U1897 SERIES

N-Channel JFET

The U1897 Series is a multi-purpose n-channel JFET designed to economically enhance circuit performance. These devices are especially well suited for analog switching applications but function efficiently as high-gain amplifiers, particularly at high-frequency. Our low-cost TO-92 packaging offers affordable performance with flexibility for designers, as these devices can be ordered with a variety of lead forms or tape and reel for automated insertion. (See Section 8.)

For additional design information please consult the typical performance curves NCB which are located in Section 7.

PART NUMBER	V _{GS(OFF)} MAX (V)	r _{ds(ON)} MAX (Ω)	I _{D(OFF)} MAX (pA)	t _{ON} MAX (ns)
U1897	-10	30	200	25
U1898	-7	50	200	35
U1899	-5	80	200	60

TO-92

BOTTOM VIEW

1 DRAIN 2 SOURCE 3 GATE

SIMILAR PRODUCTS

- TO-18, See 2N4091 Series
- SOT-23, See SST4091 Series
- Duals, See 2N5564Series
- Chips, Order U189XCHP

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS	
Gate-Drain Voltage	$V_{\sf GD}$	-40	.,	
Gate-Source Voltage	V _{GS}	-40	\ \ \	
Gate Current	l _G	10	, mA	
Power Dissipation	PD	360	mW	
Power Derating		3.27	mW/°C	
Operating Junction Temperature	TJ	-55 to 135		
Storage Temperature	T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 seconds)	TL	300		

U1897 SERIES

incorporated incorporated											
ELECTRICAL CHARACTERISTICS 1				LIMITS							
		IBOL TEST CONDITIONS			U1897		U1898		U1899		
PARAMETER	SYMBOL			TYP ²	MIN	МАХ	MIN	мах	MIN	МАХ	דואט
STATIC											
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = -1 дА, V _{DS} = 0 V		-55	-40		-40		-40		
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 20 V, I _D = 1 nA			-5	-10	-2	-7	-1	-5	٧
Saturation Drain Current ³	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V			30		15		8		mA
Gate Reverse Current	I _{GSS}	V _{GS} = -20 V		-5		-400		-400		-400	pА
Gate Reverse Current		V _{DS} = 0 V	T _A = 85°C	-0.2							nA
Gate Operating Current	I _G	V _{DG} = 15 V, I _D = 10 mA		-5							
	I _{D(OFF)} -		V _{GS} = -6 V	5						200	pA nA
		V _{DS} = 20 V	$V_{GS} = -8 \text{ V}$	5				200			
Drain Cutoff Current			V _{GS} = -12 V	5		200					
Drain Gaton Garrent		V _{DS} = 20 V T _A = 85°C	$V_{GS} = -6 V$	0.2	<u> </u>				<u> </u>	10	
			$V_{GS} = -8 V$	0.2				10			
		.,	V _{GS} = -12 V	0.2		10					
	V _{DS(ON)}	V _{GS} = 0 V	$I_D = 2.5 \text{ mA}$	0.15	<u> </u>					0.2	٧
Drain-Source On-Voltage			$I_D = 4 \text{ mA}$	0.15				0.2			
			I _D = 6.6 mA	0.15		0.2					
Drain-Source On-Resistance	r _{DS(ON)}	V _{GS} = 0 V, I _D = 1 mA				30		50		80	Ω
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 1 mA, V _{DS} = 0 V		0.7							٧
DYNAMIC					,,,,,						
Common-Source Forward Transconductance	g _{fs}	V _{DG} = 20 V, I _D = 1 mA f = 1 kHz		6							mS
Common-Source Output Conductance	g _{os}			25							μς
Drain-Source On-Resistance	r _{ds(ON)}	$V_{GS} = 0 \text{ V, I}_{D} = 0 \text{ mA}$ $f = 1 \text{ kHz}$				30		50		80	U
Common-Source Input Capacitance	C _{iss}	V _{DS} = 20 V, V _{GS} = 0 V f = 1 MHz		14		16		16		16	pF
Common-Source Reverse Transfer Capacitance	C _{rss}			3		3.5		3.5		3.5	Pr
Equivalent Input Noise Voltage	ēn	V _{DG} = 10 V, I _D = 10 mA f = 1 kHz		3							nV/Hz
SWITCHING											
Turn-on Time	t _{d(ON)}	V _{DD} = 3 V, V _{GS}	(ON) = 0 V	2		15		15		20	
rum-on mme	t _r	P/N I _{D(ON)} V	GS(OFF) RL	2		10		20		40	
Turn-off Time	t _{OFF}	U1897 6.6 mA - U1898 4 mA U1899 2.5 mA	-12 V 430 Ω -8 V 700 Ω -6 V 1100 Ω	19		40		60		80	ns

NOTES: 1. T_A = 25 °C unless otherwise noted. 2. For design aid only, not subject to production testing. 3. Pulse test; PW = 300 µs, duty cycle ≤3%.