MICROCHIP

PolarFire® FPGA and PolarFire SoC FPGA Programming
User Guide

Introduction

Microchip's PolarFire FPGAs are the fifth-generation family of non-volatile FPGA devices, built on state-of-the-art
28 nm non-volatile process technology. PolarFire FPGAs deliver the lowest power at mid-range densities. PolarFire
FPGAs lower the cost of mid-range FPGAs by integrating the industry’s lowest power FPGA fabric, lowest power
12.7 Gbps transceiver lane, built-in low power dual PCI Express Gen2 (EP/RP), and, on select data security (S)
devices, an integrated low-power crypto co-processor.

Microchip's PolarFire SoC FPGAs are the fifth-generation family of non-volatile SoC FPGA devices, built on state-of-
the-art 28 nm non-volatile process technology. The PolarFire SoC family offers industry's first RISC-V based SoC
FPGAs capable of running Linux. It combines a powerful 64-bit 5x core RISC-V Microprocessor Subsystem (MSS),
based on SiFive’'s U54-MC family, with the PolarFire FPGA fabric in a single device.

PolarFire FPGAs and PolarFire SoC FPGAs offer a variety of programming options to diverse end-user applications.
The following table lists the components that are programmable in PolarFire FPGA and PolarFire SoC FPGA.

Table 1. Programming Components

PolarFire FPGA (MPF) PolarFire SoC FPGA (MPFS)

FPGA fabric v v
Secure non-volatile memory (sNVM) v/ v
Embedded non-volatile memory — v
(eNVM)

User security settings (keys, v v

passcodes, and locks)

Both the device families can be programmed using on-chip system controller through its dedicated JTAG or SPI
interface. Based on the interface used, the following three programming modes are supported:

« JTAG
* SPI master
* SPI slave

In JTAG and SPI slave programming modes, the device can be programmed either using an external master such
as a microprocessor or a Microchip FlashPro programmer (version 5 or later). The external master fetches the
programming data (bitstream) from an external memory.

In SPI master programming mode, the system controller acts as the master and fetches the bitstream from an
external SPI flash memory to program the device. This mode supports two programming features—Auto Update and
In-Application Programming (IAP). In auto update, the device reprograms itself on power-up, and in IAP, the device is
programmed when the user application initiates programming.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 1
and its subsidiaries

Figure 1. Programming Modes

Using FlashPro Programmer
—» JTAG
Using External Microprocessor
Auto Update
Programming Modes——» SPI Master
IAP

Using FlashPro Programmer
—» SPI Slave

Using External Microprocessor
The following block diagram shows the device programming modes and the associated interfaces.

Figure 2. Device Programming Modes and Interfaces

Programming Header
; N (Dedicated JTAG)
PolarFire® FPGA/PolarFire SoC FPGA 00
JTAG
Controller O O
O 0O External
Programmer
System (FlashPro5 or later
Controller or
External
Microprocessor
SPI
SPI Flash
Y Memory
sNVM, eNVM!?, and
User Security SPI Directory
Settings
Programming I:I Device contents to be
Images programmed
A
SPI master programming
FPGA Fabric ————— SPI slave programming
JTAG programming

1 Applicable for PolarFire SoC FPGA only.

Note: When device is used in the system controller suspend mode, device programming is disabled to protect the
device from unintended programming because of single event upsets. After device initialization, the system controller
is held in reset state and cannot provide system services such as security, IAP, or auto update programming. After
the device exits system controller suspend mode, it can be programmed as usual.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 2
and its subsidiaries

References

For information about SNVM, eNVM, and Security Settings, see PolarFire FPGA and PolarFire SoC FPGA
Security User Guide.

For information about programming cycle count, see PolarFire FPGA and PolarFire SoC FPGA System Services
User Guide.

For information about design initialization, see PolarFire FPGA and PolarFire SoC FPGA Device Power-Up and
Resets User Guide.

For information about power supply requirement and filtering capacitors, see respective UG0726: PolarFire
FPGA Board Design User Guide or UG0901: PolarFire SoC Board Design Guidelines User Guide.

For information about using Libero SoC for PolarFire FPGA and PolarFire SoC FPGA, see Libero SoC
Documentation.

For information about MSS, see PolarFire SoC FPGA MSS Technical Reference Manual.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 3
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244576
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245725

Table of Contents

[0 To [0 e (1] o TP P U PP P PTRPPRPPPROI 1

1. REFEIENCES. ...ttt ettt ettt e nanenree e 3

1. BitStream GeNEratioN..........c.ii it 6

1.1, Bitstream Generation FIOW.........c..ioiiiiiiiiiiiie ettt 6

1.2. Adding sSNVM Data to the Bitstream............cooo e 7

1.3. Adding eNVM Data to the Bitstream (For PolarFire SOC FPGA Only).......ccccccviiiieiiiiicniieeenneenn 7

1.4. Adding User Security Settings to the Bitstream..............ccoooiiiiii i 8

1.5. Configuring Bitstream ComPONENTES...........cooiiiiiieie e 11

1.6. Programming File SiZe.........oo et e e e 13

2. Device Programming FIOW........ooiiiiiiiiiii ettt e e e e e e e e e e s e s e s e e e et e e e e aeaaaeaeeeeeseaannannns 16

2.1, Programming TiME.....c ettt ettt et e s et e s ne e e e e bt e nn e 17

I T o oo r=Ta o 11 o TN 1Y (oo = RSP 18

3.1, JTAG PrOgramiMing.......eeeiueeeaiteeeauieee sttt ettt et e et easte e e et e e s be e e aste e e saneeeabeeesanteeesaneeeabneenan 18

3.2, SPI Slave Programming............ccieiiiiiuiiiie e cciiiee e e ettt e e e s et e e e e et e e e e e setreeeaeseansnaeeaeeasanraeaaaaans 22

3.3, SPIMaster Programming.......c.coeooeeeiiieeeaieeeiee et eeseee e tee e e se e e seeeesneeeesneeeesnneeesneeeennneeennneas 25

4. Bypassing the Back Level ProteCtion............ocuuiiiiiiiiiiiie e 43

4.1. Bypass Back Level Protection Use Case...........oooii it 45

5. 1/O States DUriNgG ProgrammMing...........cciicuiiieeeiiiiiiie e e e ettt e e e ettt e e e e st e e e e e sataeeeaessssneseeaeeasnnseeeaeesnnens 46

6. MSS State During Programming (For PolarFire SOC FPGA ONlY)......cccviiiiiiiiiiiieiiiec e 48

7. Programming ReCOMMENAAtIONS........ccooiiuiiiiiiiiiiiiii et e e e e e e e e e e e e e 49

8. Brownout DUMNG Programming...........eeouiiiiiiee ettt e et 50

LS T (o] 11] o 1 SO U PR SURPTPPRPP PRSP 51

10. Programming the External SPI FIAsh...........cooouiiiiiiiiiie et 52

10.1. Supported SPI FIash DEVICES.........cuuiiiiiiiiiiie ettt 52

KO ol B 1= Ter (o] VPSP SPPPPOP 52

10.3. Use Models for Programming SPI Flash.............coooiiiiiiiiii e 53

11, APPENIX: EFTOr COUES. ..ottt ettt st e se et e et e s bt e e e aa e e ete e e s nes 58

12, REVISION HISTOIY ...ttt e et e e e e e ettt e e e e s abe et e e e e e anneeeeeeeannnneeeas 60

The MICrOChID WEDSITE. ...ttt e et e et 61

Product Change Notification SEIrVICE.........oo e it 61

(10T} () 0 [=T dRSTF o] o o]« SO ROPPPRPN 61

Microchip Devices Code Protection Feature.............oooiviiiiiiiiii e 61

[T o T 1 Ao (o7 T PSP PPPPPRN 62

LI (o =T 1 F= T T PO PPTPPI 62
© 2021 Microchip Technology Inc. User Guide DS50003191A-page 4

and its subsidiaries

Quality ManagemeEnt SYSTEML........coiiiii et 63

WOrIAWIde SalES @NA SEIVICE.......uuueuiitiieieieeeieeeee ettt ettt e e e e e e e eaeeeeaeeeeeeaeseseeassssssssssrssnnnns 64

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 5
and its subsidiaries

Bitstream Generation

1. Bitstream Generation
The Libero® SoC design suite generates the programming bitstream required for various programming modes.
Depending on the requirement, the programming bitstream may contain one or more of the following components:
» FPGA fabric logic
+ sNVM data
» eNVM data (for PolarFire SoC FPGA only)
* user security settings

The following table lists the programming interfaces used in various programming modes and the associated
bitstream formats.

Table 1-1. PolarFire and PolarFire SoC FPGA Programming Interfaces and Bitstream Formats

JTAG programming System controller’s dedicated JTAG FlashPro programmer

JTAG programming System controller’s dedicated JTAG External microprocessor | DAT

SPI slave programming System controller’s dedicated SPI FlashPro programmer DAT

SPI slave programming System controller’s dedicated SPI External microprocessor DAT

SPI master programming | System controller’s dedicated SPI System controller SPI
1.1 Bitstream Generation Flow

The following figure shows where the bitstream is generated in the Libero SoC.

Figure 1-1. Bitstream Generation in Libero Design Flow

< Create Design >

A

Implement Design Constraint Manager

1. Synthesis L - Pre-synthesis constraints
2. Place and route - Place and route constraints
3. Verify timing - Timing constraints

A

Program and Debug Design

- Configure design initialization data and memories
- Configure device I/0 states during programming
- Configure programming options and security

- Generate bitstream

- Program the device

A

Handoff Design for Production
Export bitstream (.STP, .DAT, .SPI, and .SVF)

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 6
and its subsidiaries

1.2

1.3

Bitstream Generation

Adding sNVM Data to the Bitstream

The sNVM is a user non-volatile flash memory that can be programmed independently. Each device has 56 Kbytes of
sNVM.

To add multiple sSNVM data clients to the bitstream in Libero SoC, go to Design Flow > Program Design >
Configure Design Initialization Data and Memories, as shown in the following figure.

Figure 1-2. Design and Memory Initialization
Project File Edit View Design Tools Help
LD W20 '

Jesign Flow =& Reports & X] PCle_RP_Top_derived_constraints.sdc & % I Constraint Manager & X g PCle_RF

Top Module(roat): PCle_RP_Top oo @ Desian Initialzation | LPROM SPIFIash]Fabri:RAMsI e |

Active Synthesis Implementation: synthesis
v p ¥ sy | piserd | hep |

| Tool lLl Usage statistics Clients
. Simulate
=~ b Constraints
.f'm Manage Constraints Used memary (in pages): 33
¥ = » Implement Design Free memory (in pages): 188 Client Name | Start Page ‘ 36-bit words |

1 Open Metlist Viewer ﬂINIT_STAGE_W_SNVM_CLIENT 202 4352

Available memory (in pages): 221 Add ... |v Edit ... |

v > Synthesize
Eb- b Verify Post-Synthesized Design
] Generate Simulation File
. Simulate
v 4 Place and Route
=+ b Verify Post Layout Implementation
C‘}_\ Verify Timing
(’k’_\ Open SmartTime
= b Configure Hardware
Il Programming Connectivity and Interface
@ Configure Programmer
& Select Programmer
=~ # Program Design
v +[| Generate FPGA Array Data
I‘% Confisure Desisn Initialization Data and Memories I
V *L enerate Uesign Intialization Data
« Configure Programming Options
@ Cenfigure Security
% Generate Bitstream
5 Cenfigure Actions and Procedures
‘G Run PROGRAM Action
Et- # Program 5Pl Flash Image
‘& Generate SPI Flash Image
—}- » Debug Design
Y, Identify Debug Design
=} » Handoff Design for Production
@ Configure Permanent Locks for Praduction
4 Export Bitstream b
-@ Export FlashPro Express Job [] Used space
% Export Job Manager Data] Free space
'@ Export SP| Flash Image j

2 | INIT_STAGE_2_SMVM_CLIENT |0 3612

Design Flow ‘ Design Hierarchy J Stimulus Hierarchy I Catalog J Files HODL Templates I 4|

Adding eNVM Data to the Bitstream (For PolarFire SoC FPGA Only)

The eNVM is a user non-volatile flash memory that can be programmed independently. Each device has 128 Kbytes
of eNVM.

To add multiple eNVM data clients to the bitstream in Libero SoC, go to Design Flow > Program Design >
Configure Design Initialization Data and Memories, as shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 7
and its subsidiaries

1.4

Bitstream Generation

Figure 1-3. Design and Memory Initialization

Project File Edit Wiew Design Tools Help

: s i
| Design Fow B X Dasign and Memory Inilaization @ X I Sutpace @ X]

[.
e kil it S o @‘ Desiy\lni!lalizmlon] WPROM] M] 5P1 Flash | Fabric RAMs E

=)
K| active synthests Implementation: synthesis_L

i | oot = sty | ot | wep |

Usage stalistics liesils,

|

=1 b Verify Post Layout Implementation
B Verify Timing Available memcey (in pages): 512 Ao |v = | | o T e
% Open SmartTime Used oy (in pages): 12

| % -
By verify Power Frie mamany (in pages): =00 Client Nnme| Start Pﬂge| 36-bit st|
i £ Open S5M Analyzer

— [Z b Configure Hardware _\]zq.np 500 o072
i - Programming Connectivity and Interface
o @B Configure Programmer
B Select Programmer
B [= » Program Design
Il Genevate FPGA Armay Data

*0 Configure Design Initialization Data and Memaories
0] Generate Design Initialization Data
- H} Configure |10 States Duing JTAG Pragramming
- & Configure Programming Options
@ Configure Security
v % Generate Bitstream
% Configure Adtions and Procedures | =]
ad A P ARASTARE Ao ‘I]

@Mempn) e 4, wernings R 1mie

The test_MSS_MI_V projest was spened. j

- : = =
Fam; PolarfireSol Part; MPFS250T_ES-IFCGELRIE I"‘Eﬂbﬂ

Adding User Security Settings to the Bitstream

Both the device families are provisioned with a set of unique factory keys. In addition, the end users can also

enroll their own security keys, thus providing complete independence from using Microchip provided keys. The user
encryption key1 (UEK1) and user encryption key2 (UEK2) are user-defined AES-2 symmetric keys. Either of these
keys can be used as the root key for encrypting and decrypting bitstreams, and to authenticate them.

To add user security settings in the bitstream:

1. InLibero SoC, go to Design Flow > Program Design > Configure Security > Custom security options, as
shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 8
and its subsidiaries

Bitstream Generation

Figure 1-4. Configure Security—Custom Security Options

L& 2>l

Sesign Flow

BX Repots BX | P AP Ton emed mnstantod 8 X Corsvanthansger @ % | Edecie mr oo @ X Desgnand Memory bitiioason § ¥

Ton Modudefraat]: PCEe AR Toa B Q [¢F |5 conguresecuitywar
Active Synthess Implementation: sythesis
[ont ILI =g =]
[Enable LEXL. Flachl ock{UPK1 is requied to change this settng. UPKCL and LEX L vl be programmed and svalable for use.
OO e e Enable LEX2. FlashlockUPK1 s reguired 1o change this settng,
= LIPHCE and US2 vl be programned and avadable for Lse, UPKZ ks requred 1o change P2 and WEKZ.
© Menege Constreints
W B b Implement Deign Update Poicy
By Open Netlist Viewer
el b ith LS L or LEKZ.
v - ?w i T SV can be updated using a Bitstnean encrypted with UEKL or LEKD.
i b Werify Past-Synthesized Design Eack Leve] pratection & dsabied.
Generate Simulstion. File rogramesng , Aute Update, TAP Services, for update.
B simulzte TG interface s enabled for update.
: Place and Route SPT Save interface i enabled for update.
L s EF‘_. .r';'d” ot Frogran action s enasle for TTAG and ZPL Slave interfaces,
ferify Perst Layout I : Hesrllr ot il
& Verify Tining esify for JTAG and SAI ; =
Open SmartTime.
Seaunty ey mode:
£ b Configure Hardware el
I+l Programming Connectivity and Interface r defaudt ke
& Configure Programmer
& Select Programmer
B b Program Design Les Ky Set 1 QS
v enerte FRGA Amay Data it b
Condiguee Design Infisiztion Diat and Memories e v Fiashiock/UF1 protects al security setings. ¥ou are nequeed to condgore It
v enerate Design Iniializstion Data Fshlsck PR L (54 HEE chansl:
g Dptions
| e [0111000101552885756345527234TA0S301 205512 3055342085704570134780 iy
3 Cordigure Actions and Procedures ‘fous can use Uses Encryation Key 1 (UEK) for Lpdang the Fabiic, WPROM, and shV or deable &,
' Run PROGRAM Action I DsbieLEX1
= b Program 5P flash Image
i3 Generate P Flash Image LEKL fUer Enrymtion Key 1) {64 HEX chars)c
B b Debug Design
T2 1dentity Debug Dessign o [02210:01019530037952450273347004 300205913 3032342075 8405750049085
- b Hansolt Design for Production
Configure Permanent Locks for Production User Ky Set 2 (K53)
Export Bitstream =2 _ _
| Eaport PlazhPro Express ob ‘fous £ optionally cenfigure Liser Kisy Sat 3 (UKSZ) for secord encryptien key.
Esport Job Manager Dsts I Drssbie LEX2
Export 52 Flash Image 2 .
Mt LEXZ {User Enarypition Key 2) {64 HEX chars):
Design Flow | Stinuserarchy | Catsiog | Fles | HOL Tenglates | S
. o [011102010135288376 4853785457257 4500205012 3053343085 TI0ATLEATED e
o9
l User Psgs Ky 2 {LUPRZ) protects UEK2 and is requned you use UBKE
(W) messages € Erors L Wemings @ 3of0 UFK2 iser Fass Key 2) (54 HEX chars):
Winzo: Hemory files have been generated succeasfully | e [smens T i I
‘Generate design initialization data' has complered suced — 2B
Stage | imitializacion client has been added so s¥VM,

2 initializacion client has been added To sNVIL

Carwel

|s:

x

Log [Miessage] _svrch esds] _cares ii Heby | pak |

ma [Fda s [= T Watchcase T Hateh ok werd
Click Next to modify Update policy. The Configure Security wizard appears as shown in the following figure.

i Mt | e |

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003191A-page 9

Bitstream Generation

Figure 1-5. Configure Security Wizard—Update Policy

=

Decin Fow

oo B|

fx

oA

Top Moduefroat]: PCle_RP_Top
Aztive Synthess [mplenentator: synthess:

T

| B
£ b Constraints
0 Marage Cerstraints
¥ 2 b implement Desgn
By Open Metlist Viswar
T Synthesice

b Verily Post-Synit

red Darsign

=5 b Veify Poot Layout lmphementation

& Verdy Timing

@ Ogen SmartTime

Configure Hardware

M Progremming Connectivity and Inderface

&\ Corfigure Programmer

BB Select Progeasnmes

Program hesign

=C] Generste FPGA Aray Data

+[1 Canfigure Design Inifializstion Deta and Memones

*L] Gerverite Design Initislization Dats

= Configure Programeing Opteans

@ Configure Seourity

5 Generate Bitstresm

% Configure Actinrs and Procedures

© Fun PROGRAM Actis

= b Program 5P| Flash
‘& Generste P F

Detug Design

Wentify Debug Design

Handoff Diesign for Peodue tion

BB Cerfiguee Perranent Lodes for Prosuction

E Export Bitstraam

Expart FlashPro Express Job
4] Expert 5P Flash Image |

Expert Job Manager Deta
Desgn Pl | Destan Himarchy | s Herarchy | Catekog | Fles | HOGTemplates | 4

tog

b

[E]Messages & A wernng @ Info

[W¥Info: Hemocy £iles have been genezated successfally

ate design initislization data' has completed succd
AL
rnce: srage 2 dnicializavion clisnt has besn added co siVH.

initialization client has been added to

Log [Mermage | SearchRemits | Cores |

Reports ® X | PCIe AP Top_derhved_nstraintscde # X | ConstantMansger @ X | Elpcre e top 8 X Design and Mensey Iitiainten 8% | e

51 Cordigure Security Wizard =

Updsie Pobey

Fabric can be updated usng & bitstream encrypted with UEK Y or UEKZ,

s con e undated using bitstream encrypted with UEK] or LEKZ,

Back Level protecton s ensbied, Use FlashlocsUPK 1 tn bymass adk Level oratection,
Gresgn version: Bads Level verson: &

'g Rieoovery ane ensbied for update,

action s mabled for JTAG snd S0 Save riasfaces,
cats ctor is ensbd for TTA ad 571 Sy e s,
i it o eniabbiad For JTAG and 50T Sla vbir faces.

Dutug Pokcy

Dl has ot been provided and vl rot be programsed.

SmaritDetag wer cebug oosss and acthe probes are enabied, ==
Security bey mode

™ Ertstraam encrypsion with defaultkey % Custom seourity optons

Fisid Upclates are erabied by default. You can disable updates by setting cptions bk
Lise: Fashlock fUPKL b temporanty erable disabled setangs.

Fabricfhivi

[Updates abioved Laing Lser defned encryvoton havs; FasLockiPia & netreqared for updates =]

ograning interfaces:
| I Aurto Frogramming and L4 Servces
I mas
I 5pr Slrve

Disable titstrem prograssring actions (JTAG/SP] Savil:

® ¥ Fndt Mt] m.reul Find A |9~am:|

=] T Hatchome | Matth whaie word

If Back Level protection is enabled, the Back Level version must be lower than the version of the design being
programmed. For more information about the fields, click Help. The back-level version value restricts the design
version that the device accepts as an update. Only (new) programming bitstreams with a Design Version strictly
greater than the current Back Level Version previously stored in the device are allowed for programming. Back-level
protection is secured by FlashLock/UPK1, which can be bypassed. The back level version and design version can
be modified in the configure programming options tool. For more information about SNVM and security settings, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003191A-page 10

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814

1.5

Bitstream Generation

The following figure shows the configuration of programming options.
Figure 1-6. Configure Programming Options

OS2 0B |

Yesign Flow B X Reports & X | PCle RP Top derived constiaints.sde & X | ConstaintManager & % | EZpcle RI

Top Modie(root): PCle_RP_Top g o oF Desion Initilzation | PROM sV | 5PIFiach | Fabricrams | et |

Active Synthesis Implementation: synthesis
4 : g soply | oserd | hep |

-
| Toal u Usage statistics Clients

. Simulate
5- b Constraints e e =3k 22 Add ... |v Edit ... | Delete ‘ Load design configuration

3 Manage Constraints Used memory (n pages): 33
¥ = » Implement Design Free memory {in pages): 188
1 Open Netist Viewer ﬂINT_STAGE_LSNVM_CLENT 202 2352

Client Name ‘ Start Page ‘ 36-bit words ‘

v S Synthesize
¥ Verify Post-Synthesized Design

(| Generate Simulation File

. Simulate
74 £ Place and Route
b Verify Post Layout Implementation

m Verify Timing

Open SmartTime

Configure Hardware
I+l Programming Connectivity and Interface
& Configure Programmer
& Select Programmer Design name: PCIe_RP_Top
Program Design
v +L| Generate FPGA Array Data

+L] Confi D Initialization Dat d M
- -enhgure besign inhialization Fata anc Memernes W [Back Level version (number between 0 and 65535): |3

= Configure Programming OIC'tW'i] Silicon signature (max length is 8 HEX chars): 0x | 12345678
IR

2| INIT_STAGE_2_SNVM_CLIENT 0 3612

i
-

B Cenfigure Programming Options x

T
-

Design version (number between 0 and 65535): |5

<

% Generate Bitstream
_‘Fé Configure Actions and Procedures oK Cancel
3 Run PROGRAM Action
=l ¥ Program SPI Flash Image TT
& Generate 5P| Flash Image
Debug Design
£y Identify Debug Design
Handoff Design for Production
a Configure Permanent Locks for Preduction
48] Export Bitstream
'E Export FlashPro Express Job [] Used space
4] Export Job Manager Data | | Free space
@ Export SPI Flash Image ﬂ

T
-

T
-

Design Flow | Design Hierarchy J Stimulus Hierarchy J Catalog J Files HDLTempIatesJ 4‘

For more information about the bypass back level protection, see 4.1 Bypass Back Level Protection Use Case.

Configuring Bitstream Components

To configure security settings, and bitstream components such as fabric, SNVM, and eNVM (for PolarFire SoC FPGA
only), follow these steps:

In Libero SoC, go to Design Flow > Program Design > Program Design.

Right-click Generate Bitstream, and select Configure Options....

The Configure Bitstream window opens.

Select Custom security, Fabric, sNVM, and eNVM (for PolarFire SoC FPGA only).
Click OK.

on =

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 11

and its subsidiaries

Bitstream Generation

Figure 1-7. PolarFire FPGA Configure Bitstream Window

NEHXN0 ¢

Design Flow #X Reports §X StartPage & X |
Top Module{roat): top
junks [,
Active Synthesis Implementation: synthesis v to Libero S0C Libero
[1oo [+} Libero SoC Quickstart What wou
=+ P Verify Post-Synthesized Design
*"| Generate Simulation File I if; i * \iey
. Simulate " i he W cre:
+L| Configure Register Lock Bits
v £ Place and Route Lbero Tutorils *Cre:
Edit Post Layout Design ; and
= ¥ Verify Post Layout Implementation Eroduct Tutoripls
*’| Generate Back Annotated Files Training Webcasts . Cres
B simulate conj
174 Qt Verify Timing M mi W
Open SmartTime * Imp
ify Power
£% Open SSN Analyzer
= ¥ Configure Hardware L]
I Programming Connectivity and Interface
Configure Programmer am
: Select Programmer e K I
=l » Program Design ™ Custom secur ty o
v :JI genelrate FPG.u_. .QII'ﬂ?"IDB_H . . 7 Fabric/stVM Canc
onfigure Design Initialization Data and Memories
v *L| Generate Design Initialization Data I~ Sanitize all VM pages in ERASE action Help I
g% Configure /0 States During JTAG Programming
= Configure Programming Options
@ igure Actions and Procedures
i3 Run PROGRAM Action
=- ¥ Program 5Pl Flash Image
% Generate SPI Flash Imaae
User Guide DS50003191A-page 12

© 2021 Microchip Technology Inc.
and its subsidiaries

1.6

Bitstream Generation

Figure 1-8. PolarFire SoC FPGA Configure Bitstream Window

NE =220 @ |

A O ey grmem | W WA O] () e

Design Flow & X [T Mprs_ICICLE KIT_BASE_DESIGN & X StartPage & X |
Top Module{root): MPFS_ICICLE_KIT_BASE_DESIGN B O « @'
Lnks [
Active Synthesis Implementation: synthesis Wi to Libero SoC leer{) E
[T“"’* e s l:-J ibero SoC Quickstart What would
; e te
Edit Post Layout Design I als i * iew |
= » Verify Post Layout Implementation - he Wb create
+L] Generate Back Annotated Files Livero SoC Release Hates on the Web
Simulate Libero Tutorials * Create
B Verify Timing) and us
Q:‘ Open SmartTime Broduct Tutorils
El Verify Power Training Webcasts » | ; eate
%% Open SSN Analyzer conjur
= ¢ Configure Hardware Microsermi SoC Webste
I Programming Connectivity and Interface "
Configure Programmer
Select Programmer o
=l # Program Design SHIEER oK |
L] Generate FPGA Array Data I Custom seaiity
*L1 Configure Design Initialization Data and Memories Cancel
+_] Generate Design Initialization Data ¥ Fabricjshvm
ks Configure /0 States During JTAG Programmin
h: Conﬁ:ute Programming ngtiom 2 2 I'" sanitize all VM pages in ERASE acton &
"' Cnlig [, l- M
[Generate Bitstream | iz
o anlgure Actions and Procedures ™ sanitize all etV pages in ERASE action
& Run PROGRAM Action
=I- ¥ Program 5P| Flash Image
13 Generate 5P Flash Image
O Run PROGRAM_SPI_IMAGE Action

To export bitstream files, go to Design Flow > Handoff Design for Production > Export Bitstream.

Note: Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is
used to program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to
enable it.

Programming File Size

Programming files are encrypted with factory key or user key. So, the file (.dat or .spi) cannot be compressed to
reduce the file size. The following table lists the PolarFire FPGA programming file sizes when custom security is
disabled.

Table 1-2. PolarFire FPGA Programming Files Sizes—Custom Security Disabled

PolarFire FPGA

Fabric and sNVM (kB) STAPL 5585 9611 14772 23446
DAT 3497 6043 9307 14789
SPI 3496 6041 9305 14788

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 13

and its subsidiaries

Bitstream Generation

The following tables list the PolarFire FPGA programming file sizes when custom security is enabled.

Table 1-3. PolarFire FPGA Programming Files Sizes—Custom Security Enabled

PolarFire FPGA

MPF100 | MPF200 MPF500

Custom Security, Fabric STAPL Master Files 5595 9621 14784 23456
+and sNVM (kB) UEK1/UEK2 5585 9611 14774 23446
DAT Master Files 3502 6047 9312 14794
UEK1/UEK2 3497 6043 9307 14789
SPI Master Files 3498 6044 9308 14790
UEK1/UEK2 3496 6041 9305 14788
Custom Security (kB) STAPL NA 84 84 84 84
DAT NA 8 8 8 8
SPI NA 4 4 4 4

For example, MPF200 programming file size (SPI) that contains Security, Fabric, and sSNVM is 6044 Kbytes or ~
6 MB. The following table lists examples of external SPI Flash memory densities that are required based on the
number of programming images stored.

Table 1-4. PolarFire FPGA—Approximate External SPI Flash Memory Size

Number of Images External SPI Flash Size

1 6 MB

2 12 MB
3 18 MB
4 24 MB

The following table lists the PolarFire SoC FPGA programming file sizes when custom security is disabled.

Table 1-5. PolarFire SoC FPGA Programming Files Sizes—Custom Security Disabled

PolarFire SoC FPGA'

MPFS250T
Fabric, sNVM, and eNVM (kB) STAPL 14717
DAT 9261
SPI 9259

1 Other PolarFire SoC FPGA devices will be updated in future.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 14
and its subsidiaries

Bitstream Generation

The following tables list the PolarFire SoC FPGA programming file sizes when custom security is enabled.

Table 1-6. PolarFire SoC FPGA Programming Files Sizes—Custom Security Enabled
PolarFire SoC FPGA!

MPFS250T
Custom Security, Fabric STAPL Master Files 14721
+and sNVM (kB) UEK1/UEK2 14714
DAT Master Files 9263
UEK1/UEK2 9258
SPI Master Files 9259
UEK1/UEK2 9257
Custom Security (kB) STAPL NA 85
DAT NA 8
SPI NA 4

1 Other PolarFire SoC FPGA devices will be updated in future.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 15

and its subsidiaries

Device Programming Flow

Device Programming Flow

The device programming flow starts when the system controller receives or initiates device programming and ends
when the bitstream data is fully transferred and verified. The system controller fetches the bitstream data block-by-
block to program the device. Authentication of the bitstream and verification of the programmed contents are part of
the programming flow. The security settings are enabled either after erasing the device contents or on completion of
device programming. On successful completion of programming, the system controller resets the device to run the
programmed design. This programming flow is common to all the programming modes.

The following figure summarizes the device programming flow.

Figure 2-1. Programming Flow

< Device initiates programming >

4

Device gets programming data

Bitstream
Authentication

Fail

Pass

Device erases the fabric, SNVM, eNVM*, and user
security settings according to the bitstream

»
»

4

Device processes the block of bitstream data

\

According to the bitstream, device programs, and verifies the
- user security settings

- fabric

- sSNVM

- eNVM*

No

End of bitstream?

A 4

< End of device programming > < Diﬁ?ézzazréor >

* Applicable for PolarFire SoC FPGA only

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 16
and its subsidiaries

21

Device Programming Flow

Note: Programming cycle count is incremented for both programming and erase operations, since erase is internally
a programming scheme. For more information about programming cycle count, see the PolarFire FPGA and
PolarFire SoC FPGA System Services User Guide.

Programming Time

Programming time is the time taken to erase the existing contents of the device, process bitstream data, program
the device, and verify the programmed contents. The programmed content is verified as the next block of data is
loaded for programming. The simultaneous programming and verification mechanism considerably reduces the total
programming time.

The total programming time of both the device families is less than 60 seconds. For information about programming
time for specific devices and programming modes, see respective PolarFire FPGA Datasheet or PolarFire SoC FPGA
Advance Datasheet.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 17

and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136519
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244583
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244583

3.1

3.141

3.1.2

Programming Modes

Programming Modes

This section describes the three programming modes in detail.

JTAG Programming

Both PolarFire FPGA and PolarFire SoC FPGA have a built-in JTAG controller that is compliant with the IEEE 1149.1
and |IEEE 1532 standards. The JTAG controller communicates with the system controller using a command register
that sends the JTAG instruction to be executed and a 128-bit data buffer that transfers any associated data.

JTAG Programming Interface

In both the PolarFire FPGA and PolarFire SoC FPGA, the JTAG pins are located in a dedicated I/0O bank 3 VDDI. For
information about the 1/O states during JTAG programming, see 5. /O States During Programming.

The JTAG bank voltages can be set to operate at 1.8 V, 2.5V, or 3.3 V. The following table lists the JTAG pins.
Table 3-1. JTAG Pins

Weak Pull-Up/Unused Description
Condition

Input Yes/DNC JTAG test mode select.
TRSTB Input Yes' JTAG test reset. Must be held low during device operation.
TDI Input Yes/DNC JTAG test data in.

In ATPG or test mode, when using a 4-bit tdi bus, this 10 is
used as tdi[0].

TCK Input No? JTAG test clock
TDO Output No/DNC JTAG test data out.

1. If TRSTB is unused and in the avionics mode, either an external 1 kQ pull-down resistor must be connected to it
to override the weak internal pull-up or it must be driven low from the external source.
2. In unused condition, must be connected to VSS through 10 kQ resistor.

JTAG Timing

Proper operation of JTAG programming depends on the timing relationship between JTAG pins as shown in the
following figure. For recommended timing values, see JTAG switching characteristics in respective PolarFire FPGA
Datasheet or PolarFire SoC Advance Datasheet.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 18
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136519
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136519
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244583

Programming Modes

Figure 3-1. JTAG Signals Timing Diagram

TCK

TDI

|
torsu

A 4

TMS

TDO

|

|

,

|

|

|

|

i |
toiHp :
|

|

|

|

|

T

|

trmssu :4—}:4—»' trmsHD

|
!

A

Tristate

L}

JTAG Programming Using FlashPro Programmer

Microchip FlashPro programmer (version 5 or later) can be used to program both the device families through the
dedicated JTAG interface. This can be done either using the Libero SoC or a standalone FlashPro Express.

4—>: trek2q

The FlashPro programmer connects to the device via a 10-pin programming header using a FlashPro cable (10-pin
ribbon), as shown in the following figure.

Figure 3-2. JTAG Programming Using External Programmer

PolarFire® FPGA/POIarFire SoC FPGA Programming Header
(Dedicated JTAG)
8 8 10-Pin Ribbon External USB
JTAGII < O O le Cable Programmer | Host PC
Controller 00 (FlashPro5 or

later

System ©Oo)
Controller
v
sNVM, eNVM*, and
User Security
Settings
FPGA Fabric
|:| Device contents to be programmed
* Applicable for PolarFire SoC FPGA only.
User Guide DS50003191A-page 19

© 2021 Microchip Technology Inc.
and its subsidiaries

Programming Modes

The following table lists the FlashPro header signals.

Table 3-2. FlashPro Header Signals

Direction to FlashPro Description
Programmer

TCK/SCK Output JTAG/SPI clock.
2 GND — Signal reference. GND pins must be connected.
3 TDO/MISO Input JTAG/SPI data output from programming device.
4 PROG_MODE Not connected Unused
5 TMS/SS Output JTAG test-mode select/SPI slave select.
6 VJTAG/VSPI | — Target interface voltage input.
7 VPUMP Not connected Unused
8 TRSTB Output JTAG test reset.
9 TDI/MOSI Output JTAG/SPI data input to programming device.
10 GND — GND

A single FlashPro programmer can program multiple Microchip FPGAs from the same family or from different families
in a single JTAG chain. The TDO pin of the JTAG header represents the beginning of the chain. The TDI pin of the
last device connects back to the JTAG header, thus completing the JTAG chain. The following types of FPGAs can be
added to a JTAG chain:

» Microchip devices targeted for programming
* Microchip bypass devices not targeted for programming
* Non-Microchip bypass devices

When a device is in bypass mode, the device’s data register length is automatically set to 1 and the device

stops responding to any programming instructions. To place a device in bypass mode, the instruction register (IR)
length must be known. For Microchip FPGAs, the IR length is obtained automatically by the FlashPro Express. For
non-Microchip FPGAs, the boundary scan description language (BSDL) file, which contains a sequence of boundary
scan commands and data, must be loaded, or the IR length must be manually entered in the FlashPro Express. For
more information about JTAG chain programming, see FlashPro User’s Guide.

Figure 3-3. Device Programming in JTAG Chain

Device #6 Device #5 Device #4
PolarFire® FPGA/
Non-Microchip PolarFire SoC FPGA Non-Microchip
TDI pTDI SoC FPGA TDO| P TDI IR=8 TDO P TDI Soc FPGA TDO—
IR=4 IR=6
FlashPro
> JTAG
Programmer Header
Device #1 Device #2 Device #3
Non-Microchi SmartFusion®2/ ®
TDO « TDO Soc FPGA P TDI ¢ TDO IGLOO®2 FPGA TDI« TDO ProASIIRC 34FPGA TDIl¢—
IR=4 IR=4

For information about power supply requirement and filtering capacitors, see respective UG0726: PolarFire FPGA
Board Design User Guide or UG0901: PolarFire SoC Board Design Guidelines User Guide.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 20
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130809
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244576

Programming Modes

The following figure shows the connections between the programming header and the device.

Figure 3-4. Connecting FlashPro Programmer to a Device

PolarFire® FPGA/
PolarFire SoC FPGA

System Controller

TCK
TDO

TCK

TDO

T™MS

TDI
TRSTB

JTAG Controller

T™S

\DT\Am w |~

TDI

1 kQ

FlashPro/
JTAG Header

PROG_MODE

VITAG
VPUMP

TRSTB

GND

o [o [~

GND

JTAG Programming Using External Microprocessor
An external microprocessor can be used to program the device through the dedicated JTAG interface. This type of
programming requires that the external microprocessor run DirectC, a Microchip programming solution for FPGAs,
and the microprocessor’s GPIO ports drive the JTAG interface.

1kQ

I—AW—

Note: The DirectC solution supports programming of the FPGA fabric, sSNVM, eNVM (for PolarFire SoC FPGA only),
and user security settings. DirectC is used by adding the necessary APIs and compiling the source code to create a
binary executable. The binary executable is downloaded to the external microprocessor along with the programming
data file. For more information, see the latest version of the DirectC User Guide available on the Microsemi DirectC

solution webpage.

Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is used to
program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to enable

it.

© 2021 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003191A-page 21

https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads
https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads

3.2

3.21

Programming Modes

The following figure shows a sample implementation of device programming using an external microprocessor
running DirectC.

Figure 3-5. Programming Using External Microprocessor

PolarFire® FPGA/PolarFire SoC FPGA | programming Header
(Dedicated JTAG) »
0O <
e | 8 8 P EIR: Microprocessor
- hl Ll (9] H i
Controller 00 5 £ Running DirectC
Q
System ©©o s
Controller - v
A 4 Y
sNVM, eNVM*, and
User Security Programming Image (.DAT)
Settings
y
FPGA Fabric
Device contents to be
programmed

* Applicable for PolarFire SoC FPGA only.

SPI Slave Programming

Both the device families can be programmed using an external SPI master such as an external microprocessor or a
FlashPro programmer through the SPI interface. See Table 3-4 for the pin settings that must be used to configure the
system controller SPI in slave mode.

The SPI slave or master mode is determined by |IO_CFG_INTF SPI pin at device Power-on Reset (POR) and cannot
be switched dynamically. A power cycle or DEVRST is required to change the SPI configuration from Slave to Master
or vice-versa by configuring the IO_CFG_INTF pin, as mentioned in Table 3-3.

When SPI is in Slave mode, fabric has no access to SPI and the SPI interface is dedicated to the system controller.

Design initialization from an external SPI flash is not supported when the device is in SPI slave programming mode.
For information about design initialization, see PolarFire FPGA and PolarFire SoC FPGA Power-up and Reset User
Guide.

SPI Slave Programming Interface

In addition to the standard SPI signals, both the device families provide two pins—SPI_EN and IO_CFG_INTF—for
configuring the SPI controller.

The following table lists the system controller’s SPI pins and specifies what must be done if a pin is not in use

(unused condition). For information about unused conditions and power sequence, see respective UG0726: PolarFire
FPGA Board Design User Guide or UG0901: PolarFire SoC FPGA Board Design Guidelines User Guide.

Table 3-3. System Controller SPI Pins

Bidirectional | SPI clock." Connect to VSS through a 10 kQ
resistor
SS?2 Bidirectional 'SPl slave select. Connect to VSS through a 10 kQ
resistor
User Guide DS50003191A-page 22

© 2021 Microchip Technology Inc.
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
https://www.microsemi.com/document-portal/doc_download/136520-ug0726-polarfire-fpga-board-design-user-guide
https://www.microsemi.com/document-portal/doc_download/136520-ug0726-polarfire-fpga-board-design-user-guide
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244576

3.2.2

Programming Modes

........... continued
Input SDI input. Connect to VDDI3 through a 10
kQ resistor
SDO Output SDO output. DNC
SPI_EN Input SPI enable. Connect to VSS through a 10 kQ
0: SPI output tristated resistor
1: Enabled
Pulled up or down through a resistor or driven
dynamically from an external source to enable or
tristate the SPI 1/0.
IO_CFG_INTF Input SPI I/O configuration. Connect to VSS through a 10 kQ
0: SPI slave interface resistor

1: SPI master interface

Pulled up or down through a resistor.

1. Shared between the system controller and the FPGA fabric/MSS (for PolarFire SoC FPGA only). When the
system controller’s SPI is enabled and configured as master, the system controller hands over the control of the SPI
to the fabric (after device power-up)/MSS (for PolarFire SoC FPGA only). When the SPI_EN pin is disabled (driven
low) or when the SS is driven HIGH, the system controller’s SPI outputs are tristated.

2. The system controller SS pin is an active-low signal. In unused condition, the pin must be tied to VSS to avoid a
floating pin on the device.

The SPI_EN and I0_CFG_INTF pins must be configured external to the device. This can be done by using jumpers
on the board or by bootstrapping. The following table lists the SPI_EN and IO_CFG_INTF configuration for SPI slave
programming.

Table 3-4. System Controller’s SPI Configuration - SPI Slave

SPI Slave Description
Programming

SPI_EN | IO_CFG_INTF

0 X No Dynamic switching from Slave to Master or vice-versa is

not allowed. A power-cycle or device reset (DEVRST_N) is
1 0 (SPI slave mode) | Yes required to change the SPI configuration from Slave to Master
1 1 (SPI master mode) No or vice-versa by configuring the IO_CFG_INTF pin.

SPI Slave Programming Using FlashPro Programmer

Microchip FlashPro programmer (version 5 or later) can be used to program device through the dedicated SPI. This
can be done using either the Libero SoC or a standalone FlashPro Express. The FlashPro programmer is connected
to the device SPI ports, as shown in the following figure.

The target board must provide power to the VDD, VDD18, VDD25, and VDDI3.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 23
and its subsidiaries

3.2.3

Programming Modes

Figure 3-6. SPI Slave Programming Using External Programmer

VDDI3
-
- 10 kQ
1kq| PolarFire® FPGA/ FlashPro
PolarFire SoC FPGA Header
(SPI Slave)
SPI_EN
anp 2
System Controller
scx | ; SCK 4
oy 00 iSO PROG_MODE [—x
[— 3 SS VSPI 6~
o Xg{ VPUMP 8
N MOSI FL_GLD[X
enp L0
IO_CFG_INTF
1kQ §1 ke

Device Programming using SPI Slave can be selected in Libero SoC Design Flow > Configure Hardware >
Programming Connectivity and Interface.

SPI Slave Programming Using External Microprocessor

An external microprocessor (such as a host PC or another Microchip FPGA) can be used to program the device
through the dedicated SPI port, as shown in the following figure. This type of programming requires that the external
microprocessor run the Microchip SPI-DirectC solution. The external microprocessor can also control the SPI_EN,
IO_CNF_INTF, and DEVRST_N pins to program the device.

SPI-DirectC supports programming of the FPGA fabric, sSNVM, eNVM (for PolarFire SoC FPGA only) and user
security settings. SPI-DirectC is used by adding the necessary APIs and compiling the source code to create a binary
executable. The binary executable is downloaded to the external microprocessor along with the programming data
file. For more information, see the latest version of the SPI-DirectC User Guide available on the Microsemi DirectC
solution webpage. The example project (Direct-C installer) is also available on the Downloads tab.

For information about FlashPro header signals, see Table 3-2.

Figure 3-7. SPI Slave Programming Using External Microprocessor

VDDI3
1 kQ PolarFire® FPGA/
PolarFire SoC FPGA External
(SPI Slave) 10 "Qg Microprocessor
SPI_EN (SPI Master)
System Controller
ss |« ss
spr SCK < SCK
SDO f——PN————P» MISO
SDI |@——|——— MOSI
10_CFG_INTF §1 kQ
1kQ
User Guide DS50003191A-page 24

© 2021 Microchip Technology Inc.
and its subsidiaries

https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads
https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads

3.3

Programming Modes

SPI Master Programming

When the system controller SPI is configured as a master, a device can program itself. In SPI master programming,
the programming images are stored in the external SPI flash memory using the SPI directory. For more information
about the SPI directory and about programming the external SPI flash memory, see 10. Programming the External
SPI Flash.

SPI master programming supports auto update and IAP. In auto update programming, if the version of the update
image is found to be different from the currently programmed version, the system controller reads the update image
bitstream from the external SPI flash memory and programs the device on power-up. In IAP, the user application
initiates the device program, and the system controller reads the bitstream from the external SPI flash memory to
program the device. The auto update and IAP operations are atomic and cannot be interrupted by JTAG or SPI slave
commands.

The Auto Update feature is not enabled by default and if required, this needs to be enabled using Libero SoC. SPI
Master mode also supports Auto Programming and Auto Recovery, see Table 3-5. These two features are enabled by
default and do not require user configuration.

For information about the 1/O states during SPI master programming, see 5. 1/O States During Programming.
The following table lists the initiation sources for the features supported by SPI master programming.

Table 3-5. Device Program Initiation Sources

Programming Description Initiation Source
Feature

Auto programming | Programs a blank device Device reset or power-cycle

Auto update Updates device contents Device reset, power-cycle, or system service request
automatically

IAP Updates device contents upon user | System service request
request

Auto recovery’ Automatically recovers the device Device power failure during programming

from programming failure

1If there is a power interruption while Auto update or IAP updating the eNVM (for PolarFire SoC FPGA only) or
sNVM , then the auto-recovery is not triggered. Though, the eNVM (for PolarFire SoC FPGA only) or sNVM are
not updated completely, the device starts up and boot as normal. However, the partially programmed eNVM (for
PolarFire SoC FPGA only) or sNVM causes the user design to malfunction. In this case, the user needs to use
different mechanisms like VERIFY action or Digest Check to determine if the programming is successful.

For information about implementing Auto update and IAP, see AC466: PolarFire FPGA Auto Update and In-
Application Programming Application Note.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 25
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137707
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137707

3.31

3.3.1.1

3.3.2

3.3.21

Programming Modes

The following figure shows the recommended board configuration for SPI master programming. The VDDI3 must
match the voltage specified in the datasheet associated with the external SPI flash.

Figure 3-8. Recommended Board Configuration for SPI Master Programming

VDDI3
PolarFire® FPGA/ 10k
§1 k | PolarFire SoC FPGA External
(SPI Master) 10 k SPI Flash
WP v
cc
SPI_EN HOLD
System Controller
SS CS
SCK SCK
SPI SDO MOSI
SDI [———— MISO
?4.7 K GND
I0_CFG_INTF § 1k

SPI Master Programming Interface

The SPI_EN and I0_CFG_INTF pins must be configured external to the device by using jumpers on the board or by
bootstrapping. The following table provides the SPI_EN and IO_CFG_INTF pin configuration details for SPI master
programming.

Table 3-6. System Controller’s SPI Configuration—SPI Master

SPI Master Programming

0 X No No

1 0 (SPI slave mode) No No
1 1 (SPI master mode) Yes Yes

System Controller SPI Mode and Clock

The system controller SPI operates in data transfer mode 3 (SPI mode 3) for SPI flash read operations. Both the
clock polarity (SPO/CPOL) and clock phase (SPH/CPHA) for this data transfer mode must be set to HIGH. The
system controller’s SPI operates at a fixed clock of 20 MHz.

System Services

Both PolarFire FPGA and PolarFire SoC FPGA devices include a System Controller, which accepts and responds to
system service requests from the user.

The user application can initiate the following programming related system services:

» Bitstream authentication
* |AP image authentication
* Auto update

+ IAP

PolarFire FPGA System Services
In PolarFire FPGA, system services are system controller actions initiated by the fabric user logic through the
system controller’s system service interface (SSI). For initiating the system services, the fabric user logic requires the

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 26
and its subsidiaries

Programming Modes

PF_SYSTEM_SERVICES SgCore IP available in the Libero catalog. The following figure shows the design interface
between fabric and System Controller.

Figure 3-9. Design Interface Between Fabric and System Controller

PolarFire® FPGA

sNVM pNVM
PUF
FPGA Fabric 7y
\ 4
» SSI |
General APB < » System Controller
Purpose |« p{ PF_SYSTEM_SERVICES - -
Processor q Device and Design
Mailbox g Information Services
Interface

Device Programming
Services

Data Security Services

Fabric Services

System SPI
Controller
Cryptoprocessor
and NRBG JTAG

For information about PolarFire FPGA system services driver and example SoftConsole project, see Firmware
Catalog, which is available in the Libero SoC installation package.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 27

and its subsidiaries

Programming Modes

3.3.2.1.1 PolarFire System Services Configurator
The following figure shows the PolarFire System Services Configurator.

Figure 3-10. PolarFire FPGA Core System Services Configurator
1 | Configurator — O X

PolarFire System Services
Microsemi:SgCore;PF_SYSTEM_SERVICES

Configuration | SHVM |

>

Device and Design Information Services

Serial Number Service: [% UserCode Service: F
Design VersionService: [Device Certificate Service:
Read Digest Service: F Query Security Service:

Read Debug Info Service: PF_SYSTEM_SERVICES 0

Design Services

USR_CMD_ERROR
Bitstream Authentication Service: [I I IAP Image Authentication Service: F I
CLK USR_BUSY
Data Security Services RESETN SS_BUSY
Data Signature Service: [* Sacure NVM Write Service: [+ APBSlave USR_RDVLD|—
Secure NVM Read Service: [PUF Emulation Serviee: [* SYSSERV_INIT REQ
Nonce Service: I

PF_SYSTEM_SERVICES

Fabric Services

Digest Check Service: " [AP Service: F]
[14P Auto Update Service: [|

-

[\ symbal /

«
Log

[ElMessages @ Errors .k Warnings @ Info

Help T QK Cancel |

The fabric master is connected to the PF_SYSTEM_SERVICES core using the APB interface. The
PF_SYSTEM_SERVICES core can be configured using the PolarFire System Services configurator in Libero SoC, as
shown in Figure 3-10. For more information, see UG0848: PolarFire System Services User Guide.

3.3.2.2 PolarFire SoC FPGA System Services

In PolarFire SoC FPGA, system services are System Controller actions initiated by PolarFire SoC MSS. MSS
communicates with the System Controller over System Controller Bridge (SCB) bus. The following figure shows the
design interface between MSS and System Controller.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 28
and its subsidiaries

http://coredocs.s3.amazonaws.com/Libero/SgCore/PolarFire/PF_SYSTEM_SERVICES/pf_system_services_config_ug.pdf

3.3.23

Programming Modes

Figure 3-11. Design Interface Between MSS and System Controller

PolarFire® SoC FPGA

SNVM pNVM
PUF
A
MSS y
System Controller
SCB
7/ System Services

CPU Core Complex NT——V/

Device and Design
Information Services

Device Programming
Services

Data Security Services

Fabric Services

Debug Services

Passcode Services

SPI Flash Memory Read
Service

System Controller SPI
Cryptoprocessor and
NRBG JTAG

For information about PolarFire SoC FPGA MSS system services driver and example SoftConsole project, see
GitHub.

System Service Request

In both PolarFire FPGA and PolarFire SoC FPGA, the system service request is initiated by passing a 16-bit system
service descriptor to the System Controller. The lower seven bits of the descriptor specify the service to be performed
and the upper nine bits specify address offset. There is a 2 Kbytes internal mailbox RAM memory space. This space
is used for passing the input data and storing the service request output that is returned by the System controller.
The mailbox address specifies the service-specific data structure that is used for any additional inputs to or outputs
from the service. On completion of service, the System Controller writes a status code indicating the successful
completion of the system service or an error code. The following table lists the system service request descriptor bits.
For information about mailbox read/write communication from Fabric, see UG0848 PolarFire System Services User
Guide.

Table 3-7. PolarFire FPGA and PolarFire SoC FPGA System Service Request Descriptor

System Service Descriptor | Value Description
Bit Field

15:7 MBOXADDR][10:2] Specifies the address offset in mailbox RAM to access
minimum four bytes of memory. Mailbox addresses are
specified using a word offset (0-511).

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 29
and its subsidiaries

https://github.com/polarfire-soc/polarfire-soc-bare-metal-examples
http://coredocs.s3.amazonaws.com/Libero/SgCore/PolarFire/PF_SYSTEM_SERVICES/pf_system_services_config_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/SgCore/PolarFire/PF_SYSTEM_SERVICES/pf_system_services_config_ug.pdf

3.3.24

3.3.24.1

3.3.24.2

Programming Modes

........... continued

System Service Descriptor | Value Description

Bit Field

6:0 SERVICECMD Service command for System Controller to execute the

request.

For more information about system services, see PolarFire FPGA and PolarFire SoC FPGA System Services User
Guide.

Bitstream and IAP Image Authentication System Services

For security and reliability reasons, the programming bitstream must be authenticated and validated before the
device is programmed. Successful authentication of the bitstream prevents auto recovery. While the authentication is
in progress, the fabric user logic in PolarFire FPGA and MSS user application in PolarFire SoC FPGA continues to
operate normally, though without access to SPI flash and system services. Before the device is programmed using
auto update or IAP, the user application can run the authentication system service.

Note: If the bitstream authentication system service is initiated while a new bitstream is being loaded through the
JTAG interface, the system service takes precedence, and the JTAG operation fails.

Bitstream Authentication System Service
The bitstream authentication system service parses a bitstream image stored in the SPI flash and verifies the integrity
of the bitstream. The following table lists the fields in a bitstream authentication service request.

Table 3-8. Bitstream Authentication Service Request

15:7 MBOXADDR[10:2] | Mailbox address. For the format, see Table 3-9.

6:0 23H Bitstream authentication command code.

The following table describes the bitstream authentication service mailbox format.

Table 3-9. Bitstream Authentication Service Mailbox Format

SPIADDR | Input Address of the bitstream in SPI flash.
If the external SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

IAP Image Authentication System Service
The IAP image authentication system service parses an image stored in the SPI flash and verifies the integrity of the
image descriptor, bitstream, and design initialization data.

The following table lists the fields in an IAP image authentication service request.

Table 3-10. IAP Image Authentication Service Request

Field

15 — Reserved.
147 IMAGEID[7:0] Identifies the image index in the SPI directory for image
authentication.
6:0 22H Authenticates image command.
© 2021 Microchip Technology Inc. User Guide DS50003191A-page 30

and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815

3.3.243

3.3.24.4

3.3.3

Programming Modes

Authentication Service Status Codes

If bitstream authentication or IAP image authentication is successful, the status code 0 is generated. If bitstream
authentication or IAP image authentication fails, an 8-bit error code is generated. For the detailed information about
error codes, see 11. Appendix: Error Codes.

Usage of Authentication System Services

The programming image contains the image descriptor, bitstream, and optional design initialization data. The
bitstream authentication system service can be used to authenticate the bitstream only. The IAP image authentication
system service, however, can be used to authenticate the entire programming image, including the image descriptor,
bitstream, and optional design initialization data.

Auto Update

For auto update to occur, the auto update feature needs to be enabled in the user design. On power-up, the device
selects the newer version of the first two images stored in the SPI directory. If the version of the newer image

does not match that of the currently programmed image, then auto update occurs. The following figure shows the
high-level flow of auto update programming.

Figure 3-12. Auto Update High-Level Flowchart

Power-up/
System Reset

h 4

Device Boot Up

Y

Device Yes

SPI master mode programmed
enabled? No already?
Yes No
b 4

Auto update
enabled?

Yes

Device
programmed
already?

A

A 4 A 4

. Initialize and execute
Design not updated .
(9 P) user design
*Different scenarios to reach here:

- Device is blank and auto update is initiated to program the device
- As part of IAP recovery when power fails during IAP or partially programmed with an invalid image
- As part of auto update recovery when power fails during auto update

Execute Auto
Update Flow

The following figure shows the detailed flow of auto update programming.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 31

and its subsidiaries

Programming Modes

Figure 3-13. Auto Update Detailed Flow

Auto Update
Start

A

A Program newer
image

1.Read image descriptor pointers.

2.Read Image 0 and Image 1
version info and determine
update image.

Program

Passed?
Y
. Yes
Design update
required??! Image info No
authenticated??
No
Retry program
newer image
Y
A
Program No Program older
—————————P .
passed? image
Yes
e Yes Program
b passed?
No
A 4 v

Design not Initialize desi Design not
updated nitialize design updated?
1. Condition for update: version of the design differs from the update image or the device is blank.

2. Device checks only BITS (starting bits of the bitstream) and AUTH (encryption keys information) components of
the bitstream as part of the programming.
3. The device is not programmed, and user intervention is required.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 32

and its subsidiaries

3.3.31

3.3.3.2

Programming Modes

The following table lists example auto update conditions when different image versions are available in the SPI flash.

Table 3-11. Example Auto Update Conditions

Version Running on First Two Image Versions Back Level Protection | Image Version Selected for
the Device Available in SPI Flash Auto Update

Blank device Disabled

3 2,3 Disabled No auto update
3 1,2 Disabled 2

2 1,2 Disabled No auto update
1 1,2 Disabled 2

2 3,4 Enabled and set to 4 No auto update
3 3,5 Enabled and set to 4 5

2 3,5 Enabled and set to 4 5

5 2,3 Enabled and set to 4 No auto update

Auto Update on a Blank Device (Auto Programming)
When a blank device is powered up or reset (with SPI master mode enabled), the device programs itself using the
newest version of the image. This process is known as auto programming.

When the device is blank and programmed using the auto programming method with security-enabled bitstream,
subsequent programming can only be done using a custom security-enabled bitstream file (UEK1/UEK2). For more
information about generating security enabled bitstream, see 1.4 Adding User Security Settings to the Bitstream.

Auto Update on a Pre-programmed Device

Auto update is also initiated through system services on a pre-programmed device. If the device is preprogrammed, it
compares the update image with the currently programmed image. If the version of the update image is found to be
different from the currently programmed version, auto update programming is initiated.

To perform auto update on a preprogrammed device, the user application must initiate a system service request. The
system controller executes the system service request and programs the device.

The user application cannot obtain the status code in the following scenarios:

+ If the auto update program is successful, the device is automatically restarted to initialize the new version of the
design.

+ If the auto update program fails, the auto update recovery procedure attempts to program the device with the
valid image again.

The following table lists the fields in an auto update system service request.

Table 3-12. Auto Update System Service Request

Field

15:7 Reserved.

6:0 46H Auto update programming command.

When auto update is not enabled in the user design, the auto update system service can be used to update the
device with the newest image using the user application.

Note: Auto update system service does not generate an error if SPI controller is not in the master mode.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 33
and its subsidiaries

3.3.33

3.3.34

Programming Modes

Recovery on Auto Update Programming Failure

When power fails during auto update programming, the auto update programming flow is initiated on the next boot

cycle to program the device with the newest image.

Note: If the device fails to program the newer image, it retries once before programming itself with the older version
of the image. If the device remains blank at the end of auto update, there is no indication through I/O and user

intervention is required.

Enabling Auto Update Option in User Design
To enable auto update, follow these steps:

1. Click Configure Design Initialization Data and Memories and select the SPI Flash tab.

2. Select the Enable Auto Update checkbox.
Figure 3-14. Auto Update Setting

Project File Edit View Design Tools Help

“atalog 8 x
[ayatem services @ v T smulaton Mode v B
= Ve B

CoreAXMinterconnect 27100 (%)

CoreAXlinterconnect 22102

&= CoreAXITOAHBL 3.5.100

&= CorePCIF 42100

& CorePCIF_AHB 42100
= Peripherals

& Core1553BRT_APE 42106

&= Cored2d 312108

&= Cored20_APB 322105

CarefAXldDMACentroller 20100

&= CoreSPl 5.2.104

&= CoreSysServices PF 23116

& CorelJART 5.6.102

#= CorellARTaph 56102

PolarFire System Services 3.0.100

= PolarFireSoC Features

= Precessors
&= CoreABC 3.8.102
CoreRISC-V_AXI4 20102
PolorFireSel MSS System (Pre-production) 20100
=l User Defined
CoreDDR_TIP 111240 =1
MS5 System (Pre
L liew cores are avalable Downikoad Hhem naw!

feports @ X | PCle AP _Top derved_constaints.sde @ X | Comstrantbanager @ ¥ | Epcte P Top @ %

Desan Intialzaton | WPROM | stm FahncR.nMs| e |

aply | Dscard |

Help

[¥ Enabie Auto Update|

SPI Flash memory sze; | 128
Usage statistics

Awvaizble memary (K8):131071
Used memory (K8): [
Freememary (KB) : 131071

B ussdspace
B Freespace

SPI Flash Clents

Add... ™ Edi Delete

Pragram MName Type Index

SPIBitstream for RecoveryfGeldan

_Design Fiow | Design Herarchy | Stimulus Herarchy Catakag | Files | HDL Temolates |

4

3. Click Configure Programming Options, and specify the design version and back level version, as shown in

the following figure.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003191A-page 34

3.3.3.5

Programming Modes

Figure 3-15. Design Version

Design Flow g x Reports & X B iog_cdr_test & x l
Top Module(root): jog_cdr_test =] ° g’ @ v 0 |h~l im % | 'ﬂ | 8 25} HD | DD 'BQ
ITooI 1L| -

=t b Verify Pre-Synthesized Design
. Simulate
=t » Constraints

¥ Manage Constraints T ewmms
v == k Implement Design
- Open Netlist Viewer
v - %5 Synthesize
= b Verify Post-Synthesized Design
L] Generate Simulation File
. Simulate
v % Place and Route
=t- # Verify Post Layout Implementation
v @ Verify Timing
@ Open SmartTime
EJ. Verify Power
£% Open 55N Analyzer
= » Configure Hardware
- *l Programming Connectivity and Interface ' Configure Prograrmming Options x
& Configure Programmer E
B Select Programmer
=l » Program Design

Design nameziog_cdr_test

v +(] Generate FPGA Array Data Design version {number between 0 and 65535): |1
~+L| Configure Design Initializetion Data and Memories
("4 ~+L| Generate Design Initizlization Data Back Level version {number between 0 and 65535): |5

Silicon signature (max length is 8 HEX chars): Ox | 12345678

% Generate Bitstream
i3 Run PROGRAM Action Heb | o | comce
= b Program 5P1 Hash Image i
v {3 Generate 5P| Flash Image]

Auto Update Use Models

Auto update is initiated when a different version of the programming image is available in the SPI flash memory. For
more information, see 10.2 SPI Directory. The device uses the Bits/Version component of the programming image
to determine the version. The Bits/Version component appears at the beginning of a bitstream and contains version
information. This section describes three auto update use models—ping pong, golden image, and single image.
Based on the design requirement, any of these models can be used.

Ping Pong

Auto update uses the newer of the first two images on the SPI flash memory. When a new image is written to the SPI
flash memory, the older of the two images is overwritten with the new image. This is known as the ping pong model
and is used when the previous image version needs to be retained along with the newer image. This facilitates an
automatic rollback to the previous image if the new image fails. The following figure shows the ping pong use model.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 35
and its subsidiaries

Programming Modes

Figure 3-16. Ping Pong Use Model

SPI Flash Memory

Memory Address 0

3
Image 0 Descriptor Pointer -
Memory Address 4
Image 1 Descriptor Pointer - SPI Directory
Memory Address 8
A 4
|
|
|
:
|
Image 0_Memory Address -——-——--———-—7-——————————— <

Bits/Version

Bitstream Data

Image 0
Design
Initialization Data
|
|
:
|
Image 1_Memory Address | ———----—-——-—7-———————————1 <
Bits/Version
Image 1 Bitstream Data

Design
Initialization Data

Golden Image

When auto update fails with a newer version of the image, the device needs to be updated safely using a working
image. This image is known as the golden image. When a new image is written to the SPI flash memory, it must not
overwrite the golden image. The following figure shows the golden image use model.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 36
and its subsidiaries

Programming Modes

Figure 3-17. Golden Image Use Model

SPI Flash Memory

Memory Address 0
Golden Image Descriptor Pointer |-

Memory Address 4
Update Image Descriptor Pointer -
Memory Address 8 SPI Directory

Golden Image Memory Addressf - - —————— o ___ <
Bits/Version

Bitst Dat
Golden Image tstream Data

Design
Initialization Data

Update Image Memory Address f———-—-——=—7-———————————+ -
Bits/Version

Update Image | Bitstream Data

Design
Initialization Data

Single Image

This model is used when only one image is available for updating the device. The following figure shows the single
image use model.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 37
and its subsidiaries

Programming Modes

Figure 3-18. Single Image Use Model

SPI Flash Memory
Memory Address 0

Image 0 Descriptor Pointer -

Memory Address 4

Empty Slot Filled with 0 SPI Directory

Image 0_Memory Address--------—-—-—-7-—-——-—-—-—————— <
Bits/Version

Bitstream Data

Design
Initialization Data

3.34 IAP

IAP reprograms the device with a specific programming image. In IAP, regardless of the image version, the device
chooses the programming image based on either the image index or the SPI| image address. The fabric user logic
in PolarFire FPGA and MSS user application in PolarFire SoC FPGA specifies the programming image and initiates
reprogramming of the device using the IAP system service.

3.3.4.1 IAP Using System Service

The user application initiates an IAP system service request using fabric user logic in PolarFire FPGA and MSS
user application in PolarFire SoC FPGA. The system service specifies whether the image is used for verification or
programming. The system controller automatically reads the bitstream from the SPI flash to verify or program the
device contents.

Verify Operation

The verify operation compares the specified programming image contents with the device contents. The following
table lists the fields in an IAP system service request using the image index.

Table 3-13. IAP Verify Request by Image Index

15 — Reserved.
14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.
6:0 44H IAP verify operation.
© 2021 Microchip Technology Inc. User Guide DS50003191A-page 38

and its subsidiaries

Programming Modes

An SPI flash memory address can be specified instead of the image index within the SPI directory, as shown in the
following table.

Table 3-14. IAP Verify Request by Image Address

157 MBOXADDR[10:2] | Mailbox address. For the format, see Table 3-17.
6:0 45H IAP verify operation.

If the AP verification is successful, the status code 0 is generated. If the IP verification fails, an 8-bit error code is
generated. For the detailed information about error codes, see 11. Appendix: Error Codes.

Digest Check system service is recommended to verify the integrity of the device contents instead of IAP verify
operation. For more information, see respective PolarFire FPGA Datasheet or PolarFire SoC Advance Datasheet.

Note: Digest printed during programming (same as in *.digest file)is bitstream payload digest. It is meant for
device to confirm that it receives the correct bitstream payload. Digest exported from DEVICE_INFO is the digest of
the actual memory content. It does not have other metadata that is included in the encrypted bitstream payload, so it
is different than one generated during programming.

Program Operation

The program operation updates the device contents using a specified programming image. The IAP program
operation does not authenticate the image before executing the program. The image can be authenticated using

the IAP image authentication system service. For more information, see 3.3.2.4.2 IAP Image Authentication System
Service.

The user application cannot obtain the status code in the following scenarios:

» If IAP is successful, the device is automatically restarted to initialize the new design.
« If IAP fails, the IAP recovery procedure attempts to program the device with image 0.

Note: IAP recovery considers image 0 when the pointer to image 1 in the SPI directory is null. For more information,
see 10.2 SPI Directory.

The following table lists the fields in an IAP system service request using the image index.

Table 3-15. IAP Program Request by Image Index

15 — Reserved.

14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.

6:0 42H IAP program operation.

An SPI flash memory address can be specified instead of the image index within the SPI directory, as specified in the
following table.

Table 3-16. IAP Request by Image Address

157 MBOXADDR[10:2] | For the mailbox format, see the following table.
6:0 43H IAP program operation.
© 2021 Microchip Technology Inc. User Guide DS50003191A-page 39

and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136519
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244583

3.3.4.2

Programming Modes

The following table describes the mailbox format.

Table 3-17. Mailbox Format

e e

SPIADDR | Input Programming image address in SPI flash memory. If the
attached SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

Recovery on Programming Failure
When power fails during IAP, the device programs itself with image 0.

Note: When the device fails to program the specific image, it retries once before programming itself with image 0. If
the device is still blank at the end of IAP, there is no indication through 1/0O and user intervention is required.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 40
and its subsidiaries

Programming Modes

3.3.4.3 IAP Flow

The following figure shows the IAP flow.

Figure 3-19. IAP Flowchart

(IAP system service request)

SPI
master mode
enabled?

No
Image specified?

1.Read SPI directory descriptor pointer
2.Program device with specified image

Yes

Program passed?

No

Image info

authenticated?*

Yes

Retry program with same image

Program passed?

Device
enabled?

Yes

No |«
A

1.Read SPI directory descriptor pointer
2.Program device with image 0

Yes
Program passed?

» No
A 4

Design not updated

A
Initialize and execut
user design

>

A
Execute auto update

* Device checks only BITS (starting bits of the bitstream) and AUTH (encryption keys information) components of

the bitstream as part of the programming.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003191A-page 41

Programming Modes

3.3.44 |AP Use Model

Both the device families support the multi-image IAP use model, which allows up to 255 images to be stored

in the SPI flash memory. The image descriptor pointers are in Sector 0 of the SPI flash memory. The device

can be programmed with any image; however, if the program fails, the device is programmed with image 0. The
programming image pointer next to the image 0 pointer must be null (empty slot). This model is used when the device
needs to be updated with a specific image from among the available images. Figure 3-20 shows the multi-image use

model.

Figure 3-20. Multi-image Use Model

Memory Address 0

Memory Address 4
Memory Address 8

Memory Address 4*N

Image 0_Memory Address

Image 1_Memory Address

Image N-1_Memory Address

SPI Flash Memory

Image 0 Descriptor Pointer

Empty Slot Filled with 0

Image 1l D

escriptor Pointer

Image (N-1) Descriptor Pointer

Bits/Version
Bitstream Data

Design
Initialization Data

Bits/Version
Bitstream Data

Design
Initialization Data

Image (N-1)

Bits/Version
Bitstream Data

Design

Initialization Data

SPI Directory

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003191A-page 42

Bypassing the Back Level Protection

4, Bypassing the Back Level Protection

If Back Level protection is enabled in the Configure Security tool, the back level protection can be bypassed for SPI
bitstreams while exporting the bitstream using Libero. To prevent Programming Recovery failures, enable the Bypass
the Back Level Protection for Recovery/Golden bitstream (SPI files only), as shown in the following figures.

Figure 4-1. PolarFire FPGA—Selecting Bypass Back Level Protection Feature

1 87 Export Bitstream *
Top Hodue(root): g_cdr_test |
Toal Bitetream file —
.V B Open Methan Viewss Mase: | aample Exstng fles:
T Synthesize <Mp Bitstream files Found =
= b Verify Post-Synthesized Design Location: [F-lancle
+L] Generate Simulation File
Formats:
_H simulete .

v #i5 Place and Route W sTARL Suppart for [F
| = b Verify Post Layout Implementation I~ thok STARL Supmort for _
e @ Nerify Timing it e =l 2

%. Open SmanTime W DAt Suppart for Embadded 152 (TTAG and 5P1-Slave]

A Verify Power
o Up’:’"‘SSN Analyzer =i ms‘wu;m“wmmﬁuwwdm,
= b Configure Hardwars
1] Programming Connectivity and Interface I~ s 5 ="

Cenfigure Programmer

Sedect Programmer Taroization st
IV [T Lilr Mew (Erases all Lser data; device can be immediately reprogrammed by user)

| Canfigure Design Indialization Data and Memories [Unrecoverabie (Erases o deta and destroys reprogrammsbiity; device must be scrapped)

v +C1 tGenerate Design Inialization Diata

5 Configure /0 States During JTAG Programming Security options set with ConSgure Secunty tool
« Carfigure P ing it
@ il i e Faues Dbie o Fctory kny modes s ccnfiured ey setig.
eafigure Security 1 to t=mporany enatie settregs during one programming sessin,
" Generate Bitstreamn 1 to temporanily enabie settings during one debugging session,
& Fun PROGRAM Actian FlazH.ock|LP¥1 wil be eporbed n plaintext

mester e,
= b Program SPI Flash Image Back Level protection is enabled. Use FashLodkyUPK L to bypass Back Level protection.
& Generate 5P| Flach bmage Smar Dby Booas conirol | enabled. Trierral cata may e aocessibbe, Anyone can debug of BCcess ctive Drobes, acoess Live Probe, and read th content of s,
& Fun PROGRAM_SPIIMAGE Action Factory best moce i alowed. This vl allow Mcrosem 20 perform Padure Analysis,
=} Handaff Design for Production . Terozaton trough TTAG/ST Sl & erabled_ This is net secommended for production devices.

Extrrmial Fabric/siWiM desion digest check request throuch JTAG/SPL Save is ensbled,

(8 Configure Pemanent Locks for Production Fepeated external Fabric digest cakodations can impact its relabiiy. Wew Datasheet for additioral information.

|
Export FlashPra Express Iob Pragramming Opbons set with Configure Programming Siptions hoal |

% Bxport S0 Flaih kmage Design verson: |5 Back Level version: [@

+LI Export Pin Repart

|
Bitztream fies to be exported

Deson fiow | Desgnier

Bitstream components Eypass Back Level protection for |
; RecaveryGokdan bisiream [
= | Magter fils fo program 51 Bes ooy}
E]w 05,05 I, Wamings i Infs ot Fusted fadlty ¥ Custom seamty B Rebric P st =
[g i e ted st LEKL to _ |
atwrg:sweﬂfagrnvuhsggastm»wm W Fabric ¥ shivid I
:u-mv: 551 Fiesh Image' Lo T’ﬁmmé_wuw‘":‘mw = I ebic [stm r =
= o at unbrust Y oF Broadcact & a | o =
Oraso: cizeniag teol Genssane Desion lizand| =1
All ients have be i |
oK Cancel
© 2021 Microchip Technology Inc. User Guide DS50003191A-page 43

and its subsidiaries

Bypassing the Back Level Protection

Figure 4-2. PolarFire SoC FPGA—Selecting Bypass Back Level Protection Feature

1SN0 B

Sezign Flaw

EFS

Reports 8% | FCle kP Top derwed combaniie 8% | o s | Edpcrere Ton @ % | Do aed vemcey Intisknaticn® & % | Stietpage
Top Mockiefroatic PCIe_RP_Top IS »] @_{#‘ | = Plis AP Too renorts s it i

Active Synthess Inphementation: synthesis.

[Toul

=- ¥ Implement Design
" Open Metlst Viewer
T Synthasize
¥ Wevidy Post-Synthesized Design
Generats Simalstion Fis
B srulste
Place and Route
Werify Post Leyout Bmplementation
& Verify Timing
@y Open SmartTime
Configure Hardware
Il Pregramming Conractivity ard Interfisce
Cenfigure Progrmmer
Seect Prrorarmimer
Pregram Deskgn
v +1) Gererate FRGA ferny Dists
+71 Configure Design Initialization Di2ta and Memaries
+11 Gerwerate Design | ion Data
+ Configure Programming Cptions
@ cersigure Secwiy
5 Generste Ditstream
% Configrae Actions s Pricedures
& Run PROGRAM Action
5- ¥ Frogram SF) Flash mage
6 Generate $P| Plash image
Deliuig Deniegn
Idumfybehngﬂuagn
utien

ent Locks for Production

= press Job
) Expent Job Munagdr Dats
) Expert 991 Flash Image
1 Expert Pin Rugort
21 Expert Diesign Initisization Dita and Memery Raport

B Ecport Bitstream

Dasignverson - Back Level varsion -0

Sacurity cptions sat with the Corigune Secuity took:
Disable: ol factory key modes and configured securfty settings,
use meﬂ! = Sernporasily erable

meymmkaﬂum This sl alle Fahre

2o Caurel 4 Eratied. It Saia nay 5 AcCessiie, Afon Ea 8B S ACCE48 BEVE ks, MCess Live Prob, andraad the conient of N, F
Hicrosasmi o perform dnafyss.

A ZeroizaBion through JTAG/S™1 Save is ensbied. This is not recommended for production devices,
Excterrual Fabeic 0N wmul\-.emnl st recursts reugh TTAG/PL Saree are analipd.
Repeated extemal Fabric tiors con impact s rebabdity. Yiew Datasheet for acditional nformason.
Sitniream fefs)
Mame: |PCIa_RP_Top Lncaton: [ongilibern_Project desgrer Fle_RP_Topevport
Existrg fles:
PCle RP_Top.stp =
Plle AP _Top_wlstp

FCle BP_Top_vistp

BCie B8 Tan v 1.0 X
Foemats:
F o Suppart for 157 (TTAG and 571 Slave)
W par Support for Ersedded [SP (TG and SF1 Save]l ¥ Euport separate ASCIIHE file for debugging
Suppart for 157

L Guppant for 159, Gl Micresins dinit in a TTAG chass
Sugspeset for it Proggassing, Auts Lidate, and (4D Saneees

e

Design Forw | Disign Hiraedhy | Stesba Hieraschy | Catalsg | Pl | HOR Tusrslatl

=5

i wamings @ o
TEE FpT T TI0 [ELspaed

[E] Mesagus &} Errors
TTIEREd

TEIT TimE DOTOITEAY
Brojest sawed,
FPiojest closed.

Generating Bitstream File Finished: Tha Apr 23 22132155 20

toa [emaoe | SearchRemits [Cores [

I s Support for 159
© Ewont fies for Maosen InHouse Progranming (1F) © tes & Mo
Fle types:
| Bypess Back Level protection for
Custam Security | Fabric/sHUM | bt | Recovery/Golden bitstream e Tnont be e
(*3pi files only) x
Master fis 3 I -
= =] ' - = L
e ancryoeed Wi LEXZ I r I s

Zeroiation actone!
P Lice e (Erases alluser data; devios can be immedkately reprogrameed by user)
= scrapped]

{Erases ol

|

i)

When the SPI bitstream is added to the SPI flash using design and memory initialization data, the tool shows back
level protection bypass feature in bitstream, as shown in the following figure.

Figure 4-3. Status of Bypass Back Level Protection

|Bwieal Be B ew Deron Teoh Hew

Lm Moo

Top ke 130 PCR_FP Tia

(A

Acton Sprthass Feplemarribon: pyrEv

1

) Cpan Mt Viewear

= Emheic
: at-ymthentind Datig
e Savesttion Fie
Gmuts

Reate.

¥ Verity Patt Layout kmgisnerrition
ity Timing

pon Smact Tims

= Hardwaarc

rerirg Cannectiiey n ntarace
(.vl'!wuhwwrww

Salect Brzgparnerar
=k Frogon Desgn

oh. = PRGRAM A
= e

5P Fiazh image

B2 b
B b Haschalf Design for Prockection
I Cosfigare Parmarsnt aska for Brechustian
Eaport utmeare
§ Ry
Export Jok Manages Daks
1 Export 9 Flash mage
=1 Faport Pin Fegant]
=21 Expert Disign refiabzation Cela ard Memery Repert

[RSy e T e R

Aot @% |
B 0B ottt | wmm | sow

b SIS

Aealibe wemiry BB 101071
Uned memry B5) i
Free resmory BB

Lad pace
Frea mace

Fle AP Top dertved_sormbariazk 8% | Conbartberae 8% | Elscimre o

Aa | oo |

it
CartartFia

T tves Fo Facvers i
BT Ao o

Do e emary Tnsimton®™ 8 X | Sacfage 8%

Adrens | Addhen

S |

D
Venion

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003191A-page 44

41

Bypassing the Back Level Protection

Bypass Back Level Protection Use Case
The following table lists the user case for Bypass Back Level Protection.

Table 4-1. Bypass Back Level Protection Use Case

SPI Bitstream Design Design Back | Device Back
Version Level Version |Level Version

Golden/Recovery | Auto Programming Pass

2 IAP/Update
Bitstream

3 IAP/Update
Bitstream

Auto Update/IAP

Auto Update/IAP

The steps are described as follows:

Pass 3 2 2
Fail, Attempt 4 Not 2
Programming Enabled
Recovery

1. The device programs with a bitstream version 2 and back level version 1. The current device back level

version is set to 1.

2. The device then updates with a bitstream version 3 and back level version 2.
The current device back level version is set to 2.

3. The device attempts to update itself with a bitstream version 4 and fails to update. In this case, the device
attempts to recover using a golden/recovery bitstream version 2. But the recovery also fails as the current
device back level protection is set to version 2 and the golden/recovery bitstream version is equal to the back
level version. The Bypass Back Level Protection must be enabled (see Figure 4-1) for Golden/Recovery
bitstream to avoid programming recovery failures because of back level protection.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003191A-page 45

I/0 States During Programming

I/0 States During Programming

The following table lists the 1/O states that apply during various stages of programming.

Table 5-1. 1/0 States for Various Programming Modes

IIO Type 1/0 States
JTAG Programming SPI Slave Programming | SPI Master Programming (IAP/
Auto Update)
System controller | Enabled. Enabled. Enabled.
I/0
XCVR reference | Not affected. Not affected. Not affected.
clock inputs May be kept alive during IAP using

loopback mode, allowing the XCVR
link to be kept active.

XCVR data I/O As set by the boundary scan Not affected. Not affected.
cell. May be kept alive during IAP using
loopback mode, allowing the XCVR
link to be kept active.

GPIO and HSIO | I/Os are enabled, but the /O Can be weakly pulled Outputs are tristated and weakly

state can be set using the up using the SPI slave pulled up.
boundary scan cell. instruction ISC_ENABLE.
MSS I/Os for I/Os are enabled, but the /O | Can be weakly pulled Outputs are tristated and not in
PolarFire SoC state can be set using the up using the SPI slave weakly pulled up state.
boundary scan cell. instruction ISC_ENABLE.

In Libero SoC, the I/O states can be set before JTAG programming, and these I/O states are held at the set values
during JTAG programming. The following are the I/O output state settings:

* 1:1/Ois set to drive out logic HIGH
* 0:1/Ois set to drive out logic LOW

» Last Known State: I/O is set to the last value that was driven out before entering the programming mode and
then held at that value during programming

Z: /0O is tri-stated

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 46

and its subsidiaries

I/0 States During Programming

The I/O output states can be set as shown in the following figure.

Figure 5-1. 1/O States During Programming (JTAG Mode Only)

D203 |

Design Flow 8% | Reports & | Stripage @ % Design and Memory Inibization & X |
Top Madule{roat): PROC_SUBSYSTEM =] o [j] @“ { Design Inttislzation /" uPROM L/ sivm %/ 571 Flash '\ Fabric RaMs
Troal o | e | pieenea | |
B Smuiae 17 Specify |70 States During Programming - JTAG Mede Only 7 Es
= b Constraints
[Manage Constraints Save to file... I~ Show BSR Detals
¥ = b Implement Design
2 Metlist Viewer
v S Synthesize
v 9,—: Pace and Route :I
=k Verify Post Layout Implementation B
&, Verify Timing
L Open SmantTime 1 L
'D. Werify Power 1
= b Program and Debug Design 2 |GPIO_OUTI1] ADLIB:OUTBUF B26 H
v =’ Genesate FBGA Array Data Last Known State
"I Configure Design Initialization Data and Memories B |GPIO_OUT2] ADLIB:OUTBUF c6 IE
v I8 £l Genelrate Design Initialization Data i |epio_ouial -OUTBUE D35 z I
= b Configure Hardware = LA
b l}rngr.amm:ng Cennectivity and Interface 5 |rer_cic o ADLIB:HEUF E25 7
Cenfigure Progerammer
i Device /O States During_lamgramming - JTAG Mode Only | b |re ADLIE:IMEUF Hi8 7
w Lonfigure Programming Optons
@ Configure Security T ADLIB:OUTBUF 617 z
= b Program Design
% Generste Bitstream 2 |resetn ADLIB:INBUF K22 z
0 Run PROGRAM Action
v - # Program 5P Flash Image 3 |UNUSED UNUSED A Z
v 0 Generate 581 Flash Image
v © Run PROGRAM_SPI_IMAGE Action 10 |UNUSED UNUSED A2 z
=t ¥ Debug Design
& SmortDebua Desian 11 |UNUSED UNUSED Bl z
DesqnFlow | DesinFerarchy | Stmuius Herarchy | Catalog | Fles 12 |UNUSED UNUSED €1 z -
Mezzage r
- Help I oK Cancel
[E]Messages €3 Erors i, wamings @@ Info [5] Manage suppressed messages P

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 47
and its subsidiaries

MSS State During Programming (For PolarFire ...

6. MSS State During Programming (For PolarFire SoC FPGA only)
TBD.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 48
and its subsidiaries

Programming Recommendations

7. Programming Recommendations

To ensure successful programming, the following guidelines are recommended:

» Authenticate the bitstream before programming the device.

» Do not assert the reset pin (DEVRST_N) during programming because this may corrupt the device
configuration.

» Use the correct configuration and programming interface based on the selected programming mode.

» Configure the device I/O states (before JTAG programming) based on the design requirements. For more
information, see 5. 1/O States During Programming.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 49
and its subsidiaries

Brownout During Programming

Brownout During Programming

Brownout is a condition that occurs when the power supplies fall below recommended levels. If brownout occurs
during programming, the device automatically recovers from the programming failure (since auto recovery is enabled
by default) and programs the device with a valid programming image stored in the external SPI flash.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 50

and its subsidiaries

Zeroization

Zeroization

Both the device families have a built-in capability that can zeroize (clear and verify) any or all configuration storage
elements as per the user setting. Internal volatile memories such as LSRAMs, uSRAMs, and system controller RAMs
are cleared and verified. Once the zeroization is complete, a zeroization certificate can be retrieved using a JTAG/SPI
slave instruction to confirm that the zeroization process is successful. For more information about zeroization, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 51
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814

10.

10.1

10.2

Programming the External SPI Flash

Programming the External SPI Flash
To perform IAP or auto update, an external SPI flash memory is required. This SPI flash memory interfaces with the
system controller's SPI and stores the programming images.

The SPI flash memory is divided into several sectors. The 1KB memory in first sector (sector 0) is used as the SPI
directory, and it contains the programming image indexes (descriptor pointers). The remaining flash memory stores
the programming images.

Supported SPI Flash Devices

SPI flash devices from various vendors implement a standard instruction set for read operations. The system
controller firmware executes the following command to identify the addressing mode (3-byte or 4-byte):
READ SERIAL FLASH DISCOVERY PARAMETER (5AH)

The system controller supports devices from Micron, Winbond, Macronix, and Spansion. However, any other device
compatible with the JESD216 standard may also be used. Devices that are not JESD216-compliant may still be used
if they support the FAST READ (0BH) command with 3-byte addressing. Such devices are limited to using only the
first 128 Mb of the flash memory.

SPI Directory

The SPI directory is a collection of image descriptor pointers that point to the beginning of the programming image.
Each pointer uses four bytes. If the SPI flash memory device supports only the 3-byte addressing mode, the first
three bytes are used.

For IAP recovery to choose image 0 on power-up, the programming image pointer next to the image 0 pointer must
be null (empty slot), otherwise auto update is chosen. The following figure shows the SPI flash directory with the
programming image descriptor pointers.
Figure 10-1. SPI Flash Directory

Sector 0

Memory Address 0—— Image 0 Descriptor Pointer
Memory Address 4 —pp»| Empty Slot
Memory Address 8 — Image 1 Descriptor Pointer
|
I
I
I
I
I
|
I
Memory Address 4*(N-1)—Jp»| Image(N-1) Descriptor Pointer

The SPI directory contains the start addresses of the programming images. The SPI directory occupies 1 KB memory
from sector 0 of external SPI flash memory. For example, if the external SPI flash contains three images: golden
image, update image, and IAP image, then these images are stored at memory with starting the addresses: 0x400,
0xA00000, and 0x1400000. If the Libero configurator is used to program SPI flash with programming images, then
the Libero configurator takes care of the programming SPI directory automatically. If the user application programs
the external SPI flash with programming images, then the application must write starting addresses of each image
into SPI directory starting from SPI flash address 0, as shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 52
and its subsidiaries

Programming the External SPI Flash

Figure 10-2. SPI Flash Memory

0x00000000 A
0x00000400 (golden_image.spi, Index 0)
0x00000004
0x00A00000 (update_image.spi, Index 1)
0x00000008
0x01400000 (iap_image.spi, Index 2)
1 KB SPI Flash Directory
|
|
|
|
|
|
|
: v
0x00000400 r'y
golden_image.spi
y
0x00A00000 7y
update_image.spi
y
0x01400000 yy
iap_image.spi
A 4
|
|
|
|
|
|
|
|
|

10.3 Use Models for Programming SPI Flash
The external SPI flash can be programmed using either JTAG or the system controller’'s SPIl. When the system
controller’s SPI is enabled and configured in SPI master mode, the system controller’s SPI port is shared between
the system controller and either the FPGA fabric master/MSS (for PolarFire SoC FPGA only) or JTAG. This section
describes the use models for programming the external SPI flash.

10.3.1 Programming the SPI Flash Using External Processor
When the SPI_EN pin is disabled (driven LOW), the system controller’s SPI outputs are tri-stated, and the external
processor can drive the SPI pins to program the SPI flash. Neither the system controller nor the fabric/MSS (for
PolarFire SoC FPGA only) can drive the SPI interface. The external processor can drive the SPI_EN pin LOW to

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 53
and its subsidiaries

10.3.2

Programming the External SPI Flash

program the external SPI flash. The SPI_EN pin can also be configured external to the device using the jumpers

on the board. The SPI flash is programmed using an external processor SPI master SCK frequency. The SCK
frequency is configured using external processor application. The following figure shows the connections required for
programming the SPI flash using an external processor.

Figure 10-3. SPI Flash Programming Using External Processor

VDDI3
T
1kQ
10 kQ

PolarFire® FPGA/
PolarFire SoC FPGA
(SC_SPI Disabled)

SPI_EN

System Controller

SPI

10 kQ

10 kQ

WP
HOLD

P SCK

SO

A 4

SS SCK MISO MOSI

SPI Controller (Master)

External Processor

Programming the SPI Flash Using JTAG

The external SPI flash can be programmed using a FlashPro programmer (version 5 or later) through the system
controller’s JTAG interface. The JTAG controller uses a special JTAG instruction—SPIPROG (IR=0xb0)—to
interface with the external SPI flash through the system controller’s SPI. The JTAG controller in both the device
families support this instruction to directly drive the system controller’s SPI outputs. The following figure shows the
connections required for programming the SPI flash using JTAG.

Figure 10-4. SPI Flash Programming Using JTAG

VDDI3
T

External
SPI-Flash

GND

——= 0.1 pF

SDO

JTAG
Controller

JTAG Programmer

Host PC with

SPI Image Files

\ 4

- 10 kQ
PolarFire® FPGA/
PolarFire SoC FPGA
(SPI Master)
SPI_EN 10 kQ WP
HOLD
System Controller
ss P CS
SCK P SCK
SPIL sDI |« SO

External
SPI Flash

Vcce

GND

|

10.3.2.1 Programming External SPI Flash Using Libero

The Libero SoC software allows you to program the external SPI flash memory with programming images. To
program the SPI flash memory:

© 2021 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003191A-page 54

Programming the External SPI Flash

1. Go to Design Flow > Program and Debug Design > Configure Design Initialization Data and Memories,
and select the SPI Flash tab, as shown in following figure.
Figure 10-5. SPI Flash Programming in Libero SoC

B Fie Edt View Design Tosls Hep

@20 F|

SEmnFoe B mmus g | Swags g% Desin ond Henory Intiimaton 8 X
o Mackie oot} PROG_SUBSYSTEM g g GF | ooz | waom | sem | SR frencnivs
[eat =] wot | pwwd | b |
¥ Brable o Update.
v :
o Synihesize .
z 1%} Place and Route Hsiable memory (VE)I1ET st e [Seatz
Sh Verity Post Layout Implementation Wedreory DB % | = = - - - o
erdy Tamir Treerenwy ME)| 5L : o - Start End
% S ol o, i Lovei | Lo nc | addvess | Address
Y. R SF Sstrean o AP 2 e PADC_SUESTTEMEpart PAOC_SUBSITTEH e Dok eistet |2
v ey e 551 Bestren for Aecovery/Goden 0 desner PROC_SUBSISTEM\mort g o _best st 33000 ezt 0
extity and Ieace P |iae pe s 51 Bntrwars o P :] ez FRDC_SLESTITEM e DD AESITEN VS G000 | DuTiacaf |3
Il Devece U0 Sizbes Dueng Progaamming - ITAG Mods Oy
« Corfigure Fregammin: g Opticns
Bc 3 L
S b P
v
v
v
=1

Note: For PolarFire FPGA, in order to streamline the SPI-Flash Programming support with FlashPro6,
effective from Libero SoC v12.4, the vendor information is replaced with the density of the target memory.

2. Under SPI Flash Clients, add the required programming images, and click Apply. For more information about
values to be entered in the fields, click Help.

3. Go to Design Flow > Configure Hardware > Configure Programmer > right-click and select Programmer
Settings in the FlashPro tabs. User can modify the TCK frequency by checking and selecting the Force TCK
Frequency to enhance the SPI flash programming time.

Figure 10-6. Programmer Settings

Design Flow F X cuariPage @ X B top & x [
B ——]
Top Module{roct): top O Q « @' v e ..:I im = ’E 8
Active Synthesis Implementation: synthesis .
B | Programmer Settings %
Tool
© Manage Constraints ro6/Embedded FlashPro6 ~ FlashPro5 | FlashPros | FlashPro3 | j;
¥ = b Implement Design |
9.1 Open Netlist Viewer TCK Mode: Discrete Clocking |
v S Synthesize ¥ Force TCK Frequency
= b Verify Post-Synthesized Design
+_| Generate Simulation File 4 T Mz
B Simulate ;
v %% Place and Route 3 Set Defaults
= » \Verify Post Layout Implementation
v &, Verify Timing 5
&, Open SmartTime fﬂ
B Verify Power 16
£% Open SSN Analyzer 30

=~ ¢ Configure Hardware
bl Programming Connectivity and Interface
& Configure Programmer
& Select Programmer
= b Program Design
v +(| Generate FPGA Array Data ——
(1 Configure Design Initialization Data and Men Help I ‘ OK] Cancel |
v +[| Generate Design Initialization Data
& Configure 1/O States During JTAG Programmin
» Configure Programming Options

o ;@ Configure Security i Help | oK | Cancel]

Generate Bitstream

4. Double-click Run PROGRAM_SPI_IMAGE Action to get the SPI flash programmed with the SPI directory and
the programming images.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 55
and its subsidiaries

10.3.3

10.3.4

Programming the External SPI Flash

Figure 10-7. Run PROGRAM_SPI_IMAGE Action

Project File Edit View Design Tools Help

D[220 [

Jesign Flow

Top Module(root): PROC_SUBSYSTEM

|T|:|0I

=+ # Implement Design
B Metlist Viewer
'S Synthesize
Y% Place and Route

S K

& Verify Timing

El Verify Power

‘...

@ Configure Security
=+~ # Program Design

(".’_J. Open SmartTime

=+~ # Program and Debug Design
*L| Generate FPGA Array Data
*L| Configure Design Initialization Data and Memories
v *L| Generate Design Initialization Data
=+ # Configure Hardware
I*[Programming Connectivity and Interface
& Configure Programmer
fts: Device /0 States During Programming - JTAG Mode Only
» Configure Programming Options

‘3 Generate Bitstream
& Run PROGRAM Action

=+ # Verify Post Layout Implementation

[} =~ # Program 5Pl Flash Image
V % _Generate SPLElash lmane —
i |'& Run PROGRAM_SPI_IMAGE Action |

=+~ # Debug Design

€ SmartDebug Design
=+ # Configure Permanent Locks for Production
@ Configure OTP Security
! =~ b Handoff Desian for Production

|

Design Flaw | Design Hierarchy] Stimulus Hierarchy] Catalog J Files]

For more information about design initialization data and memories, see PolarFire FPGA and PolarFire SoC FPGA

Device Power-up and Reset User Guide.

Notes: The following are the recommendations for SPI Flash Programming Using Libero.

» This tool erases the SPI Flash prior to programming. It is recommended to program the SPI Flash with Libero
SoC prior to programming other data on the SPI Flash using non-Libero programming solutions.

» Partial update of the SPI Flash is currently not supported.

» Itis not recommended to have large gaps between clients in the SPI Flash, since gaps are currently
programmed with 1’s and increases programming time.

Programming the SPI Flash Using MSS (For PolarFire SoC FPGA Only)

TBD.

Copying Contents from the External SPI Flash to the MSS User Application (For PolarFire SoC

FPGA Only)

The MSS SPI copy system service allows data to be copied from the external SPI flash to the MSS user application
memory. The mss_system_services driver includes the method to copy data from external SPI flash to the MSS user

application memory.

For information about mss_system_services driver and example SoftConsole project, see GitHub. This MSS SPI
copy system service is only useful for reading contents from the External SPI flash memory.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003191A-page 56

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
https://github.com/polarfire-soc/polarfire-soc-bare-metal-examples

10.3.5

Programming the External SPI Flash

Programming the SPI Flash Using Fabric User Logic

When the system controller’s SPI is enabled and configured as master, the system controller hands over the control
of the SPI to the fabric (after device power-up). The JTAG controller that starts programming the SPI flash, or any
system service request from the fabric user logic, can take over the control of SPI from the fabric.

The fabric user logic gets the programming images from an external memory source, as shown in the following figure.
The fabric user logic accesses the external SPI flash using the CoreSPIcontroller and PF_SPI macro provided in
Libero Catalog. The external SPI flash is programmed using SPI master SCK frequency. The SCK frequency can be
configured in user logic.

System controller can only access dedicated SPI I/Os (SPI Interface pins). System Controller cannot access the
fabric 10s. As a result, all the services from the system controller using SPI (that is, programming) can only use the
dedicated SPI I/Os. The user can use PF_SPI, a macro provided in the Libero Catalog to get access to the dedicated
SPI I/Os from the fabric (that is, once the system controller releases them) to access the SPI flash memory.

Note: To fetch the programming images and write to the external SPI flash, both the device families must be
preprogrammed with a design. For more information, see AC466: PolarFire FPGA Auto Update and In-Application
Programming Application Note.

Figure 10-8. SPI Flash Programming Using Fabric User Logic

VDDI3
e
LkQ | polarFire/PolarFire SoC External
FPGA (SPI Master) §10 kQ SPI-Flash
SPL_EN 10 k@ we
4.7 kQ Ve
10_CFG_INTF HOLD
ss P Cs
PFsP oK P SCK
SDI |« SO
SDO P ST
SS_O SCK D_O D_I
X, N
SS SCK SDO SDI
CoreSPI
A
v—| PCIe/Ethernet/UART ing i N
Fabric Master |« » Proqrag(rtrélpngallnr;aegniz rf;om an
© 2021 Microchip Technology Inc. User Guide DS50003191A-page 57

and its subsidiaries

https://www.microsemi.com/document-portal/doc_download/137707-ac466-polarfire-fpga-auto-update-and-in-application-programming-application-note
https://www.microsemi.com/document-portal/doc_download/137707-ac466-polarfire-fpga-auto-update-and-in-application-programming-application-note

1.

Appendix: Error Codes

Appendix: Error Codes

The system controller executes system service requests from the design. When a service is completed, a status code
is returned to the user application. This status code can be 0 (success) or an 8-bit error code. The following table lists
the error codes.

Table 11-1. Error Codes

Error Description Explanation
Code

1

10

11

12

13
14
21

22

23

Validator or hash chaining
mismatch
Unexpected data received

Invalid/corrupt encryption key

Invalid component header

Back level not satisfied

lllegal bitstream mode

DSN binding mismatch

lllegal component sequence

Insufficient device capabilities

Incorrect DEVICEID

Unsupported bitstream protocol
version (regeneration required)

Verify not permitted on this
bitstream

Invalid device certificate
Invalid DIB

Device not in SPI master mode

No valid images found (auto
update)

No valid images found (IAP)

Bitstream is constructed incorrectly, or a wrong security key is
used.

Additional data is received after the End of the Bitstream (EOB)
component.

Requested key mode is disabled, or the key could not be read or
reconstructed.

Bitstream contains invalid component data.

Bitstream version is older than that of the current back level in the
device.

Requested bitstream mode is disabled by user security.

Bitstream is rejected because the Device Serial Number (DSN) in
the bitstream does not match the DSN on the device.

Bitstream ends in the ERR state, meaning it is an illegal
bitstream.

Every bitstream begins in the BEGIN state, but only a legal
bitstream ends in the END state.

Bitstream is rejected because the capabilities specified in the
bitstream do not match the target device’s capabilities.

Bitstream is rejected because an attempt by the DEVICEID
specified in the bitstream does not match the part identification
field of the target device.

Bitstream is rejected because of an attempt made by the old
device to decode the new version of bitstream or by the new
device to decode the old version of the bitstream.

When the device programs the bitstream with encryption keys,
it is not possible to use the bitstream later to verify the device

contents because the device refers to the modified encryption
keys.

Device certificate is missing or invalid.
Device integrity bits are invalid.

Bitstream is executed in IAP mode, but the device is not
configured as SPI master.

Bitstream is executed through auto update mode, but no valid
image pointers are found.

Bitstream is executed through IAP via index mode, but no valid
image pointers are found.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003191A-page 58

Appendix: Error Codes

continued

Error Description Explanation
Code

24

25
26

27

127
128
129

130
131
132
133
134
135

Programmed design version
newer than auto update image

Reserved

Selected image invalid and no
recovery performed because the
device is running a valid design

Selected recovery image failed to
program

Abort
NVMVERIFY
PROTECTED

NOTENA
SNVMVERIFY
SYSTEM
BADCOMPONENT
HVPROGERR
HVSTATE

Bitstream is executed through auto update mode, and the design
version is the latest.

Bitstream is executed through auto update or IAP mode, and the
selected image is invalid.

Bitstream is executed through auto update or IAP mode, and the
selected recovery image failed to program the device.

A non-bitstream instruction is executed during bitstream loading.
Fabric/security key segment verification failed.

The device non-volatile memory cannot be modified because of
device security settings.

Programming mode is not enabled.

The sNVM verify operation failed.

An error occurred in the system hardware (PUF or DRBG).
An error is detected in a component’s payload.

The HV programming subsystem has failed.

The HV programming subsystem is in an unexpected state
because of an error.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003191A-page 59

12.

Revision History

Revision History
The revision history table describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Table 12-1. Revision History

Roison o oo

A 08/2021 The first publication of the document.
This user guide was created by merging the following
documents:
* UGO0714: PolarFire FPGA Programming User Guide
* UG0914: PolarFire SoC FPGA Programming User Guide

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 60

and its subsidiaries

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

» Microchip believes that its family of products is secure when used in the intended manner and under normal
conditions.

* There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

» Microchip is willing to work with any customer who is concerned about the integrity of its code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 61
and its subsidiaries

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQl, SuperSwitcher, SuperSwitcher Il, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-8839-2

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 62
and its subsidiaries

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 63
and its subsidiaries

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC [EUROPE |

Corporate Office Australia - Sydney India - Bangalore Austria - Wels

2355 West Chandler Blvd. Tel: 61-2-9868-6733 Tel: 91-80-3090-4444 Tel: 43-7242-2244-39
Chandler, AZ 85224-6199 China - Beijing India - New Delhi Fax: 43-7242-2244-393
Tel: 480-792-7200 Tel: 86-10-8569-7000 Tel: 91-11-4160-8631 Denmark - Copenhagen
Fax: 480-792-7277 China - Chengdu India - Pune Tel: 45-4485-5910
Technical Support: Tel: 86-28-8665-5511 Tel: 91-20-4121-0141 Fax: 45-4485-2829
www.microchip.com/support China - Chonggqing Japan - Osaka Finland - Espoo

Web Address: Tel: 86-23-8980-9588 Tel: 81-6-6152-7160 Tel: 358-9-4520-820
www.microchip.com China - Dongguan Japan - Tokyo France - Paris
Atlanta Tel: 86-769-8702-9880 Tel: 81-3-6880- 3770 Tel: 33-1-69-53-63-20
Duluth, GA China - Guangzhou Korea - Daegu Fax: 33-1-69-30-90-79
Tel: 678-957-9614 Tel: 86-20-8755-8029 Tel: 82-53-744-4301 Germany - Garching
Fax: 678-957-1455 China - Hangzhou Korea - Seoul Tel: 49-8931-9700
Austin, TX Tel: 86-571-8792-8115 Tel: 82-2-554-7200 Germany - Haan

Tel: 512-257-3370 China - Hong Kong SAR Malaysia - Kuala Lumpur Tel: 49-2129-3766400
Boston Tel: 852-2943-5100 Tel: 60-3-7651-7906 Germany - Heilbronn
Westborough, MA China - Nanjing Malaysia - Penang Tel: 49-7131-72400
Tel: 774-760-0087 Tel: 86-25-8473-2460 Tel: 60-4-227-8870 Germany - Karlsruhe
Fax: 774-760-0088 China - Qingdao Philippines - Manila Tel: 49-721-625370
Chicago Tel: 86-532-8502-7355 Tel: 63-2-634-9065 Germany - Munich
ltasca, IL China - Shanghai Singapore Tel: 49-89-627-144-0
Tel: 630-285-0071 Tel: 86-21-3326-8000 Tel: 65-6334-8870 Fax: 49-89-627-144-44
Fax: 630-285-0075 China - Shenyang Taiwan - Hsin Chu Germany - Rosenheim
Dallas Tel: 86-24-2334-2829 Tel: 886-3-577-8366 Tel: 49-8031-354-560
Addison, TX China - Shenzhen Taiwan - Kaohsiung Israel - Ra’anana

Tel: 972-818-7423 Tel: 86-755-8864-2200 Tel: 886-7-213-7830 Tel: 972-9-744-7705
Fax: 972-818-2924 China - Suzhou Taiwan - Taipei Italy - Milan

Detroit Tel: 86-186-6233-1526 Tel: 886-2-2508-8600 Tel: 39-0331-742611
Novi, Ml China - Wuhan Thailand - Bangkok Fax: 39-0331-466781
Tel: 248-848-4000 Tel: 86-27-5980-5300 Tel: 66-2-694-1351 Italy - Padova
Houston, TX China - Xian Vietnam - Ho Chi Minh Tel: 39-049-7625286
Tel: 281-894-5983 Tel: 86-29-8833-7252 Tel: 84-28-5448-2100 Netherlands - Drunen
Indianapolis China - Xiamen Tel: 31-416-690399
Noblesville, IN Tel: 86-592-2388138 Fax: 31-416-690340
Tel: 317-773-8323 China - Zhuhai Norway - Trondheim
Fax: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388

Tel: 317-536-2380 Poland - Warsaw

Los Angeles Tel: 48-22-3325737
Mission Viejo, CA Romania - Bucharest
Tel: 949-462-9523 Tel: 40-21-407-87-50
Fax: 949-462-9608 Spain - Madrid

Tel: 951-273-7800 Tel: 34-91-708-08-90
Raleigh, NC Fax: 34-91-708-08-91
Tel: 919-844-7510 Sweden - Gothenberg
New York, NY Tel: 46-31-704-60-40
Tel: 631-435-6000 Sweden - Stockholm
San Jose, CA Tel: 46-8-5090-4654
Tel: 408-735-9110 UK - Wokingham

Tel: 408-436-4270 Tel: 44-118-921-5800
Canada - Toronto Fax: 44-118-921-5820

Tel: 905-695-1980
Fax: 905-695-2078

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 64
and its subsidiaries

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	1. References

	Table of Contents
	1. Bitstream Generation
	1.1. Bitstream Generation Flow
	1.2. Adding sNVM Data to the Bitstream
	1.3. Adding eNVM Data to the Bitstream (For PolarFire SoC FPGA Only)
	1.4. Adding User Security Settings to the Bitstream
	1.5. Configuring Bitstream Components
	1.6. Programming File Size

	2. Device Programming Flow
	2.1. Programming Time

	3. Programming Modes
	3.1. JTAG Programming
	3.1.1. JTAG Programming Interface
	3.1.2. JTAG Timing
	3.1.3. JTAG Programming Using FlashPro Programmer
	3.1.4. JTAG Programming Using External Microprocessor

	3.2. SPI Slave Programming
	3.2.1. SPI Slave Programming Interface
	3.2.2. SPI Slave Programming Using FlashPro Programmer
	3.2.3. SPI Slave Programming Using External Microprocessor

	3.3. SPI Master Programming
	3.3.1. SPI Master Programming Interface
	3.3.1.1. System Controller SPI Mode and Clock

	3.3.2. System Services
	3.3.2.1. PolarFire FPGA System Services
	3.3.2.1.1. PolarFire System Services Configurator

	3.3.2.2. PolarFire SoC FPGA System Services
	3.3.2.3. System Service Request
	3.3.2.4. Bitstream and IAP Image Authentication System Services
	3.3.2.4.1. Bitstream Authentication System Service
	3.3.2.4.2. IAP Image Authentication System Service
	3.3.2.4.3. Authentication Service Status Codes
	3.3.2.4.4. Usage of Authentication System Services

	3.3.3. Auto Update
	3.3.3.1. Auto Update on a Blank Device (Auto Programming)
	3.3.3.2. Auto Update on a Pre-programmed Device
	3.3.3.3. Recovery on Auto Update Programming Failure
	3.3.3.4. Enabling Auto Update Option in User Design
	3.3.3.5. Auto Update Use Models

	3.3.4. IAP
	3.3.4.1. IAP Using System Service
	3.3.4.2. Recovery on Programming Failure
	3.3.4.3. IAP Flow
	3.3.4.4. IAP Use Model

	4. Bypassing the Back Level Protection
	4.1. Bypass Back Level Protection Use Case

	5. I/O States During Programming
	6. MSS State During Programming (For PolarFire SoC FPGA only)
	7. Programming Recommendations
	8. Brownout During Programming
	9. Zeroization
	10. Programming the External SPI Flash
	10.1. Supported SPI Flash Devices
	10.2. SPI Directory
	10.3. Use Models for Programming SPI Flash
	10.3.1. Programming the SPI Flash Using External Processor
	10.3.2. Programming the SPI Flash Using JTAG
	10.3.2.1. Programming External SPI Flash Using Libero

	10.3.3. Programming the SPI Flash Using MSS (For PolarFire SoC FPGA Only)
	10.3.4. Copying Contents from the External SPI Flash to the MSS User Application (For PolarFire SoC FPGA Only)
	10.3.5. Programming the SPI Flash Using Fabric User Logic

	11. Appendix: Error Codes
	12. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

