2.5 V 1:2 AnyLevel ${ }^{\text {Tu }}$ Input to LVDS Fanout Buffer / Translator

The NB6L11S is a differential 1:2 clock or data receiver and will accept AnyLevel ${ }^{\text {TM }}$ input signals: LVPECL, CML, LVCMOS, LVTTL, or LVDS. These signals will be translated to LVDS and two identical copies of Clock or Data will be distributed, operating up to 2.0 GHz or $2.5 \mathrm{~Gb} / \mathrm{s}$, respectively. As such, the NB6L11S is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock or Data distribution applications.

The NB6L11S has a wide input common mode range from GND +50 mV to $\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV}$. Combined with the 50Ω internal termination resistors at the inputs, the NB6L11S is ideal for translating a variety of differential or single-ended Clock or Data signals to 350 mV typical LVDS output levels.

The NB6L11S is the 2.5 V version of the NB6N11S and is offered in a small 3 mm X 3 mm 16-QFN package. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Input Clock Frequency $>2.0 \mathrm{GHz}$
- Input Data Rate $>2.5 \mathrm{~Gb} / \mathrm{s}$
- RMS Clock Jitter -0.5 ps, Typical
- $622 \mathrm{Mb} / \mathrm{s}$ Data Dependent Jitter - 6 ps, Typical
- 380 ps Typical Propagation Delay
- 120 ps Typical Rise and Fall Times
- Single Power Supply; $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$
- These are $\mathrm{Pb}-$ Free Devices

Figure 2. Typical Output Waveform at $2.488 \mathrm{~Gb} / \mathrm{s}$ with PRBS 2^{23-1} (VINPP $=400 \mathrm{mV}$; Input Signal DDJ = $\mathbf{1 4} \mathrm{ps}$)

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Logic Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

NB6L11S

Figure 3. NB6L11S Pinout, 16-pin QFN (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	1/0	Description
1	Q0	LVDS Output	Non-inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
2	$\overline{\text { Q0 }}$	LVDS Output	Inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
3	Q1	LVDS Output	Non-inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
4	Q1	LVDS Output	Inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
5	V_{CC}	-	Positive Supply Voltage.
6	NC		No Connect.
7	V_{EE}		Negative Supply Voltage.
8	$\mathrm{V}_{\text {EE }}$		Negative Supply Voltage.
9	$\bar{V}_{\text {TD }}$	-	Internal 50Ω termination pin for $\overline{\mathrm{D}}$.
10	$\overline{\mathrm{D}}$	LVPECL, CML, LVDS, LVCMOS, LVTTL	Inverted Differential Clock/Data Input (Note 1).
11	D	LVPECL, CML, LVDS, LVCMOS, LVTTL	Non-inverted Differential Clock/Data Input (Note 1).
12	$\mathrm{V}_{\text {TD }}$	-	Internal 50Ω termination pin for D.
13	$\mathrm{V}_{\text {CC }}$	-	Positive Supply Voltage.
14	V_{CC}	-	Positive Supply Voltage.
15	V_{CC}	-	Positive Supply Voltage.
16	V_{CC}	-	Positive Supply Voltage.
EP			Exposed pad. The exposed pad (EP) on the package bottom must be attached to a heat-sinking conduit. The exposed pad may only be electrically connected to V_{EE}.

1. In the differential configuration when the input termination pins $\left(V_{T D}, V_{T D}\right)$ are connected to a common termination voltage or left open, and if no signal is applied on D, \bar{D} input, then the device will be susceptible to self-oscillation.

NB6L11S

Table 2. ATTRIBUTES

Characteristic	Value		
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$>2 \mathrm{kV}$ $>200 \mathrm{~V}$ $>1 \mathrm{kV}$		
Moisture Sensitivity (Note 2)	Pb-Free Pkg		
QFN-16			Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
Transistor Count	225		
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test			

2. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		3.8	V
$\mathrm{V}_{\text {IN }}$	Positive Input	GND $=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	3.8	V
I_{IN}	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)	Static Surge		$\begin{aligned} & 35 \\ & 70 \end{aligned}$	mA
losc	Output Short Circuit Current Line-to-Line (Q to $\overline{\mathrm{Q}}$) Line-to-End (Q or \bar{Q} to GND)	$\begin{aligned} & \mathrm{Q} \text { or } \overline{\mathrm{Q}} \\ & \mathrm{Q} \text { to } \overline{\mathrm{Q}} \text { to } \mathrm{GND} \end{aligned}$	Continuous Continuous	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	mA
T_{A}	Operating Temperature Range	QFN-16		-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	$\begin{aligned} & \hline 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \text { QFN-16 } \\ & \text { QFN-16 } \end{aligned}$	$\begin{aligned} & 41.6 \\ & 35.2 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	1S2P (Note 3)	QFN-16	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
3. JEDEC standard multilayer board - 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V , $\mathrm{GND}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit
$I_{\text {CC }}$	Power Supply Current (Note 8)		30	45	mA

DIFFERENTIAL INPUTS DRIVEN SINGLE-ENDED (Figures 15, 16, 20, and 22)

V_{th}	Input Threshold Reference Voltage Range (Note 7)	$\mathrm{GND}+100$	$\mathrm{~V}_{\mathrm{CC}}-100$	mV	
V_{IH}	Single-ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-100$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11, 12, 13, 14, 21, and 23)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration)	$\mathrm{GND}+50$		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage ($\left.\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right)$	100		$\mathrm{~V}_{\mathrm{CC}}-\mathrm{GND}$	mV
$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor	40	50	60	Ω

LVDS OUTPUTS (Note 4)

V_{OD}	Differential Output Voltage	250		450	mV
$\Delta \mathrm{V}_{\mathrm{OD}}$	Change in Magnitude of V_{OD} for Complementary Output States (Note 9)	0	1	25	mV
V_{OS}	Offset Voltage (Figure 19)	1125		1375	mV
$\Delta \mathrm{V}_{\mathrm{OS}}$	Change in Magnitude of V_{OS} for Complementary Output States (Note 9)	0	1	25	mV
V_{OH}	Output HIGH Voltage (Note 5)		1425	1600	mV
V_{OL}	Output LOW Voltage (Note 6)	900	1075		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. LVDS outputs require 100Ω receiver termination resistor between differential pair. See Figure 18.
5. $\mathrm{V}_{\text {OH }}$ max $=\mathrm{V}_{\text {OSmax }}+1 / 2 \mathrm{~V}_{\text {OD }}$ max .
6. $\mathrm{V}_{\mathrm{OL}} \max =\mathrm{V}_{\mathrm{OS}} \min -1 / 2 \mathrm{~V}_{\text {OD }} \max$.
7. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. Input termination pins open, D / D at the $D C$ level within $V_{C M R}$ and output pins loaded with $R_{L}=100 \Omega$ across differential.
9. Parameter guaranteed by design verification not tested in production.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V , GND $=0 \mathrm{~V}$; (Note 10)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V OUTPP	Output Voltage Amplitude (@ $\left.V_{\text {INPPmin }}\right)$ (Figure 4) $\mathrm{f}_{\mathrm{in}} \leq 1.0 \mathrm{GHz}$ $\mathrm{f}_{\mathrm{in}}=1.5 \mathrm{GHz}$ $\mathrm{f}_{\mathrm{in}}=2.0 \mathrm{GHz}$	$\begin{aligned} & 220 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 270 \end{aligned}$		$\begin{aligned} & 220 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 270 \end{aligned}$		$\begin{aligned} & 220 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 270 \end{aligned}$		mV
$f_{\text {DATA }}$	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb/s
tpLh, tphL	Differential Input to Differential Output Propagation Delay	250		450	250	380	450	250		450	ps
tskEw	Duty Cycle Skew (Note 11) Within Device Skew (Note 16) Device-to-Device Skew (Note 15)		$\begin{gathered} \hline 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} 45 \\ 25 \\ 100 \end{gathered}$		$\begin{gathered} \hline 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} \hline 45 \\ 25 \\ 100 \end{gathered}$		$\begin{gathered} 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} \hline 45 \\ 25 \\ 100 \end{gathered}$	ps
$\mathrm{t}_{\text {IITTER }}$	$\begin{array}{lc} \hline \text { RMS Random Clock Jitter (Note 13) } \begin{array}{c} \mathrm{f}_{\text {in }}=1.0 \mathrm{GHz} \\ \mathrm{f}_{\text {in }}=1.5 \mathrm{GHz} \\ \text { Peak-to-Peak Data Dependent Jitter (Note } 14) \\ \mathrm{f}_{\text {DATA }}=622 \mathrm{Mb} / \mathrm{s} \\ \mathrm{f}_{\text {DATA }}=1.5 \mathrm{~Gb} / \mathrm{s} \\ \mathrm{f}_{\text {DATA }}=2.488 \mathrm{~Gb} / \mathrm{s} \end{array} \end{array}$		$\begin{gathered} \hline 0.5 \\ 0.5 \\ 6 \\ 7 \\ 10 \end{gathered}$			$\begin{gathered} 0.5 \\ 0.5 \\ 6 \\ 7 \\ 7 \\ 10 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ 0.5 \\ 6 \\ 7 \\ 10 \end{gathered}$		ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 12)	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{GND} \end{aligned}$	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{GND} \end{aligned}$	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{GND} \end{aligned}$	mV
$\begin{array}{\|l\|l} \hline t_{r} \\ t_{f} \end{array}$	$\begin{aligned} & \hline \text { Output Rise/Fall Times @ } 250 \mathrm{MHz} \quad \text { Q, } \overline{\mathrm{Q}} \\ & (20 \%-80 \%) \end{aligned}$	70	120	170	70	120	170	70	120	170	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
10. Measured by forcing $\mathrm{V}_{\text {INPPmin }}$ with 50% duty cycle clock source and $\mathrm{V}_{\mathrm{CC}}-1400 \mathrm{mV}$ offset. All loading with an external $\mathrm{R}_{\mathrm{L}}=100 \Omega$ across " D " and " D " of the receiver. Input edge rates $150 \mathrm{ps}(20 \%-80 \%)$.
11. See Figure 17 differential measurement of $\mathrm{t}_{\text {skew }}=\mid \mathrm{t}_{\text {pLH }}$ - $\mathrm{t}_{\text {PHL }} \mid$ for a nominal 50% differential clock input waveform @ 250 MHz .
12. Input voltage swing is a single-ended measurement operating in differential mode.
13. RMS jitter with 50% Duty Cycle input clock signal.
14. Deterministic jitter with input NRZ data at PRBS $2^{23}-1$ and K28.5.
15. Skew is measured between outputs under identical transition @ 250 MHz .
16. The worst case condition between $\mathrm{Q} 0 / \mathrm{Q0}$ and $\mathrm{Q} 1 / \mathrm{Q1}$ from D, D, when both outputs have the same transition.

Figure 4. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (f_{in}) and Temperature ($@ \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$)

Figure 5. Typical Phase Noise Plot at $\mathbf{f}_{\text {carrier }}=622.08 \mathrm{MHz}$

Figure 7. Typical Phase Noise Plot at
$f_{\text {carrier }}=1.5 \mathrm{GHz}$

The above phase noise plots captured using Agilent E5052A show additive phase noise of the NB6L11S device at frequencies $622.08 \mathrm{MHz}, 1 \mathrm{GHz}, 1.5 \mathrm{GHz}$ and 2 GHz respectively at an operating voltage of 2.5 V in room temperature. The RMS Phase Jitter contributed by the

Figure 6. Typical Phase Noise Plot at $\mathrm{f}_{\text {carrier }}=\mathbf{1} \mathbf{~ G H z}$

Figure 8. Typical Phase Noise Plot at $\mathbf{f}_{\text {carrier }}=\mathbf{2} \mathbf{~ G H z}$
device (integrated between 12 kHz and 20 MHz ; as shown in the shaded region of the plot) at each of the frequencies is $40 \mathrm{fs}, 22 \mathrm{fs}, 14 \mathrm{fs}$ and 12 fs respectively. The input source used for the phase noise measurements is Agilent E8663B.

NB6L11S

Figure 9. Typical Output Waveform at 2.488 Gb/s with PRBS 2^{23-1} and OC48 mask ($\mathrm{V}_{\text {INPP }}=100 \mathrm{mV}$; Input Signal DDJ = 14 ps)

Figure 10. Input Structure

Figure 11. LVPECL Interface

Figure 13. Standard 50Ω Load CML Interface

Figure 15. LVCMOS Interface

Figure 12. LVDS Interface

Figure 14. HSTL Interface

Figure 16. LVTTL Interface
${ }^{*} \mathrm{R}_{\text {TIN }}$, Internal Input Termination Resistor.

Figure 17. AC Reference Measurement

Figure 18. Typical LVDS Termination for Output Driver and Device Evaluation

Figure 19. LVDS Output

Figure 20. Differential Input Driven
Single-Ended

Figure 22. $\mathrm{V}_{\text {th }}$ Diagram

Figure 21. Differential Inputs Driven Differentially

Figure 23. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

ORDERING INFORMATION

Device	Package	Shipping †
NB6L11SMNG	QFN-16, 3 (Pb-Free)	123 Units / Rail
NB6L11SMNR2G	QFN-16, 3 X 3 mm (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN16 3x3, 0.5P
CASE 485G
ISSUE G
DATE 08 OCT 2021

side view

battam View

Nates:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDN b APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FREM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TD THE EXPOSED PAD AS WELL AS. THE TERMINALS.

DETAIL B
${ }^{\text {ALTERNATE }}$

DETAIL A
ALTERNATE TERMINAL
constructions

DIM	MILLIMETERS				
	MIN.	NDM.	MAX.		
A	0.80	0.90	1.00		
A1	0.00	0.03	0.05		
A3	0.20 REF				
b	0.18	0.24			
D	3.00 BSC				
D2	1.65	1.75			1.85
E	3.00 BSC				
E2	1.65	1.75	1.85		
e	0.50 BSC				
k	0.18 TYP				
L	0.30	0.40	0.50		
L1	0.00	0.08	0.15		

GENERIC MARKING DIAGRAM*

${ }^{\circ}$ XXXXX
XXXXX
ALYW:
\bullet

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

