
Version 0.5 – 12 January 2021

µBase Instructions
Chris Wendt, WIPAC (chris.wendt@icecube.wisc.edu)

Contents
Contents 1

Revision Log 1

Connection to PC 2

Software Installation on Microcontroller 2

Operation 3
Command and response 3
Operation frequency and output voltage 4
Uquickscan 4
Uvoltage 5
Uquickscanup 5
Upwmfreq 5
Uget_uid 6
Ureportavg 6
Umonstatus 6
Uscan 7
Ustatus 7
Usleepenable 7

Revision Log

Page 1 of 7

Date Version Author Comment

2019-09-04 v0.1 Ch. Wendt / T. Karg First revision v0.1

2019-12-02 v0.2 Update for V2.3

2019-12-03 v0.3 Correct voltage ratio, K/Dy10=12.0

2021-01-11 v0.4 Describe quickscan

2021-01-12 v0.5 Update Ureportavg description

mailto:chris.wendt@icecube.wisc.edu

Version 0.5 – 12 January 2021

Connection to PC
The 10-conductor ribbon cable is used for communication and low voltage power. It is
intended to be wired to an MDOM main board or equivalent that will supply it with 3.3V (for
Cockcroft Walton power) and 1.8V (for microcontroller power), and will communicate with
UART protocol at speeds up to 57600 baud. It is possible to use 3.3V for both the C-W
power and microcontroller power.

The pinout of the ribbon cable is shown in the schematic (V2.3); here are some notes:

● BOOT_CONTROL (pin 10) should be held at ground, unless you are reprogramming
the firmware. It can be set high (or left open) during power-up if the board should run
the STM32 built-in bootloader code that allows reprogramming.

● VDDU (pin 2) is nominally 1.8V but could also be 3.3V. If not using the default 1.8V,
you should tell the board what the actual value is after powering it up, because it is
used as a reference value for the ADC that reads output voltage (use the command
“Uset_vddu 3.3” for this).

● VDDSW (pin 4) is the Cockcroft-Walton power supply input. It is nominally 3.3V but
is allowed to be up to 5.5V. Using 5V would allow very high output voltages to be
reached, that could be useful for reliability testing but normally is not appropriate.

● UART TX (pin 6) is data flowing out of the base, so wire to RX on controller UART.
● UART RX (pin 8) is data flowing into the base, so wire to TX on controller UART. In

order to reduce EMI from communication, the base has a multi-stage RC filter for
outgoing data, and that could be used as a model for TX signal filtering on the
controller board. See the schematic for details; it allows communication at 57600
baud while attenuating 1MHz very strongly.

● There is no connection for RTS or CTS signals from the controller.

It is possible to use a USB-serial converter like FTDI model TTL-232RG-VREG3V3-WE, in
which case a ribbon cable could be made to connect with the wire ends of the converter:
Black=Ground (pin 1 on MicroBase), Red=power output 3.3V (connect to both pin 2 and pin
4), Orange=TXD (connect to RX on MicroBase, pin 8), Yellow=RXD (connect to TX on
MicroBase, pin 6). See comment above regarding use of 3.3V for both VDDU and VDDSW.

The anode signal output is coax MMCX type.

Software Installation on Microcontroller
The MicroBase board includes the STM32L432KC microcontroller, which includes a
permanent bootloader program. The bootloader communicates with a host PC using the
same UART connection that is later used for normal operational communications. The
bootloader commands, including transfer of a firmware image for programming into the flash
memory, follow a special protocol that is handled by the STM32CubeProg software running
on the host PC.

Page 2 of 7

https://www.digikey.de/product-detail/en/ftdi-future-technology-devices-international-ltd/TTL-232RG-VREG3V3-WE/768-1071-ND/2441361?utm_adgroup=General&mkwid=sfYUpKZLe&pcrid=267281097025&pkw=&pmt=b&pdv=c&productid=&slid=&gclid=CjwKCAjw-7LrBRB6EiwAhh1yXxK0WtTUeALmRp8poRryDtCCgW_G6ND4INVKnQzLxYXOTwMvfDJnzxoCMYgQAvD_BwE

Version 0.5 – 12 January 2021

The STM32CubeProg software can be obtained by searching for “STM32CubeProg” or
“STM32CubeProgrammer” on the ST website, http://www.st.com, and following a download
link. It can be installed in Windows, Linux or Mac environments using the instructions
provided by ST. Although the software includes a GUI option, a single command line in a
terminal emulation window is sufficient to program the firmware.

● Obtain the desired firmware image that is to be loaded into the flash memory.
It should have the file extension “.bin”.

● Power up the MicroBase while the BOOT_CONTROL signal is held high or
floating (there is a weak pull-up resistor on the board). The control signal is
pin 10 on the ribbon cable connector. This will cause the built-in bootloader to
run on the microcontroller, which will wait for commands from the PC. If the
MicroBase is being powered from a USB adapter cable, this step is simply to
plug the USB cable into the PC.

● Determine which serial port on the PC corresponds to the USB cable adapter
(or equivalent). Its name will be needed on the command line, and on a
Windows PC has a name starting with “COM”, referred to below as “COMn”.

● On a Windows PC, the following command line will transfer the new .bin file to
the bootloader, which will program the flash memory and verify it:

STM32_Programmer_CLI.exe -c port=COMn br=57600 -w (bin file) 0x08000000 -v -g

● After programming, control will have been transferred to the MicroBase
firmware, because of the “-g” option on the command line. It is acceptable to
unpower the MicroBase at this point (e.g., by unplugging the USB adapter
cable).

● To start a MicroBase without programming new firmware, either hold the
BOOT_CONTROL signal at ground level during power up, or issue a
command like this to the bootloader:

STM32_Programmer_CLI.exe -c port=COMn br=57600 -g

Operation

Command and response
All commands are sent on the UART as a single line of text, always starting with the
uppercase character “U”, and ending with LF (or CR LF) character. After the initial “U”, the
command is not case-sensitive. It doesn’t matter exactly what baud rate is used; the “U”
character is used by the microcontroller to set the baud rate for the rest of the command line.
UART settings are 8 bits, no parity, 1 stop bit. There should not be significant pauses
between the characters of a single line, so either send each command using a script or use
a terminal program on your laptop with a “line mode” feature. There is no editing capability
for characters that have already been sent on the wire, i.e. you cannot use the backspace to
fix typing mistakes. That is another reason to use “line mode” or a script. On a Mac laptop, I
recommend “CoolTerm” because it has the “line mode” available (but you have to switch it

Page 3 of 7

http://www.st.com/

Version 0.5 – 12 January 2021

over from the default “raw mode” that just sends each character as it is typed). (CoolTerm is
also available for other platforms but I haven’t tried it there.)

Every command will get a response, either just “OK” or some requested measured values or
status information, depending on the command. The response will be at the same baud rate
that was seen in the corresponding command line.

Operation frequency and output voltage
Because of the circuit design, any particular output voltage is best attained by one of a few
choices of driving frequency. The resonance is determined by non-precision components
and therefore the frequency has to be determined separately for each base. There is an
automated and fast procedure (Uquickscan command) to pick an appropriate frequency,
or it can be chosen by the user (Upwmfreq command) who then needs to be aware of the
resonance curve (see Uscan command for how to get that). Having chosen the frequency,
there is a software feedback loop which will adjust the “square” wave duty cycle (“PWM”) to
maintain close to a requested voltage set point as measured at the first Cockcroft-Walton
stage (between the anode and Dy10). The feedback loop is checking the output 10 times per
second and uses proportional and integral error terms. If the frequency is too far off
resonance, the output will be below the requested voltage.

The resonance frequency depends on temperature, but upward/downward changes of 10°C
are not important.

The cathode output voltage is about 12 times the Dy10 voltage.

Uquickscan
The circuit performs best with a resonator driving frequency just below the resonance peak,
which can be set quickly and routinely with the Uquickscan command. This command
sets a desired output voltage and then scans the driving frequency upward until the output
voltage is reached with good margin. The user should allow 15 seconds for the scan to
complete and stabilize. Subsequently the frequency is left fixed and the voltage is
automatically regulated to match the command value by adjusting the duty cycle upward or
downward as needed. (In this context, "good margin" means that the available range of duty
cycle values allows reaching voltage up to 10% above nominal.) The frequency range for
scanning is preprogrammed (can be adjusted with the Uquickscanrange command if
necessary).

Example (set Dy10 to 90 volts):
Uquickscan 90

(sets frequency to minimum of range, then scan upwards until Dy10 reaches 90 volts with
good margin)

Page 4 of 7

Version 0.5 – 12 January 2021

Uvoltage
If the base is already operating at a voltage v1, it's possible to use the Uvoltage command
to change that to v2. However, the frequency must already be set to a good value because
that will not be adjusted. Depending on how far off the frequency is from the "ideal" value,
operation could be suboptimal in terms of power efficiency and regulation stability; generally
the effect is unimportant if voltage is set between +5% and -20% compared to the natural
output at the current frequency.

Example (set Dy10 voltage to 90 volts, then adjust up by 5 volts and then down):
Uquickscan 90

Uvoltage 95

Uvoltage 75

Uquickscanup
If changing to a higher voltage v2 which is more than 5% higher than previously set voltage
v1, then the new target may not be reached without adjusting the frequency, and it's
preferred to start a new scan. For this purpose, the Uquickscanup command works the
same as Uquickscan , except that it will not waste time trying lower frequencies -- it starts
at the current operation frequency and adjusts it higher if needed, typically needing only 5
seconds instead of 15 seconds to settle.

Example (sequence of setting Dy10 voltage to 90, 100, 110 volts, and finally 80 volts):
Uquickscan 90

Uquickscanup 100

Uquickscanup 110

Uquickscan 80

(for the last line, one could use "Uvoltage 80 " instead, with a minor penalty on efficiency
& regulation)

Upwmfreq
This is for manual setting of the operation frequency. If the automated procedure
Uquickscan / Uquickscanup is not desired to obtain the preferred frequency, one can
set frequency explicitly with the Upwmfreq command, which must be accompanied by a
separate command Uvoltage to set the output voltage. The regulation (by adjusting PWM)
will occur exactly as if the frequency were determined automatically. One foreseeable
situation suggesting Upwmfreq would be if the “correct” operation frequency were already
known for the base (e.g. kept in external database for all PMTs in operation), and then it
would be faster to just set that frequency instead of going through the scan (using less than
5 seconds instead of 15 seconds).

Page 5 of 7

Version 0.5 – 12 January 2021

The following example sets the driving frequency to 102,000 Hz and the Dy10 output to 110
volts:
Upwmfreq 102000

Uvoltage 110

Uget_uid
There is a unique identifier built into each microcontroller chip, which you can print with the
command Uget_uid .

Ureportavg
To monitor the output, usually use Ureportavg , which reports a running average with a
time response of about one second (so wait several seconds for complete settling). There
are five lines of text returned; the first one is the first stage output voltage. The second line
tells the current flow into DY10; the accuracy is limited to around 1uA but a significantly
larger value (>2uA) may indicate excessive illumination. The third line tells what is the
current consumption of the C-W driver, and does not include the microcontroller power.
(The microcontroller consumption is around 1.8mA at either 1.8V or 3.3V supply.) The fourth
line reports the C-W driver supply voltage VDDSW; note the accuracy is limited to about 0.1
volt and the ADC scale is set from the VDDU value (MCU power supply voltage) so
erroneous values could indicate a problem on either VDDU or VDDSW. The final line “frac”
gives the ratio between the Dy10 voltage and the value it would have at maximum duty cycle
at the same frequency; values between 0.7 and 0.95 are typical.

The values from Ureportavg can be obtained individually by the commands
Uget_avg_v10 , Uget_avg_di10 , Uget_avg_isup , Uget_avg_vsup and
Uget_avg_frac .

Umonstatus
There is another monitoring command Umonstatus which reports what happened in the
last feedback event (which occur 10 times per second). The voltage measurement in this
mode appears more noisy, it doesn’t have the averaging like Ureportavg . The level of
fluctuations is non-trivial especially far from resonance, but not large enough to spread the
SPE peak noticeably. Some of the fluctuations are clearly just measurement noise, while
some of it is due to frequency drift that is being compensated by the feedback algorithm.

The operation frequency is one of the reported items, and doesn’t need any averaging
because it is generally fixed (by Uquickscan or Upwmfreq).

While Umonstatus reports multiple items separated by line breaks, the command
Uget_freq just reports the frequency in Hz.

Page 6 of 7

Version 0.5 – 12 January 2021

Example of obtaining the preferred operation frequency for a setting of 90 volts on Dy10 (first
checking the actual voltage with Ureportavg):

Uquickscan 90

Ureportavg

Umonstatus

Uscan
For proving good performance of a particular board, it can be helpful to measure and report
the full resonance curve. In that case, use the command Uscan 100 95000 115000 -1
or some variation on that. Within the specified frequency range (95,000 Hz to 115,000 Hz in
this case), the firmware will try every possible frequency (generally in steps of 250Hz) with a
target output of 100 volts, and will record the performance at all those frequencies. Each
value is allowed to settle for 10 seconds before moving on to the next one. While the “OK”
response should be returned immediately, the scan will take quite a while (5 to 15 minutes
depending on what range is chosen for the frequencies). You can determine if the scan is
done using the Uscanstatus command and looking for the value of 0 or 1 (0 = scan is
completed). After the scan is done, the command Uscanprint will list the results. It will
show the maximum voltage attainable at each frequency even if that is higher than the
requested target voltage, and without actually delivering more than the requested target
voltage; it does that by a formula based on the PWM duty cycle that the feedback loop
settles into. Actually if a PMT is attached, you might want to use a lower voltage like 80 or 90
volts, that when multiplied with a factor ~12.0 will not be too high. Also, you can speed up
the process by only scanning a narrower range of frequencies, assuming you have previous
information about the board and just want to look for some small changes. Note that after the
scan is done, the set frequency and target voltage will be set to whatever they were before
the scan. Look at the results and pick a value below the resonance peak. It is okay to pick
any frequency that lists an output maximum that’s greater than your desired set voltage.
Remember, the actual output will not go above your set point. If you operate closer to the
resonance, the output fluctuations are a bit lower, but the current consumption might be 10%
higher.

Ustatus
The Ustatus command lists several operational mode bits. This is mostly for diagnostic
purposes.

Usleepenable
By default, the microcontroller core sleeps during idle periods. It will wake up 10 times per
second for the feedback loop, also if any commands are received on the UART. This is not a
deep sleep, but reduces the average power consumption by about a factor of two. The
behavior can be changed with the command Usleepenable 0 (to disable sleeping) or
Usleepenable 1 (to enable sleeping).

Page 7 of 7

