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Introduction

Microchip's PolarFire FPGAs are the fifth-generation family of non-volatile FPGA devices, built on state-of-the-art
28 nm non-volatile process technology. PolarFire FPGAs deliver the lowest power at mid-range densities. PolarFire
FPGAs lower the cost of mid-range FPGAs by integrating the industry’s lowest power FPGA fabric, lowest power
12.7 Gbps transceiver lane, built-in low power dual PCI Express Gen2 (EP/RP), and, on select data security (S)
devices, an integrated low-power crypto co-processor.

Microchip's PolarFire SoC FPGAs are the fifth-generation family of non-volatile SoC FPGA devices, built on state-of-
the-art 28 nm non-volatile process technology. The PolarFire SoC family offers industry's first RISC-V based SoC
FPGAs capable of running Linux. It combines a powerful 64-bit 5x core RISC-V Microprocessor Subsystem (MSS),
based on SiFive’'s U54-MC family, with the PolarFire FPGA fabric in a single device.

PolarFire FPGAs and PolarFire SoC FPGAs offer a variety of programming options to diverse end-user applications.
The following table lists the components that are programmable in PolarFire FPGA and PolarFire SoC FPGA.

Table 1. Programming Components

PolarFire FPGA (MPF) PolarFire SoC FPGA (MPFS)

FPGA fabric v v
Secure non-volatile memory (sNVM) v/ v
Embedded non-volatile memory — v
(eNVM)

User security settings (keys, v v

passcodes, and locks)

Both the device families can be programmed using on-chip system controller through its dedicated JTAG or SPI
interface. Based on the interface used, the following three programming modes are supported:

« JTAG
* SPI master
* SPI slave

In JTAG and SPI slave programming modes, the device can be programmed either using an external master such
as a microprocessor or a Microchip FlashPro programmer (version 5 or later). The external master fetches the
programming data (bitstream) from an external memory.

In SPI master programming mode, the system controller acts as the master and fetches the bitstream from an
external SPI flash memory to program the device. This mode supports two programming features—Auto Update and
In-Application Programming (IAP). In auto update, the device reprograms itself on power-up, and in IAP, the device is
programmed when the user application initiates programming.
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Figure 1. Programming Modes
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The following block diagram shows the device programming modes and the associated interfaces.

Figure 2. Device Programming Modes and Interfaces
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1 Applicable for PolarFire SoC FPGA only.

Note: When device is used in the system controller suspend mode, device programming is disabled to protect the
device from unintended programming because of single event upsets. After device initialization, the system controller
is held in reset state and cannot provide system services such as security, IAP, or auto update programming. After
the device exits system controller suspend mode, it can be programmed as usual.
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References

For information about SNVM, eNVM, and Security Settings, see PolarFire FPGA and PolarFire SoC FPGA
Security User Guide.

For information about programming cycle count, see PolarFire FPGA and PolarFire SoC FPGA System Services
User Guide.

For information about design initialization, see PolarFire FPGA and PolarFire SoC FPGA Device Power-Up and
Resets User Guide.

For information about power supply requirement and filtering capacitors, see respective UG0726: PolarFire
FPGA Board Design User Guide or UG0901: PolarFire SoC Board Design Guidelines User Guide.

For information about using Libero SoC for PolarFire FPGA and PolarFire SoC FPGA, see Libero SoC
Documentation.

For information about MSS, see PolarFire SoC FPGA MSS Technical Reference Manual.
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Bitstream Generation

1. Bitstream Generation
The Libero® SoC design suite generates the programming bitstream required for various programming modes.
Depending on the requirement, the programming bitstream may contain one or more of the following components:
» FPGA fabric logic
+ sNVM data
» eNVM data (for PolarFire SoC FPGA only)
* user security settings

The following table lists the programming interfaces used in various programming modes and the associated
bitstream formats.

Table 1-1. PolarFire and PolarFire SoC FPGA Programming Interfaces and Bitstream Formats

JTAG programming System controller’s dedicated JTAG FlashPro programmer

JTAG programming System controller’s dedicated JTAG External microprocessor | DAT

SPI slave programming System controller’s dedicated SPI FlashPro programmer DAT

SPI slave programming System controller’s dedicated SPI External microprocessor  DAT

SPI master programming | System controller’s dedicated SPI System controller SPI
1.1 Bitstream Generation Flow

The following figure shows where the bitstream is generated in the Libero SoC.

Figure 1-1. Bitstream Generation in Libero Design Flow
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1. Synthesis L - Pre-synthesis constraints
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Export bitstream (.STP, .DAT, .SPI, and .SVF)

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 6
and its subsidiaries



1.2

1.3

Bitstream Generation

Adding sNVM Data to the Bitstream

The sNVM is a user non-volatile flash memory that can be programmed independently. Each device has 56 Kbytes of
sNVM.

To add multiple sSNVM data clients to the bitstream in Libero SoC, go to Design Flow > Program Design >
Configure Design Initialization Data and Memories, as shown in the following figure.

Figure 1-2. Design and Memory Initialization
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Adding eNVM Data to the Bitstream (For PolarFire SoC FPGA Only)

The eNVM is a user non-volatile flash memory that can be programmed independently. Each device has 128 Kbytes
of eNVM.

To add multiple eNVM data clients to the bitstream in Libero SoC, go to Design Flow > Program Design >
Configure Design Initialization Data and Memories, as shown in the following figure.
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1.4
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Figure 1-3. Design and Memory Initialization
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Adding User Security Settings to the Bitstream

Both the device families are provisioned with a set of unique factory keys. In addition, the end users can also

enroll their own security keys, thus providing complete independence from using Microchip provided keys. The user
encryption key1 (UEK1) and user encryption key2 (UEK2) are user-defined AES-2 symmetric keys. Either of these
keys can be used as the root key for encrypting and decrypting bitstreams, and to authenticate them.

To add user security settings in the bitstream:

1. InLibero SoC, go to Design Flow > Program Design > Configure Security > Custom security options, as
shown in the following figure.
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Bitstream Generation

Figure 1-4. Configure Security—Custom Security Options
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Click Next to modify Update policy. The Configure Security wizard appears as shown in the following figure.
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Bitstream Generation

Figure 1-5. Configure Security Wizard—Update Policy
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If Back Level protection is enabled, the Back Level version must be lower than the version of the design being
programmed. For more information about the fields, click Help. The back-level version value restricts the design
version that the device accepts as an update. Only (new) programming bitstreams with a Design Version strictly
greater than the current Back Level Version previously stored in the device are allowed for programming. Back-level
protection is secured by FlashLock/UPK1, which can be bypassed. The back level version and design version can
be modified in the configure programming options tool. For more information about SNVM and security settings, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.
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The following figure shows the configuration of programming options.
Figure 1-6. Configure Programming Options
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For more information about the bypass back level protection, see 4.1 Bypass Back Level Protection Use Case.

Configuring Bitstream Components

To configure security settings, and bitstream components such as fabric, SNVM, and eNVM (for PolarFire SoC FPGA
only), follow these steps:

In Libero SoC, go to Design Flow > Program Design > Program Design.

Right-click Generate Bitstream, and select Configure Options....

The Configure Bitstream window opens.

Select Custom security, Fabric, sNVM, and eNVM (for PolarFire SoC FPGA only).
Click OK.

on =
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Bitstream Generation

Figure 1-7. PolarFire FPGA Configure Bitstream Window
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Figure 1-8. PolarFire SoC FPGA Configure Bitstream Window
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To export bitstream files, go to Design Flow > Handoff Design for Production > Export Bitstream.

Note: Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is
used to program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to
enable it.

Programming File Size

Programming files are encrypted with factory key or user key. So, the file (.dat or .spi) cannot be compressed to
reduce the file size. The following table lists the PolarFire FPGA programming file sizes when custom security is
disabled.

Table 1-2. PolarFire FPGA Programming Files Sizes—Custom Security Disabled

PolarFire FPGA

Fabric and sNVM (kB) STAPL 5585 9611 14772 23446
DAT 3497 6043 9307 14789
SPI 3496 6041 9305 14788
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The following tables list the PolarFire FPGA programming file sizes when custom security is enabled.

Table 1-3. PolarFire FPGA Programming Files Sizes—Custom Security Enabled

PolarFire FPGA

MPF100 | MPF200 MPF500

Custom Security, Fabric STAPL Master Files 5595 9621 14784 23456
+and sNVM (kB) UEK1/UEK2 5585 9611 14774 23446
DAT Master Files 3502 6047 9312 14794
UEK1/UEK2 3497 6043 9307 14789
SPI Master Files 3498 6044 9308 14790
UEK1/UEK2 3496 6041 9305 14788
Custom Security (kB) STAPL NA 84 84 84 84
DAT NA 8 8 8 8
SPI NA 4 4 4 4

For example, MPF200 programming file size (SPI) that contains Security, Fabric, and sSNVM is 6044 Kbytes or ~
6 MB. The following table lists examples of external SPI Flash memory densities that are required based on the
number of programming images stored.

Table 1-4. PolarFire FPGA—Approximate External SPI Flash Memory Size

Number of Images External SPI Flash Size

1 6 MB

2 12 MB
3 18 MB
4 24 MB

The following table lists the PolarFire SoC FPGA programming file sizes when custom security is disabled.

Table 1-5. PolarFire SoC FPGA Programming Files Sizes—Custom Security Disabled

PolarFire SoC FPGA'

MPFS250T
Fabric, sNVM, and eNVM (kB) STAPL 14717
DAT 9261
SPI 9259

1 Other PolarFire SoC FPGA devices will be updated in future.

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 14
and its subsidiaries



Bitstream Generation

The following tables list the PolarFire SoC FPGA programming file sizes when custom security is enabled.

Table 1-6. PolarFire SoC FPGA Programming Files Sizes—Custom Security Enabled
PolarFire SoC FPGA!

MPFS250T
Custom Security, Fabric STAPL Master Files 14721
+and sNVM (kB) UEK1/UEK2 14714
DAT Master Files 9263
UEK1/UEK2 9258
SPI Master Files 9259
UEK1/UEK2 9257
Custom Security (kB) STAPL NA 85
DAT NA 8
SPI NA 4

1 Other PolarFire SoC FPGA devices will be updated in future.
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Device Programming Flow

Device Programming Flow

The device programming flow starts when the system controller receives or initiates device programming and ends
when the bitstream data is fully transferred and verified. The system controller fetches the bitstream data block-by-
block to program the device. Authentication of the bitstream and verification of the programmed contents are part of
the programming flow. The security settings are enabled either after erasing the device contents or on completion of
device programming. On successful completion of programming, the system controller resets the device to run the
programmed design. This programming flow is common to all the programming modes.

The following figure summarizes the device programming flow.

Figure 2-1. Programming Flow

< Device initiates programming >

4

Device gets programming data

Bitstream
Authentication

Fail

Pass

Device erases the fabric, SNVM, eNVM*, and user
security settings according to the bitstream

»
»

4

Device processes the block of bitstream data

\

According to the bitstream, device programs, and verifies the
- user security settings

- fabric

- sSNVM

- eNVM*

No

End of bitstream?

A 4

< End of device programming > < Diﬁ?ézzazréor >

* Applicable for PolarFire SoC FPGA only
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Device Programming Flow

Note: Programming cycle count is incremented for both programming and erase operations, since erase is internally
a programming scheme. For more information about programming cycle count, see the PolarFire FPGA and
PolarFire SoC FPGA System Services User Guide.

Programming Time

Programming time is the time taken to erase the existing contents of the device, process bitstream data, program
the device, and verify the programmed contents. The programmed content is verified as the next block of data is
loaded for programming. The simultaneous programming and verification mechanism considerably reduces the total
programming time.

The total programming time of both the device families is less than 60 seconds. For information about programming
time for specific devices and programming modes, see respective PolarFire FPGA Datasheet or PolarFire SoC FPGA
Advance Datasheet.
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3.1.2

Programming Modes

Programming Modes

This section describes the three programming modes in detail.

JTAG Programming

Both PolarFire FPGA and PolarFire SoC FPGA have a built-in JTAG controller that is compliant with the IEEE 1149.1
and |IEEE 1532 standards. The JTAG controller communicates with the system controller using a command register
that sends the JTAG instruction to be executed and a 128-bit data buffer that transfers any associated data.

JTAG Programming Interface

In both the PolarFire FPGA and PolarFire SoC FPGA, the JTAG pins are located in a dedicated I/0O bank 3 VDDI. For
information about the 1/O states during JTAG programming, see 5. /O States During Programming.

The JTAG bank voltages can be set to operate at 1.8 V, 2.5V, or 3.3 V. The following table lists the JTAG pins.
Table 3-1. JTAG Pins

Weak Pull-Up/Unused Description
Condition

Input Yes/DNC JTAG test mode select.
TRSTB Input Yes' JTAG test reset. Must be held low during device operation.
TDI Input Yes/DNC JTAG test data in.

In ATPG or test mode, when using a 4-bit tdi bus, this 10 is
used as tdi[0].

TCK Input No? JTAG test clock
TDO Output No/DNC JTAG test data out.

1. If TRSTB is unused and in the avionics mode, either an external 1 kQ pull-down resistor must be connected to it
to override the weak internal pull-up or it must be driven low from the external source.
2. In unused condition, must be connected to VSS through 10 kQ resistor.

JTAG Timing

Proper operation of JTAG programming depends on the timing relationship between JTAG pins as shown in the
following figure. For recommended timing values, see JTAG switching characteristics in respective PolarFire FPGA
Datasheet or PolarFire SoC Advance Datasheet.
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Programming Modes

Figure 3-1. JTAG Signals Timing Diagram
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JTAG Programming Using FlashPro Programmer

Microchip FlashPro programmer (version 5 or later) can be used to program both the device families through the
dedicated JTAG interface. This can be done either using the Libero SoC or a standalone FlashPro Express.

4—>: trek2q

The FlashPro programmer connects to the device via a 10-pin programming header using a FlashPro cable (10-pin
ribbon), as shown in the following figure.

Figure 3-2. JTAG Programming Using External Programmer

PolarFire® FPGA/POIarFire SoC FPGA Programming Header
(Dedicated JTAG)
8 8 10-Pin Ribbon External USB
JTAGII < O O le Cable Programmer | Host PC
Controller 00 (FlashPro5 or

later

System ©Oo )
Controller
v
sNVM, eNVM*, and
User Security
Settings
FPGA Fabric
|:| Device contents to be programmed
* Applicable for PolarFire SoC FPGA only.
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The following table lists the FlashPro header signals.

Table 3-2. FlashPro Header Signals

Direction to FlashPro Description
Programmer

TCK/SCK Output JTAG/SPI clock.
2 GND — Signal reference. GND pins must be connected.
3 TDO/MISO Input JTAG/SPI data output from programming device.
4 PROG_MODE Not connected Unused
5 TMS/SS Output JTAG test-mode select/SPI slave select.
6 VJTAG/VSPI | — Target interface voltage input.
7 VPUMP Not connected Unused
8 TRSTB Output JTAG test reset.
9 TDI/MOSI Output JTAG/SPI data input to programming device.
10 GND — GND

A single FlashPro programmer can program multiple Microchip FPGAs from the same family or from different families
in a single JTAG chain. The TDO pin of the JTAG header represents the beginning of the chain. The TDI pin of the
last device connects back to the JTAG header, thus completing the JTAG chain. The following types of FPGAs can be
added to a JTAG chain:

» Microchip devices targeted for programming
* Microchip bypass devices not targeted for programming
* Non-Microchip bypass devices

When a device is in bypass mode, the device’s data register length is automatically set to 1 and the device

stops responding to any programming instructions. To place a device in bypass mode, the instruction register (IR)
length must be known. For Microchip FPGAs, the IR length is obtained automatically by the FlashPro Express. For
non-Microchip FPGAs, the boundary scan description language (BSDL) file, which contains a sequence of boundary
scan commands and data, must be loaded, or the IR length must be manually entered in the FlashPro Express. For
more information about JTAG chain programming, see FlashPro User’s Guide.

Figure 3-3. Device Programming in JTAG Chain

Device #6 Device #5 Device #4
PolarFire® FPGA/
Non-Microchip PolarFire SoC FPGA Non-Microchip
TDI pTDI SoC FPGA  TDO| P TDI IR=8 TDO P TDI Soc FPGA TDO—
IR=4 IR=6
FlashPro
> JTAG
Programmer Header
Device #1 Device #2 Device #3
Non-Microchi SmartFusion®2/ ®
TDO « TDO  Soc FPGA P TDI ¢ TDO IGLOO®2 FPGA TDI« TDO ProASIIRC 34FPGA TDIl¢—
IR=4 IR=4

For information about power supply requirement and filtering capacitors, see respective UG0726: PolarFire FPGA
Board Design User Guide or UG0901: PolarFire SoC Board Design Guidelines User Guide.
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The following figure shows the connections between the programming header and the device.

Figure 3-4. Connecting FlashPro Programmer to a Device
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JTAG Programming Using External Microprocessor
An external microprocessor can be used to program the device through the dedicated JTAG interface. This type of
programming requires that the external microprocessor run DirectC, a Microchip programming solution for FPGAs,
and the microprocessor’s GPIO ports drive the JTAG interface.

1kQ

I—AW—

Note: The DirectC solution supports programming of the FPGA fabric, sSNVM, eNVM (for PolarFire SoC FPGA only),
and user security settings. DirectC is used by adding the necessary APIs and compiling the source code to create a
binary executable. The binary executable is downloaded to the external microprocessor along with the programming
data file. For more information, see the latest version of the DirectC User Guide available on the Microsemi DirectC

solution webpage.

Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is used to
program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to enable

it.
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The following figure shows a sample implementation of device programming using an external microprocessor
running DirectC.

Figure 3-5. Programming Using External Microprocessor

PolarFire® FPGA/PolarFire SoC FPGA | programming Header
(Dedicated JTAG) »
0O <
e | 8 8 P EIR: Microprocessor
- hl Ll (9] H i
Controller 00 5 £ Running DirectC
Q
System ©©o s
Controller - v
A 4 Y
sNVM, eNVM*, and
User Security Programming Image (.DAT)
Settings
y
FPGA Fabric
Device contents to be
programmed

* Applicable for PolarFire SoC FPGA only.

SPI Slave Programming

Both the device families can be programmed using an external SPI master such as an external microprocessor or a
FlashPro programmer through the SPI interface. See Table 3-4 for the pin settings that must be used to configure the
system controller SPI in slave mode.

The SPI slave or master mode is determined by |IO_CFG_INTF SPI pin at device Power-on Reset (POR) and cannot
be switched dynamically. A power cycle or DEVRST is required to change the SPI configuration from Slave to Master
or vice-versa by configuring the IO_CFG_INTF pin, as mentioned in Table 3-3.

When SPI is in Slave mode, fabric has no access to SPI and the SPI interface is dedicated to the system controller.

Design initialization from an external SPI flash is not supported when the device is in SPI slave programming mode.
For information about design initialization, see PolarFire FPGA and PolarFire SoC FPGA Power-up and Reset User
Guide.

SPI Slave Programming Interface

In addition to the standard SPI signals, both the device families provide two pins—SPI_EN and IO_CFG_INTF—for
configuring the SPI controller.

The following table lists the system controller’s SPI pins and specifies what must be done if a pin is not in use

(unused condition). For information about unused conditions and power sequence, see respective UG0726: PolarFire
FPGA Board Design User Guide or UG0901: PolarFire SoC FPGA Board Design Guidelines User Guide.

Table 3-3. System Controller SPI Pins

Bidirectional | SPI clock." Connect to VSS through a 10 kQ
resistor
SS?2 Bidirectional 'SPl slave select. Connect to VSS through a 10 kQ
resistor
User Guide DS50003191A-page 22
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........... continued
Input SDI input. Connect to VDDI3 through a 10
kQ resistor
SDO Output SDO output. DNC
SPI_EN Input SPI enable. Connect to VSS through a 10 kQ
0: SPI output tristated resistor
1: Enabled
Pulled up or down through a resistor or driven
dynamically from an external source to enable or
tristate the SPI 1/0.
IO_CFG_INTF Input SPI I/O configuration. Connect to VSS through a 10 kQ
0: SPI slave interface resistor

1: SPI master interface

Pulled up or down through a resistor.

1. Shared between the system controller and the FPGA fabric/MSS (for PolarFire SoC FPGA only). When the
system controller’s SPI is enabled and configured as master, the system controller hands over the control of the SPI
to the fabric (after device power-up)/MSS (for PolarFire SoC FPGA only). When the SPI_EN pin is disabled (driven
low) or when the SS is driven HIGH, the system controller’s SPI outputs are tristated.

2. The system controller SS pin is an active-low signal. In unused condition, the pin must be tied to VSS to avoid a
floating pin on the device.

The SPI_EN and I0_CFG_INTF pins must be configured external to the device. This can be done by using jumpers
on the board or by bootstrapping. The following table lists the SPI_EN and IO_CFG_INTF configuration for SPI slave
programming.

Table 3-4. System Controller’s SPI Configuration - SPI Slave

SPI Slave Description
Programming

SPI_EN | IO_CFG_INTF

0 X No Dynamic switching from Slave to Master or vice-versa is

not allowed. A power-cycle or device reset (DEVRST_N) is
1 0 (SPI slave mode) | Yes required to change the SPI configuration from Slave to Master
1 1 (SPI master mode) No or vice-versa by configuring the IO_CFG_INTF pin.

SPI Slave Programming Using FlashPro Programmer

Microchip FlashPro programmer (version 5 or later) can be used to program device through the dedicated SPI. This
can be done using either the Libero SoC or a standalone FlashPro Express. The FlashPro programmer is connected
to the device SPI ports, as shown in the following figure.

The target board must provide power to the VDD, VDD18, VDD25, and VDDI3.
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Figure 3-6. SPI Slave Programming Using External Programmer
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Device Programming using SPI Slave can be selected in Libero SoC Design Flow > Configure Hardware >
Programming Connectivity and Interface.

SPI Slave Programming Using External Microprocessor

An external microprocessor (such as a host PC or another Microchip FPGA) can be used to program the device
through the dedicated SPI port, as shown in the following figure. This type of programming requires that the external
microprocessor run the Microchip SPI-DirectC solution. The external microprocessor can also control the SPI_EN,
IO_CNF_INTF, and DEVRST_N pins to program the device.

SPI-DirectC supports programming of the FPGA fabric, sSNVM, eNVM (for PolarFire SoC FPGA only) and user
security settings. SPI-DirectC is used by adding the necessary APIs and compiling the source code to create a binary
executable. The binary executable is downloaded to the external microprocessor along with the programming data
file. For more information, see the latest version of the SPI-DirectC User Guide available on the Microsemi DirectC
solution webpage. The example project (Direct-C installer) is also available on the Downloads tab.

For information about FlashPro header signals, see Table 3-2.

Figure 3-7. SPI Slave Programming Using External Microprocessor

VDDI3
1 kQ PolarFire® FPGA/
PolarFire SoC FPGA External
(SPI Slave) 10 "Qg Microprocessor
SPI_EN (SPI Master)
System Controller
ss |« ss
spr  SCK < SCK
SDO f——PN————P» MISO
SDI |@——|——— MOSI
10_CFG_INTF §1 kQ
1kQ
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SPI Master Programming

When the system controller SPI is configured as a master, a device can program itself. In SPI master programming,
the programming images are stored in the external SPI flash memory using the SPI directory. For more information
about the SPI directory and about programming the external SPI flash memory, see 10. Programming the External
SPI Flash.

SPI master programming supports auto update and IAP. In auto update programming, if the version of the update
image is found to be different from the currently programmed version, the system controller reads the update image
bitstream from the external SPI flash memory and programs the device on power-up. In IAP, the user application
initiates the device program, and the system controller reads the bitstream from the external SPI flash memory to
program the device. The auto update and IAP operations are atomic and cannot be interrupted by JTAG or SPI slave
commands.

The Auto Update feature is not enabled by default and if required, this needs to be enabled using Libero SoC. SPI
Master mode also supports Auto Programming and Auto Recovery, see Table 3-5. These two features are enabled by
default and do not require user configuration.

For information about the 1/O states during SPI master programming, see 5. 1/O States During Programming.
The following table lists the initiation sources for the features supported by SPI master programming.

Table 3-5. Device Program Initiation Sources

Programming Description Initiation Source
Feature

Auto programming | Programs a blank device Device reset or power-cycle

Auto update Updates device contents Device reset, power-cycle, or system service request
automatically

IAP Updates device contents upon user | System service request
request

Auto recovery’ Automatically recovers the device  Device power failure during programming

from programming failure

1If there is a power interruption while Auto update or IAP updating the eNVM (for PolarFire SoC FPGA only) or
sNVM , then the auto-recovery is not triggered. Though, the eNVM (for PolarFire SoC FPGA only) or sNVM are
not updated completely, the device starts up and boot as normal. However, the partially programmed eNVM (for
PolarFire SoC FPGA only) or sNVM causes the user design to malfunction. In this case, the user needs to use
different mechanisms like VERIFY action or Digest Check to determine if the programming is successful.

For information about implementing Auto update and IAP, see AC466: PolarFire FPGA Auto Update and In-
Application Programming Application Note.
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The following figure shows the recommended board configuration for SPI master programming. The VDDI3 must
match the voltage specified in the datasheet associated with the external SPI flash.

Figure 3-8. Recommended Board Configuration for SPI Master Programming
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System Controller
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I0_CFG_INTF § 1k

SPI Master Programming Interface

The SPI_EN and I0_CFG_INTF pins must be configured external to the device by using jumpers on the board or by
bootstrapping. The following table provides the SPI_EN and IO_CFG_INTF pin configuration details for SPI master
programming.

Table 3-6. System Controller’s SPI Configuration—SPI Master

SPI Master Programming

0 X No No

1 0 (SPI slave mode) No No
1 1 (SPI master mode) Yes Yes

System Controller SPI Mode and Clock

The system controller SPI operates in data transfer mode 3 (SPI mode 3) for SPI flash read operations. Both the
clock polarity (SPO/CPOL) and clock phase (SPH/CPHA) for this data transfer mode must be set to HIGH. The
system controller’s SPI operates at a fixed clock of 20 MHz.

System Services

Both PolarFire FPGA and PolarFire SoC FPGA devices include a System Controller, which accepts and responds to
system service requests from the user.

The user application can initiate the following programming related system services:

» Bitstream authentication
* |AP image authentication
* Auto update

+ IAP

PolarFire FPGA System Services
In PolarFire FPGA, system services are system controller actions initiated by the fabric user logic through the
system controller’s system service interface (SSI). For initiating the system services, the fabric user logic requires the
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PF_SYSTEM_SERVICES SgCore IP available in the Libero catalog. The following figure shows the design interface
between fabric and System Controller.

Figure 3-9. Design Interface Between Fabric and System Controller

PolarFire® FPGA

sNVM pNVM
PUF
FPGA Fabric 7y
\ 4
» SSI |
General APB < » System Controller
Purpose |« p{ PF_SYSTEM_SERVICES - -
Processor q Device and Design
Mailbox g Information Services
Interface

Device Programming
Services

Data Security Services

Fabric Services

System SPI
Controller
Cryptoprocessor
and NRBG JTAG

For information about PolarFire FPGA system services driver and example SoftConsole project, see Firmware
Catalog, which is available in the Libero SoC installation package.
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3.3.2.1.1 PolarFire System Services Configurator
The following figure shows the PolarFire System Services Configurator.

Figure 3-10. PolarFire FPGA Core System Services Configurator
1 | Configurator — O X
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The fabric master is connected to the PF_SYSTEM_SERVICES core using the APB interface. The
PF_SYSTEM_SERVICES core can be configured using the PolarFire System Services configurator in Libero SoC, as
shown in Figure 3-10. For more information, see UG0848: PolarFire System Services User Guide.

3.3.2.2 PolarFire SoC FPGA System Services

In PolarFire SoC FPGA, system services are System Controller actions initiated by PolarFire SoC MSS. MSS
communicates with the System Controller over System Controller Bridge (SCB) bus. The following figure shows the
design interface between MSS and System Controller.
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Figure 3-11. Design Interface Between MSS and System Controller
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For information about PolarFire SoC FPGA MSS system services driver and example SoftConsole project, see
GitHub.

System Service Request

In both PolarFire FPGA and PolarFire SoC FPGA, the system service request is initiated by passing a 16-bit system
service descriptor to the System Controller. The lower seven bits of the descriptor specify the service to be performed
and the upper nine bits specify address offset. There is a 2 Kbytes internal mailbox RAM memory space. This space
is used for passing the input data and storing the service request output that is returned by the System controller.
The mailbox address specifies the service-specific data structure that is used for any additional inputs to or outputs
from the service. On completion of service, the System Controller writes a status code indicating the successful
completion of the system service or an error code. The following table lists the system service request descriptor bits.
For information about mailbox read/write communication from Fabric, see UG0848 PolarFire System Services User
Guide.

Table 3-7. PolarFire FPGA and PolarFire SoC FPGA System Service Request Descriptor

System Service Descriptor | Value Description
Bit Field

15:7 MBOXADDR][10:2] Specifies the address offset in mailbox RAM to access
minimum four bytes of memory. Mailbox addresses are
specified using a word offset (0-511).
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........... continued

System Service Descriptor | Value Description

Bit Field

6:0 SERVICECMD Service command for System Controller to execute the

request.

For more information about system services, see PolarFire FPGA and PolarFire SoC FPGA System Services User
Guide.

Bitstream and IAP Image Authentication System Services

For security and reliability reasons, the programming bitstream must be authenticated and validated before the
device is programmed. Successful authentication of the bitstream prevents auto recovery. While the authentication is
in progress, the fabric user logic in PolarFire FPGA and MSS user application in PolarFire SoC FPGA continues to
operate normally, though without access to SPI flash and system services. Before the device is programmed using
auto update or IAP, the user application can run the authentication system service.

Note: If the bitstream authentication system service is initiated while a new bitstream is being loaded through the
JTAG interface, the system service takes precedence, and the JTAG operation fails.

Bitstream Authentication System Service
The bitstream authentication system service parses a bitstream image stored in the SPI flash and verifies the integrity
of the bitstream. The following table lists the fields in a bitstream authentication service request.

Table 3-8. Bitstream Authentication Service Request

15:7 MBOXADDR[10:2] | Mailbox address. For the format, see Table 3-9.

6:0 23H Bitstream authentication command code.

The following table describes the bitstream authentication service mailbox format.

Table 3-9. Bitstream Authentication Service Mailbox Format

SPIADDR | Input Address of the bitstream in SPI flash.
If the external SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

IAP Image Authentication System Service
The IAP image authentication system service parses an image stored in the SPI flash and verifies the integrity of the
image descriptor, bitstream, and design initialization data.

The following table lists the fields in an IAP image authentication service request.

Table 3-10. IAP Image Authentication Service Request

Field

15 — Reserved.
147 IMAGEID[7:0] Identifies the image index in the SPI directory for image
authentication.
6:0 22H Authenticates image command.
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Authentication Service Status Codes

If bitstream authentication or IAP image authentication is successful, the status code 0 is generated. If bitstream
authentication or IAP image authentication fails, an 8-bit error code is generated. For the detailed information about
error codes, see 11. Appendix: Error Codes.

Usage of Authentication System Services

The programming image contains the image descriptor, bitstream, and optional design initialization data. The
bitstream authentication system service can be used to authenticate the bitstream only. The IAP image authentication
system service, however, can be used to authenticate the entire programming image, including the image descriptor,
bitstream, and optional design initialization data.

Auto Update

For auto update to occur, the auto update feature needs to be enabled in the user design. On power-up, the device
selects the newer version of the first two images stored in the SPI directory. If the version of the newer image

does not match that of the currently programmed image, then auto update occurs. The following figure shows the
high-level flow of auto update programming.

Figure 3-12. Auto Update High-Level Flowchart
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The following figure shows the detailed flow of auto update programming.
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Figure 3-13. Auto Update Detailed Flow
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The following table lists example auto update conditions when different image versions are available in the SPI flash.

Table 3-11. Example Auto Update Conditions

Version Running on First Two Image Versions Back Level Protection | Image Version Selected for
the Device Available in SPI Flash Auto Update

Blank device Disabled

3 2,3 Disabled No auto update
3 1,2 Disabled 2

2 1,2 Disabled No auto update
1 1,2 Disabled 2

2 3,4 Enabled and set to 4 No auto update
3 3,5 Enabled and set to 4 5

2 3,5 Enabled and set to 4 5

5 2,3 Enabled and set to 4 No auto update

Auto Update on a Blank Device (Auto Programming)
When a blank device is powered up or reset (with SPI master mode enabled), the device programs itself using the
newest version of the image. This process is known as auto programming.

When the device is blank and programmed using the auto programming method with security-enabled bitstream,
subsequent programming can only be done using a custom security-enabled bitstream file (UEK1/UEK2). For more
information about generating security enabled bitstream, see 1.4 Adding User Security Settings to the Bitstream.

Auto Update on a Pre-programmed Device

Auto update is also initiated through system services on a pre-programmed device. If the device is preprogrammed, it
compares the update image with the currently programmed image. If the version of the update image is found to be
different from the currently programmed version, auto update programming is initiated.

To perform auto update on a preprogrammed device, the user application must initiate a system service request. The
system controller executes the system service request and programs the device.

The user application cannot obtain the status code in the following scenarios:

+ If the auto update program is successful, the device is automatically restarted to initialize the new version of the
design.

+ If the auto update program fails, the auto update recovery procedure attempts to program the device with the
valid image again.

The following table lists the fields in an auto update system service request.

Table 3-12. Auto Update System Service Request

Field

15:7 Reserved.

6:0 46H Auto update programming command.

When auto update is not enabled in the user design, the auto update system service can be used to update the
device with the newest image using the user application.

Note: Auto update system service does not generate an error if SPI controller is not in the master mode.
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Recovery on Auto Update Programming Failure

When power fails during auto update programming, the auto update programming flow is initiated on the next boot

cycle to program the device with the newest image.

Note: If the device fails to program the newer image, it retries once before programming itself with the older version
of the image. If the device remains blank at the end of auto update, there is no indication through I/O and user

intervention is required.

Enabling Auto Update Option in User Design
To enable auto update, follow these steps:

1. Click Configure Design Initialization Data and Memories and select the SPI Flash tab.

2. Select the Enable Auto Update checkbox.
Figure 3-14. Auto Update Setting
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3. Click Configure Programming Options, and specify the design version and back level version, as shown in

the following figure.
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Figure 3-15. Design Version
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Auto Update Use Models

Auto update is initiated when a different version of the programming image is available in the SPI flash memory. For
more information, see 10.2 SPI Directory. The device uses the Bits/Version component of the programming image
to determine the version. The Bits/Version component appears at the beginning of a bitstream and contains version
information. This section describes three auto update use models—ping pong, golden image, and single image.
Based on the design requirement, any of these models can be used.

Ping Pong

Auto update uses the newer of the first two images on the SPI flash memory. When a new image is written to the SPI
flash memory, the older of the two images is overwritten with the new image. This is known as the ping pong model
and is used when the previous image version needs to be retained along with the newer image. This facilitates an
automatic rollback to the previous image if the new image fails. The following figure shows the ping pong use model.
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Figure 3-16. Ping Pong Use Model
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Golden Image

When auto update fails with a newer version of the image, the device needs to be updated safely using a working
image. This image is known as the golden image. When a new image is written to the SPI flash memory, it must not
overwrite the golden image. The following figure shows the golden image use model.
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Figure 3-17. Golden Image Use Model
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Single Image

This model is used when only one image is available for updating the device. The following figure shows the single
image use model.
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Figure 3-18. Single Image Use Model
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3.34 IAP

IAP reprograms the device with a specific programming image. In IAP, regardless of the image version, the device
chooses the programming image based on either the image index or the SPI| image address. The fabric user logic
in PolarFire FPGA and MSS user application in PolarFire SoC FPGA specifies the programming image and initiates
reprogramming of the device using the IAP system service.

3.3.4.1 IAP Using System Service

The user application initiates an IAP system service request using fabric user logic in PolarFire FPGA and MSS
user application in PolarFire SoC FPGA. The system service specifies whether the image is used for verification or
programming. The system controller automatically reads the bitstream from the SPI flash to verify or program the
device contents.

Verify Operation

The verify operation compares the specified programming image contents with the device contents. The following
table lists the fields in an IAP system service request using the image index.

Table 3-13. IAP Verify Request by Image Index

15 — Reserved.
14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.
6:0 44H IAP verify operation.
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An SPI flash memory address can be specified instead of the image index within the SPI directory, as shown in the
following table.

Table 3-14. IAP Verify Request by Image Address

157 MBOXADDR[10:2] | Mailbox address. For the format, see Table 3-17.
6:0 45H IAP verify operation.

If the AP verification is successful, the status code 0 is generated. If the IP verification fails, an 8-bit error code is
generated. For the detailed information about error codes, see 11. Appendix: Error Codes.

Digest Check system service is recommended to verify the integrity of the device contents instead of IAP verify
operation. For more information, see respective PolarFire FPGA Datasheet or PolarFire SoC Advance Datasheet.

Note: Digest printed during programming (same as in *.digest file)is bitstream payload digest. It is meant for
device to confirm that it receives the correct bitstream payload. Digest exported from DEVICE_INFO is the digest of
the actual memory content. It does not have other metadata that is included in the encrypted bitstream payload, so it
is different than one generated during programming.

Program Operation

The program operation updates the device contents using a specified programming image. The IAP program
operation does not authenticate the image before executing the program. The image can be authenticated using

the IAP image authentication system service. For more information, see 3.3.2.4.2 IAP Image Authentication System
Service.

The user application cannot obtain the status code in the following scenarios:

» If IAP is successful, the device is automatically restarted to initialize the new design.
« If IAP fails, the IAP recovery procedure attempts to program the device with image 0.

Note: IAP recovery considers image 0 when the pointer to image 1 in the SPI directory is null. For more information,
see 10.2 SPI Directory.

The following table lists the fields in an IAP system service request using the image index.

Table 3-15. IAP Program Request by Image Index

15 — Reserved.

14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.

6:0 42H IAP program operation.

An SPI flash memory address can be specified instead of the image index within the SPI directory, as specified in the
following table.

Table 3-16. IAP Request by Image Address

157 MBOXADDR[10:2] | For the mailbox format, see the following table.
6:0 43H IAP program operation.
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The following table describes the mailbox format.

Table 3-17. Mailbox Format

e e

SPIADDR | Input Programming image address in SPI flash memory. If the
attached SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

Recovery on Programming Failure
When power fails during IAP, the device programs itself with image 0.

Note: When the device fails to program the specific image, it retries once before programming itself with image 0. If
the device is still blank at the end of IAP, there is no indication through 1/0O and user intervention is required.
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3.3.4.3 IAP Flow

The following figure shows the IAP flow.

Figure 3-19. IAP Flowchart
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3.3.44 |AP Use Model

Both the device families support the multi-image IAP use model, which allows up to 255 images to be stored

in the SPI flash memory. The image descriptor pointers are in Sector 0 of the SPI flash memory. The device

can be programmed with any image; however, if the program fails, the device is programmed with image 0. The
programming image pointer next to the image 0 pointer must be null (empty slot). This model is used when the device
needs to be updated with a specific image from among the available images. Figure 3-20 shows the multi-image use

model.

Figure 3-20. Multi-image Use Model
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4, Bypassing the Back Level Protection

If Back Level protection is enabled in the Configure Security tool, the back level protection can be bypassed for SPI
bitstreams while exporting the bitstream using Libero. To prevent Programming Recovery failures, enable the Bypass
the Back Level Protection for Recovery/Golden bitstream (SPI files only), as shown in the following figures.

Figure 4-1. PolarFire FPGA—Selecting Bypass Back Level Protection Feature

1 87 Export Bitstream *
Top Hodue(root): g_cdr_test |
Toal Bitetream file —
.V B Open Methan Viewss Mase: | aample Exstng fles:
T Synthesize <Mp Bitstream files Found =
= b Verify Post-Synthesized Design Location: [F-lancle
+L] Generate Simulation File
Formats:
_H simulete .

v #i5 Place and Route W sTARL Suppart for [F
| = b Verify Post Layout Implementation I~ thok STARL  Supmort for _
e @ Nerify Timing it e =l 2

%. Open SmanTime W DAt Suppart for Embadded 152 (TTAG and 5P1-Slave]

A Verify Power
o Up’:’"‘SSN Analyzer =i ms‘wu;m“wmmﬁuwwdm,
= b Configure Hardwars
1] Programming Connectivity and Interface I~ s 5 ="

Cenfigure Programmer

Sedect Programmer Taroization st
IV [T Lilr Mew (Erases all Lser data; device can be immediately reprogrammed by user)

| Canfigure Design Indialization Data and Memories [ Unrecoverabie (Erases o deta and destroys reprogrammsbiity; device must be scrapped)

v +C1 tGenerate Design Inialization Diata

5 Configure /0 States During JTAG Programming Security options set with ConSgure Secunty tool
« Carfigure P ing it
@ il i e Faues Dbie o Fctory kny modes s ccnfiured ey setig.
eafigure Security 1 to t=mporany enatie settregs during one programming sessin,
" Generate Bitstreamn 1 to temporanily enabie settings during one debugging session,
& Fun PROGRAM Actian FlazH.ock|LP¥1 wil be eporbed n plaintext

mester e,
= b Program SPI Flash Image Back Level protection is enabled. Use FashLodkyUPK L to bypass Back Level protection.
& Generate 5P| Flach bmage Smar Dby Booas conirol | enabled. Trierral cata may e aocessibbe, Anyone can debug of BCcess ctive Drobes, acoess Live Probe, and read th content of s,
& Fun PROGRAM_SPIIMAGE Action Factory best moce i alowed. This vl allow Mcrosem 20 perform Padure Analysis,
=} Handaff Design for Production . Terozaton trough TTAG/ST Sl & erabled_ This is net secommended for production devices.

Extrrmial Fabric/siWiM desion digest check request throuch JTAG/SPL Save is ensbled,

(8 Configure Pemanent Locks for Production Fepeated external Fabric digest cakodations can impact its relabiiy. Wew Datasheet for additioral information.

|
Export FlashPra Express Iob Pragramming Opbons set with Configure Programming Siptions hoal |

% Bxport S0 Flaih kmage Design verson: |5 Back Level version: [ @

+LI Export Pin Repart

|
Bitztream fies to be exported

Deson fiow | Desgnier

Bitstream components Eypass Back Level protection for |
; RecaveryGokdan bisiream [
= | Magter fils fo program 51 Bes ooy}
E]w 05,05 I, Wamings i Infs ot Fusted fadlty ¥ Custom seamty B Rebric P st =
[ g i e ted st LEKL to _ |
atwrg:sweﬂfagrnvuhsggastm»wm W Fabric ¥ shivid I
:u-mv: 551 Fiesh Image' Lo T’ﬁmmé_wuw‘":‘mw = I ebic [ stm r =
= o at unbrust Y oF Broadcact & a | o =
Oraso: cizeniag teol Genssane Desion lizand| =1
All ients have be i |
oK Cancel
© 2021 Microchip Technology Inc. User Guide DS50003191A-page 43

and its subsidiaries



Bypassing the Back Level Protection

Figure 4-2. PolarFire SoC FPGA—Selecting Bypass Back Level Protection Feature
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When the SPI bitstream is added to the SPI flash using design and memory initialization data, the tool shows back
level protection bypass feature in bitstream, as shown in the following figure.

Figure 4-3. Status of Bypass Back Level Protection
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Bypassing the Back Level Protection

Bypass Back Level Protection Use Case
The following table lists the user case for Bypass Back Level Protection.

Table 4-1. Bypass Back Level Protection Use Case

SPI Bitstream Design Design Back | Device Back
Version Level Version |Level Version

Golden/Recovery | Auto Programming  Pass

2 IAP/Update
Bitstream

3 IAP/Update
Bitstream

Auto Update/IAP

Auto Update/IAP

The steps are described as follows:

Pass 3 2 2
Fail, Attempt 4 Not 2
Programming Enabled
Recovery

1. The device programs with a bitstream version 2 and back level version 1. The current device back level

version is set to 1.

2. The device then updates with a bitstream version 3 and back level version 2.
The current device back level version is set to 2.

3. The device attempts to update itself with a bitstream version 4 and fails to update. In this case, the device
attempts to recover using a golden/recovery bitstream version 2. But the recovery also fails as the current
device back level protection is set to version 2 and the golden/recovery bitstream version is equal to the back
level version. The Bypass Back Level Protection must be enabled (see Figure 4-1) for Golden/Recovery
bitstream to avoid programming recovery failures because of back level protection.
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I/0 States During Programming

The following table lists the 1/O states that apply during various stages of programming.

Table 5-1. 1/0 States for Various Programming Modes

IIO Type 1/0 States
JTAG Programming SPI Slave Programming | SPI Master Programming (IAP/
Auto Update)
System controller | Enabled. Enabled. Enabled.
I/0
XCVR reference | Not affected. Not affected. Not affected.
clock inputs May be kept alive during IAP using

loopback mode, allowing the XCVR
link to be kept active.

XCVR data I/O As set by the boundary scan Not affected. Not affected.
cell. May be kept alive during IAP using
loopback mode, allowing the XCVR
link to be kept active.

GPIO and HSIO | I/Os are enabled, but the /O Can be weakly pulled Outputs are tristated and weakly

state can be set using the up using the SPI slave pulled up.
boundary scan cell. instruction ISC_ENABLE.
MSS I/Os for I/Os are enabled, but the /O | Can be weakly pulled Outputs are tristated and not in
PolarFire SoC state can be set using the up using the SPI slave weakly pulled up state.
boundary scan cell. instruction ISC_ENABLE.

In Libero SoC, the I/O states can be set before JTAG programming, and these I/O states are held at the set values
during JTAG programming. The following are the I/O output state settings:

* 1:1/Ois set to drive out logic HIGH
* 0:1/Ois set to drive out logic LOW

» Last Known State: I/O is set to the last value that was driven out before entering the programming mode and
then held at that value during programming

Z: /0O is tri-stated
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I/0 States During Programming

The I/O output states can be set as shown in the following figure.

Figure 5-1. 1/O States During Programming (JTAG Mode Only)
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MSS State During Programming (For PolarFire ...

6. MSS State During Programming (For PolarFire SoC FPGA only)
TBD.
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Programming Recommendations

7. Programming Recommendations

To ensure successful programming, the following guidelines are recommended:

» Authenticate the bitstream before programming the device.

» Do not assert the reset pin (DEVRST_N) during programming because this may corrupt the device
configuration.

» Use the correct configuration and programming interface based on the selected programming mode.

» Configure the device I/O states (before JTAG programming) based on the design requirements. For more
information, see 5. 1/O States During Programming.
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Brownout During Programming

Brownout During Programming

Brownout is a condition that occurs when the power supplies fall below recommended levels. If brownout occurs
during programming, the device automatically recovers from the programming failure (since auto recovery is enabled
by default) and programs the device with a valid programming image stored in the external SPI flash.
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Zeroization

Zeroization

Both the device families have a built-in capability that can zeroize (clear and verify) any or all configuration storage
elements as per the user setting. Internal volatile memories such as LSRAMs, uSRAMs, and system controller RAMs
are cleared and verified. Once the zeroization is complete, a zeroization certificate can be retrieved using a JTAG/SPI
slave instruction to confirm that the zeroization process is successful. For more information about zeroization, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.
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10.

10.1

10.2

Programming the External SPI Flash

Programming the External SPI Flash
To perform IAP or auto update, an external SPI flash memory is required. This SPI flash memory interfaces with the
system controller's SPI and stores the programming images.

The SPI flash memory is divided into several sectors. The 1KB memory in first sector (sector 0) is used as the SPI
directory, and it contains the programming image indexes (descriptor pointers). The remaining flash memory stores
the programming images.

Supported SPI Flash Devices

SPI flash devices from various vendors implement a standard instruction set for read operations. The system
controller firmware executes the following command to identify the addressing mode (3-byte or 4-byte):
READ SERIAL FLASH DISCOVERY PARAMETER (5AH)

The system controller supports devices from Micron, Winbond, Macronix, and Spansion. However, any other device
compatible with the JESD216 standard may also be used. Devices that are not JESD216-compliant may still be used
if they support the FAST READ (0BH) command with 3-byte addressing. Such devices are limited to using only the
first 128 Mb of the flash memory.

SPI Directory

The SPI directory is a collection of image descriptor pointers that point to the beginning of the programming image.
Each pointer uses four bytes. If the SPI flash memory device supports only the 3-byte addressing mode, the first
three bytes are used.

For IAP recovery to choose image 0 on power-up, the programming image pointer next to the image 0 pointer must
be null (empty slot), otherwise auto update is chosen. The following figure shows the SPI flash directory with the
programming image descriptor pointers.
Figure 10-1. SPI Flash Directory

Sector 0

Memory Address 0—— Image 0 Descriptor Pointer
Memory Address 4 —pp»| Empty Slot
Memory Address 8 — Image 1 Descriptor Pointer
|
I
I
I
I
I
|
I
Memory Address 4*(N-1)—Jp»| Image(N-1) Descriptor Pointer

The SPI directory contains the start addresses of the programming images. The SPI directory occupies 1 KB memory
from sector 0 of external SPI flash memory. For example, if the external SPI flash contains three images: golden
image, update image, and IAP image, then these images are stored at memory with starting the addresses: 0x400,
0xA00000, and 0x1400000. If the Libero configurator is used to program SPI flash with programming images, then
the Libero configurator takes care of the programming SPI directory automatically. If the user application programs
the external SPI flash with programming images, then the application must write starting addresses of each image
into SPI directory starting from SPI flash address 0, as shown in the following figure.
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Programming the External SPI Flash

Figure 10-2. SPI Flash Memory
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10.3 Use Models for Programming SPI Flash
The external SPI flash can be programmed using either JTAG or the system controller’'s SPIl. When the system
controller’s SPI is enabled and configured in SPI master mode, the system controller’s SPI port is shared between
the system controller and either the FPGA fabric master/MSS (for PolarFire SoC FPGA only) or JTAG. This section
describes the use models for programming the external SPI flash.

10.3.1 Programming the SPI Flash Using External Processor
When the SPI_EN pin is disabled (driven LOW), the system controller’s SPI outputs are tri-stated, and the external
processor can drive the SPI pins to program the SPI flash. Neither the system controller nor the fabric/MSS (for
PolarFire SoC FPGA only) can drive the SPI interface. The external processor can drive the SPI_EN pin LOW to

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 53
and its subsidiaries



10.3.2

Programming the External SPI Flash

program the external SPI flash. The SPI_EN pin can also be configured external to the device using the jumpers

on the board. The SPI flash is programmed using an external processor SPI master SCK frequency. The SCK
frequency is configured using external processor application. The following figure shows the connections required for
programming the SPI flash using an external processor.

Figure 10-3. SPI Flash Programming Using External Processor
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Programming the SPI Flash Using JTAG

The external SPI flash can be programmed using a FlashPro programmer (version 5 or later) through the system
controller’s JTAG interface. The JTAG controller uses a special JTAG instruction—SPIPROG (IR=0xb0)—to
interface with the external SPI flash through the system controller’s SPI. The JTAG controller in both the device
families support this instruction to directly drive the system controller’s SPI outputs. The following figure shows the
connections required for programming the SPI flash using JTAG.

Figure 10-4. SPI Flash Programming Using JTAG
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10.3.2.1 Programming External SPI Flash Using Libero

The Libero SoC software allows you to program the external SPI flash memory with programming images. To
program the SPI flash memory:

© 2021 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003191A-page 54



Programming the External SPI Flash

1. Go to Design Flow > Program and Debug Design > Configure Design Initialization Data and Memories,
and select the SPI Flash tab, as shown in following figure.
Figure 10-5. SPI Flash Programming in Libero SoC
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Note: For PolarFire FPGA, in order to streamline the SPI-Flash Programming support with FlashPro6,
effective from Libero SoC v12.4, the vendor information is replaced with the density of the target memory.

2. Under SPI Flash Clients, add the required programming images, and click Apply. For more information about
values to be entered in the fields, click Help.

3. Go to Design Flow > Configure Hardware > Configure Programmer > right-click and select Programmer
Settings in the FlashPro tabs. User can modify the TCK frequency by checking and selecting the Force TCK
Frequency to enhance the SPI flash programming time.

Figure 10-6. Programmer Settings
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4. Double-click Run PROGRAM_SPI_IMAGE Action to get the SPI flash programmed with the SPI directory and
the programming images.
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10.3.4

Programming the External SPI Flash

Figure 10-7. Run PROGRAM_SPI_IMAGE Action

Project File Edit View Design Tools Help

D[220 [

Jesign Flow

Top Module(root): PROC_SUBSYSTEM

|T|:|0I

=+ # Implement Design
B Metlist Viewer
'S Synthesize
Y% Place and Route

S K

& Verify Timing

El Verify Power

‘...

@ Configure Security
=+~ # Program Design

(".’_J. Open SmartTime

=+~ # Program and Debug Design
*L| Generate FPGA Array Data
*L| Configure Design Initialization Data and Memories
v *L| Generate Design Initialization Data
=+ # Configure Hardware
I*[ Programming Connectivity and Interface
& Configure Programmer
fts: Device /0 States During Programming - JTAG Mode Only
» Configure Programming Options

‘3 Generate Bitstream
& Run PROGRAM Action

=+ # Verify Post Layout Implementation

[} =~ # Program 5Pl Flash Image
V % _Generate SPLElash lmane —
i |'& Run PROGRAM_SPI_IMAGE Action |

=+~ # Debug Design

€ SmartDebug Design
=+ # Configure Permanent Locks for Production
@ Configure OTP Security
! =~ b Handoff Desian for Production

|

Design Flaw | Design Hierarchy ] Stimulus Hierarchy ] Catalog J Files ]

For more information about design initialization data and memories, see PolarFire FPGA and PolarFire SoC FPGA

Device Power-up and Reset User Guide.

Notes: The following are the recommendations for SPI Flash Programming Using Libero.

» This tool erases the SPI Flash prior to programming. It is recommended to program the SPI Flash with Libero
SoC prior to programming other data on the SPI Flash using non-Libero programming solutions.

» Partial update of the SPI Flash is currently not supported.

» Itis not recommended to have large gaps between clients in the SPI Flash, since gaps are currently
programmed with 1’s and increases programming time.

Programming the SPI Flash Using MSS (For PolarFire SoC FPGA Only)

TBD.

Copying Contents from the External SPI Flash to the MSS User Application (For PolarFire SoC

FPGA Only)

The MSS SPI copy system service allows data to be copied from the external SPI flash to the MSS user application
memory. The mss_system_services driver includes the method to copy data from external SPI flash to the MSS user

application memory.

For information about mss_system_services driver and example SoftConsole project, see GitHub. This MSS SPI
copy system service is only useful for reading contents from the External SPI flash memory.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003191A-page 56


http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
https://github.com/polarfire-soc/polarfire-soc-bare-metal-examples

10.3.5

Programming the External SPI Flash

Programming the SPI Flash Using Fabric User Logic

When the system controller’s SPI is enabled and configured as master, the system controller hands over the control
of the SPI to the fabric (after device power-up). The JTAG controller that starts programming the SPI flash, or any
system service request from the fabric user logic, can take over the control of SPI from the fabric.

The fabric user logic gets the programming images from an external memory source, as shown in the following figure.
The fabric user logic accesses the external SPI flash using the CoreSPIcontroller and PF_SPI macro provided in
Libero Catalog. The external SPI flash is programmed using SPI master SCK frequency. The SCK frequency can be
configured in user logic.

System controller can only access dedicated SPI I/Os (SPI Interface pins). System Controller cannot access the
fabric 10s. As a result, all the services from the system controller using SPI (that is, programming) can only use the
dedicated SPI I/Os. The user can use PF_SPI, a macro provided in the Libero Catalog to get access to the dedicated
SPI I/Os from the fabric (that is, once the system controller releases them) to access the SPI flash memory.

Note: To fetch the programming images and write to the external SPI flash, both the device families must be
preprogrammed with a design. For more information, see AC466: PolarFire FPGA Auto Update and In-Application
Programming Application Note.

Figure 10-8. SPI Flash Programming Using Fabric User Logic
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Appendix: Error Codes

Appendix: Error Codes

The system controller executes system service requests from the design. When a service is completed, a status code
is returned to the user application. This status code can be 0 (success) or an 8-bit error code. The following table lists
the error codes.

Table 11-1. Error Codes

Error Description Explanation
Code

1

10

11

12

13
14
21

22

23

Validator or hash chaining
mismatch
Unexpected data received

Invalid/corrupt encryption key

Invalid component header

Back level not satisfied

lllegal bitstream mode

DSN binding mismatch

lllegal component sequence

Insufficient device capabilities

Incorrect DEVICEID

Unsupported bitstream protocol
version (regeneration required)

Verify not permitted on this
bitstream

Invalid device certificate
Invalid DIB

Device not in SPI master mode

No valid images found (auto
update)

No valid images found (IAP)

Bitstream is constructed incorrectly, or a wrong security key is
used.

Additional data is received after the End of the Bitstream (EOB)
component.

Requested key mode is disabled, or the key could not be read or
reconstructed.

Bitstream contains invalid component data.

Bitstream version is older than that of the current back level in the
device.

Requested bitstream mode is disabled by user security.

Bitstream is rejected because the Device Serial Number (DSN) in
the bitstream does not match the DSN on the device.

Bitstream ends in the ERR state, meaning it is an illegal
bitstream.

Every bitstream begins in the BEGIN state, but only a legal
bitstream ends in the END state.

Bitstream is rejected because the capabilities specified in the
bitstream do not match the target device’s capabilities.

Bitstream is rejected because an attempt by the DEVICEID
specified in the bitstream does not match the part identification
field of the target device.

Bitstream is rejected because of an attempt made by the old
device to decode the new version of bitstream or by the new
device to decode the old version of the bitstream.

When the device programs the bitstream with encryption keys,
it is not possible to use the bitstream later to verify the device

contents because the device refers to the modified encryption
keys.

Device certificate is missing or invalid.
Device integrity bits are invalid.

Bitstream is executed in IAP mode, but the device is not
configured as SPI master.

Bitstream is executed through auto update mode, but no valid
image pointers are found.

Bitstream is executed through IAP via index mode, but no valid
image pointers are found.
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Appendix: Error Codes

continued

Error Description Explanation
Code

24

25
26

27

127
128
129

130
131
132
133
134
135

Programmed design version
newer than auto update image

Reserved

Selected image invalid and no
recovery performed because the
device is running a valid design

Selected recovery image failed to
program

Abort
NVMVERIFY
PROTECTED

NOTENA
SNVMVERIFY
SYSTEM
BADCOMPONENT
HVPROGERR
HVSTATE

Bitstream is executed through auto update mode, and the design
version is the latest.

Bitstream is executed through auto update or IAP mode, and the
selected image is invalid.

Bitstream is executed through auto update or IAP mode, and the
selected recovery image failed to program the device.

A non-bitstream instruction is executed during bitstream loading.
Fabric/security key segment verification failed.

The device non-volatile memory cannot be modified because of
device security settings.

Programming mode is not enabled.

The sNVM verify operation failed.

An error occurred in the system hardware (PUF or DRBG).
An error is detected in a component’s payload.

The HV programming subsystem has failed.

The HV programming subsystem is in an unexpected state
because of an error.
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12.

Revision History

Revision History
The revision history table describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Table 12-1. Revision History

Roison o oo

A 08/2021 The first publication of the document.
This user guide was created by merging the following
documents:
* UGO0714: PolarFire FPGA Programming User Guide
* UG0914: PolarFire SoC FPGA Programming User Guide
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The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

» Microchip believes that its family of products is secure when used in the intended manner and under normal
conditions.

* There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

» Microchip is willing to work with any customer who is concerned about the integrity of its code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.
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Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQl, SuperSwitcher, SuperSwitcher Il, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-8839-2

© 2021 Microchip Technology Inc. User Guide DS50003191A-page 62
and its subsidiaries



Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.
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Worldwide Sales and Service
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2355 West Chandler Blvd. Tel: 61-2-9868-6733 Tel: 91-80-3090-4444 Tel: 43-7242-2244-39
Chandler, AZ 85224-6199 China - Beijing India - New Delhi Fax: 43-7242-2244-393
Tel: 480-792-7200 Tel: 86-10-8569-7000 Tel: 91-11-4160-8631 Denmark - Copenhagen
Fax: 480-792-7277 China - Chengdu India - Pune Tel: 45-4485-5910
Technical Support: Tel: 86-28-8665-5511 Tel: 91-20-4121-0141 Fax: 45-4485-2829
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