Disco-Kraken PCB Drawings Index - EPON Based Rev. 5-Oct-2023 | PDF
Page
Num | Subject | Drawing Numbers | |--------------------|--|--| | 2 | DK Board Size and General Layout: | Drw. 26, 63 | | 4 | Pin Layout FPGA/CPU MPFS250T-FCVG784: | Drw. 25, 61 | | 6 | FPGA/CPU 22 Power Loads | Drw. 45 | | 7 | FPGA/CPU 9 Power Feed Fills: | bulk_1v2
bulk_3v3
core_1v05
digital_1v8
digital_2v5
fpga_p11_2v5
xcvr_1v05
xcvr_c1k_2v5
xcvr_p11_2v5 | | 16 | Layer Usage in this 10 Layer DK PCB De | esign Study | | 17 | PCB Physical Layers - Power Fills: | physical_layer_3
physical_layer_5
physical_layer_6 | | 20 | BGA Escapes for DDR Memory | ddr4_bga_escapes | | 21 | Example 10 Layer Stackup from a Previo | ous High-Speed Design | All DK board design files are available on the web: https://web.pa.msu.edu/people/edmunds/Disco_Kraken/ ### <u>Disco-Kraken - Board Size and Layout</u> ### <u>Disco-Kraken - PCB Floor Plan</u> DK Drw. 63 ### MPFS25ØT-1FCVG784I ### MPFS25ØT-1FCVG784I I/O Banks TOP VIEW DK Drw. 61 Rev. 8-Sept-2023 ### FPGA/CPU - Power Bus Connections | <u>DK SUPPLY</u> | Microchip
NAME | FUNCTION | DK SUPPLY | Microchip
<u>NAME</u> | FUNCTION | |-------------------|-------------------|---|----------------------------|--------------------------|--| | CORE_1VØ5 | VDD | Core Supply | BULK_1V2 | VDDIØ | I/O Bank Ø FPGA HSIO
FPGA DDR4 Memory | | DIGITAL_1V8 | VDD18 | Prgm & HSIO Aux | BULK_3V3
BULK_3V3 | * VDDI1
VDDAUX1 | I/O Bank 1 FPGA GPIO
DK's 3V3 I/O | | FPGA_PLL_2V5 | VDD25 | PLLs and PNVM | BULK_3V3
BULK_3V3 | * VDDI2
VDDAUX2 | I/O Bank 2 CPU I/O
USB UPLI & QSPI | | XCVR_1VØ5 | VDDA | XCVR Power | BULK_3V3 | VDDI3 | I/O Bank 3 Controller
JTAG & Controller SPI | | XCVR_PLL_2V5 | VDDA25 | XCVR PLLs | 10k Ohm Gnd
10k Ohm Gnd | * VDDI4
VDDAUX4 | I/O Bank 4 CPU I/O
Not Used No Power | | XCVR_CLK_2V5 | XCVR_CLK | XCVR Clk Buffers | BULK_3V3 | VDDI5 | I/O Bank 5 CPU SGMII
Used only for CPU Clk | | 10k Ohm
to Gnd | XCVR_REF | XCVR Clk Ref. | BULK_1V2 | VDDI6 | I/O Bank 6 CPU DDR
CPU DDR4 Memory | | | | a CPU IO Bank operates
hen that Bank's Auxiliary | BULK_3V3
BULK_3V3 | * VDDI7
VDDAUX7 | I/O Bank 7 FPGA GPIO
If Used It's 3V3 | | supply must | come from the | same 2V5 or 3V3 bus. | 10k Ohm Gnd | VDDI8 | I/O Bank 8 FPGA HSIO
Not Used No Power | | from 1V8 c | or lower voltage | a CPU IO Bank operates power then that Bank's see from the 2V5 bus. | DIGITAL_1V8
DIGITAL_2V5 | * VDDI9
VDDAUX9 | I/O Bank 9 FPGA GPIO
DK's 1V8 I/O | # DK Board - FPGA/CPU - Minimum BULK_1V2 Plane BULK_1V2 Connects to: I/O Banks 0 & 6 and DDR4 Memories TOP VIEW Rev. 11-Sept-2023 DK Planes Drw. 6 # DK Board - FPGA/CPU - Minimum BULK_3V3 Plane BULK_3V3 Connects to I/O Banks: 1, 1x, 2, 2x, 3, 5, 7, 7x Rev. 11-Sept-2023 DK Planes Drw. 1 # DK Board - FPGA/CPU - Minimum CORE_1V05 Plane CORE_1V05 Connects to FPGA/CPU: CORE TOP VIEW Rev. 11-Sept-2023 DK Planes Drw. 5 # DK Board - FPGA/CPU - Minimum DIGITAL_1V8 Plane DIGITAL_1V8 Connects to: VDD18 and I/O Bank_9 ### DK Board - FPGA/CPU - Minimum DIGITAL_2V5 Plane DIGITAL_2V5 Connects to: VDDAUX for I/O BANK 9 #### DK Board - FPGA/CPU - Minimum FPGA_PLL_2V5 Plane <u>FPGA_PLL_2V5 Connects to FPGA/CPU: VDD25</u> TOP VIEW Rev. 11-Sept-2023 DK Planes Drw. 4 ### DK Board - FPGA/CPU - Minimum XCVR_1V05 Plane XCVR_1V05 Connects to FPGA/CPU: VDDA ## DK Board - FPGA/CPU - Minimum XCVR_CLK_2V5 Plane XCVR_CLK_2V5 Connects to FPGA/CPU: XCVR_CLK # DK Board - FPGA/CPU - Minimum XCVR_PLL_2V5 Plane XCVR_PLL_2V5 Connects to FPGA/CPU: VDDA25 #### 10 Layer Stackup Study for the DK PCB Current Rev. 4-Oct-2023 Study to see if DK can be routed on a balanced 10 Layer design. | Layer | Function | Copper
Weight | |-------|----------------------|------------------| | 1 | Traces and Pads | 1/2 oz | | 2 | Gnd Plane | 1/2 oz | | 3 | Traces & Power Fills | 1/2 oz | | 4 | Gnd Plane | 1/2 oz | | 5 | Power Fills | 1 oz | | 6 | Power Fills | 1 oz | | 7 | Gnd Plane | 1/2 oz | | 8 | Traces | 1/2 oz | | 9 | Gnd Plane | 1/2 oz | | 10 | Traces and Pads | 1/2 oz | All trace layers (1, 3, 8, 10) must be able to support 76 & 100 Ohm differential trace pairs $\,$ and $\,$ 40 & 50 Ohm single ended routes. - The Zo of the differential pairs should come from a 50/50 balance of Ground Reference and opposite side reference. - An approximate velocity match of the single ended microstrip and stripline is a big advantage. All power routing will be done with fills on layers 3, 5, and 6. No power layer can be dedicated to a single rail. # Physical Layer: 3 DIGITAL_2V5 and FPGA_PLL_2V5 DK Planes Drw. 12 Rev. 11-Sept-2023 #### Physical Layer: 5 BULK_3V3 and CORE_1V05 and XCVR_1V05 #### Physical Layer: 6 DIGITAL_1V8 and BULK_1V2 and XCVR_CLK - XCVR_PLL C --> CORE 1V05 1 2 3 4 5 6 7 8 9 10 11 12 13 14, 15 16 17 18 19 20 21 22 23 24 25, 26 27 28 L --> PLL & PNVM 2V5 С HA --> PROG & HSIO Aux 1V8 D F --> XCVR Clk Ref 10k Н Н B --> XCVR Clk Buf 2V5 Κ Κ P --> XCVR PLL 2V5 М V --> XCVR Tx&Rx 1V05 Ν Ν T --> XCVR Tx Output R R --> XCVR Rx Input U U ٧ K --> XCVR Clk Input W W Υ Υ AA AA $Z \longrightarrow Bank O VDD$ AB AB AC AC 1:9 --> Banks 1:9 VDD AD ΑD ΑE ΑE ΑF ΑF 00600006000080|000600000000000 1x, 2x, 4x, 7x, 9x -->AG AG ΑН ΑН Banks 1,2,4,7,9 AUX VDD Rev. 11-Sept-2023 DK Planes Drw. 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 #### DDR4 Escapes from Banks: 0, 6 Viasystems Technologies Corp. LLC 8150 Sheppard Ave E Toronto, ON, M1B 5K2 Job Name: 181875 **Customer: DEBRON INDUSTRIAL ELECTRONICS** Part Num: 40-00643-00LF Part Rev : - Engineer: Yogi Perin | Layer | Cust
Thickness | Calc
Thickness | Primary Stack | Description | Dk / Df | |------------|-------------------|-------------------|--------------------------|--|---------------| | Layer - 1 | Tilleniess | 0.0005
0.0020 | Timaly Stack | Taiyo 4000-HFX DI
1/2oz Mix (Std Plt) | 3.50 / 0.0190 | | Layer - 2 | | 0.0038
0.0006 | 1080 - 71% | FR408HR
1/2oz P/G | 3.42 / 0.0098 | | Layer - 2 | | 0.0100 | 0.0100
(2-2116) | FR408HR | 3.69 / 0.0089 | | Layer - 3 | | 0.0006
0.0040 | 3313 - 63% | 1/2oz Sig
FR408HR | 3.48 / 0.0096 | | Layer - 4 | | 0.0006
0.0180 | 0.018 | 1/2oz P/G
FR408HR | 3.90 / 0.0083 | | Layer - 5 | | 0.0012 | (3-1652) | 1oz Mix | 3.30 / 0.0003 | | | | 0.0078 | 2116 - 55%
2113 - 57% | FR408HR | 3.64 / 0.0091 | | Layer - 6 | | 0.0012
0.0180 | 0.018 | 1oz Mix
FR408HR | 3.90 / 0.0083 | | Layer - 7 | | 0.0006 | (3-1652) | 1/2oz P/G | | | Layer - 8 | | 0.0040
0.0006 | 3313 - 63% | FR408HR
1/2oz Sig | 3.48 / 0.0096 | | Layer - 9 | | 0.0100
0.0006 | 0.0100
(2-2116) | FR408HR
1/2oz P/G | 3.69 / 0.0089 | | Layer - 10 | | 0.0038 | 1080 - 71% | FR408HR
1/2oz Mix (Std Plt) | 3.42 / 0.0098 | | Layer - 10 | | 0.0005 | | Taiyo 4000-HFX DI | 3.50 / 0.0190 | Materials: Isola FR408HR High Speed High-Tg FR4 | Requirement | Req. Thickness | Tol + | Tol - | Calc Thick | | |--------------------------|----------------|----------------------|--------|------------|--| | Incl. Plating & Mask | 0.0940 | 0.0940 0.0094 0.0094 | | 0.0904 | | | Incl. Mask over Laminate | 0.0900 | 0.0090 | 0.0090 | 0.0864 | | | Incl. Plating | 0.0930 | 0.0093 | 0.0093 | 0.0894 | | | After Lamination | 0.0902 | 0.0045 | 0.0045 | 0.0866 | | | Over Laminate | 0.0890 | 0.0089 | 0.0089 | 0.0854 | | #### Note IPC-6012 has a minimum dielectric requirement of .003543" and any nominal dielectric .0045" or less may violate this requirement based on vendor tolerances and actual lamination yields. Accepting TTM's stackup will be taken as a waiver against this requirement. With this exception, minimum dielectric thickness shall be .000984". If this is not acceptable please advise immediately so options can be reviewed and discussed. If we do not get a response within 24 hours, we will proceed with this stackup. Please also be advised that accepting this stackup has no impact on TTM meeting IPC-6012 Class 2 or Class 3 requirements. Please also note that nominal targeted dielectric gaps of .0046" or greater shall have a minimum tolerance of +- .001" after lamination. #### **Job Comment** 6 different back drills required. | Impedance Type | Layer | Design | Actual | Pitch | Plane | Target | Tol
(ohms) | Predict | |--------------------------------|-------|---------|--------|--------|-------|--------|---------------|---------| | 1 EC Microstrip | L1 | 0.00550 | 0.0055 | 0.0157 | - | | | | | © 2014 TTM All rights recorded | | 0.00550 | 0.0055 | - | L2 | 100 | 10 | 101.98 | 3.2.10 Viasystems Technologies Corp. LLC 8150 Sheppard Ave E Toronto, ON, M1B 5K2 | Impedance Type | Layer | Design | Actual | Pitch | Plane | Target | Tol
(ohms) | Predict | |-----------------|-------|---------|--------|--------|-------|--------|---------------|---------| | 2 EC Stripline | L3 | 0.00550 | 0.0053 | 0.0157 | L2 | 100 | 10 | 100.85 | | | - | 0.00550 | 0.0053 | - | L4 | | | | | 3 EC Stripline | L8 | 0.00550 | 0.0053 | 0.0157 | L7 | 100 | 10 | 100.85 | | | - | 0.00550 | 0.0053 | - | L9 | | | | | 4 EC Microstrip | L10 | 0.00550 | 0.0055 | 0.0157 | L9 | 400 | 40 | 404.00 | | | - | 0.00550 | 0.0055 | - | - | 100 | 10 | 101.98 | Software Version 3.2.10 Stackup Report for 181875 6/1/2018 Page 2