

WIENER, Plein & Baus, Ltd. LCLS Service Training



$\sqrt{}$

Agenda

- 1. Company Introduction
- 2. WIENER crates used at SLAC / LCLS
- 3. VME 6023 Crates
 - 1. Bin Specifications
 - 2. Fan Tray
 - 3. Backplanes
 - 4. Power Supplies
 - 5. Software Interfaces
- 4. VME Mini Crates
 - 1. Bin Specifications
 - 2. Power Supplies

WIENER Company Information

- Located 25 Km East of Cologne in Burscheid Germany.
- ~30 Employees for production, design, and quality control
- Most development is driven by the Nuclear & HEP community.

WIENER-US

- 1997 Wiener Plein & Baus in Springfield, OH established
- WIENER USA: 3 employees for sales, administration and service + maintenance,
- Sales / Support and Maintenance:

Mid / East : Andreas Ruben

➤ West: <u>Tim Hoagland</u>

Order processing / Shipping: Katrin Ruben

South East: SETS

WIENER VME Crates

- Determined by the needs of experimental physics
- Allows for the high level of flexibility and reliability.
- Crate styles
 - → <u>4000 Series:</u> 1989 1995 only Europe
 - → <u>5000 Series</u>: 1996 2000 BABAR, STAR, CDF (2)
 - → 6000 Series: since 2000

 MINOS VME crates, PL6021)

 US CMS / LHC VME crates

 D0 crates, PL500

 Tevatron BLM VME crates

Crates at SLAC / LCLS

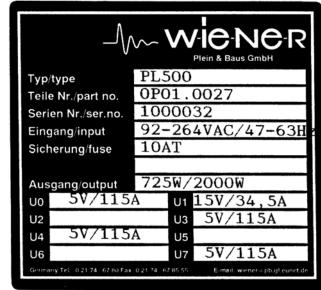
- BABAR DIRAC crates :
 - > 5000 Series Crates
- SSRL:
 - 6000 Series Crates (some with Split backplanes)
 - VME Mini Crates (both old and new style)
- LCLS:
 - VME 6000 Series Crates (JLAB mechanics)
 - ➤ New Style VME Mini Crates

LCLS Crates – 6023 JLab

- 19" wide x 11U height with 21 slots.
- VME-64x backplane
- Front air intake (with filter) and rear air exhaust
- Ethernet and CANbus remote control
- Full(6U) transition cage
- Low noise, 3U power supply mounted behind Fantray
- 3 fan fantray with intelligent control and alphanumeric display

LCLS Crates – 195x VME Mini

- 19" wide x 5U height, 7 slots
- VME64x Backplane
- Side air intake and rear exhaust
- Ethernet and CANbus control
- Integrated power-supply
- 6U transition cage
- Mechanics and Power supply redesigned in 2005 to provide more reliability and increase the ease of maintenance
- Uses same power supply concepts as 21 slot crates but different parts


$\sqrt{}$


VME crate components

- 21 Slot VME crates are made up of 4 parts:
 - > Bin:
 - Provides the mechanical support for the VME cards, backplane, fantray, power supply and rack mounting hardware.
 - > Backplane:
 - A variety of backplanes are available, VME, VME430, VME64x, VXI, VXS, PXI, CPCI or customer provided.
 - > Fantray:
 - Provides cooling for the VME modules plugged into the crate and the interface between remote monitoring applications and the power supply.
 - Power Supply:
 - Provides power to the Backplane and the fantray.

Crate Components

- Each crate component has it's own serial Number (Power supply, Fan tray, & Bin).
- Serial Number, Part number, & Type are given on label
 - For power supplies, input and output power is also included
- Serial Number decoding

Bin Features

- Very rigid mechanical construction with 5mm side panels according to IEEE1101.1, 1101.10, 1101.11
- Additional transversal stiffing members, screwed to the module guides for heavy duty
- Stripline technology backplane installed.
- Current distribution by multilayer- current- sheet, keeps cool even at highest currents
- All connectors are Metric!

Bin Details

- 5mm side panel powerful locked to the transversal members by allen-screws, zero tolerance mechanics
- Machined for recessed mounting brackets

2 Bin configurations

6023 Crates

6021 Crates

6023

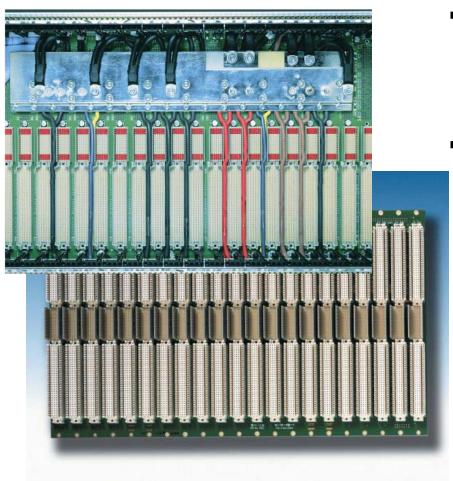
- ■For 6U and 9U cards
- ■flexible divided 20 slot or 21 slot 9U format only
- Power Supply situated behind Fan Tray in bottom
- ■full access to rear J1/J2 (and J3 for 9U format)
- ■3U Fan Tray space with plenum chamber for airflow homogenization
- ■Power Supply and Fan Tray easy to exchange

6021

- For 6U and 9U cards
- 21 slot or flexible divided 20 slot 6U / 9U
- Power Supply in top behind
 J1
 free access to rear J2/J3
- 2U Fan Tray space
- Power Supply and Fan Tray easy to exchange

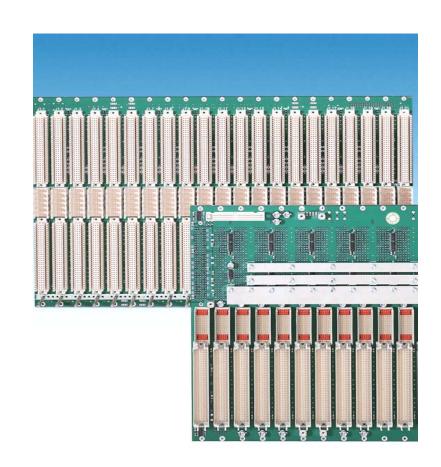
Bins, 9U & Split Crates

- Bins are available for 6U or 9U VME cards
- Possible to split the the card cage between 6U & 9U cards providing any combination.



Bins, Power Protection Memory (PPM)

- EEProm behind between fantray and power supply ensures proper power supply configuration.
- If power supply is plugged into crate with different configuration than the configuration stored in EEPROM, crate won't start.
- Wrong power supply gives "plug and play" error.


Backplanes

- WIENER provides a range of standard VME Backplanes or can install customer provided backplanes
- 21 slot crates can have split backplanes:
 - ➤ 1x21 slot backplane
 - 2x10 slot backplanes
 - > 3x 7 slot backplanes

Backplanes, VME64x (LCLS)

- 10 layers stripline technology
- Crostalk minimizing design
- 18 ground power-bugs,each for 60A, minimize DC ground shift
- Active automatic daisy chain
- 8 plugs for temperature sensors (automatic temp. watching of selected slots!)
- Optional assembling for chained block transfer CBLT multicast cycles MCST

Fan Tray Units (UEL)

- Front plug-in, optimized design with air compression chamber
- 3, 4, 6 or 9 "Long live" high performance DC fans (MTBF>65,000 hours)
- Integrated monitoring, diagnostic and control
 - individually controlled (pulse / current measurement), fan fail circuit
 - Adjustable, temperature controlled fan speed (8 bin temp. sensors + 1 air inlet)
 - μP + alphanumeric display, status LED's
 - Programmable hot-swapping
 - Interfaces for remote access (RS232, CAN-bus, Ethernet,)

Fan Trays

- Fan Tray plugs into the front of the VME crate, below the VME card cage
- Fan tray can be hot swapped
- Provides the remote interface to the crate
- LEDs report status of the power supply and VME Backplane
- Alphanumeric display panel reports:
 - Power supply information
 - · Fan speed information
 - IP/CANbus information

Fan Tray Operation

Switches

- DC-On (Trip-off reset)
- Mode select (programming)
- Fan speed
- Auto off
- Remote address adj.
- Sys reset (protected)

LED's

- Power
- Fan speed
- Auto off
- Local
- Status
- Fan fail
- Overheat
- Sys fail

Fan Tray Display Features

Display:

- ➤ All voltages (sense levels at backplane) and currents
- ➤ Fan speed (RPM)
- ➤ Temperatures (optional 8 sensors above modules)
- >UV / OV / OC Trip-points (programming mode)
- ➤ Operation time of Power Supply and Fan Tray

Programming:

- >Voltage trip off points Umin, Umax, Unom, Imax, Ilim
- ➤ Auto power on, fan hot swapping
- ➤ Temperature display, temperature limits
- ➤ Networking configuration

•Failures diagnose:

- > over- under voltage (per channel)
- > over temperature, fan fail, AC-fail
- ➤ internal failure (check sums, etc.)
- >monitor self-test

Power Supplies

NEVER REMOVE POWER SUPPLY COVER

Removing the cover exposes:

- 385VDC
- High Power Capacitors (can be charged even when unplugged)

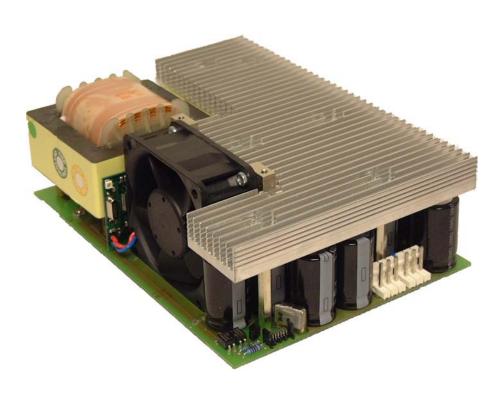
Power Supplies (UEP)

- WIENER VME crates include high power, low noise switching power supplies.
- The power supply is microprocessor controlled and with software adjustable outputs.
- Through software it is possible to set voltage windows, set current limits, set temperature limits, and calibrate channels.
- The software interface is a valuable tool in determining the cause of a power supply failure.

Power Supply Details

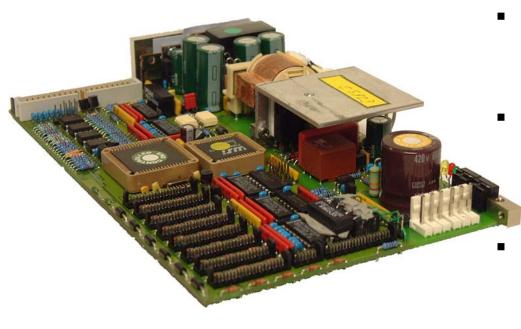
- Single / dual output power modules (300 ...550W/channel)
- programmable voltage / current settings
- > up to 8 independent DC outputs
- world wide auto-range AC input, with power factor correction,
- \rightarrow up to 3 kW(3U) / 6 kW (6U) output power
- Voltages ramp up 50ms, synchronic and monotone
- Voltage ramp down by fast output discharge (crow bar)
- Extremely low noise and low ripple <15mVpp <10mVpp typ.</p>

Power Supply Structure

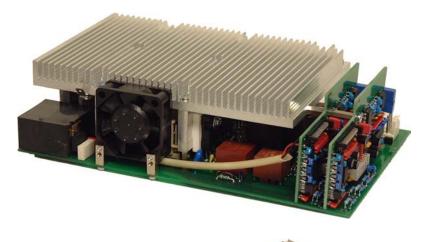

MNPFC16
AC mains input auto range, PFC primary switcher

MUH6021 micro processor module aux power supply

MEH single channel power module


MDL / MDH dual channel power module

Power Supply, MNPFC

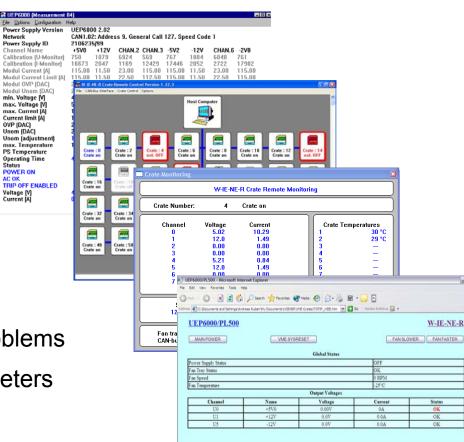

- MNPFC is main rectifier for the power supply with power factor correction.
- Supplies 385V DC to power the rest of the modules in the power supply.
- Has a small relay which "clicks" when AC power is connected.

Power Supply, MUH

- MUH board is the microprocessor board which controls the power supply.
 - It contains the CANbus and RS232 interface electronics used to communicate with the power supply
- Contains an EEPROM which holds the power supply configuration and calibration data

Power Supply, Power Modules

- The power modules produce the output voltages
- A variety of modules exist to cover from 2-30V.
- Single channel modules (MEH) provide the highest power.
- MDL modules are low power dual channel modules
- MDH modules are high power dual channel modules
- Modules can be run in series or parallel for higher power or voltages.



Power Supply, Module Types

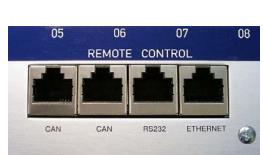
Type	Voltage Range	Channels	Peak Power / channel
MEH	2V 7V	1	115A / 550W
MEH	6V 10V	1	80A / 550W
MEH	7V 16V	1	46A / 550W
MEH	12V 30V	1	23A / 550W
MEH	30V 60V	1	13.5A / 650W
MDH	2V 7V	2	30A / 210W
MDH	7V 16V	2	20A / 250W
MDL	7V 24V	2	11.5A / 275W

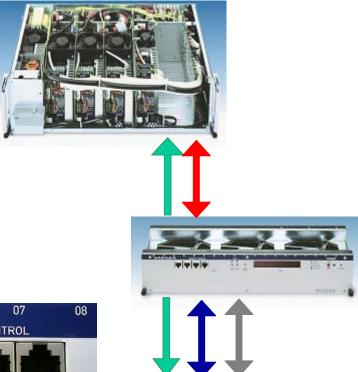
Software Control

- CANbus
 - > EPICS (BABAR)
- Ethernet
 - > SNMP
 - Built in webserver
 - > OPC Server
- RS232 (power supply only)
 - Diagnose power supply problems
 - Adjust power supply parameters

Software interfaces

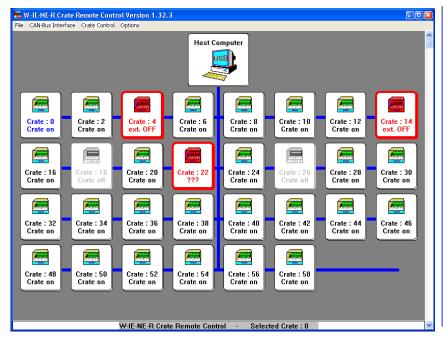
RS232:

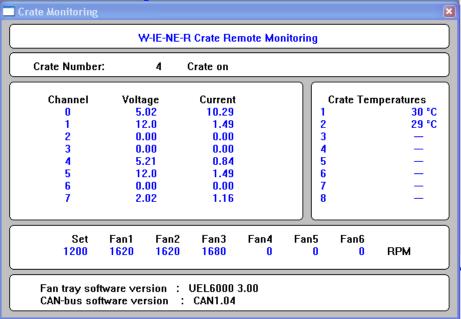

- internal communication between UEP / UEL CPU's
- External monitoring / programming (no UEL!)


CAN-bus:

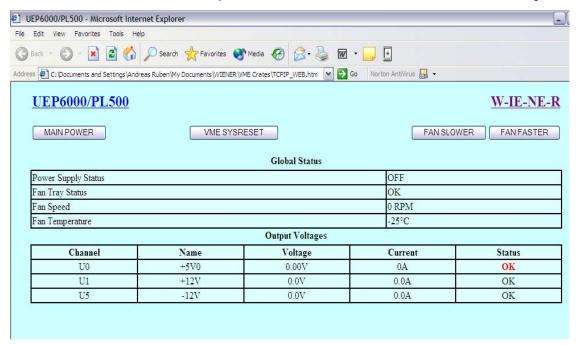
- > Built into UEP MUH
- For remote monitoring & control

Ethernet

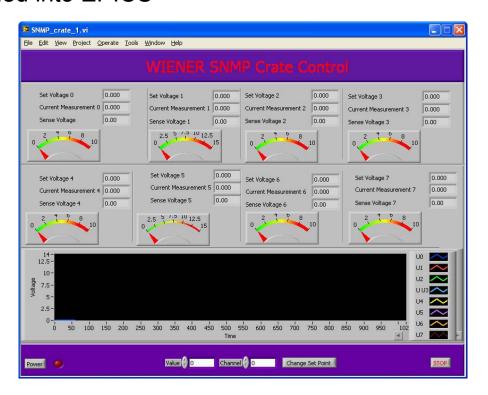

- UEL CPU (new version)
- Translated to CAN-bus internally
- Front RS232 / USB
 - > UEL CPU

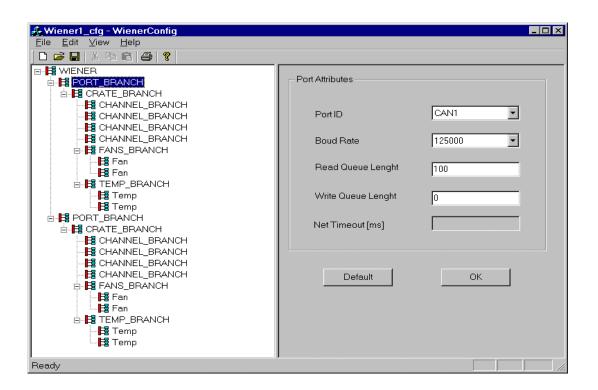


Software Interface- CANbus


- CANbus was developed by the automotive industry for slow engine control. Is now a popular bus in Physics and industry.
- Allows full control and monitoring of crates on the bus.
- CANbus address is set via switches on UEL front panel.
- Currently BABAR is using CANbus (along with EPICS) to monitor DIRAC crates

Software Interface- Ethernet


- IP Address is set via UEL front panel switches.
- Built in webserver allows access from any web browser. (Password protected)
- Supports SNMP to allow quick data collection from many crates.


Software Interfaces- Ethernet(SNMP)

- Provides a great interface to build custom controls
- Use of NetSNMP allows for platform independent scripts (Win32 or Linux)
- Could be tied into EPICS

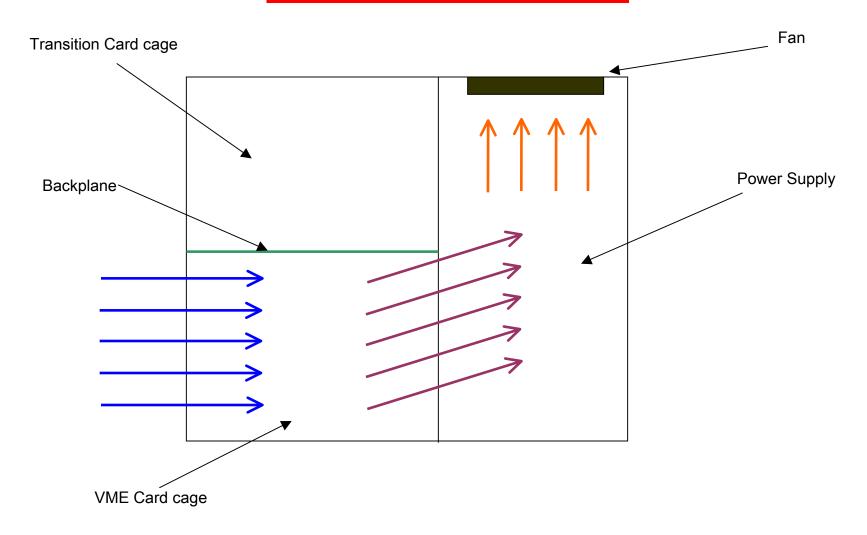
Software Interface- Ethernet(OPC)

!NEW! open software systems: OPC server
 (OLE for Process Control / Win NT/2k/XP) for CAN-bus & Ethernet

Software Interfaces-RS232

- RS232 Interface allows for quick diagnosing of power supply problems
- Can be used to make changes to power supply configuration
- Must be used with special RS232 adapter

Power Supply Version	UEP6000 2.02								
Network	CAN1.02: Address 9, General Call 127, Speed Code 1								
Power Supply ID	2106235/99								
Channel Name	+5V0	+12V	CHAN.2	CHAN.3	-5V2	-12V	CHAN.6	-2V0	
Calibration (U-Monitor)	758	1879	6924	569	767	1884	6848	761	
Calibration (I-Monitor)	16673	2047	1169	12429	17446	2052	2722	17902	
Modul Current [A]	115.00	11.50	23.00	115.00	115.00	11.50	23.00	115.00	
Modul Current Limit [A]	115.00	11.50	22.50	112.50	115.00	11.50	22.50	115.00	
Modul OVP (DAC)	234	186	231	154	243	186	231	93	
Modul Unom (DAC)	239	196	220	146	240	196	220	75	
min. Voltage [V]	4.87	11.69	23.37	3.04	5.07	11.69	23.37	1.89	
max. Voltage [V]	5.25	12.60	27.00	4.00	5.46	12.60	27.00	2.09	
max. Current [A]	115.00	11.50	23.00	115.00	115.00	11.50	23.00	115.00	
Current limit [A]	115.00	11.50	22.50	112.50	115.00	11.50	22.50	115.00	
OVP (DAC)	234	186	231	154	243	186	231	93	
Unom (DAC)	239	196	220	146	171	196	220	75	
Unom (adjustment)	120	123	128	128	118	119	128	141	
max. Temperature	127	127	127	127	127	127	127	127	
PS Temperature	25	OK	OK	OK	OK	OK	OK	OK	
Operating Time	498525	minutes	(346 day	s, 4 hour	s, 45 mi	nutes)			
Status	OK	OK	OK	OK	OK	οĸ	OK	OK	
POWER ON									
AC OK									
TRIP OFF ENABLED									
Voltage [V]	4.99	12.07	0.06	0.00	5.20	11.99	0.06	2.01	
Current [A]	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.17	


VME Mini-Crate

- Integrated Power Supply and Fan Tray
- Same Power Supply setup, Special modules
- Same software interfaces and control

$\sqrt{}$

Mini Crate Airflow

