N-Channel JFET

The U1897 Series is a multi-purpose n-channel JFET designed to economically enhance circuit performance. These devices are especially well suited for analog switching applications but function efficiently as high-gain amplifiers, particularly at high-frequency. Our low-cost TO-92 packaging offers affordable performance with flexibility for designers, as these devices can be ordered with a variety of lead forms or tape and reel for automated insertion. (See Section 8.)

For additional design information please consult the typical performance curves NCB which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N4091 Series
- SOT-23, See SST4091 Series
- Duals, See 2N5564Series
- Chips, Order U189XCHP

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathbf{r}_{\text {ds(ON) }}$ MAX (Ω)	$I_{\text {D(OFF) }}$ MAX (pA)	t ON MAX $(\mathbf{n s)}$
U1897	-10	30	200	25
U1898	-7	50	200	35
U1899	-5	80	200	60

TO-92

BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate Current	I_{G}	10	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

U1897 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	U1897		U1898		U1899		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-55	-40		-40		-40		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$			-5	-10	-2	-7	-1	-5		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}$			30		15		8		mA	
Gate Reverse Current	$I_{\text {Gss }}$	$\begin{gathered} V_{G S}=-20 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-5		-400		-400		-400	pA	
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-0.2							nA	
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$		-5							pA	
Drain Cutoff Current	ID(OFF)	$V_{D S}=20 \mathrm{~V}$	$V_{G S}=-6 \mathrm{~V}$	5						200		
			$V_{G S}=-8 \mathrm{~V}$	5				200				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	5		200						
		$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	$V_{G S}=-6 \mathrm{~V}$	0.2						10	nA	
			$V_{G S}=-8 \mathrm{~V}$	0.2				10				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	0.2		10						
Drain-Source On-Voltage	$\mathrm{V}_{\text {DS(ON }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA}$	0.15						0.2	V	
			$\mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	0.15				0.2				
			$\mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA}$	0.15		0.2						
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$				30		50		80	Ω	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7							V	
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		6							mS	
Common-Source Output Conductance	gos			25							$\mu \mathrm{S}$	
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$				30		50		80	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		14		16		16		16	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			3		3.5		3.5		3.5		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		3							$\frac{n y}{\sqrt{H z}}$	
SWITCHING												
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{ON})}$	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{G S(O N)}=0 \mathrm{~V}$		2		15		15		20	ns	
	t_{r}			2		10		20		40		
Turn-off Time	${ }^{\text {t OFF }}$	U1897 6.6 mA $\mathrm{U1} 898$ 4 mA U1899 2.5 mA	$\begin{array}{rr} -12 V & 430 \Omega \\ -8 V & 700 \Omega \\ -6 V & 1100 \Omega \\ \hline \end{array}$	19		40		60		80		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

