiEnt/ℏ, the amplitude to be in state |n⟩ at time t becomes

⟨n| ψ⟩ = − i
ℏ

∫ t

−∞
dt
[
ei(ΔE−ℏω−iℏη)t/ℏ + ei(ΔE+ℏω−iℏη)t/ℏ

]
⟨n| V̂ |m⟩

= −eηt
[

ei(ΔE−ℏω)t/ℏ

ΔE− ℏω − iℏη
+

ei(ΔE+ℏω)t/ℏ

ΔE+ ℏω − iℏη

]
⟨n| V̂ |m⟩ .

Here ΔE = En − Em.
The probability for the system to have transitioned from state

|m⟩ to state |n⟩ after time t is therefore

Pm→n(t) = |⟨n| ψ⟩|2 = e2ηt
∣∣∣⟨n| V̂ |m⟩

∣∣∣2
×
{

1
(ΔE− ℏω)2 + ℏ2η2 +

1
(ΔE+ ℏω)2 + ℏ2η2

+
e−2iωt

[ΔE− ℏω − iℏη][ΔE+ ℏω + iℏη]

+
e2iωt

[ΔE− ℏω + iℏη][ΔE+ ℏω − iℏη]

}
.
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Box 2.2 continued

Now if we suppose we have a large number of systems (like a
collection of atoms upon which we are shining light), then the
instantaneous rate at which a system makes a transition is
Γm→n = dPm→n/dt; also, we want the transition rate aver-
aged over many cycles. The oscillatory terms—those containing
e±2iωt—will then average to zero, leaving us with the transition
rate

Γm→n =
∣∣∣⟨n| V̂ |m⟩

∣∣∣2 e2ηt

×
{

2η
(ΔE− ℏω)2 + ℏ2η2 +

2η
(ΔE+ ℏω)2 + ℏ2η2

}
Now it’s time to take the limit η → 0: clearly the result Γm→n = 0
unless ℏω = ±(En − Em); in fact,

Γm→n =
2π
ℏ

∣∣∣⟨n| V̂ |m⟩
∣∣∣2 [δ (ΔE− ℏω) + δ (ΔE+ ℏω)] . (2.22)

The first δ-function comes from the e−iωt term; the second, from
the eiωt term. Since our frequencies are positive, the first delta
function therefore corresponds to upward transitions En > Em,
while the second corresponds to downward transitions En < Em.

Next, we’d like to include our description of the radiation field as a
collection of modes {. . .Nkkkqqq . . .}: our initial state is then

∣∣m; . . .Nkkkqqq . . .
〉
;

our final state,
∣∣n; . . .Nkkkqqq − 1 . . .

〉
. To make this description consistent

with Equation (2.18) we define an operator Âkkkqqq that decreases Nkkkqqq by one,

〈
. . .Nkkkqqq − 1 . . .

∣∣ Âkkkqqq
∣∣. . .Nkkkqqq . . .

〉
=

√
2πℏc2

ω
Nkkkqqq (2.23)

to within a phase factor that we set to unity3. Taking the complex conju-3 Which with hindsight we know is okay:
photons are bosons gate of Equation (2.23) gives the operator that increases Nkkkqqq by one,

〈
. . .Nkkkqqq . . .

∣∣ Â†
kkkqqq

∣∣. . .Nkkkqqq − 1 . . .
〉
=

√
2πℏc2

ω
Nkkkqqq. (2.24)

Notice that with Â†
kkkqqq, the eigenvalue contains the number of photons in

the final state, not the number in the initial state.
With the operators Âkkkqqq and Â†

kkkqqq the rate for the system to make a
transition

∣∣m; . . .Nkkkqqq . . .
〉
→
∣∣n; . . .Nkkkqqq − 1 . . .

〉
is

Γkkkqqq
m,Nkkkqqq→n,Nkkkqqq−1 =

2π
ℏ

e2

Vc2
δ(En − Em − ℏck) |⟨n| JJJkkk · qqq |m⟩|2 (2.25)

×
∣∣∣〈. . .Nkkkqqq − 1 . . .

∣∣ Âkkkqqq
∣∣. . .Nkkkqqq . . .

〉∣∣∣2 ,
=

4π2e2

Vω
Nkkkqqq |⟨n| JJJkkk · qqq |m⟩|2 δ(En − Em − ℏck),
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which is the same as Equation (2.18). This is a description of the absorp-
tion of a photon (kkk, qqq). The rate for our system to emit a photon (kkk, qqq),
i.e., to make a transition

∣∣n; . . .Nkkkqqq . . .
〉
→
∣∣m; . . .Nkkkqqq + 1 . . .

〉
, is

Γkkkqqq
n,Nkkkqqq→m,Nkkkqqq+1 =

2π
ℏ

e2

c2V
δ(En − Em − ℏck)

∣∣⟨m| JJJ−kkk · qqq∗ |n⟩
∣∣2 (2.26)

×
∣∣∣〈. . .Nkkkqqq + 1 . . .

∣∣ Â†
kkkqqq

∣∣. . .Nkkkqqq . . .
〉∣∣∣2

=
4π2e2

Vω
(Nkkkqqq + 1)

∣∣⟨m| JJJ−kkk · qqq∗ |n⟩
∣∣2 δ(En − Em − ℏck)

Notice that while the absorption rate is proportional to Nkkkqqq, the emission
rate is proportional to Nkkkqqq + 1; these two terms account for induced and
spontaneous emission, respectively.

The rates for emission and absorption are linked. We can lump the
atomic matrix elements into a coefficient and write Equations (2.25) and
(2.26) as

Γkkkqqq
m,Nkkkqqq→n,Nkkkqqq−1 = bmnNkkkqqq (2.27)

Γkkkqqq
n,Nkkkqqq→m,Nkkkqqq+1 = bnmNkkkqqq + anm. (2.28)

From the form of Equations (2.25) and (2.26) we expect that bmn = bnm
and also anm = bnm. That this is so can be shown by a statistical argument
made by Einstein.

First, since photons have integer spin, they obey Bose-Einstein statis-
tics: the mean occupation number for a given mode ν is

N̄ν = (eβhν − 1)−1, (2.29)

where β = (kBT)−1 is the inverse temperature and kB = 1.3806 ×
10−16 ergK−1 is the Boltzmann constant. Another way to derive this mean
occupation number is to consider the radiation field as a collection of
harmonic oscillators each with frequency ν. The “levels” for each oscil-
lator are given by En = nhν, and therefore in equilibrium the relative
probability of two levels is given by the Boltzmann factor,

P (N2)

P (N1)
= e−β(N2−N1)hν.

The mean energy for a distribution of photons is therefore

Ēν =

∑
n=0(nhν)e−βnhν∑

n=0 e−βnhν

= − d
dβ

ln

( ∞∑
n=0

e−nβhν

)

Evaluating the sum as a geometric series, taking the derivative, and
equating Ēν = N̄νhν gives the desired result.
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Now suppose we have a cavity with the radiation in thermal equilib-
rium; in this cavity are some atoms with two levels, m and n, with an en-
ergy difference between the levels En −Em = ℏω. The rate of upward tran-
sitions is N̄mbmnN̄kkkqqq where N̄m is the number of atoms in state m; the rate
of downward transitions is N̄n(bnmN̄kkkqqq + anm) = N̄me−βℏω(bnmN̄kkkqqq + anm)
where the Boltzmann factor accounts for the relative likelihood of finding
the atom in state n versus m. For simplicity, we are assuming the states
are not degenerate. Since in thermal equilibrium the rate of upward tran-
sitions must equal the rate of downward transitions,

N̄mbmnN̄kkkqqq = N̄me−βℏω(bnmN̄kkkqqq + anm),

we find after rearranging terms that

N̄kkkqqq =
anm/bmn

eβℏω − bnm/bmn
. (2.30)

For bnm = bmn = anm we recover the Bose-Einstein distribution. Notice
that without induced emission we would just get a Maxwell-Boltzmann
distribution.



3
A Phenomenological Description of Ra-
diation

3.1 The specific intensity

Having shown that we can describe the electromagnetic field by enumer-
ating photon states, the next task is to go to the limit of large occupation
numbers—i.e., many photons per state—and formulate a description of
the radiation in terms of intensity and energy flux.

To start, we replace the sum over modes with an integral. We need
to ensure that we count states correctly when we do this. Let’s take our
volume to be a box with sides of length L. (We’ll see in a bit that the
explicit reference to volume will cancel from our formulae.) Such a box
can accommodate wavevectors |k| > πN/L, with N = 1, 2, . . .. Hence
the number of modes increases by dk = 2π/L as we increase1 N by 1 The factor of two accounts for the

positive and negative values of kkk.ΔN = 1. Extending this argument to all three dimensions, we can make
the replacement

ΔNxΔNyΔNz → L3
(
dkx
2π

)(
dky
2π

)(
dkz
2π

)
and the sum over all modes becomes

1
V

∑
kkk,qqq

→
∑
qqq

(
1
2π

)3 ∫
d3k =

∑
qqq

(
1
2π

)3 ∫
k2 dk dΩ, (3.1)

with the volume canceling out. In the last expression we’ve also con-
verted to spherical coordinates with dΩ = sin θ dθ dφ being a differential
of solid angle.

With this change, we can express the energy density, Equation (2.9), as

u =
∑
qqq

(
1
2π

)3 ∫
k2dk

ω2

2πc2
|Akkkqqq|2 dΩ. (3.2)

In terms of the occupation number, Equation (2.15), the radiative energy
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density is

u =
∑
qqq

∫
hν3

c3
Nνqqq dν dΩ. (3.3)

In this expression we’ve also changed variables to frequency ν via k =

2πν/c.
It is useful to look at the radiative flux in a small range of frequencies

dν traveling into a narrow cone of solid angle dΩ. We shall call this quan-
tity the specific intensity Iν: from Equations (2.9), (2.10), and (3.3), the
specific intensity is related to the occupation numbers via

Iν dν dΩ ≡

∑
qqq

hν3

c2
Nνqqq

 dν dΩ. (3.4)

For unpolarized light
∑

qqq → 2; unless stated otherwise, we’ll make this
assumption from now on.

dA
kdΩ

I� c dt
Figure 3.1: The intensity Iν is the energy
in a frequency band dν propagating into a
cone about direction k̂kk incident on area dA
in a time dt.

E X E R C I S E 3 . 1— Suppose that you observe a star with your naked eye
under ideal seeing conditions, and suppose that this star is at the limit of what
the human eye can detect. Estimate the rate at which photons from this star
reach your retina.

For most applications in astronomy, the length over which light trav-
els is much larger than a wavelength; in this case, we are in the geomet-
rical optics limit and we can describe light as traveling along rays. The
specific intensity is a useful quantity in this limit because it is conserved
along a ray in the absence of interactions with matter (and doppler
shifts). This conservation is a consequence from Liouville’s theorem
that a volume in phase space is conserved along trajectories.

To see this, note that from eq. (3.1) we can write the number of pho-
tons as

N =
∑
qqq

(
1
2π

)3 ∫
d3k d3xNkkkqqq =

∑
qqq

1
h3

∫
d3p d3xNkkkqqq.

Suppose a source emits a number N of photons in a volume dA cdt trav-
eling in a narrow angle dΩ about ppp = ℏkkk. This defines a small volume of
phase space d3p d3x, which along the ray is conserved by Liouville’s the-
orem. In the absence of interactions with matter, N is also constant and
therefore Nkkkqqq ∝ Iν/ν3 is invariant along the ray. The invariance of ν−3Iν

holds true in a relativistic context, whereas Iν is constant along a ray only
in the Newtonian limit.

E X E R C I S E 3 . 2— You observe a source that emits a thermal spectrum Bν(T)
and that is redshifted, with λobs = λemit(1+ z). Show that the spectrum you
observe is Planckian, but with temperature T/(1+ z).
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3.2 Moments of the specific intensity

Just as we define the specific intensity as the energy flux in a frequency
interval dν, we can define the specific energy density

uν =

∫ ∑
qqq

hν3

c3
Nν dΩ. (3.5)

This is just an integral over angle of the specific intensity

uν =
1
c

∫
dΩ Iν.

Now suppose we want the specific flux crossing an area with normal
n̂nn. We first multiply the specific intensity by a unitvector k̂kk along the
direction of the ray, and then take the component along n̂nn and integrate
over all directions,

Fν =

∫
dΩ Iν(k̂kk · n̂nn) =

∫
dΩ cos θ Iν. (3.6)

The units of Fν are energy/area/time/frequency.

E X E R C I S E 3 . 3— The Crab nebula is commonly used as a calibration source
in X-ray astronomy. Over the band of photon energies (2–10) keV, the spectral
distribution is well-approximated by a power-law, Fν ∝ ν−2, and the fluence in
this energy range is

∫
Fν dν = 2.4× 10−8 erg cm−2 s−1.

Suppose we wish to observe with Chandra a source with a similar spectral
distribution as the Crab, but with an overall fluence that is 0.001 that of the Crab.
Take the collecting area of Chandra in the (2–10) keV band to be 340 cm2. How
long of an integration time does one need to collect enough photons to ensure
10% errors on the total count rate?

E X E R C I S E 3 . 4— A typical bright quasar has a flux of
Fν = 10 Jy = 10× 10−23 erg cm−2 s−1 Hz−1. Suppose that source were observed
continuously over 40 yr at the Arecibo radio telescope. Take the spectral
distribution to be flat over the antenna bandpass (0.312–0.342)GHz. How would
the total energy received over these forty years compare to some everyday
expenditure: for example, how would the energy received compare with that
required to lift some common weight over some distance?

E X E R C I S E 3 . 5— For the source in exercise 3.4, estimate the photon
occupation number. Does it make sense to treat photons individually? You may
take the distance to be 1Gpc and the size of the emitting region to be 0.01 pc.

Notice the pattern. To get uν, we multiplied Iν by a weighting factor
1 = (n̂nn · k̂kk)0 and integrated over angle. To get Fν, we multiplied Iν by
a weighting factor (n̂nn · k̂kk)1 = cos1 θ and integrated over angle. This
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procedure—multiply by a power of n̂nn · k̂kk and integrate over angle—is
formally known as taking a moment of the specific intensity. The specific
energy density is proportional to the zeroth moment of the intensity; the
specific flux is proportional to the first moment of the intensity.

The next moment is related to the stress tensor, which is the momen-
tum flux along direction n̂nn being transported across an area with normal
m̂mm:

Pmn
ν =

1
c

∫
dΩ Iν

(
k̂kk · m̂mm

)(
k̂kk · n̂nn

)
. (3.7)

This is a tensor because it contains two directional vectors, m̂mm and n̂nn.
The factor of c−1 comes from momentum being related to frequency as
p = hν/c. The stress tensor Pν is clearly symmetric: Pmn

ν = Pnm
ν .

It is often more convenient to work with these moments—uν, Fν,
Pν—of the radiative intensity. The moments, being weighted averages
over angle, contain less information about the radiative intensity; the
lower-order moments do, however, have a readily interpretable physical
meaning. Although formally one can construct higher-order moments, in
practice only the first three have any connection with a physical quantity.

3.3 Thermodynamics of the radiation field

If the radiation field is in thermal equilibrium, then the occupation num-
bers satisfy Equation (2.29). Inserting this into Equation (3.4) gives the
specific intensity in equilibrium, known as the Planck function,

I equil.ν ≡ Bν =
2hν3

c2

[
exp

(
hν
kBT

)
− 1
]−1

. (3.8)

Dividing by c and integrating over all frequencies gives the energy den-
sity:

u =

∫
2hν3

c3
1

ehν/kBT − 1
dν dΩ =

8πh
c3

∫ ∞

0

ν3

ehν/kBT − 1
dν

=

[
8π5k4B
15h3c3

]
T4 ≡ aT4. (3.9)

Here a = 7.566× 10−15 erg cm−3 K4 is the radiation constant.

E X E R C I S E 3 . 6— Derive the blackbody spectral distribution with respect to
wavelength, Bλ. Show that the peaks for Bν and Bλ do not coincide, but that the
peaks of νBν and λBλ do.

At low frequencies (ν ≪ kBT/h) we can expand Eq. (3.8),

Bν ≈
2ν2

c2
kBT.

In radio astronomy, one often defines a brightness temperature, Θ =

Iνc2/(2ν2kB) = Iλλ4/(2ckB).
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E X E R C I S E 3 . 7— Estimate the brightness temperature for the WKAR
broadcast antenna in Okemos. What does the value you obtain tell you about the
radiative process?

The net flux, Equation (3.6), vanishes for radiation in thermal equi-
librium. This follows from the isotropy of the radiative intensity. If
we imagine that the radiation is escaping from a small opening in a
hohlraum, the integrating only over outward directions gives

F =

∫ 2π

0
dφ
∫ 1

0
d(cos θ)

∫
dν

2hν3

c2
cos θ

exp
(

hν
kBT

)
− 1

= σSBT4. (3.10)

Here σSB = ac/4 = 5.670×10−5 erg cm−2 s−1 K−4 is the Stefan-Boltzmann Did you note how we changed variables
from θ to μ = cos θ? With this change,
the integration over 4π steradians is∫ 2π

0
dφ

∫ π

0
sin θ dθ =

∫ 2π

0
dφ

∫ 1

−1
dμ.

constant.

E X E R C I S E 3 . 8— Show that the total energy flux in a given frequency
interval is proportional to the corresponding area under a curve in a plot of νFν

against log ν, and likewise for λFλ against log λ.

For the stress tensor, the off-diagonal components, m̂mm ̸= n̂nn, vanish as
well. The diagonal components are all equal; since the rate of momentum
transport across a unit area is just the force on that area, which is the
pressure, we have

Prad =
1
c

∫
dν
∫

dΩ Bν cos2 θ =
1
c

∫
Bν dν

∫ 2π

0
dφ
∫ 1

−1
μ2 dμ

=
4π
3c

∫
Bν dν =

1
3
aT4. (3.11)

That the pressure is one-third of the energy density is in general true for
a relativistic gas.
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E X E R C I S E 3 . 9— Suppose you observe a sphere of radius R from a distance
D as shown in Fig. 3.2. The emitted intensity Iν is uniform over the surface, but it
is a function of the angle θ between the ray and the normal to the surface. Show
that the observed flux Fν from the entire visible surface of the sphere is

Fν =

(
R
D

)2 ∫ 2π

0

∫ π/2

0
I(θ) cos θ sin θ dθ dφ;

that is, the integration over the solid angle subtended by the sphere is equivalent
to integrating over outward directions from a single point on the surface. Show
that if Iν(θ) = Bν is a thermal spectrum (and in particular, is independent of θ),
then ∫

Fν dν = σSBT4
eff

(
R
D

)2

.

Figure 3.2: The intensity from a sphere
observed a distance D away. Here the
intensity depends on the angle θ between
the ray and the normal to the observer.

R

D

Iν(θ)
θ

θ’



4
The Equation of Transfer

We saw in Chapter 2 that the interaction of photons with matter for a
given microscopic process connecting levels n and m (with En − Em =

hν) consists of three terms: absorption, with rate bmnNkkkqqq; stimulated
emission, with rate bnmNkkkqqq; and spontaneous emission, with rate anm.
Here the a and b coefficients represent matrix elements connecting the
levels n and m in the matter. We then showed in Chapter 3 how we could
describe our radiation field by the intensity Iν. Now we incorporate the
interaction with matter to derive an equation governing the evolution of
Iν as it passes through a medium.

4.1 Absorption

We begin with absorption. The rate of absorption for a single atom is pro-
portional to Nν, and a sample of atoms will absorb in a range of frequen-
cies Δν about ν: the atoms will have some motion, so there is a Doppler
shift; there is an uncertainty principle for the finite lifetime of an excited
state; the atom may collide with other atoms; and so on. To account for
this spread in frequencies, we introduce a dimensionless function φ(ν)
which is peaked about the frequency ν = |En − Em|/h of the transition.
The rate of absorption for one atom is then

∫
Nνbmnφ(ν) dν dΩ.

If we have a small volume ΔV containing nmΔV absorbers1, then the 1 nm is the number of atoms in state m per
unit volumerate at which photons are absorbed by atoms in state m is

nmΔV 1
4π

∫ (
2πbmnc2

hν3

)
︸ ︷︷ ︸

≡Bmn

(
2hν3

c2
Nν

)
︸ ︷︷ ︸

Iν

φ(ν) dΩ dν

≡ nmΔV
∫

Bmn

4π
Iνφ(ν) dν dΩ. (4.1)

Here we’ve factored out 4π so that if everything is isotropic the integra-
tion over angle yields unity. With this convention, the units of Bmn are
cm2 erg−1.

Now let’s take ΔV = ΔsΔA, where s is along the direction kkk of a ray
and ΔA is normal to kkk. The incident energy flux into our volume in a
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frequency interval dν and in an angular range dΩ about kkk is then

Iν dν dΩ ΔA;

the rate of energy absorption from this ray in the volume is

nm

[
hν

Bmn

4π
φ(ν)

]
Iν dν dΩ ΔA Δs.

If we therefore have a ray Iν incident on a volume ΔAΔs, then its inten-
sity upon exiting the volume will have decreased:

Iν(s+ Δs) = Iν(s)− nσνIν(s)Δs. (4.2)

In this expression we’ve cancelled out the common factors of ΔA dΩ dν
and introduced

σν ≡
“rate of specific energy absorption”

“incident specific flux”
=

hνBmn

4π
nm

n
φ(ν). (4.3)

The quantity σν has dimensions of area and is termed the cross-section.
If we take the limit of Eq. (4.2) for which Δs ≪ Iν/|dIν/ds|, i.e., Δs is

small on a macroscopic scale while Δs > λ, so that our description makes
sense, we then have a differential equation for the intensity,

dIν

ds

∣∣∣∣
absorp.

= −nσνIν. (4.4)

It is common to introduce the opacity defined via ρκν ≡ nσν, with ρ
being the mass density; the opacity has dimension [κν] ∼ cm2/g. The
combination nσν = ρκν is sometimes denoted as the extinction coefficient22 George B. Rybicki and Alan P. Lightman.

Radiative Processes in Astrophysics. Wiley,
1979

αν.
If σν does not depend on Iν, the solution to Eq. (4.4) is straightfor-

ward: Iν(s) = Iν(0)e−τν , where

τν(s) =
∫ s

0
ρκνds (4.5)

is the optical depth. Note that ρκν = nσν has dimensions of inverse
length: we call ℓν = (nσν)

−1 the mean free path. The optical depth is
therefore simply the path length measured in units of a photon mean
free path.

E X E R C I S E 4 . 1— You are observing a star with a ground-based telescope.
Suppose that the extinction coefficient αν = ρκν depends only on the vertical
height above ground. Show that in terms of magnitudes, the flux reaching the
telescope when the star is at an angle θ from the zenith is

m(θ) = m0 + k0 sec θ,

in which k0 = (2.5 log e)τ = 1.086τ, τ =
∫

α dz and m0 is the magnitude that
would be observed in the absence of an atmosphere. In this expression we neglect
the curvature of the Earth. The quantity sec θ is thus an approximation for the
airmass.
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4.2 Emission, both spontaneous and stimulated

For emission, we saw in Section 2.3 that the rate per atom for a down-
wards transition from level n to m was anm + bnmNν. As with absorption,
we allow for the transition occurring over a spread in frequencies by
introducing φ(ν), and recast the rate in terms of specific intensity:

emission rate = nnAnmφ(ν) dν
dΩ
4π

+ nnBnmIνφ(ν) dν
dΩ
4π

. (4.6)

Here the first term is for spontaneous emission, and the second is for
stimulated. This is the rate of photon emission; to get the energy emitted
we’ll need to multiply the emission rate by hν.

If we again consider a ray incident on a cylinder of volume ΔA Δs, then
the gain in intensity over the volume is

Iν(s+ Δs)− Iν(s) = nnΔs
[
Anm

4π
hν φ(ν)

]
+ nnΔs

[
Bnm

4π
hν φ(ν)

]
Iν,

so that

dIν

ds

∣∣∣∣
spon. emission

= nn
Anm

4π
hν φ(ν) =

ρϵν

4π
(4.7)

and

dIν

ds

∣∣∣∣
stim. emission

= nn

[
Bnm

4π
hν φ(ν)

]
Iν. (4.8)

In Equation (4.7), we define an emissivity ϵν with dimension
[
erg s−1 g−1 Hz−1];

the factor of (4π)−1 makes the right-hand side into a per-steradian
quantity. The quantity ρϵν/(4π) is often denoted as 3 jν with units of 3 George B. Rybicki and Alan P. Lightman.

Radiative Processes in Astrophysics. Wiley,
1979

[
erg s−1 cm−3 Hz−1].
We can combine the stimulated emission term, Eq. (4.8), with the

absorption term, Equations (4.2) and (4.4):

dIν

ds

∣∣∣∣
corr. abs.

= −Iν

[(
Bmn −

nn

nm
Bnm

)
hν
4π

φ(ν)
nm

n

]
n. (4.9)

The term in [·] is the corrected absorption cross-section σcorr.
ν . Notice

also that we have incorporated the abundance of particles in state m,
nm/n, into the definition of σν and ϵν. We denote by n the total number
of atoms (in any state): n =

∑
i ni. Likewise, the mass density is ρ =∑

i Mini, where Mi is the mass of species i.



30 radiation in astrophysics

E X E R C I S E 4 . 2— In our original derivation of the Einstein a and b
coefficients, Sec. 2.3, we showed that for non-degenerate atomic levels n and m,
the coefficients were all equal, anm = bnm = bmn.

1. Generalize this: show that if the levels n and m are degenerate with
occupation numbers gn and gm, then the relations between the coefficients are

bnm

bmn
=

gm
gn

,
anm
bmn

=
gm
gn

.

2. Next, from the definitions of the coefficients Bnm, Bmn, and Anm, show that

Bnm

Bmn
=

gm
gn

,
Anm

Bmn
=

2hν3

c2
gm
gn

.

Scattering

The final process to consider is scattering. For coherent scattering, also
called elastic scattering, the photon is redirected into a different direction,
but no energy is transferred to the matter. Scattering changes the inten-
sity in two ways: energy is scattered out of the the beam, but energy is
also scattered into the beam from other directions. The change in inten-
sity due to scattering therefore has not only a negative term, similar to
absorption, but also a positive term:

dIν

ds

∣∣∣∣
scat.

= −ρκscaν Iν + ρκscaν

∫
Φ(k̂kk, k̂kk

′
)Iν(k̂kk

′
)dΩ ′. (4.10)

Here the redistribution function Φ is both normalized,
∫

Φ(k̂kk, k̂kk
′
) dΩ ′ =

1, and reversible, Φ(k̂kk, k̂kk
′
) = Φ(k̂kk

′
, k̂kk). For isotropic scattering, Φ =

(4π)−1, so
∫
IνΦ dΩ = Jν, where Jν = (4π)−1

∫
Iν dΩ is the mean

intensity. Isotropic scattering simply redistributes the energy over all
angles. We’ll take this to be the case in the rest of the chapter, so that the
dIν/ds|scat. = −ρκscaν (Iν − Jν).

E X E R C I S E 4 . 3— Consider a plasma with absorption opacity κabs
ν and

scattering opacity κsca
ν , both of which are constant. A photon is emitted and takes

a hop of average length ℓ = ρ−1(κabs
ν + κsca

ν )−1; at the end of the hop, the photon
is either scattered into a random direction for another hop, or else it is absorbed.
Show that the average number of hops the photon takes until being absorbed is

⟨Nhop⟩ =
κabs

ν + κsca
ν

κabs
ν

.
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4.3 Putting everything together: the source function and albedo

We now combine the terms for absorption (corrected for stimulated
emission), emission, and (isotropic) scattering into the full differential
equation for the specific intensity,

dIν

ds
= −ρ

(
κabsν + κscaν

)
Iν + ρ

ϵν

4π
+ ρκscaν Jν. (4.11)

We can further simplify this equation by defining the optical depth dτν =

ρ(κabsν + κscaν )ds and rewriting Eq. (4.11) as

dIν

dτν
= −Iν +

ϵν

4πκabsν

(
1− κscaν

κabsν + κscaν

)
+

κscaν
κabsν + κscaν

Jν

≡ −Iν +
ϵν

4πκabsν
(1− Aν) + AνJν︸ ︷︷ ︸

≡Sν

. (4.12)

The relative importance of scattering is measured by the single-scattering
albedo, Aν ≡ κscaν /(κabsν + κscaν ). In Eq. (4.12) we’ve also introduced the
source function Sν.

In the presence of scattering, the source function

Sν =
ϵν

4πκabsν
(1− Aν) + AνJν (4.13)

=
ϵν

4πκabsν
(1− Aν) + Aν

1
4π

∫
Iν dΩ

depends on the integral of Iν over angle via Jν, so that equation (4.12) is
an integro-differential equation and in general does not have a closed-form
solution. If scattering is absent (Aν = 0), so that Sν = ϵν/(4πκabsν ) is a
known function of τν, then we can formally solve equation (4.12):

Iν(τν) = Iν(0) exp(−τν) +

∫ τν

0
Sν(τν) exp(t− τν) dt. (4.14)

E X E R C I S E 4 . 4— Suppose we have a box containing two-level atoms. The
levels are in thermal equilibrium at temperature T.

1. What is the source function Sν?

2. Now suppose a ray passes through our box. The intensity is Planckian at
temperature Tγ, i.e., Iν = Bν(Tγ), but Tγ ̸= T. What is dIν/ds if Tγ > T? If
Tγ < T? If Tγ = T? Give a “intuitive” physical explanation for this.
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E X E R C I S E 4 . 5— Suppose we have an ionized cloud of uniform
temperature T = 104 K, electron number density ne = 2000 cm−3, and radius
R = 0.6 pc. You observe this cloud in the radio over a frequency range(
10–104)MHz. The primary interaction between radiation and matter in the

cloud is free-free, or bremsstrahlung, absorption with coefficient

ρκff
ν ≈ 6.56× 10−2n2

eT
−3/2ν−2 cm−1.

Here ne is in units of cm−3, T is in units of K, and ν is in units of Hz. Assume that
collisions in the cloud are sufficient to maintain the electrons and ions in local
thermodynamic equilibrium (LTE).

1. Find the frequency ν0 at which τν = 1 for a line of sight through the center of
the cloud.

2. What is the source function Sν? Make an approximation for the source
function appropriate for the range of observed frequencies.

3. Expand the equation of transfer in the limit τν ≪ 1, and get an approximate
expression for Iν as a function of ν. Do the same for the case τν ≫ 1. Make a
schematic plot of Iν as a function of ν over the range of frequencies observed.
Indicate on the plot the frequency ranges in which the emission is optically
thin and optically thick and indicate how Iν scales with ν in each of these
regimes.

4.4 Diffusion Approximation and the Rosseland Mean Opacity

At large optical depth, such as deep in a stellar interior, the radiation
field is in thermal equilibrium, so that Iν = Sν = Bν. To understand
this, consider the formal solution, Equation (4.14): at large τν, Iν → Sν.
If the matter is in local thermodynamic equilibrium, so that all levels
follow a Boltzmann distribution, then ϵν/(4πκabsν ) = Bν. In addition, if we
are at very large optical depth, then conditions over the scale of a mean
free path should not vary much, and the radiation field should be nearly
isotropic; we therefore expect that Jν = Iν and dIν/dτν → 0. Under these
conditions, the equation of transfer becomes

0 ≈ dIν

dτν
≈ (1− Aν)(Bν − Iν).

Thus Bν = Iν = Jν, and the source function becomes

Sν = Bν(1− Aν) + AνBν = Bν.

If the radiation field is perfectly isotropic there is no flux, however, so we
must have some small anisotropy. Let’s imagine the photon performing
a random walk. At very large optical depth, the temperature and density
will only vary slightly over the length of a hop ℓ. Let’s imagine a small
cube of material, with the size of this cube being ℓ. Because we are so
very nearly isotropic and in thermal equilibrium, the flux through any
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one face of this cube must be (c/6)u, where u is the radiation energy
density. Now suppose we have two adjacent cubes, with the common face
of the cubes being at x = 0. The flux across the face has contributions
from photons emitted at x− ℓ and x+ ℓ, so the net flux is

F ≈ c
6
u(x− ℓ)− c

6
u(x+ ℓ)

≈ − 1
3
cℓ

du
dx

. (4.15)

This is a diffusion equation with coefficient c/(3ρκ). Our derivation is
very crude, as it neglects the variation in cross section with the proper-
ties of the ambient medium and with the photon frequency. Nonethe-
less, this is basically the correct scenario; heat diffuses with a coefficient
given by some suitably defined average over all sources of opacity.

To compute the flux in a more rigorous fashion, let’s write Iν

as Bν plus a correction,

Iν = Bν(T) + I(1)ν (k̂kk). (4.16)

The superscript (1) reminds us this is a first-order correction. Now, let
μ = cos θ be the direction cosine between our ray k̂kk and the gradient of Iν:
that is,

d
ds

= k̂kk · ∇.

Substituting this and the expansion for Iν, Eq. (4.16), into the steady-
state equation of transfer, Eq. (4.12) and keeping the lowest order terms
on both sides of the equation gives

1
ρκν

k̂kk · ∇Bν = Sν − (Bν + I(1)ν );

upon setting the term Sν − Bν = 0 on the right-hand side we obtain

I(1)ν = − 1
ρκν

k̂kk · ∇Bν = − 1
ρκν

∂Bν

∂T
k̂kk ·∇T. (4.17)

This is anisotropic: the energy transport is largest in the direction “down”
the temperature gradient. Let’s get the net flux crossing an area with
normal n̂nn: multiply equation (4.17) by k̂kk to get the flux; and then take the
component along a direction n̂nn; then replace the two dot products by the
angle cosine μ, and integrate over dΩ = 2πdμ to obtain

FFFν = −
∫ 1

−1

1
ρκν

(
∂Bν

∂T
∇T
)

2π μ2dμ = −4π
3

1
ρ

[
1
κν

∂Bν

∂T

]
∇T. (4.18)

The quantity in [ ] deserves a closer look. First, suppose κν is independent
of frequency. Then equation (4.18) means that the energy transport is
greatest at the frequency where ∂Bν/∂T is maximum, and not at the peak
of the Planck spectrum.
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Let us define the Rosseland mean opacity as

κR ≡
[∫

dν κ−1
ν (∂Bν/∂T)∫

dν (∂Bν/∂T)

]−1

.

We can use this to integrate equation (4.18) to obtain the total radiative
flux,

FFF = −4π
3

1
ρκR

∇
[∫

dνBν

]
= − 1

3
c

ρκR
∇aT4. (4.19)

This is just our formula for radiation diffusion (eq. [4.15]) that we ob-
tained from physical arguments, but now we have an expression for the
effective opacity κR.

E X E R C I S E 4 . 6— Model a star as a spherical cavity, radius R, filled with
thermal radiation at temperature T.

1. Suppose the star is suddenly rendered transparent, so that all the radiation
streams out radially. Make an estimate for the flux during this calamitous
event.

2. Now suppose each photon has to random-walk its way out, with each step
being of length ℓ. How many steps are required before the photon has a
reasonable chance of reaching the surface? What is the total distance covered
by the photon during its walk, and how long does this walk take?

3. Use your answers in part 2 to estimate the flux, and show that it agrees in
scaling with equation (4.19) if we set ℓ = 1/(ρκR).

4.5 Moments of the transfer equation, and the Eddington approx-
imation

Until now, we’ve been writing the LHS of the transfer equation as dIν/ds,
where s is some distance along the path of the ray. We want to make this
more general, since we’ll want to compute Iν for many different paths. As
an example, consider a thin, plane-parallel atmosphere (planet or star),
so that all physical quantities depend on height z above some reference
point. We can still define an optical depth τν with respect to z:

τν =

∫ ∞

z
ρ
(

κabsν + κscaν

)
dz′; (4.20)

for a ray traveling along direction k̂kk with k̂kk · ẑzz = μ and dz = μds, the
equation of transfer becomes

μ
dIν

dτν
= Iν − Sν. (4.21)

Note the change of sign, which comes from our orientation of coordi-
nates, Eq. (4.20).
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Now, you may have noticed that with isotropic scattering the source
function doesn’t depend on angle. It might then occur to you to average
Eq. (4.21) over angle: defining the first moment of Iν as

Hν ≡
1
4π

∫
μIν dΩ =

1
2

∫ 1

−1
μIν dμ,

we obtain
dHν

dτν
= Jν − Sν. (4.22)

The right-hand side is now a simple function of Jν, but this comes at the
cost of an extra quantity Hν that is related to Jν in some complicated
fashion. We can get another equation in terms of Hν by multiplying
Eq. (4.21) by μ and integrating over all angles:

dKν

dτν
= Hν. (4.23)

Here

Kν ≡
1
4π

∫
μ2Iν dΩ =

1
2

∫ 1

−1
μ2Iν dμ,

and the term with the source function vanishes because it is odd in μ.
So far, this mathematical jiggery-pokery doesn’t really help, however;

we’ve generated an additional equation at the cost of yet another vari-
able Kν, so that we still have more variables than equations. We could
continue this procedure of multiplying Eq. (4.21) by successive powers
of μ and averaging over angle; in so doing we would generate a series of
equations containing increasingly higher moments of the radiation field.
We would always have more variables, however, than equations; in or-
der for this approach to help, we need a condition4 for truncating this 4 Known as a closure relation.

expansion.
A classic closure scheme, due to Eddington, is to assert that Kν = Jν/3

is true everywhere. Recall that in thermodynamical equilibrium Jν, Hν,
and Kν are related5 to the specific energy density, flux, and pressure: 5 cf. §3.3

uν =
4π
c
Jν,

Fν = 4πHν,

Pν =
4π
c
Kν. (4.24)

For thermal radiation the pressure is 1/3 of the energy density, so that
Kν = Jν/3. In general the intensity Iν ̸= Bν is not thermal; the Eddington
approximation is to assert that Kν = Jν/3 holds even where the radia-
tion field isn’t in equilibrium. With this condition, Equations (4.22) and
(4.23) form a closed and solvable set. This closure relation is commonly
used in low-accuracy models of stellar atmospheres. As explored in ex-
ercise 4.7, the Eddington approximation is equivalent to treating the
anisotropy of the radiation field as being linear in μ.
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E X E R C I S E 4 . 7— Suppose we expand our radiation field into multipoles:
that is,

Iν(μ) =
∞∑
n=0

I(n)ν Pn(μ),

where Pn is the Legendre polynomial of order n and I(n)ν is a coefficient. Show that
the Eddington approximation is equivalent to dropping all terms of order n = 2
and higher in this expansion.

E X E R C I S E 4 . 8— Another classic approximation in stellar atmospheres is to
write the intensity as a sum of two streams, one upward and one downward.

Iν(μ) = I+ν δ
(

μ − 1√
3

)
+ I−ν δ

(
μ +

1√
3

)
. (4.25)

Here δ refers to the Dirac delta function. Show that in this approximation, the
moments of the transfer equation are

Jν =
1
2
(
I+ν + I−ν

)
Hν =

1
2
√
3

(
I+ν − I−ν

)
Kν =

1
6
(
I+ν + I−ν

)
. (4.26)

Also show that the definition (Eq. 4.25) ensures that the Eddington
approximation is automatically satisfied.

4.6 A grey atmosphere

As a worked example of the Eddington approximation, we’ll consider the
idealized case of a grey atmosphere in local thermodynamic equilibrium.
By “grey,” we mean that κabsν and κscaν are independent of frequency. By
local thermodynamic equilibrium, we mean that the energy levels in
the matter are in a thermal distribution, so that ϵν/4πκabsν = Bν and
the source function is Sν = Bν(1 − A) + AJν. Note that this does not
necessarily imply that the radiation is in thermal equilibrium with the
matter.

If our atmosphere is in steady-state, then there is no net energy ex-
change between matter and radiation when we integrate emission and
absorption over all frequencies and angles:∫ ( ϵν

4π
− κabsν Jν

)
dν = 0,

which implies that
∫
Bν dν =

∫
Jν dν. Note that this does not necessarily

imply that Jν = Bν. We can use this to simplify our equation for Hν,
Eq. (4.22): ∫

dHν

dτν
dν = 0,
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so H =
∫
Hν dν is constant throughout the atmosphere.

If H is constant, then we can integrate Eq. (4.23) over all frequencies
and then find K =

∫
Kν dν = H(τ + τ0). Now we can use our closure

condition, K = J/3, to eliminate J in our original transfer equation
(4.21). Notice that since

∫
Bν dν =

∫
Jν dν = J, the source function

integrated over all frequencies is∫
Sν dν =

∫
Bν(1− A) + AJν dν = J = 3H(τ + τ0).

Substituting this into Eq. (4.21) and integrating over all frequency gives

μ
dI
dτ

= I− 3H(τ + τ0). (4.27)

We can integrate Eq. (4.27) over τ. We are interested in the radiation
emerging from great depth in the atmosphere, so our integration is from
τ → ∞ to τ. As before, we write I = eτ/μI(τ), with I ∼ e−τ/μ as τ → ∞;
substituting this into Eq. (4.27) and canceling common factors gives

dI
dτ

= −3H
μ

e−τ/μ(τ + τ0).

Upon integrating from a given depth τ inwards, we obtain

I(τ) = 3H (τ + μ + τ0) . (4.28)

To determine τ0 we require that at τ = 0 the integral over all outward-
bound rays gives the net flux:

2π
∫ 1

0
μI dμ = 6πH

∫ 1

0
μ(μ + τ0) dμ = F = 4πH, (4.29)

which fixes τ0 = 2/3.
Since the flux F = 4πH is constant, we can set F = σSBT4

eff. Here
σSB = ac/4 is the Stefan-Boltzmann constant. Since the angle-averaged
intensity, when integrated over all frequencies, is J = B and B =

acT4/(4π) = σSBT4/π (see Eq. [4.24] and [3.9]), our equation for the
moment K becomes

σSBT4

3π
=

J
3
= K =

σSBT4
eff

4π

(
τ +

2
3

)
,

thus giving the temperature as a function of optical depth:

T4(τ) =
3
4
T4
eff

(
τ +

2
3

)
. (4.30)

Thus T = Teff at τ2/3. What is the probability that a photon emitted at
τ = 2/3 will escape without being absorbed or scattered?
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E X E R C I S E 4 . 9— For a grey atmosphere, find the specific intensity as a
function of angle arccos(μ) between the normal to the surface and the direction
to the observer.

1. What is the ratio of the intensity between the center of the sun and the edge?
You should find it reduced; that is, the limb of the sun appears darker than the
center.

2. What happens for a star that is sufficiently far away that it is no longer
resolved? What is the net flux emitted towards a distant observer in this case?

I0

I+(τ) I–(τ)

Is

τ = 0

τ = τs

Figure 4.1: An irradiated slab.

E X E R C I S E 4 . 1 0— Suppose we have a plane-parallel slab with a pure
scattering gray opacity as shown in Fig. 4.1. The slab’s top face is illuminated
uniformly with incident intensity I0. The total optical depth through the slab is τs.
Use the two-stream approximation to find, as functions of τs, the intensity that
emerges from the bottom of the slab Is, as well as the intensity that is reflected
(re-emerges) from the top side, I+(τ = 0).

1. Demonstrate that the flux H is constant. Derive an expression for J(τ) in
terms of H and I−.

2. Write expressions for the mean intensity at the top and bottom of the slab,
namely J(τ = 0) and J(τ = τs).

3. Use the expression for J(τ), part 1, and the boundary conditions, part 2, to
solve for I+(τ = 0) and Is.

4. Now show that your expression makes sense in the limits τs → 0 and τs → ∞.

E X E R C I S E 4 . 1 1— In this problem we’ll consider a planet with a grey
atmosphere that is being irradiated by its host star. Let the star have radius R⋆

and effective temperature T⋆, and let the star be a distance D from the planet.

1. Show that the incident intensity on the planet is (σSB/π)WT4
⋆, where

W = (R⋆/D)2.

2. Solve the transfer equation (Eq. 4.21) for a grey atmosphere. Begin by taking
moments of the equation. As before, argue that the flux H is constant, and
show that

J(τ) = 3Hτ + J0.

Since H is constant, write H = (4π)−1σSBT4
int. Then use the two-stream

relations (Eqn. 4.26) to express J0 in terms of H and I−. Finally, set
J = (σSB/π)T4(τ) and I− to the incident intensity to get an expression for T(τ)
in terms of T⋆ and Tint.

3. Qualitatively describe the temperature structure of the atmosphere for
WT⋆ ≫ Tint. How does it compare to the case of negligible irradiation?

Once we have the thermal structure, we can find the emer-
gent spectrum. To get the spectral distribution, start with equa-
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tion (4.21) and (assuming the atmosphere has some absorption so that
the matter and radiation can come into equilibrium) insert Sν = Bν(T);
solving for Iν at τ = 0 then gives

Iν(μ, τ = 0) =
1
μ

∫ ∞

0
Bν [T(τ)] e−τ/μ dτ. (4.31)

A plot of the spectral distribution for the emergent flux for μ = 1 is
shown (open circles) in Fig. 4.2. For comparison, a plot of the Planck
distribution (solid line) is also shown. Both distributions are normalized
to the total flux. You will note that the emergent spectrum does not
exactly match the Planck distribution (although it is close), even though
the opacity is grey.
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Figure 4.2: Spectral distribution from
a grey atmosphere. The open circles are
from Chandrasekhar, Radiative Transfer;
the solid line is the Planck distribution.





5
Simple Radiating Systems

Now that we’ve completed our description of the radiation field and
described the equation of transfer, the next task is to investigate various
radiative processes. In this chapter, we describe some simple classical
systems; namely low-energy scattering from free electrons and Rayleigh
scattering. We shall also look at how signals are modified by propagation
through a plasma. We begin by revisiting Maxwell’s equations in the
presence of sources.

5.1 The fields of a moving source

In Chapter 2, we saw how Maxwell’s equations could be combined into
an expression for the potentials (Φ,AAA); if we now retain the source
terms (ρ, jjj), we reduce the four Maxwell equations into two equations
for (Φ,AAA): [

1
c2

∂2

∂t2
−∇2

]
Φ −∇

[
1
c
∂Φ
∂t

+∇ · AAA
]

= 4πρ,[
1
c2

∂2

∂t2
−∇2

]
AAA+∇

[
1
c
∂Φ
∂t

+∇ · AAA
]

=
4π
c
jjj. (5.1)

Using the gauge freedom in choosing the potentials, we can set

1
c
∂Φ
∂t

+∇ · AAA = 0,

thereby giving us the more compact equation(
1
c2
∂2
t −∇2

)[
Φ
AAA

]
= 4π

[
ρ
jjj/c

]
. (5.2)

The operator in () on the left is often denoted as□2; it is the space-time
version of the Laplacian operator and is called the d’Alambertian.

To solve Eq. (5.2), we first find the Green function G(xxx, t; xxx′, t′) with
the property

□2G = 4πδ(xxx− xxx′)δ(t− t′);
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the general solution is then[
Φ
AAA

]
=

∫
G(xxx, t; xxx′, t′)

[
ρ(xxx′, t′)
jjj(xxx′, t′)/c

]
d3xxx′dt′. (5.3)

Note that for xxx ̸= xxx′ and t ̸= t′,□2G = 0.
Let us expand□2 in spherical coordinates for xxx ̸= xxx′, t ̸= t′, and take G

to only depend on r = |xxx− xxx′|: then

□2G =
1
c2

∂2G
∂t2

− 1
r
∂2

∂r2
(rG) = 0.

Away from r = 0, we can multiply this equation by r and recover the wave
equation; thus the solution is

G =
1
r
[f+(t− r/c) + f−(t+ r/c)] .

Since we are considering sources, we only keep the f+ term, which repre-Outgoing waves are represented by f+,
incoming by f−. sents outgoing waves.

To pin down the form of f+, we note that as we approach r → 0, the
term r/c becomes negligible compared to t. In that case, we expect the
time derivatives to be small compared to the spatial derivatives, so that
as we approach the origin our equation for G becomes

□2G
∣∣
r→0 → −∇2

(
f+(t)
r

)
= 4πδ(rrr)δ(t′ − t).

But this is just Poisson’s equation for a point particle at the origin with a
funny “charge” δ(t′ − t). We know the solution:

f+(t)
r

=
δ(t′ − t)

r
.

Now t here is really t − r/c with r being really small; making this replace-
ment gives us the retarded Green function,

G+(xxx, t; xxx′, t′) =
δ[t′ − (t− |xxx− xxx′|/c)]

|xxx− xxx′|
. (5.4)

Note that G+ is non-zero only if t′ lies on the past light-cone for point
(xxx, t).

Substituting G+ into Eq. (5.3) and taking the integral over t′ gives,[
Φ
AAA

]
=

∫
1

|xxx− xxx′|

[
ρ(xxx′, t− r/c)
jjj(xxx′, t− r/c)/c

]
d3xxx′. (5.5)

Intuitively, this says that the contribution from a source a distance r away
occurs when a photon has had time to traverse the distance from that
source.
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Now, suppose we have a single point particle of charge q moving on
a path ξ(τ) with velocity uuu(τ) = dξ/dτ. The charge density and current
density are then[

ρ(xxx′, t− r/c)
jjj(xxx′, t− r/c)/c

]
=

∫ [
q

quuu(τ)/c

]
δ[xxx′−ξ(τ)]δ

[
τ −

(
t− |xxx− xxx′|

c

)]
dτ.

(5.6)
Substituting this equation for the sources into Eq. (5.5) and taking the
integral with respect to d3xxx′ gives[

Φ
AAA

]
=

∫
1

|xxx− ξ(τ)|

[
q

quuu(τ)/c

]
δ
[

τ −
(
t− |xxx− ξ(τ)|

c

)]
dτ.

Time to change variables: let rrr(τ) = xxx − ξ(τ), and let τ′ = τ − (t − |rrr|/c).
Then dτ′ = dτ(1+ ṙ/c), and using 2rṙ = 2rrr · ṙrr = −2rrr · uuu, we can finish the
integral over τ′ to obtain

Φ(xxx, t) =

[
q

r(τ)(1− r̂rr · uuu/c)

]
τ=t−r(τ)/c

(5.7)

AAA(xxx, t) =

[
quuu(τ)/c

r(τ)(1− r̂rr · uuu/c)

]
τ=t−r(τ)/c

. (5.8)

Here r̂rr = rrr/|rrr| is a unit directional vector along rrr; it points from the
location of the source at time τ to the location where the fields are to be
evaluated.

The potentials [Equations (5.7) and (5.8)] have a part that depends on
the particles position and velocity at retarded time t − r/c, which one
might have expected on analogy with electrostatics, and a factor in the
denominator that depends on uuu/c, which is a bit less intuitive. Note the
effect of r̂rr · uuu: if the particle is moving relativistically, then the potentials
are quite large for directions in front of the particles’ line of motion.

The fields can be found by straightforward, albeit tedious, differentia-
tion. Defining β = uuu/c and κ = 1− r̂rr · β, the fields from a moving particle
of charge q can be expressed as

EEE(xxx, t) =

[
q(1− β2)

κ3r2
(̂rrr− β) +

q
cκ3r

r̂rr×
{
(̂rrr− β)× β̇

}]
τ=t−r(τ)/c

(5.9)

BBB(xxx, t) = [̂rrr× EEE(xxx, t)]τ=t−r(τ)/c (5.10)

Bear in mind that rrr, r̂rr, and β are all functions of τ.
There are two terms in the expression for EEE, and they scale differently

with r. The first term goes as q/r2, just like the electrostatic version.
Note the direction, however: instead of pointing along r̂rr, that is, to the
position at the retarded time, it points along r̂rr − β, which is away from
the position the particle would have at time t if β were constant. It is as if
the electric field “anticipates” the motion of the particle.
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The second term falls off as r−1, so it is the dominant term sufficiently
far from the source and is therefore the radiation field. This term is pro-
portional to the acceleration β̇ of the particle. Notice that when this term
dominates, EEE and BBB are both perpendicular to r̂rr, and BBB is perpendicular to
EEE. In the non-relativistic limit, |β| ≪ 1, let θ be the angle between β̇ and r̂rr.
Then

|BBB| = |EEE| ≃ q
c2r

|u̇uu| sin θ;

EEE lies in the plane defined by r̂rr and β̇ and is perpendicular to r̂rr. The radia-
tion fields are maximum in a direction perpendicular to the acceleration.

E X E R C I S E 5 . 1— The schematic (5.1) shows the trajectory ξ(τ) of a charged
particle. The arcs show loci of constant retarded times from the point “O”, and
the spacing between arcs is unity. On this schematic, indicate the “near” electric
field at point “O”; for the other 7 points (all located at the same light travel time
from the particle), indicate the directions of the radiation EEE and BBB fields.

ξ(τ )

β̇

β

O

Figure 5.1: Schematic for exercise 5.1.

The flux can be found by computing the Poynting vector:

SSS =
c
4π

EEE× BBB =
c
4π

|EEE|2 r̂rr = q2

4πc3r2
|u̇uu|2 sin2 θ r̂rr.

To get the total power emitted, we encase our charge in a sphere of radius
r, centered on the particle, with the axis along u̇uu. In this case the flux is
normal to the sphere, so the total power is

P =

∫
|SSS| r2dΩ =

q2

4πc3
|u̇uu|2

[
2π
∫ 1

−1
(1− μ2)dμ

]
=

2q2

3c3
|u̇uu|2, (5.11)

a result known as Larmor’s formula.

5.2 Thomson scattering

As an application of Larmor’s formula, let’s consider a free electron sit-
ting in space, which is irradiated by low-frequency radiation. The electron
will accelerate because of the electric field; as a result of this acceleration,
the electron will then radiate.

E X E R C I S E 5 . 2— Why can we neglect the magnetic field when computing
the acceleration of the charge?

The equation of motion of the electron is

meu̇uu = qeEeiωtξ, (5.12)

where ξ is the polarization direction of the electric field (we’ll assume
plane polarization) and qe is the electron charge. From Eq. (5.11), the
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average power emitted by this charge over a cycle is

⟨P⟩ = 1
3

q4e
m2

e c3
E2;

if we compare this with the incident flux, averaged over a cycle, ⟨Sinc.⟩ =
c|E2|/8π, we find the total cross-section for Thomson scattering:

σTh =
⟨P⟩

⟨Sinc.⟩
=

8π
3

(
q2e

mec2

)2

= 0.665× 10−24 cm2. (5.13)

The quantity in parentheses is known as the classical electron radius.

r̂

r̂

k̂

k̂

ξ1 ξ2

ξ'1

ξ'2

�

�

�-

�-

incident

scattered

Figure 5.2: Schematic of Thomson scatter-
ing.

The scattered radiation is polarized. To see how this works, let’s set up
our coordinates so that the incident light is traveling in the z-direction.
The electron is at the origin, and the vector r̂rr to the observer is in the z-y
plane, as shown in Fig. 5.2. Then we may choose the polarization vectors
of our incident ray as being along the x- and y-axes.

For incident radiation with polarization ξ1, we can combine equa-
tion (5.12) for the motion of the electron with equation (5.9) for the
electric field (for non-relativistic electrons, |β| ≪ 1); since r̂rr is perpendic-
ular to ξ1, the electric field is

EEE′
1 = − e2

mc2r
E1eiωt ξ′1

and the scattered flux along r̂rr is

SSS1 =
cE2

1

8πr2

(
e2

mec2

)2

r̂rr.

A factor of 1/2 comes from averaging |ℜ(eiωt)|2 = cos2 ωt over several
oscillation cycles.

For incident radiation with polarization ξ2 along y, the cross-product
of r̂rr and β̇ picks up a factor of cos θ, where θ is the angle between the
incident and scattered rays. As a result, the scattered electric field is

EEE′
2 = − e2

mc2r
E2eiωt cos θ ξ′2

and the scattered flux along r̂rr is

SSS2 =
cE2

2

8πr2

(
e2

mec2

)2

cos2 θ r̂rr.

If the incident radiation is unpolarized, so that E1 = E2, then the degree
of polarization for the scattered radiation is

Π ≡ |S1| − |S2|
|S1|+ |S2|

=
1− cos2 θ
1+ cos2 θ

. (5.14)
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5.3 The classical oscillator

Suppose we have a classical charged harmonic oscillator, xxx(t) = xxx0eiωt, of
charge qe. The instantaneous power emitted by the oscillator is

P(t) =
2
3
q2e
c3
|u̇uu|2, (5.15)

which when averaged over a cycle is

⟨P(t)⟩ = q2e
3c3

x20ω4, (5.16)

since u̇uu = −ω2xxx0eiωt. Since the oscillator is radiating, it is losing energy
and is damped. In mechanics, the loss of energy goes as FFF · uuu; we can get
a term that has this form by integrating equation (5.15) by parts over a
cycle:

−
∫ t2

t1
dt

2
3
q2e
c3

u̇uu · u̇uu = − 2
3
q2e
c3

u̇uu · uuu
∣∣∣∣t2
t1

+
2
3
q2e
c3

∫ t2

t1
dt üuu · uuu.

The first term vanishes and we can therefore identify the radiation damp-
ing term as

FFFrad =
2
3
q2e
c3

üuu = −m
(
2q2e ω2

3c3m

)
uuu ≡ −mγuuu

with the term in parentheses being the damping constant γ.
Now let our oscillator’s “natural” frequency be ω0 and drive the oscilla-

tor with an electric field EEEeiωt; the equation of motion for the oscillator is
then

mẍxx = −mω2
0xxx+ qeEEEeiωt −mγẋxx. (5.17)

Substituting a trial function xxx ∝ eiωt gives

xxx =
qe
m

EEEeiωt

(ω2
0 − ω2) + iωγ

. (5.18)

Taking the second derivative w.r.t. time of xxx, substituting into eq. (5.11),
and averaging over a cycle gives the power radiated by the oscillator,

⟨P(t)⟩ = q4e ω4E2

3c3m2
1

(ω2
0 − ω2)2 + γ2ω2 .

Dividing ⟨P(t)⟩ by the incident average flux, cE2/(8π), gives the cross-
section,

σ =

(
8π
3

q4e
m2c4

)
ω4

(ω2
0 − ω2)2 + γ2ω2 . (5.19)

For ω ≫ ω0, γ this reduces to the Thomson cross-section for qe = e. We’ll
next explore the cases ω ≪ ω0 and ω ≈ ω0.
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Rayleigh scattering

For ω ≪ ω0, the cross-section (5.19) for scattering becomes

σRay ≃
(
8π
3

q4e
m2c4

)(
ω
ω0

)4

. (5.20)

This is important in planetary atmospheres: the strong frequency depen-
dence accounts for the blue sky. Physically, the scattering is caused by the
polarization of molecules induced by the electric field.

Of course, this model is really crude: can we really calculate the po-
larization of air molecules this way? What should we use for the charge
qe—is it e? and what for the mass m? It turns, out, amazingly enough,
that we don’t need to know them to determine the cross-section and the
polarization. In the limit that we go to very low frequency, then from
Eq. (5.18) we have the induced polarization per unit volume,

PPP = nqexxx ≈
nq2e
mω2

0
EEE,

where n is the number of molecules per unit volume. The electric dis-
placement is therefore

DDD = EEE+ 4πPPP = εEEE

with permitivity

ε = 1+
4πnq2e
mω2

0
. (5.21)

The effective velocity of light in such a medium is c/
√

ε, so that the index
of refraction is N =

√
ε. We can therefore express mω2

0/q
2 in terms of the

index of refraction of air; doing so and substituting back into Eq. (5.20)
gives (to lowest order)

σRay ≃
2

3πn2

(
2π
λ

)4

|N− 1|2. (5.22)

As advertised, this expression does not involve the charges or masses of
our oscillators, but we do need a measurement of the index of refraction.
For a standard atmosphere with density n = 2.7 × 1019 cm−3 and index
of refraction N − 1 ≈ 2.93 × 10−4, we find that the mean free path,
ℓ = (nσRay)

−1, is 187 km for red light (λ = 650nm) and 30 km for violet
light (λ = 410nm). Consult Jackson1 for a detailed calculation and 1 John D. Jackson. Classical Electrodynam-

ics. Wiley, 2d edition, 1975Feynman et al.2 for an intuitive one.
2 Richard P. Feynman, Robert B. Leighton,
and Matthew Sands. The Feynman Lectures
on Physics. Addison-Wesley, 1989The resonant oscillator

Now, for ω ≈ ω0, we can expand (ω2
0 − ω2)2 ≈ 4ω2

0(ω0 − ω)2; further-
more, we identify 2q2e ω2

0/(3c
3m) = γ and equation (5.19) becomes

σ = π
(

q2e
mc

)
γ

(ω0 − ω)2 + (γ/2)2
. (5.23)
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The line profile is Lorentzian, with a width γ. In terms of wavelength, the
width of the line is

Δλ = γ
∣∣∣∣ dλ
dω

∣∣∣∣
ω=ω0

=
2πc
ω2

0
γ =

4π
3

(
q2e
mc2

)
= 1.2× 10−5 nm.

If we apply this model to an atomic transition, we get an estimate of
the natural line width. This width is independent of the transition fre-
quency3, and it is extremely narrow compared to the width from other3 It is just the classical electron radius

interactions and from doppler broadening.

E X E R C I S E 5 . 3— Consider the transition from the n = 3 level to the n = 2
level in hydrogen.

1. What is the wavelength of this transition?

2. From the linewidth Δλ given above, estimate the mean lifetime of the n = 3
level against spontaneous de-excitation to the n = 2 level.



6
Plasmas

6.1 What is a plasma?

A plamsa is defined as a gas of charged particles in which the kinetic
energy of a typical particle is much greater than the potential energy due
to its nearest neighbors.

Screening and the Debye Length

Imagine a typical charged particle in a plasma. Very close to the particle,
we expect the electrostatic potential to be that of an isolated charge Φ =

q/r. Far from the particle, there will be many other particles surrounding
it, and the potential is screened. For example, a positive ion will tend to
attract electrons to be somewhat, on average, closer to it than other ions:
we say that the ion polarizes the plasma. As a result of this polarization,
the potential of any particular ion should go to zero much faster than 1/r
due to the “screening” from the enhanced density of opposite charges
around it.

Let’s consider a plasma having many ion species, each with charge Zi,
and elections. About any selected ion j, particles will arrange themselves
according to Boltzmann’s law,

ni(r) = ni0 exp
[
−ZieΦ(r)

kT

]
. (6.1)

Here ni0 is the density of particle i far from the charge j, and r is the
distance between particles i and j. (A similar equation holds for the elec-
trons, with Z replaced by−1.) To solve for the potential, we can use
Poisson’s equation,

∇2Φ = −4π
∑

i

Zieni(r) + 4πene(r). (6.2)

Our assumption is that the term in the exponential of Eq. (6.1) is small,
so we may expand it to first order in Φ and substitute that expansion into
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Eq. (6.2) to obtain in spherical geometry

1
r
∂2

∂r2
(rΦ) = −4πe

[∑
i

ni0Zi

(
1− ZieΦ

kT

)
− ne0

(
1+

eΦ
kT

)]
.

The overall charge neutrality of the plasma implies that ne0 =
∑

i Zini0;
using this to simplify the above equation gives

1
r
∂2

∂r2
(rΦ) =

[
4πe2

kT

∑
i

ni0
(
Z2
i + Zi

)]
Φ ≡ λ−2

D Φ. (6.3)

The quantity in [ ] has dimensions of reciprocal length squared and we
define it as (1/λD)

2 with λD being called the Debye length.
Multiplying equation (6.3) by r, integrating twice, and determining

the constant of integration from the condition that as r → 0, Φ → Zje/r
gives the self-consistent potential

Φ =
Zje
r

exp
(
− r

λD

)
. (6.4)

The Debye length λD determines the size of the screening cloud around
the ion.

In order for the above derivation to be valid, we require that λD ≫ a,
where a is the mean ion spacing; otherwise, there won’t be any charges in
our cloud to screen the potential! Equivalently, we require the number of
particles in a sphere of radius λD to be large,

4π
3

λ3
D

∑
i

ni ≫ 1. (6.5)

This condition must hold if we are to treat the gas as an (ideal) plasma1.1 In high energy density physics, the
definition of a plasma is expanded to
include cases for which interactions are
important E X E R C I S E 6 . 1— Defining the mean inter-ion spacing a via 4πa3n/3 = 1,

show that Eq. (6.5) implies that kT ≫ e2/a.

6.2 Propagation of waves through a plasma

Dispersion in a cold plasma

Suppose that we have a plane wave propagating through a medium con-
taining free electrons with uniform density ne. The electric field will cause
the electrons to oscillate, cf. Eq. (5.12). We’ll take the plasma to be cold,
so that thermal velocities are small, and we’ll assume that the amount
of power scattered (Thomson scattering) is also negligible. Finally, we’ll
ignore collisions in the plasma, variations in the plane of the wave, and
oscillations of the ions: as a result the plasma remains neutral every-
where.
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The back-and-forth sloshing of the electrons means that there is an
alternating current in the plasma, jjj = −eneuuu. Since we assume that there
is no bunching of electrons,∇ · EEE = 0; then taking the time derivative
of equation (2.4), using equation (2.1) to eliminate ∂tBBB, and expanding2 2 cf. Box 6.1

∇× (∇× EEE) = ∇(∇ · EEE)−∇2EEE = ∇2EEE gives(
∇2 − 1

c2
∂2
t

)
EEE =

4π
c2

∂tjjj =
4πnee2

mec2
EEE. (6.6)

In this equation we have used ∂tuuu = −eEEE/me, with me being the electron
mass. Using a trial solution EEE = EEEkkkeikkk·xxx−iωt gives a dispersion relation,

c2k2 = ω2 − ω2
p, (6.7)

where

ω2
p =

4πnee2

me

is the plasma frequency.

Box 6.1 Tensors and index notation

A powerful notation when working with tensors is to use the
rule that repeated indices are summed over. For example, if xi, yj
represent vectors in a Euclidian space with components [x1, x2, x3]
and [y1, y2, y3], respectively, then the dot product of the vectors is
xiyi ≡ x1y1 + x2y2 + x3y3.

In working with vectors, two useful symbols are the Kronecker
delta, defined by

δij =

{
1 i = j
0 i ̸= j

, (6.8)

and the Levi-Civita symbol, defined by

εijk =


1 i, j, k are a cyclic permutation of 1, 2, 3

−1 i, j, k are an anti-cyclic permutation of 1, 2, 3
0 if any indices are identical

(6.9)
By a “cyclic permutation of 1, 2, 3”, we mean {1, 2, 3}, {3, 1, 2},
or {2, 3, 1}; by “anti-cyclic”, we mean {2, 1, 3}, {3, 2, 1}, or
{1, 3, 2}—that is, any combination obtained from {1, 2, 3} by
a single exchange of indices.

In terms of the Levi-Civita symbol, the ith component of the
cross product of two vectors aaa, bbb is written

[aaa× bbb]i = εijkajbk.

For example, if i = 1, εijkajbk = a2b3 − a3b2.
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Box 6.1 continued

E X E R C I S E 6 . 2— Show that

εijkεlmn = δilδjmδkn + δklδimδjn + δjlδkmδin − δjlδimδkn − δklδjmδin − δilδkmδjn.

E X E R C I S E 6 . 3— Use the index notation along with the symbols
εijk and δij and the result of exercise 6.2 to prove the following relations.

1. ∇ · (aaa× bbb) = bbb · (∇× aaa)− aaa · (∇× bbb)

2. ∇× (aaa× bbb) = (bbb · ∇) aaa− bbb (∇ · aaa) + aaa (∇ · bbb)− (aaa · ∇) bbb

3. ∇× (∇× aaa) = ∇ (∇ · aaa)−∇2aaa

For ω < ωp, the wavevector kkk becomes imaginary, and the wave
evanesces over a lengthscale∼ (πmec2/nee2)1/2. This is analogous to the
skin depth in a conductor: the charges move to short out the electric
field. For ω > ωp the group velocity vg = ∂ω/∂k depends on frequency:

vg = c
[
1−

(ωp

ω

)2
]1/2

< c. (6.10)

Higher frequencies travel faster.

E X E R C I S E 6 . 4— Pulsars are magnetized neutron stars that emit a broad
spectrum of radiation into a narrow beam. As the neutron star rotates, the beam
is swept into and out of the observer’s field of view, thereby creating pulses.
Suppose you observe the pulses from a particular neutron star over a range of
radio frequencies. Show that the time of arrival tA of the pulses changes with
frequency as

dtA
dν

= − e2

πmecν3 D,

where the dispersion measure

D =

∫
ne dℓ

is the integrated column of free electrons along the line of sight to the pulsar.
Show that the delay time between two observed frequencies is

Δt = 8.3ms D Δν
ν3

for D in units of pc cm−3 and ν, Δν in units of GHz.

Dispersion in a cold, magnetized plasma

Now we’ll expand the discussion in the previous section to the more gen-
eral case of a cold, magnetized plasma. We shall again ignore collisions
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and the motion of ions. We’ll relax, however, our assumption that the
electron density is uniform (although it will turn out that that is still a
valid assumption).

k

B∥

B

v

e-� ⨯ B‖

e-E

Figure 6.1: Schematic of the response of
an electron in a static magnetic field BBB to a
wave propagating along direction kkk.

First, we need to review how electrons move under a combined electric
and magnetic field (see Fig. 6.1):

duuu
dt

= − e
me

EEE− e
mec

uuu× BBB. (6.11)

Here BBB is the sum of the static and the wave fields. As we argued before,
however, for non-relativistic electrons the contribution from the wave’s
BBB field is∼ u/c smaller than than that from the wave’s EEE field. Further, if
the only appreciable motion is due to the wave’s EEE field, which is perpen-
dicular to kkk, then only B|| = BBB · kkk/|kkk| is important. This is equivalent to
stating that non-relativistic electrons will only move a small fraction of a
wavelength in one oscillation cycle, so we can neglect motion along kkk.

If we are at a fixed point, we can look for oscillatory solutions at the
wave frequency ω; however, if we take our z-axis to be along kkk, then
dux/dt depends on uy and vice versa. To get around this, recall that we
expect the electron to move in a circular fashion, in which case the x- and
y-components of the velocity are π/2 out of phase. This suggests that we
choose for basis vectors the right- and left-handed helical vectors:

uuu± = u0êee±

where3 3 cf. §2.2

êee+ =
1√
2
(êeex + îeeey),

êee− =
1√
2
(êeex − îeeey).

If we therefore write uuu and EEE in terms of modes u±êee±e−iωt, E±êee±e−iωt

and substitue into Equation (6.11) we find that

u± = −i
e

me(ω ∓ ωL)
E±. (6.12)

Here
ωL =

eB||

mec
is the electron Larmor frequency. The current induced by the electric field
is thus

j± = −neeu± = i
nee2

me(ω ∓ ωL)
E± = σ±E±

where σ± is the electrical conductivity. The factor of i in σ implies that
the current is out of phase with the oscillatory electric field.

E X E R C I S E 6 . 5— Show that Eq. (6.12) implies that the time-averaged work
done by the electric field is zero for ω ̸= ωL. That is, in the absence of collisions,
there is no dissipation.
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Now that we have the electronic response, we can look for solutions to
the equation of charge continuity, ∂t(ρe) +∇ · jjj = 0. Here ρe = Zeni − ene

is the combined charge density; in the absence of perturbations from the
electromagnetic wave the plasma is neutral, ρe = 0. Assuming a e−iωt

response for ρe, we obtain

ρe = i
nee2

me(ω ∓ ωL)ω
kkk · EEE.

Inserting this into Gauss’s law,∇ · EEE = 4πρe, implies

ikkk · EEE =
4πnee2

meω(ω ∓ ωL)
ikkk · EEE =

ω2
p

ω(ω ∓ ωL)
ikkk · EEE,

where ωp = 4πnee2/me is again the electron plasma frequency. This is
equivalent to writing

ε∇ · EEE ≡

[
1−

ω2
p

ω(ω ∓ ωL)

]
∇ · EEE = 0

with ε being the dielectric constant. Since ε ̸= 0 in general, we require
kkk · EEE = 0: that is, the wave is transverse and therefore ρe = 0; there is no
bunching of excess charge and the plasma remains neutral. In that case,
kkk · jjj = 0: the currents are purely transverse as well.

With∇ · EEE = 0, we insert our trial function EEE = EEE±eikkk·xxx−iωt into
Eq. (6.6) and obtain a dispersion relation for right(left)-circularly polar-
ized waves:

c2k2± = ω2

[
1−

ω2
p

ω(ω ∓ ωL)

]
= εω2. (6.13)

For ω ≫ ωL, we recover our previous dispersion relation, Eq. (6.7). At
higher frequencies, ω ≫ ωp, ωL we can expand ε and write the dispersion
relation as

k± =
ω
c
−

ω2
p

2ωc︸︷︷︸
=Δk0

∓
ω2

pωL

2cω2︸ ︷︷ ︸
=Δk±

.



plasmas 55

E X E R C I S E 6 . 6— Suppose we have a plane-polarized wave,

EEE =
1√
2
(̂eee+ + êee−) Eke

ikkk·xxx−iωt

traversing a magnetized plasma in the z-direction. Show that after going a length
ℓ, the right(left)-circular polarization components will have a phase

−
∫ ℓ

0
Δk0 dz∓

∫ ℓ

0
Δk± dz

relative to what they would have had in the absence of the plasma. Show that the
electric vector after going a length ℓ has a polarization

cos ψêeex + sin ψêeey

where

ψ =
e3

2πm2
e c2ν2

∫ ℓ

0
neB|| dz︸ ︷︷ ︸
≡R

.

In other words, the polarization vector has rotated by an angle ψ, and this angle
depends on frequency. Thus measurements of the plane of polarization can be
used to infer R, the rotation measure, which provides information on the
integrated line-of-sight strength of the magnetic field.





7
Bremsstrahlung Radiation

7.1 Collisions in a plasma

To begin, let’s imagine a light particle (electron) colliding with a much
heavier, fixed particle (an ion), as illustrated in Figure 7.1. (This picture
also applies to a pseudo particle of reduced mass scattering in a fixed po-
tential.) Let the impact parameter be b, and the mass of the incident par-
ticle is μ. For Coulomb interactions, the force on the particle is (q1q2/r2)̂rrr.
The incident momentum is p0. Now by assumption, in our plasma most
of the interactions are weak (potential energy is much less than kinetic),
so let’s treat the deflection of the particle as a perturbation. That is, we
shall assume that p0 = const and that the effect of the interaction is to
produce a perpendicular (to p0) component of the momentum p⊥. The
total change in p⊥ is then

p⊥ =

∫ ∞

−∞
dt

q1q2
r2

sin θ, (7.1)

where sin θ = b/r is the angle that the radial vector makes with the
horizontal. Substituting r = b/ sin θ and dt = −μbdθ/p0/ sin2 θ, we have

p⊥ = −
∫ π

0
sin θ dθ

μ
p0

q1q2
b

,

leading to the intuitive result

p0p⊥
2μ

=
q1q2
b

. (7.2)

Clearly a large angle scattering occurs if p⊥ ≥ p0, or

b ≤ b0 ≡ 2μq1q2
p20

; (7.3)

our perturbative approach is therefore only valid for b ≫ b0.
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Figure 7.1: Geometry for scattering
problem.

b
r

x

p
⊥

p0

Ze

e–

7.2 Emissivity

To calculate the emissivity, we start with the acceleration of an electron;
according to Eq. (7.1ff) this is

|v̇vv| = 1
me

∣∣∣∣dpdt
∣∣∣∣ = Ze2

mer2
=

Ze2

meb2
1

1+ v2t2/b2
. (7.4)

If we substitute the maximum value of |v̇vv| into Larmor’s formula, Eq. (5.11),
the maximum power emitted is

P(b) =
2
3
e2

c3
|v̇vv|2 =

2
3

Z2e6

m2
e c3b4

. (7.5)

E X E R C I S E 7 . 1— Plot P(t; b). Set the origin t = 0 to be the point of closest
approach.

If we take t = 0 to correspond to when the electron is at clos-
est approach, then most of the acceleration occurs in a range of times
−b/v < t < b/v.

What are the frequencies at which this power is radiated?
If we take the Fourier transform of the acceleration, then by Parseval’s
theorem the total energy emitted during the encounter is

2
3
e2

c3

∫ ∞

−∞
|v̇|2 dt = 2

3
e2

c3

∫ ∞

−∞
|v̇ν|2 dν =

4
3
e2

c3

∫ ∞

0
v̇∗ν v̇ν dν, (7.6)

where

v̇ν =

∫ ∞

−∞
v̇e2πiνt dt

is the Fourier transform of the acceleration. In the last equality of equa-
tion (7.6), we use v̇−ν = v̇∗ν since v is real. From equation (7.6), we iden-
tify the energy emitted per frequency as

4
3
e2

c3
v̇∗ν v̇ν

for ν > 0.
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Taking the Fourier transform of the acceleration (7.4) gives

v̇ν =
Ze2

mebv

∫ ∞

−∞

exp(2πiνbξ/v)
1+ ξ2 dξ = π

Ze2

mebv
exp(−2πνb/v), (7.7)

with the energy spectral density

4π2

3
Z2e6

m2
e c3v2b2

exp(−4πνb/v). (7.8)

The power is distributed over a broad range of frequencies up to a cutoff
νmax ∼ v/b. To evaluate the integral in eq. (7.7), we

extend our domain of integration to the
complex plane. In the upper half plane,
the integrand vanishes as |ξ| → ∞, so we
may close the integral along a semi-circle
in the upper plane. Because the integrand
has a pole at ξ = i that is enclosed by
the contour, we can use the theorem on
residues to evaluate the integral,∮

exp(2πiνbξ/v)
1 + ξ2

dξ

= 2πi
[
(ξ − i)

exp(2πiνbξ/v)
(ξ + i)(ξ − i)

]
ξ=i

= 2πi
exp(−2πνb/v)

2i
.

E X E R C I S E 7 . 2— Consider the Fourier transform G(ω) of a function g(t).
Show that if g(t) is some peaked function with width σ—i.e., g = g(t/σ)—then
the width of G(ω) is σ−1. For definiteness, you may set
g(t) = (

√
2πσ)−1 exp

[
−t2/(2σ2)

]
.

To get the total emissivity from a plasma, we must next inte-
grate over a distribution of impact parameters b and collision rates for
a thermal (Maxwell-Boltzmann) distribution of electron velocities. In a
range of impact parameters (b, b + db), an ion sees a current (number of
electrons per second)

ne × v× 4π
(2πkBT/me)3/2

exp
[
−mev2

2kBT

]
v2dv× 2πb db.

If we then multiply this expression by the spectral density (7.8) and
the ion density nI and integrate over all relevant velocities and impact
parameters, we obtain the emissivity per unit volume,

ρϵffν =
8
√
2π2

3
nIne

Z2e6

m2
e c3

(
me

kBT

)3/2

×
∫ vmax

vmin

exp
(
−mev2

2kBT

)
v dv

∫ bmax

bmin

db
b

exp
(
−4πνb

v

)
.

For the limits of the integrals, note that we assumed non-relativistic
electrons, so vmax ≪ c. For a thermal distribution, as long as kBT ≪
mec2 ≈ 5GK, the exponential term is very small and we can safely take
vmax → ∞. At a frequency ν, there must be enough energy to emit
at least one photon, so mv2min/2 = hν. At large impact parameters, In fact, the energy must be large enough

to emit several photons if we are to be in
the classical regime

the potential is screened, so the bmax < λD. For the minimum impact
parameter, we assumed a small-angle (p⊥/p0 ≪ 1) collision, so that
mev2/2 ≫ Ze2/b. As v increases, bmin decreases; but in order to be in the
classical regime, we also require that mevb > ℏ (uncertainty principle)
for mev2/2 > 4Z2e4me/ℏ2 = 8Z2 Ry, where 1 Ry = 13.6 eV. Since
mev2/2 ≃ kBT, for kBT > Z2 Ry our cutoff for b is set by the uncertainty
principle.



60 radiation in astrophysics

We can therefore define two parameters that describe the integra-
tion: u = hν/kBT and η = kBT/Z2 Ry. We then change the variables of
integration to x = mev2/2kBT and y = 4πνb/v so that

ρϵffν ≈ 8
√
2π2

3
nIne

Z2e6

m2
e c3

(
me

kBT

)1/2
[∫ ∞

u
e−x dx

∫ ∞

ymin(x;u,η)

e−y

y
dy

]
︸ ︷︷ ︸

≡I

.

For u ≪ 1 and η > 1 (kBT > Z2 Ry), the minimum impact parameter is set
by the uncertainty principle, so that

ymin =
4πνbmin

v
=

4πνℏ
mev2

=
u
x
.

For u ≪ 1 < x, the integral over y is∫ ∞

u/x

e−y

y
dy ≈ ln

(
x
ζu

)
,

where ζ ≃ 1.78. The integral over x is thenThe exponential function E1(z) is defined
by

E1(z) =
∫ ∞

z
e−x/x dx;

for z ≪ 1, E1(z) ≈ −γ − ln(z) where
γ = 0.5772 . . . is Euler’s constant. For
convenience we define ζ = eγ.

∫ ∞

u
e−x [ln x− ln(ζu)] dx;

doing the first integral by parts and setting e−u ≈ 1 gives

I ≈ ln
(

1
ζ2

kBT
hν

)
.

To within a factor of order unity, this is the expression in the “small-
angle, U.P. region” of Novikov and Thorne1.1 I. D. Novikov and K. S. Thorne. As-

trophysics of black holes. In C. Dewitt
and B. S. Dewitt, editors, Black Holes (Les
Astres Occlus), pages 343–450, 1973

For η < 1 (kBT < Z2 Ry), if u = hν/kBT ≪ 1, then large-angle
scatterings are unimportant, and ymin = (2u/η1/2)x−3/2. Since x ∼ 1
where the integrands are large, we have again that ymin ≪ 1, so the
integral becomes

I ≈
∫ ∞

u
e−x
[
3
2
ln x+ ln

(
η1/2

2ζu

)]
dx ≈ ln

[
1

2ζ5/2

(
kBT
Z2 Ry

)1/2(kBT
hν

)]
.

To within a factor of order unity, this is the expression in the “small-
angle, classical region” of Novikov and Thorne [1973].

For u ≳ 1, the contribution to the integral I comes from where x ≈ u,
so that I = const.× e−hν/kBT. We therefore introduce the velocity-averaged
Gaunt factor via

I =
4

π
√
3
exp

(
− hν

kBT

)
ḡffν .

The velocity-averaged Gaunt factor ḡffν contains the details about the
integration and is a slowly (logarithmically) varying function of ν. TheThe energy spectral density (7.8) is

∝ b−2, but the number of electrons with
a given impact parameter is∝ b db, so
that the integration over all scatters has
a characteristic

∫
db/b ≈ ln(bmax/bmin).

This “Coulomb logarithm” typically
appears when calculating collision rates in
a plasma.

free-free emissivity can then be expressed as

ρϵν =
32π2

3

(
2
3π

)1/2 Z2e6

m2
e c3

nIne

(
me

kBT

)1/2

exp
(
− hν

kBT

)
ḡffν . (7.9)
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The factor of T−1/2 is because there is a factor of v−1 that appears in the
integration (the collision time is∼ b/v). Note that the emissivity, as a
function of frequency, is roughly constant (aside from the slow variation
in ḡffν ) up to ν ≈ kBT/h and then decreases exponentially.

E X E R C I S E 7 . 3— In an Hii region, mean temperatures are T ≈ 8 000K;
electron densities vary considerably from region to region, but the mean is
ne ≈ 1.4 cm−3 [Spitzer, 1978].

1. What is the condition for the gas to act as a plasma? Is this condition
satisfied? What is the Debye screening length?

2. Suppose we have an electron with the mean energy of the plasma on a
head-on collision course with an ion. What is the closest approach of two
particles? How does it compare with the minimum distance set by the
uncertainty principle?

3. Look up an appropriate expression for the Gaunt factor for emission in the
GHz and in the optical.

4. Derive an expression for the opacity κff
ν .





8
Relativity

8.1 Overview

The equation of motion of a particle, as described by Newtonian mechan-
ics, has several interesting properties.

1. It is invariant if we pick a different origin for our coordinates: t′ =

t+ t0, xxx′ = xxx+ xxx0. There is no privileged location in space or time.

2. It is invariant we rotate our spatial coordinates. For example, a rota-
tion R about the z-axis by an angle θ transforms a vector uuu into uuu′:

uuu′ = Ruuu =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 ux

uy

uz

 . (8.1)

You can verify that this rotation leaves the dot product uuu·vvv unchanged;
that is, uuu′ · vvv′ = (Ruuu) · (Rvvv) = uuu · vvv. As a result, the norm of a vector
|uuu| =

√
uuu · uuu—its length—is unchanged by rotations.

3. It is invariant if we change to a frame moving with constant velocity
VVV: that is, This is called a Galilean transformation

xxx′ = xxx+ VVVt. (8.2)

Implicit in the third transformation is that intervals of time Δt are uni-
versal, i.e., frame-independent.

Maxwell’s equations are invariant under the first two transformations,
but not the third: the equations have traveling wave solutions with a
constant propagation velocity c, so under a Galilean transformation the
equations are altered. There are two possible resolutions.

1. The equations of mechanics are invariant under transformation 3. In
this case, Maxwell’s equations hold only in one, privileged, coordinate
system, and it is possible experimentally to determine one’s veloc-
ity with respect to this privileged frame. This has been conclusively
demonstrated to not be so.
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2. The equations of motion are not invariant under transformation 3,
and must be reformulated to preserve the constancy of c. Einstein
showed that transformation 3 implicitly assumes that different ob-
servers can agree on whether two events are simultaneous, and that
this is in general not possible.

The failure of simultaneity means that any coordinate transformation
involves mixing temporal and spatial coordinates: instead of specifying
events by spatial vectors and a universal time, we must instead specify
the coordinates of an event with a four-vector

xμ =


t
x
y
z


Here the superscript μ takes on values [0, . . . , 3] with x0 = t.In this discussion, we choose our units so

that c = 1. What is the “length” of xμ? We certainly want the spatial part to look
like a Euclidian norm (

√
xxx · xxx) so that it will be invariant under spatial

rotations. We also need to ensure that a measurement of the speed of
light, |dxxx/dt| = 1, holds in all inertial frames. The four-vector between
two events in spacetime is Δxμ = (Δt, Δxxx). If the quantity−(Δt)2+(Δxxx)2

between two events is the same in all inertial frames, then the speed of
light will be the same in all frames, since along the path of a photon
−(Δt)2 + (Δxxx)2 = 0.

Suppose an observer in an inertial reference frame carries a clock,
which is stationary in her frame. The interval between two successive
ticks of the clock is just ds2 = −dt2. We therefore define the proper time
dτ2 = −ds2 as the time measured by a clock carried by an observer at
rest in a given inertial frame. Requiring that ds2 = −dt2 + dxxx2 be the
same in all inertial reference frames requires that different observers will
in general not agree on the time elapsed or the spatial separation of two
events, as illustrated by the following example.

Suppose we have a clock at rest in frame O. The time between succes-
sive ticks is Δt = Δτ. In frame O′, the clock has velocity vvv′ = dxxx′/dt′. In
O′, the proper time is

Δτ′2 = Δt′2 − |Δxxx′|2 = Δt′2
(
1− |vvv′|2

)
= Δτ2 = Δt2

In frame O′, the time between the two events is Δt′ = Δt/
√
1− v2 > Δt:

an observer in O′ finds the clock running slower than one in O.

8.2 The Lorentz transformation

The norm, or length, of a four-vector is

s2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 (8.3)
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Although this norm is not positive-definite, it does satisfy the parallelo-
gram identity,

∥aμ + bμ∥2 + ∥aμ − bμ∥2 = 2 ∥aμ∥2 + 2 ∥bμ∥2 ;

which allows us to define a bilinear, symmetric inner product between two
four-vectors aμ and bν as

⟨aμ, bμ⟩ =
1
4

[
∥aμ + bμ∥2 − ∥aμ − bμ∥2

]
= ημνa

μbν (8.4)

where η00 = −1, η0i = ηi0 = 0, i = 1, 2, 3, and ηij = δij, ∀i, j = 1, 2, 3. Here We use latin subscripts to mean only the
spatial components, and greek indices
to refer to all four components. Also, we
use the convention that a repeated index,
one upstairs and one downstairs, is to be
summed over: for example,

ηαβx
β ≡ ηα0x

0 + ηα1x
1 + ηα2x

2 + ηα3x
3.

the object ημν is known as the metric tensor. We may therefore express

In Euclidian geometry, ηij = diag[1, 1, 1]
and the inner product is just the familiar
dot product.

the norm of a vector as s2 = ημνx
μxν.

Our task, then, is to find a replacement for the Galilean transforma-
tion (8.2) between inertial frames that leaves s2 invariant; such a trans-
formation will preserve the constancy of the speed of light. A general
coordinate transformation is

x′α = Lα
βx

β + aα, (8.5)

where Lα
β is a 4 × 4 matrix and aα is a constant four-vector. We can set

aα = 0, since it just sets the origin. To keep ds2 invariant, we require that

ds′2 = ηαβ
(
Lα

γdx
γ) (Lβ

δdx
δ
)
=
(

ηαβL
α

γL
β

δ

)
dxγdxδ = ds2,

so that
ηαβL

α
γL

β
δ = ηγδ. (8.6)

What transformations satisfy this condition? Spatial rotations, in which

Li
0 = L0

i = 0, L0
0 = 1, Li

j = Ri
j,

where Ri
j is a rotation matrix1 clearly leave ds2 invariant. A more in- 1 cf. Eq. (8.1)

teresting case is transforming from a frame O in which a particle is at
rest, dxxx = 0, to a frame O′ in which the particle moves with velocity
vvv = dxxx′/dt′. This implies that

dt′ = L0
0dt+ L0

idx
i = L0

0dt and

dx′i = Li
0dt+ Li

jdx
j = Li

0dt.

Dividing the second expression by the first implies that

v′i =
dx′i

dt′
=

Li
0

L0
0
. (8.7)

Then applying Eq. (8.6) for η00 gives

ηαβL
α
0L

β
0 =

3∑
i=1

(
Li

0
)2 − (L0

0
)2

= (|v|2 − 1)
(
L0

0
)2

= η00 = −1. (8.8)
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Hence L0
0 ≡ γ = 1/

√
1− |v|2, and Li

0 = γvi.
We also require that if we boost back from frame O′ frame O—that is,

we apply a transformation with vvv → −vvv—then we recover our original
coordinates (Exercise 8.1). If we align our frames so that their relative
motion is along the x-axis, then we can determine that L0

1 = L1
0 = γv

and L1
1 = L0

0 = γ. We therefore have the Lorentz transformation to a
frame moving with velocity vvv = vêeex,

Lα
β(vvv = vêeex) =


γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1

 (8.9)

E X E R C I S E 8 . 1— Show that the if we replace vvv by−vvv in Eq. (8.9), we obtain
the inverse Lorentz transformation; that is, show that Lα

β(−vvv)Lβ
γ(vvv) = δα

γ.

Finally, we can then rotate frame O′ relative to frame O, which gives us
the general form for a boost to an arbitrary vvv:

Lα
β(vvv) =


γ γvx γvy γvz

γvx 1+ v2x(γ − 1)/|v|2 vxvy(γ − 1)/|v|2 vxvz(γ − 1)/|v|2

γvy vyvx(γ − 1)/|v|2 1+ v2y(γ − 1)/|v|2 vyvz(γ − 1)/|v|2

γvz vzvx(γ − 1)/|v|2 vzvy(γ − 1)/|v|2 1+ v2z (γ − 1)/|v|2

 (8.10)

Again, this is the boost from a frame in which a particle is at rest to a
frame in which the particle has velocity vvv.

E X E R C I S E 8 . 2— Einstein rides on a rocket traveling at high speed, while
Lorentz measures the length of the rocket as it flies by. Afterwards, they meet to
discuss the experiment. Lorentz explains how his experimental apparatus
marked off the positions of the front and rear of the rocket at the same given
time. Einstein replies that he was watching Lorentz make his measurements of
the positions of the front and rear of the rocket. How would Einstein describe
Lorentz’s measurement? Show explicitly that if the rest frame length of the
rocket is L, then Lorentz will measure the length as L/γ.

Box 8.1 Contravariant and covariant

You may have wondered why we make a distinction between
indices that are superscripted and indices that are subscripted.
Let’s begin by expanding a four-vector as

x⃗ =
3∑

α=0

xα⃗eα.

Here the xα are termed the contravariant components of the vec-
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Box 8.1 continued

tor when expanded in terms of the basis e⃗α. The basis vectors
satisfy the relation

e⃗α · e⃗β = ηαβ.

The covariant components of x⃗, denoted with a subscripted index,
are defined by

xα = x⃗ · e⃗α = ηαβx
β.

Notice that x0 = −x0 and xi = xi for i = 1, 2, 3. The sign change
for the time-like component is something not found in a Euclid-
ian geometry.

To see why the distinction matters, suppose we evaluate a
gradient

∇ =

(
∂

∂x0
,
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
(8.11)

in a frame R. We then wish to express∇′ in a frame S, denoted
by ′, in which the origin of frame R moves with velocity v. For
concreteness, let v be along the x-axis. A four-vector in frame S
has components

x′α = (γx0 + γvx1, γvx0 + γx1, x2, x3). (8.12)

Using the chain rule for derivatives, we can write

∇′
α =

∂

∂xβ
∂xβ

∂x′α
.

To evaluate this, we need the inverse transformation, xα = (γx′0 −
γvx′1,−γvx′0 + γx′1, x′2, x′3), so that ∂x0/∂x′0 = γ, ∂x0/∂x′1 = −γv,
and so forth. We find that

∇′ =

(
γ
∂

∂x0
− γv

∂

∂x1
,−γv

∂

∂x0
+ γ

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
. (8.13)

Comparing this with the expression in the unprimed frame (8.11)
shows that it does not transform in the same manner as a four-
vector (8.12). If however, we “raise” the index by multiplying by
ηαβ = diag[−1, 1, 1, 1], we find that

∇′α = ηαβ∇′
β

=

[
γ
(
− ∂

∂x0

)
+ γv

∂

∂x1
, γv
(
− ∂

∂x0

)
+ γ

∂

∂x1
,

∂

∂x2
,

∂

∂x3

]
,

which is equivalent to Lμ
ν∇ν = Lμ

νηνδ∇δ.
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Box 8.1 continued

So if the gradient is not a vector, than what is it? To
understand that, suppose we have a curve C(ζ). Here ζ is a mea-
sure of distance along the curve. For example, if C is a worldline
of a massive particle, then ζ could be the proper time. Suppose we
wish to know how a scalar function φ changes along the curve. We
would calculate the directional derivative

dφ
dζ

=
∂φ
∂xα

dxα

dζ

∣∣∣∣
xα

C

,

where xα
C(ζ) are the coordinates along the curve. Notice that

x⃗C =
dxα

C
dζ

e⃗α

is the tangent vector to the curve C and ∂φ/∂xα = ∇α. Hence,

dφ
dζ

= ∇⃗ · x⃗C.

The gradient therefore combines with a vector to generate a scalar.
Such an object is called a one-form in differential geometry.

C

xC⃗

∇

8.3 Kinematics

Now that we have our rules for how coordinates transform, let’s develop
the four-vector kinematical quantities. The first difficulty we encounter
is that dxxx/dt is not a four-vector.2 Since dxα is a four-vector, we need2 that is,

dxxx′

dt′
̸= Lα

β
dxxx
dt

to divide it by a scalar—something that is the same in all frames. The
obvious candidate is dτ, which gives use the four-velocity

uα ≡ dxα

dτ
=

[
γ

γuuu

]
. (8.14)

Here uuu = dxxx/dt is the ordinary velocity in three-space. In the rest frame
of the particle, uα = (1,000).
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E X E R C I S E 8 . 3— Suppose we trace out the spacetime path of an object
(known as a worldline) by recording its coordinate four-vector as it moves. Show
that the four-velocity uα is the unit tangent four-vector to the object’s worldline.

Suppose we have a particle that is accelerating. At a given instant of
time, we can boost to a momentarily comoving rest frame (MCRF). Over
an interval Δτ, the particles four-velocity will change by Δuα = (0, Δuuu),
which is itself a four-vector. If we then multiply by the mass m of the
object, measured in the rest frame of the particle,3 and divide by dτ, then 3 This long-winded definition of rest mass

is needed so that m is a scalar (same in all
frames).

in the MCRF this four-vector
dpα

dτ
≡ m

duα

dτ
(8.15)

has components [
0

m duuu/dt

]
=

[
0
FFF

]
, (8.16)

where FFF is the applied (Newtonian) force.

E X E R C I S E 8 . 4— Show that the four-acceleration is orthogonal to the
four-velocity: that is, show that ηαβu

αduβ/dτ = 0.

If we boost equation (8.15) from the MCRF to one in which the parti-
cle has velocity uuu, we obtain the equation

γ
dpα

dt
=

[
γuuu · FFF

FFF+ uuu(uuu · FFF)(γ − 1)/u2

]
.

Notice the component dp0/dt = uuu · FFF: this is just the rate that work is
done on the object; it equals the rate of change of the object’s energy. It
makes sense to identify p0 = mu0 = γm as the energy of the particle. The
momentum four-vector is then

pα =

[
γm

γmuuu

]
=

[
E
ppp

]
At low velocities, E = γm ≈ m + mu2/2. The length of the four-
momentum is

ηαβp
αpβ = −E2 + p2 = γ2(−m2 +m2u2) = −m2.

The rest mass m is thus indeed an invariant, and in the rest frame of the
particle, E = m. Photons travel at velocity c, and have momentum p = E;
hence for a photon, ηαβp

αpβ = 0.

E X E R C I S E 8 . 5— Suppose we have a particle with 4-momentum pα, and an
observer moving with 4-velocity uα. Show that the energy of the particle, as
measured by the observer, is E = −ηαβp

αuβ.
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In order for the four-momentum to be useful, all observers must
agree on conservation of energy and momentum. Suppose we observe
a process among a group of particles i = 1, . . . ,N. The net change in
four-momentum, as viewed in a different frame, is

N∑
i=1

(Δp′α)i = Lα
β

N∑
i=1

(
Δpβ)

i .

If momentum and energy are conserved in one inertial frame (i.e.,∑
Δpβ = (0,000)), they are conserved in all inertial frames.

E X E R C I S E 8 . 6— We argued that for low-frequency radiation, electron
scattering would be coherent: the scattered radiation would be at essentially the
same frequency as the incident. Show this explicitly: consider a photon of
wavelength λ incident on an electron at rest. The photon is scattered to an angle θ
with the original momentum, and the wavelength after the scattering is λ′.
Compute λ′ − λ as a function of electron mass me and scattering angle θ. Hint:
the algebra is easier if you set ℏ = c = 1; equate the initial and final
four-momenta, pμ

γ,i + pμ
e,i = pμ

γ,f + pμ
e,f; and then solve for pμ

e,f and compute the
absolute value of both sides of the equations using |pμ

e,f|
2 = −m2

e .

8.4 Aberration and Doppler Shift

Suppose we have a frame S in which a particle moves with velocity
VVV′ = dxxx′/dt′. What is its velocity VVV in a frame R, in which an observer
sees the origin of S moving with velocity uuu? To answer, we note that the
displacement (dt′, dxxx′) is a four-vector, so according to the transforma-
tion (8.10) in frame R the differential coordinate four-vector isIn this section I use a prime (′) to denote

the source frame S. [
dt
dxxx

]
=

[
γ(dt′ + dxxx′ · uuu)

γuuudt′ + dxxx′ + (dxxx′ · uuu) γ−1
|u|2 uuu

]
.

Hence in frame R,

VVV =
dxxx
dt

=
γuuudt′ + dxxx′ + (dxxx′ · uuu)(γ − 1)/|u|2 uuu

γ(dt′ + dxxx′ · uuu)

=
γuuu+ VVV′ + (γ − 1)(VVV′ · uuu)/|u|2uuu

γ(1+ VVV′ · uuu)
. (8.17)

A useful way of writing this is to have VVV = (V∥,VVV⊥), in which V∥ =

VVV · uuu/|u| and VVV⊥ = VVV− V∥uuu/|u|. Making this substitution gives

V∥ =
u+ V′

∥

1+ uV′
∥

(8.18)

VVV⊥ =
VVV′
⊥

γ(1+ uV′
∥)

(8.19)
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Now suppose in S our source is emitting photons isotropically: V′ = 1.
Let θ′ be the angle between a photon and uuu in frame S. The a receiver in
frame R will observe the angle to be

cos θ =
u+ cos θ′

1+ u cos θ′
(8.20)

tan θ =
|VVV⊥|
V∥

=
sin θ′

γ(u+ cos θ′)
. (8.21)

Notice what happens if the source is relativistic with u ≈ 1, γ ≫ 1: a
photon emitted at right angles to uuu, θ′ = π/2 in the source frame will be
observed in frame R to be at an angle∼ γ−1. That is, the radiation emit-
ted by a source traveling at relativistic velocity is beamed into a narrow
cone of opening half-angle γ−1 ≪ 1 about the direction of motion.

In addition to aberration, the frequency of the photons received in
frame R is altered by two effects. The first is the change in elapsed time
between the emission of successive wave crests: Δt = γΔt′ = γ/ν′. In ad-
dition, there is the delay caused by the difference in path length between
one wave crest and the next. In frame R, this additional path length is
−Δt u cos θ, where we orient our frame so that a positive velocity is to-
wards the observer4. As a result the received frequency is 4 This matches the definition used in

Rybicki and Lightman [1979]; it is typical
in astronomy, however, to define a
positive velocity to be away from the
observer.

ν = (Δt)−1
rec. =

1
Δt(1− u cos θ)

=
ν′

γ(1− u cos θ)
. (8.22)

This is the relativistic Doppler shift. If reduces to the classical expression
in the limit u ≪ 1. Note that in form it isn’t symmetrical, as the right-
hand side has expressions in both frame S (ν′) and frame R (cos θ). This is
easily remedied by the aberration formulae, Eq. (8.20) and (8.21); see the
exercises.

E X E R C I S E 8 . 7— Recast the formula for the received frequency ν,
Eq. (8.22), in terms of ν′ and θ′. Find an expression for the inverse doppler shift,
namely, find an expression for ν′ in terms of ν, θ, and u.

E X E R C I S E 8 . 8— A source emits photons isotropically in its rest frame. For
rays emitted in the source frame at angles 30◦, 60◦, 90◦, . . . 330◦, indicate how
the rays would be observed in a frame in which the source is traveling in the
x-direction with velocity u = 0.3c.





9
Synchrotron Radiation

Magnetic fields are ubiquitous in the universe. At low energies, the he-
lical motion of a particle in a magnetic field produces emission at the
cyclotron frequency ωB = qB/mc. When the particle is relativistic, how-
ever, the beaming of the radiation produces emission over a broad range
of frequencies. The acceleration of particles to relativistic energies occurs
in many environments, including supernova remnants, and the emission
from such particles in a magnetic field is call synchrotron emission.

9.1 Overview

Let’s start with an electron with velocity in the plane perpendicular to
the direction of the (uniform) magnetic field. In the absence of an electric
field, the (relativistic) equation of motion is (cf. § 6.2)

γ
dmvvv
dt

= eβ × BBB,

where β = vvv/c. Because the acceleration is at right-angles to the velocity,
β and therefore γ are constant. The electron gyrates in uniform circular
motion with frequency

ωB =
eB

γmc
,

which reduces to the electron cyclotron frequency for γ = 1. Using
Eq. (5.9), we compute the radiation electric field generated by the gyrat-
ing electron as shown in Figure 9.1. The magnetic field points along ẑzz;
the center of gyration will be at the origin; and the observer lies in the x̂xx
direction at great distance.

As the particle energy γmc2 increases, the relativistic aberration shapes
the electric field into a sharp pulse observed when the electron is trav-
eling along our line of sight—along x̂xx, in this case. On either side of the
pulse, the electric field vanishes when r̂rr − β ∥ β̇. Measuring the angle
from the line of sight, we see that since β̇ is at right angles to β, the angle
at which the field vanishes is arccos(β) → 1/γ at large γ.
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Figure 9.1: Radiation electric field for
a particle moving in the xy plane. The
magnetic field points along ẑzz, the center
of gyration is at the origin, and the
observer lies at great distance along the x̂xx
direction.

Such a sharp pulse in the electric field implies that the received power
will be distributed over a broad range of frequencies. Rather than com-
pute the spectrum directly from the Fourier transform of the electric
field, we’ll give a more heuristic description, following Rybicki and Light-
man [1979]. We approximate the angle over which the pulse lasts as
Δθ ≈ 2/γ. In general, the electron has a component of momentum p∥
along BBB in addition to the component ppp⊥ in the plane perpendicular
to the field. Define the pitch angle α as the angle between ppp and BBB; then
|ppp⊥| = p sin α. We first need to determine the time needed for the elec-
tron to turn through an angle Δθ. To do this, we construct a unit tangent
vector τ̂ along the trajectory; then the time for τ̂ to turn through an angle
Δθ is Δt = Δθ/|dτ̂/dt|. The unit tangent vector is just

τ̂ =
vvv
v
=
(v∥

v
,
vvv⊥
v

)
;

since v∥ is constant, dτ̂/dt = v−1dvvv⊥/dt = ωB sin α and

Δt =
2

γωB sin α
.

In the time Δt, the electron moves towards us a distance Δs ≈ vΔt; hence
the arrival time between the start of the pulse and its end is

ΔtA ≈ Δt
(
1− v

c

)
≈ 1

γ3ωB sin α
.

We therefore expect the power to be distributed over a broad range of
frequencies up to a critical frequency ωc ≈ Δt−1

A = γ3ωB sin α. Since we’ll
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be interested in averaging over pitch angles α and we aren’t computing
the spectral shape in detail, we’ll define1 ωc = γ3ωB = γ2ωL. 1 Note that Rybicki and Lightman [1979]

normalize the critical frequency as

ωc ≡
3
2

γ3ωB sin α.E X E R C I S E 9 . 1— A “typical” galactic magnetic field strength is B = 10 μG.

1. What is the electron cyclotron frequency for this B?

2. For radio observations in the GHz range, what is a typical value of γ for the
electrons? Would you expect these electrons to have a thermal or non-thermal
distribution?

3. In actuality, our emitted radiation would be a discrete series of frequencies
rather than a continuous distribution. How good is our approximation of a
smooth frequency distribution? Hint: What is the spacing between
harmonics?

Although not immediately obvious from Equation (5.9), for large γ
the electric field depends on the angle θ between r̂rr and β through the
combination γθ = γωBt, as illustrated in Fig. 9.2. If we set t = 0 to be
when the electric field is at maximum, then the doppler shift over the
pulse implies that t = γ2tA, so that the received electric field depends on
the time as

γωBt ≈ γ3ωBtA ≈ ωctA.

Hence the electric field is EEE ∝ f(ωct). Here f is some as-yet-unspecified
function of ωct.

3 2 1 0 1 2 3
0.2

0.0
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)

= .
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= .
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Figure 9.2: The electric field, scaled to its
maximum value, as a function of γωBt.

Since the electric field is a function of ωct, its Fourier transform is

ẼEE(ω) = F
(

ω
ωc

)
.

That is, the observed electric field, and hence the observed power, is
distributed over frequencies as a function of ω/ωc. We can write the
spectral distribution of the power as

Pω(γ) = Cφ
(

ω
ωc

)
.

Here C is a as-yet-undetermined constant and
∫∞
0 φ dω = 1.

To fix C, we need to normalize our spectral distribution by the total
power emitted. Here we need to make a brief digression to modify Lar-
mor’s formula, which contains the Newtonian acceleration. First, as
was done in the derivation leading up to Eq. 8.16, we define the four-
acceleration aα = duα/dτ. This is a four-vector, since dτ is a Lorentz
scalar and duα is the differential of the four-velocity. Next we boost to a
momentarily comoving rest frame (MCRF) of our particle. In this frame

duα =

[
0
duuu

]
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and dτ = dt; hence the four-acceleration is just

aα =

[
0
aaa

]
,

where aaa is the Newtonian acceleration. As a result, the total power emit-
ted is

P =
2
3
e2

c3
|aaa · aaa| = 2

3
e2

c3
(
ημνa

μaν)
and is therefore the same in all frames.

Now to evaluate the acceleration aaa. Here we hit a small obstacle: in the
MCRF, the force due to the magnetic field vanishes. The acceleration is
instead due to an electric field that appears in this frame. Denoting the
MCRF by a “′”, the fields in the MCRF are

EEE′ = γ (EEE+ β × BBB)− γ2

γ + 1
β (β · EEE) (9.1)

BBB′ = γ (BBB− β × EEE)− γ2

γ + 1
β (β · BBB) ; (9.2)

since EEE = 000, the particle’s acceleration in the MCRF is

aaa′ = γ
e
m

β × BBB = γ
e
m

βB sin α.

For large γ, β ≈ 1, and the total power emitted is

P(γ) =
2
3

γ2
e4B2 sin2 α

m2c3
.

If we assume that the pitch angle α is randomly distributed, then averag-
ing over angles gives

⟨P(γ)⟩ =
2
3

γ2
e4B2

m2c3

[
1
4π

∫
sin2 α dΩ

]
=

(
2
3

)2 e4B2

m2c3
=

4
3

[
8π
3

e4

m2c4

]
c
[
B2

8π

]
γ2

=
4
3

σTcUBγ2. (9.3)

Here σT is the Thomson scattering cross section and UB is the energy
density of the magnetic field.

We can equate equation (9.3) with the integral over all frequencies of
the Fourier transform,

P(γ) =
∫ ∞

0
Cφ
(

ω
ωc

)
dω = Cωc = Cγ2ωL. (9.4)

Comparing Equations (9.3) and (9.4) fixes C and we have

Pω(γ) =
4
3

σTcUB

ωL
φ
(

ω
ωc

)
. (9.5)

This is the spectral distribution for electrons at a single energy γmc2.
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We can determine the form of the spectrum for a population of
electrons even without knowing the precise functional form of φ(ω/ωc).
The electrons are non-thermal (cf. Exercise 9.1), and their distribution
with energy can often be described as a power-law,

n(γ) dγ = n0γ−p dγ, (9.6)

over a large ranges of energies γmc2. Here n0 is a normalizing constant.
Typically p ≈ 2.5 and we may take γmax → ∞. To get the total power
output at frequency ω, we multiply Pω by n(γ) and integrate over all γ:

Pω =
4
3

σTcUB

ωL
n0

∫ ∞

γmin

γ−pφ
(

ω
ωc

)
dγ.

Changing variables to ξ = ω/ωc = ω/(γ2ωL)

Pω =
2
3

σTcUB

ωL
n0

(
ω
ωL

)−(p−1)/2 ∫ ξmax(ω)

0
ξ(p−3)/2φ (ξ) dξ

≈ 2
3

σTcUB

ωL
n0

(
ω
ωL

)−(p−1)/2

. (9.7)

The bounds of the integral depend on ω; but, if φ → 0 for both large
and small ξ, we can approximate ξmax → ∞. As a crude approximation,
we can take φ(ξ) = δ(ξ − 1): that is, we approximate the spectrum
for electrons with energy γmc2 as a sharp spike at ω = ωc, so that the
integral is unity.

The important point is that for a power-law distribution of electrons
with index p—n(γ) ∝ γ−p—the synchrotron spectrum is a power-law
with index (p− 1)/2. For p ≈ 2.5, typical for many sources, Pω ∝ ω−0.75.
This spectrum is steeper than thermal bremsstrahlung, for example.

An example of a synchrotron-emitting source is the active
galaxy Cygnus A. This system, shown in Fig. 9.3 is at a distance 230Mpc
(z = 0.057) and has two radio lobes astride the central galaxy (the dot
between the lobes). The emission follows a power-law down to≈ 10MHz.
Table 9.1 lists some measurements of the flux density Sν.

Table 9.1: Flux density measurements for
Cygnus A.

ν [MHz] Sν [mJy] error [mJy]
74 1.66 × 107 4.95 × 106

178 8.10 × 106 2.40 × 106

178 8.70 × 106 3.90 × 106

1400 7.40 × 105 2.25 × 105

1400 8.58 × 105 2.55 × 105



78 radiation in astrophysics

Figure 9.3: Image of Cygnus A, made
from continuum observations at 5 GHz
with 0.5′′ resolution. Image courtesy of
NRAO/AUI.
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E X E R C I S E 9 . 2— Let’s explore the energetics of the lobes in Cygnus A.

1. Assume the electrons are at a uniform density with a power-law distribution
of energies, n(γ) = n0γ−p, for γ > γmin. The minimum energy γmin is unknown,
but show that it should be γmin < (10MHz/ωL)

1/2. Here ωL = eB/mc is the
Larmor frequency. Then show the energy density of the electrons is

Ue =
γ2−p
min

p− 2
n0mc2.

2. Show that synchrotron spectrum (Eq. [9.7]) can be expressed as

Pω = Kn0B(p+1)/2ω−(p−1)/2

where K is a constant.

3. If we make a measurement of the flux density Sω at a given frequency ω⋆,
show that

n0 =

[
4πD2Sω

VK
ω(p−1)/2

⋆

]
B−(p+1)/2.

Here D is the distance to the source and V is the volume of the lobes, and the
term in [ ] is a measurable constant. Use this expression for n0 to get an
expression for Ue in terms of B. How does Ue change with increasing B? Argue
that for a given Pω, there is a magnetic field for which Ue + UB is a minimum.
Find the ratio Ue/UB at this minimum. Estimate p from Table 9.1, and show
that Ue ≈ UB if we assume the energy is at a minimum.

4. Solve for B. Estimate the volume of each lobe as a sphere of radius 30 kpc and
assume Ue = UB. Your answer should be a reasonable number, i.e., μG is a
good unit of magnetic field strength.

5. For this magnetic field strength, find the total energy of the two lobes.
Compare this to the energy radiated by stars in a typical galaxy over a year.

6. For this magnetic field strength, estimate the total synchrotron luminosity.
How long would it take to radiate away the energy stored in the two lobes?

7. How does the electron lifetime scale with γ? That is, for each energy, estimate
how long it would take for those electrons to radiate away their energy. If
there were no input of energy into the system, qualitatively argue how the
spectrum would evolve in time.

9.2 Synchrotron Absorption

The emission from a cloud of synchrotron-emitting particles is, in the
absence of backlighting,

Iν(τν) = Sν (1− τν) .

Here Sν is the source function, and since we have a non-thermal distri-
bution of particles, Sν = εν/(4πκν) ̸= Bν. The most direct way to realize
this is that Bν = Bν(T), and for a power-law distribution of electrons,
temperature is not defined.
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To compute the opacity, we use the formalism of Ch. 4. specifically the
Einstein A and B coefficients. Recall that the emissivity is22 cf. Eq. (4.7)

ρϵν

4π
= nn

Anm

4π
hν φ(ν);

and the opacity is33 cf. Eqn. (4.8) and (4.9)

ρκν = (nmBmn − nnBnm)
hν
4π

φ(ν).

The coefficients are related as44 Exercise 4.2

Bnm

Bmn
=

gm
gn

,
Anm

Bnm
=

2hν3

c2
.

In these equations, m denotes the lower energy state and n the upper.
Because we have a continuum of electron energies, we must sum over

all pairs of upper and lower energy states separated by hν. The electrons
are free particles, so one has to integrate over their phase space: if f(E) is
a distribution function, then

N =
1
h3

∫
dV d3p f(E),

so for an isotropic distribution of relativistic electrons (E = pc),

n =
N
V

=
8π
(hc)3

∫
E2 f(E) dE.

Notice this implies that gm = g(Em) = 8πE2
m/(hc)3. In the above relations

we make the replacement nm = n(Em) = g(Em)f(Em). Since we haveFor a power-law distribution of electrons
with f(E) = E−p−2, we combine the factor
of E2 from the density of states and write
n(E) = n0E−p.

a continuum of energies, rather than discrete levels, let’s denote tran-
sitions from higher to lower energies with a ↓, and upward transitions
with an ↑. That is, Anm and Bnm become A↓ and B↓, and Bmn becomes B↑.
Further, we’ll denote the higher energy as simply E, and the lower energy
as E′.

To sum over all transitions, we write the profile function as φ(ν) =

δ(E− E′ − hν). The power emitted per electron at energy E is then

Pν(E) =
∫

A↓hνδ(E− E′ − hν) dE′ = A↓hν. (9.8)

The opacity is

ρκν =

∫ ∫ [
n(E′)

g(E′)
− n(E)

g(E)

]
B↓

4π
δ(E− E′ − hν)hν g(E) dE dE′

=

∫ [
n(E− hν)
g(E− hν)

− n(E)
g(E)

]
B↓

4π
hν g(E) dE

=

∫ [
n(E− hν)
(E− hν)2

− n(E)
E2

]
(A↓hν)

c2

8πhν3 E2 dE.
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Here we’ve used the relations between the A and B coefficients to express
the opacity in terms of A↓. Now we use Equation (9.8) to eliminate A↓hν
and, since we are in the classical limit with hν ≪ E, expand the term in [ ]

to first order in hν to obtain

ρκν =
c2

8πν2

∫
dE E2 d

dE

[
n(E)
E2

]
Pν(E).

Substituting for Pν(E) from Equation (9.5), writing E = γmc2, and chang-
ing variables to ξ = ν/(γ2νL) gives

ρκν ∝
cσTUB

mν3
L

n0

(
ν
νL

)−(p+4)/2

.

The opacity increases at low frequencies, so there is a transition fre-
quency below which the source becomes optically thick: the source func-
tion is

Sν =
ϵν

4πκν
∝ ν2

L

(
ν
νL

)5/2

.

In the optically thick regime, the spectrum does not depend on p, but the
slope is 5/2, rather than 2 as for Rayleigh-Jeans emission.





10
Spectral Lines

10.1 Ionization Balance and Level Populations

Suppose we have a reaction, A + B + . . . → C + D + . . .. For example, we
might consider the ionization of hydrogen,

H → H+ + e. (10.1)

When this reaction comes into equilibrium, we are at a maximum in
entropy, and the condition for equilibrium is that the energy cost, at
constant entropy, to run the reaction in the forward direction is the
same as to run the reaction in reverse. This can be expressed in terms of
chemical potentials as

μA + μB + . . . → μC + μD + . . . (10.2)

Note in this formalism that a reaction 2A → B would be expressed as
2μA = μB.

To use Eq. (10.2), both sides must be on the same energy scale.
To ionize hydrogen is an endothermic process; the left hand side of
Eq. (10.1) is at a lower energy and we therefore subtract the binding
energy Q = 13.6 eV so that the energy zero-point is the same on both
sides:

μ0 − Q = μ+ + μ−, (10.3)

in which the subscripts 0,+, and− denote H, H+, and e, respectively. To
solve this equation to find the abundance of ionized hydrogen, we then
need an expression for the chemical potentials.

In statistical equilibrium, we can describe a system of particles by a
distribution function f(ppp, xxx) d3p d3x, such that the number of particles is

N =

∫
d3p d3x f(ppp, xxx), (10.4)

where the integration is over the phase spaces of momentum and posi-
tion coordinates (ppp, xxx). In an ideal gas, the particles do not interact. In
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such a case, the distribution function f = f(ppp) does not depend on po-
sition. The integration over d3x just gives a factor of the volume, so the
number density is n =

∫
d3p f(ppp).

The distribution function is

f(p) =
g
h3

[
exp

(
ϵ − μ
kBT

)
± 1
]−1

. (10.5)

Here the+ sign is for fermions (half-integral spin) and the− sign is
for bosons (integral spin). The factor g is the degeneracy of states with
energy E. For example, g = 2 for a spin-1/2 particle.

To explore the non-degenerate limit, take1 Λ ≡ exp(μ/kBT) ≪ 1.1 The quantity Λ is called the fugacity.

Further, let’s look at an isotropic system, so that d3p = 4πp2 dp. Then

n(Λ,T) =
4πg
h3

∫
p2 dp

Λ−1 exp (ϵ/kBT)± 1
≈ 4πΛg

h3

∫
exp

(
− ϵ

kBT

)
p2 dp.

This has the form of a Maxwell-Boltzmann gas. For a non-relativistic
system, write p2 dp = m(2mϵ)1/2 dϵ and make the substitution x =

ϵ/(kBT) to obtain

n(μ,T) =
4πΛg
h3

√
2(mkBT)3/2

∫ ∞

0
x1/2e−x dx = Λ

[
g
(
2πmkBT

h2

)3/2
]
.

Solving this equation for μ gives

μ = kBT ln Λ = kBT ln

[
n
g

(
h2

2πmkBT

)3/2
]
. (10.6)

We can now use this expression to find the ionization balance of hydro-
gen, Eq. (10.3).

Inserting Eq. (10.6) into Eq. (10.3) and rearranging terms gives the
Saha equation,

n+n−
n0

=
g+g−
g0

(
m−kBT
2πℏ2

)3/2

exp
(
− Q

kBT

)
. (10.7)

The number density of all hydrogen in the gas is n0 + n+ = nH. Denote
the ionized fraction by x = n+/nH = ni/nH, so that the left-hand side of
equation (10.7) is nHx2/(1 − x). In the hydrogen atom ground state, the
electron spin and proton spin are either aligned or anti-aligned. These
states are very nearly degenerate, so that g0 = 2. Both the proton and
electron have spin 1/2; there are really only two available states, however,
because of the freedom in choosing our coordinate system. As a result,
g+g− = 2 as well.

Inserting these factors into equation (10.7), and using kB = 8.6173 ×
10−5 eV/K, we obtain

x2

1− x
=

2.41× 1021 cm−3

nH

(
T

104 K

)3/2

exp
(
−15.78× 104 K

T

)
. (10.8)
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This equation defines relationship between density and temperature at
which x = 1/2. At fixed density, the transition from neutral to fully
ionized is very rapid.

10.2 Line Widths

We saw in Section 5.3 that there is always an intrinsic width to any ab-
sorption or emission feature in a spectrum. This intrinsic width is very
small, however, and in practice the width of lines are set by random
Doppler shifts from thermal motion of the gas (or small-scale turbulent
eddies) and collisions.

Suppose we model our oscillator as being started and stopped by
impacts; in between impacts it just radiates as eiω0t. To get the spectrum,
we take the Fourier transform,

F(ω, t) =
∫ t

0
dt′ exp[i(ω0 − ω)t′],

where t is some time between impacts. Now if the impacts are distributed
randomly and are uncorrelated, then the distribution of wait times fol-
lows a Poisson distribution,

W(t) dt = e−t/τ dt/τ,

where τ is the average time between collisions. Using this to compute the
energy spectrum, we obtain

E(ω) =
1

2πτ

∫ ∞

0
dt F(ω, t)F∗(ω, t)W(t) =

1
πτ

1
(ω0 − ω)2 + (1/τ)2

;

the line profile is again Lorentzian, with a full-width at half-maximum
(FWHM) 2/τ.

We might be inclined to treat the atoms as hard spheres, but this
gives a large τ, or equivalently a narrow line width. We are therefore
led to consider longer-range interactions for setting the intrinsic line
width. Table 10.1 lists such interactions. The picture is similar to our
considerations of collisions in §7.1. For a given impact parameter, the
interaction perturbs the energy levels; by integrating over a distribution
of impact parameters one gets the intrinsic damping. Of course, we
should really use a quantum mechanical calculation. We can scale our
cross-section to the classical result (eq. [5.23]), however, by writing

σν =

(
πe2

mec

)
fφν, (10.9)

where φν is the line profile (dimension∼ Hz−1) and f is a dimensionless
cross-section called the oscillator strength.
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Table 10.1: Interactions in stellar atmo-
spheres. From Mihalas [1978].

perturbation form source affects

linear Stark C2r−2 e−, p, ions H (Hα, Hβ, …)
quadratic Stark C4r−4 e− non-hydrogenic ions
van der Waals C6r−6 atoms, H most atomic lines

E X E R C I S E 1 0 . 1— H i gas distributed between clouds within our in the
galaxy has [Spitzer, 1978] typical densities n ≈ 0.1 cm−3 and temperatures
T ≈ 6 000K. We wish to model the widths of lines for transitions in atoms in this
cloud. We showed that the line profile is Lorentzian, with a FWHM 2/τ, where τ
is the mean time between collisions. Suppose we model the atoms has hard
spheres. Use your best order-of-magnitude estimates to answer the following
questions.

1. If the atoms can be treated as hard spheres, what is the appropriate radius and
cross-section?

2. Given that, what is a typical mean free path and collision time in the H i gas
considered here?

3. Does the resulting line width seem reasonable? Is the hard sphere model a
good approximation?

4. Now suppose we consider the solar photosphere, where the density is
n ∼ 1016 cm−3. What is a typical line width in this case? For transitions at
optical frequencies, does the hard sphere approximation make sense in this
regime?

10.3 The Curve of Growth

A classical technique in the analysis of stellar spectra is to construct the
curve of growth, which relates the equivalent width of a line Wν to the
opacity in the line. This discussion follows Mihalas2.2 D. Mihalas. Stellar Atmospheres. W. H.

Freeman, 2d edition, 1978 Let’s first get the opacity in the line. Write the cross-section for the
transition i → j as

σν =

(
πe2

mec

)
fijφν,

where the first term is the classical oscillator cross-section, fij is the os-
cillator strength and contains the quantum mechanical details of the
interaction, and φν is the line profile. Now recall that the opacity is given
by κν = niσν/ρ, where ni denotes the number density of available atoms
in state i available to absorb a photon. Furthermore, we need to allow for
stimulated emission from state j to state i. With this added, the opacity is33 I’m writing the line opacity as χν to

distinguish it from the continuum opacity.

ρχν =

(
πe2

mec

)
fijφνni

[
1− gi

gj

nj

ni

]
. (10.10)

If we are in LTE, then the relative population of ni and nj follow a Boltz-
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mann distribution,

1− gi
gj

nj

ni
= 1− exp

(
−hν

kT

)
.

This ensures we have a positive opacity. If our population were inverted,
i. e., more atoms in the upper state j, then the opacity would be negative
and we would have a laser.

Now for the line profile. In addition to damping, there is also Doppler
broadening from thermal (or convective) motion. Let the line profile4 be 4 Here we’ll switch to ν, rather than ω.

Lorentzian,

φ =
Γ/(4π)

(ν − ν0)2 + (Γ/[4π])2
.

In a Maxwellian distribution, the probability of having a line-of-sight
velocity in (u, u+ du) is

P(u) du =
1√
πu0

exp
(
−u2

u2
0

)
,

where u0 = (2kT/m)1/2 = 12.85 km s−1
(
T/104 K

)
(for H) is the mean

thermal velocity. The atom absorbs at a it shifted frequency ν(1− u/c), so
the mean cross section is

σν =

∫ ∞

−∞
σ
[
ν
(
1− u

c

)]
P(u) du. (10.11)

After some algebraic manipulations, we have the cross-section

σν =

(√
πe2

mec

)
fij

1
ΔνD

{
a
π

∫ ∞

−∞

exp(−y2) dy
(v− y)2 + a2

}
≡ 1

ΔνD
H(a, v) (10.12)

where ΔνD ≡ νu0/c is the doppler width, a = Γ/(4πΔνD) is the ratio
of the damping width Γ to the doppler width, and v = Δν/ΔνD is the
difference in frequency from the line center in units of the doppler width.
The function H(a, v) is called the Voigt function.

Let’s combine the line opacity with the continuum opacity and solve
the equation of transfer. For simplicity, we are going to assume pure
absorption in both the continuum and the line. Under these conditions,
the source function is5 Sν = Bν, the Planck function. For a plane-parallel 5 See the notes on the Eddington atmo-

sphere.atmosphere, the equation of transfer is then

μ
dIν

dτν
= Iν − Bν (10.13)

where μ is the cosine of the angle of the ray with vertical. Solving equa-
tion (10.13) for the emergent intensity at τν = 0 gives

Iν(μ) =
1
μ

∫ ∞

0
Bν[T(τν)] exp(−τν/μ) dτν. (10.14)
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The opacity is given by
κν = κCν + χν, (10.15)

where κCν is the continuum opacity and χν = χ0φν is the line opacity, with

χ0 =
1
ρ

(
πe2

mec

)
fijni

(
1− ehνℓ/kT

)
being the line opacity at the line center νℓ.

As a further simplification, we can usually ignore the variation with
ν in κCν over the width of the line. As a more suspect approximation
(although it is not so bad in practice), let’s assume that βν ≡ χν/κC is
independent of τν. With this assumption we can write dτν = (1 + βν)dτ,
where τ = −ρκC dz. Finally, let’s assume that in the line forming region,
the temperature does not vary too much, so that we can expand Bν to
first order in τ,

Bν[T(τ)] ≈ B0 + B1τ,

where B0 and B1 are constants. Inserting these approximations into
equation (10.14), multiplying by the direction cosine μ and integrating
over outward bound rays gives us the flux,

Fν = 2π
∫ 1

0

∫ ∞

0
[B0 + B1τ] exp

[
− τ

μ
(1+ βν)

]
(1+ βν) dτ dμ

= π
[
B0 +

2
3

B1

1+ βν

]
. (10.16)

Far from the line-center, βν → 0, implying that the continuum flux is

FC
ν = π

[
B0 +

2B1

3

]
.

Hence the depth of the line is

Aν ≡ 1− Fν

FC
ν
= A0

βν
1+ βν

, (10.17)

where

A0 ≡ 2B1/3
B0 + 2B1/3

(10.18)

is the depth of an infinitely opaque (βν → ∞) line.

E X E R C I S E 1 0 . 2— Explain why an infinitely opaque line (Eq. [10.18]) is
not completely black, i.e., why A0 ̸= 1.

Now that we have the depth of the line Aν we can compute the equiva-
lent width,

Wν ≡
∫ ∞

0
Aν dν = A0

∫ ∞

0

βν
1+ βν

dν. (10.19)
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Let’s change variables from ν to v = Δν/ΔνD = (ν − νℓ)/ΔνD. Since
H(a, v) is symmetrical about the line center, we will just integrate over
Δν > 0, giving

Wν = 2A0ΔνD

∫ ∞

0

β0H(a, v)
1+ β0H(a, v)

dv, (10.20)

with β0 = χ0/(κCΔνD).
It’s useful to understand the behavior of Wν in various limits. First, at

small line optical depth (β0 ≪ 1) only the core of the line will be visible
(Fig. 10.1, blue curves). In the core of the line, H(a, v) ≈ exp(−v2) so we
insert this into equation (10.20) and expand the denominator to give

W⋆
ν ≡ Wν

2A0ΔνD
=

∫ ∞

0

∞∑
k=1

(−1)k−1βk
0e

−kv2 dv

=
1
2
√

πβ0

[
1− β0√

2
+

β2
0√
3
− . . .

]
. (10.21)

Here W⋆
ν is the reduced equivalent width. Notice that since β0 ∝ 1/ΔνD

(cf. eq. [10.12]), the equivalent width Wν is independent of ΔνD in this
linear regime. Physically, in the limit of small optical depth, each atom
in state i is able to absorb photons, and the flux removed is just propor-
tional to the number of atoms ni.
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Figure 10.1: Profiles for lines of various
optical depths.

As we increase β0 eventually the core of the line saturates—no more
absorption in the core is possible (Fig. 10.1, grey curves). As a result,
the equivalent width should be nearly constant until there are so many
absorbers that the damping wings contribute to the removal of flux. In
the saturation regime, the Voigt function is still given by e−v2 , but we
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can no longer assume β0 ≪ 1, so our expansion in equation (10.21)
won’t work. Let’s go back to our integral, eq. (10.20), change variables to
z = v2, and define α = ln β0 to find

W⋆
ν =

1
2

∫ ∞

0

z−1/2

ez−α + 1
dz.

This may not look like an improvement, but you might notice that it
bears a resemblance to a Fermi-Dirac integral, which are used in com-
puting the equation of state of degenerate electrons. You can find a de-
scription of how to integrate it in a graduate-level textbook on statistical
mechanics. In this saturation regime,

W⋆
ν ≈

√
ln β0

[
1− π2

24(ln β0)
2 − 7π4

384(ln β0)
4 − . . .

]
. (10.22)

Note that the amount of flux removed is basically 2A0ΔνD: the line is
maximally dark across the gaussian core.

Finally, if we continue to increase the line opacity, there will finally
be so many absorbers that there will be significant flux removed from
the wings (Fig. 10.1, red curves). Now the form of the Voigt profile is
H(a, v) ≈ (a/

√
π)v−2, so our integral (eq. [10.20]) in this damping regime

becomes

W⋆
ν =

∫ ∞

0

(
1+

√
πv2

β0a

)−1

dv

=
1
2
(πaβ0)

1/2
. (10.23)

Note that since aβ0 ∝ Δν−2
D , Wν is again independent of the doppler

width in this regime.
Now that we have this “curve of growth”, W⋆

ν(β0), why is it useful?
Since it only involves the equivalent width, it is possible to construct
the curve of growth empirically without a high-resolution spectrum.
Next, let’s put some of the factors back into the quantities in the curve
of growth. First, for a set of lines, the population of the excited state
depends on the Boltzmann factor exp(−E/kT). Second, we can expand
out the Doppler width in both W⋆

λ and β0,

log
(

Wλ

ΔλD

)
= log

(
Wλ

λ

)
− log

(u0

c

)
(10.24)

log β0 = log(gifijλ)−
E
kT

+ log(N/κC) + logC (10.25)

where C contains all of the constants and the continuum opacity. The
temperature T is picked as a free parameter, and is picked to minimize
scatter about a single curve that is assumed to fit all of the lines. What
is measured then is log(Wλ/λ) and log(gifijλ); by comparing them to
theoretical curves one gets an estimate of log(u0/c), the mean velocity
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of atoms (may be thermal or turbulent). Since the continuum opacity κC

usually depends on the density of H, one gets from equation (10.25) an
estimate of the abundance of the line-producing element to H.





A
Units

The choice of dimensions and units for physical quantities is arbitrary;
they are chosen for our convenience1. Here we shall give three examples 1 Raymond T. Birge. On the establish-

ment of fundamental and derived units,
with special reference to electric units.
Part I. Am. J. Phys., 3:102, 1935a; and
Raymond T. Birge. On the establishment
of fundamental and derived units, with
special reference to electric units. Part II.
Am. J. Phys., 3:171, 1935b

of how one chooses quantities based on the phenomena being consid-
ered.

For nuclear phenomena, it is convenient to set the speed
of light c = 1. The dimension of c is [c] ∼ LT−1; in this case, then,
we can choose either a unit of length or a unit of time. For example, if
we choose 1m to be our unit of length, then our unit of time is 1m/c. In
nuclear physics, it is convenient to pick the femtometer, also known as
the fermi2, for the unit of length; the “size” of a nucleon is of order 1 fm.

2 1 fm = 10−13 cmTo define units that connect the macroscopic world to our microscopic
calculations, we turn to the world of accelerator physics. The electric
potential is defined as the energy per unit charge and has a unit of a
volt (V). If we accelerate a single electron through a 1V electrostatic
potential, then the energy gained by the electron is 1 eV = 1.602 ×
10−19 J = 1.602 × 10−12 erg. The electron volt, and powers thereof, are
convenient scales: the electronic binding energy of a hydrogen atom is
13.6 eV; the rest mass of an electron is 0.511MeV; and nuclear energy
levels are spaced by keV to MeV, with the rest mass of a proton being
close to 1GeV.

In nuclear physics a convenient choice is the MeV for energy. In this
system of units, ℏc = 197MeV fm, and the unit of charge is3 e2 = 3 Recall that e2/(ℏc) = 1/137 is the fine-

structure constant; since it is dimension-
less, the unit of e2 is [energy]× [length].

[e2/(ℏc)]ℏc = 1.44MeV fm. Since the “size” of a nucleon is of order
1 fm, this immediately tells you the scale of the electrostatic potential
between two protons in the nucleus. The temperature scale in these units
is 1MeV/k = 1.16× 1010 K.

For high-energy physics, we can go further and set both ℏ
and c to unity. The dimension of ℏ is [ℏ] ∼ ML2T−1 ∼ ET. Time there-
fore has dimensions E−1, and since c = 1, length also has dimensions E−1.
Our sole dimension is energy, which we can measure in units of MeV,
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for example. In this system, e2 = 1/137 is dimensionless and the unit of
length is 1MeV−1 = ℏc/(1MeV) = 197 fm = 1.97× 10−11 cm.

If instead we were investigating topics involving stellar-mass black
holes, we could choose c = G = 1. The dimension of c is [c] ∼ LT−1

and the dimension of G is [G] ∼ L3T−2M−1, so our units are specified
once we choose a unit of mass. If we pick our unit of mass to be 1M⊙

(a convenient choice for astrophysics) then our unit of length becomes
GM⊙/c2 = 1.5 km and our unit of time becomes GM⊙/c3 = 4.9 μs.

Finally, if we really want to have no arbitrarily chosen
units, we can set ℏ = c = G = 1, which gives the Planck scale. The
unit of mass is mP = (ℏc/G)1/2 = 2.18 × 10−5 g; the unit of length is
(ℏGc−3)1/2 = 1.62 × 10−33 cm and the unit of time is (ℏGc−5)1/2 =

5.39× 10−44 s.

E X E R C I S E A . 1— For atomic problems, we are non-relativistic, so setting
c = 1 is not the most convenient choice. Instead, we might choose to set
e2 = ℏ = me = 1. If we do this what are units of length, time, and energy?

To illustrate how to convert units, we shall start with a
simple example. Suppose we measure the length of a rod with both a
meter stick and a yardstick. The length of the rod, when measured with
the meter stick is lm m; when measured with the yardstick, lydyd. When
written in this way, both lyd and lm are pure numbers, and clearly lm and
lyd are different numbers! It is the same rod, however, so

lm × 1m ≡ lyd × 1 yd.

The lengths 1m and 1.0936 yd are equivalent, so if we divide both sides
by this length, we obtain

lyd = 1.0936× lm;

or, put differently,

lyd × 1 yd =
1.0936 yd

1m
× 1m× lm.

Let’s now apply this algorithm to find how to convert from charge in
SI (qSI × 1 C) to charge in gaussian CGS (qCGS × 1 statcoul). The potential
energy of two identical charges q separated by a distance d is, in SI and
gaussian CGS respectively4,4 why do we use this relation?

ΦSI =

[
1

4πϵ0

]
SI

q2SI
dSI

ΦCGS =
q2CGS

dCGS
.
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Hence,

qCGS × 1 statcoul = [(ΦCGS × 1 erg)× (dCGS × 1 cm)]
1/2

=

[
107 erg

1 J
(ΦSI J)×

100 cm
1m

(dSI m)

]1/2
=

[
109

(
1

4πϵ0

)
SI

]1/2
qSI × (erg cm)

1/2

= [10cSI] qSI × (erg cm)
1/2

.

Here cSI = 2.99792458 × 108 is the numerical value of the speed of light
in meters per second and we used (4πϵ0)−1 = 10−7c2.

For example, the charge of an electron in SI is e = 1.602 × 10−19 C;
in gaussian CGS, the charge is e = (2.99792458 × 109) × (1.602 ×
10−19) = 4.803×10−10 statcoul. In practice, the easiest way to remember
the electron charge is to recall that the fine structure constant is α =

e2/(ℏc) ≈ 1/137 and therefore e =
√

ℏc/137. Indeed, this latter relation
is useful in making the transition to “natural” units, in which c = ℏ = 1.
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