Data Sheet

HDSP-311x, **HDSP-313x**

10.16-mm (0.4-in.) Single-Digit General-Purpose Seven-Segment Display

Description

This Broadcom[®] 10.16-mm (0.4-in.) LED single-digit seven-segment display uses industry standard size package and pinout. The device is available in either common anode or common cathode. The choice of colors includes GaP High Efficiency Red (HER), GaP green, AllnGaP deep red, and GaP yellow. The gray face displays are suitable for indoor use.

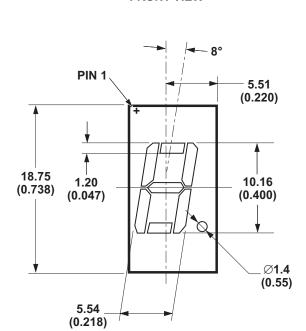
Applications

- Suitable for indoor use
- Not recommended for industrial applications, that is, operating temperature requirements exceeding +85° C or below -25° C (see note)]
- Extreme temperature cycling not recommended

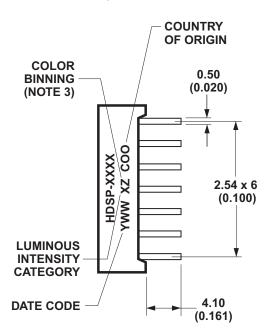
NOTE: For additional details, contact your local Broadcom sales office or an authorized distributor.

Features

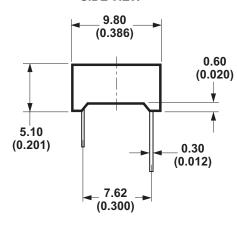
- Industry standard size
- Industry standard pinout
 - 10.16-mm (0.4-in.) character height
 - DIP lead on 2.54 mm
- Choice of colors
 - GaP High Efficiency Red (HER), GaP green, AllnGaP deep red, and GaP yellow
- Excellent appearance
 - Evenly lighted segments gray package gives optimum contrast
 - ± 50 ft. viewing angle
- Design flexibility
 - Common anode right hand decimal point or common cathode right hand decimal point
- Categorized for luminous intensity
 - Green and yellow categorized for color

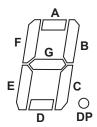

Devices

GaP HER	GaP Green	AllnGaP Deep Red	GaP Yellow	Description	Package Drawing
HDSP-311E	HDSP-311G	HDSP-311A	HDSP-311Y	Common Anode Right Hand Decimal	Α
HDSP-313E	HDSP-313G	HDSP-313A	HDSP-313Y	Common Cathode Right Hand Decimal	В


Package Dimensions

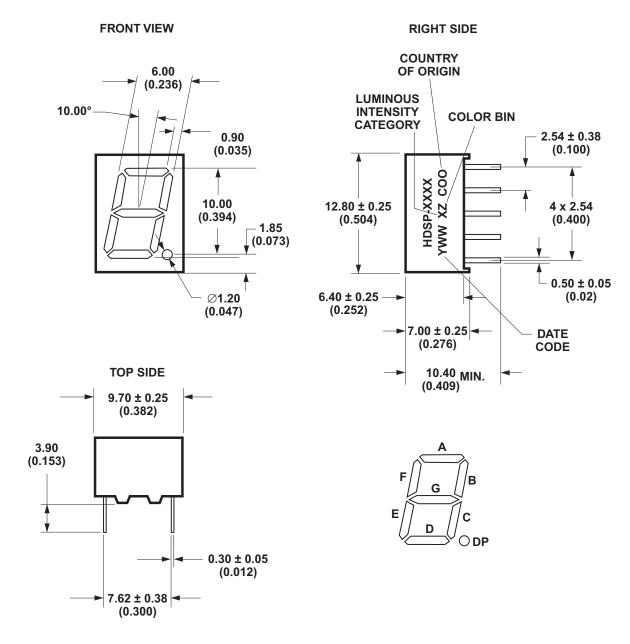
Package Drawing A


FRONT VIEW



TOP END VIEW

SIDE VIEW

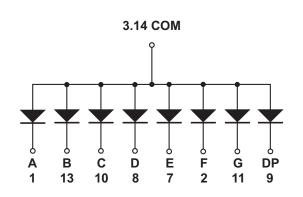

NOTE: NO PINS 4, 5, 6, AND 12

NOTE:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is 0.25 mm (0.01 in.) unless otherwise stated.
- 3. For yellow and green series product only.

AV02-3585EN Broadcom

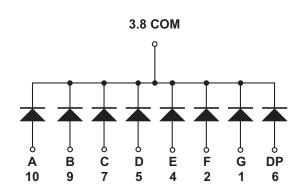
Package Drawing B



NOTE:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is 0.25 mm (0.01 in.) unless otherwise stated.
- 3. For yellow and green series product only.

Internal Circuit Diagram


Common Anode Right-Hand Decimal

HDSP-311E/311G/311Y/311A

PIN No.	CONNECTION				
1	CATHODE A				
2	CATHODE F				
3	COMMON ANODE				
7	CATHODE E				
8	CATHODE D				
9	CATHODE DP				
10	CATHODE C				
11	CATHODE G				
13	CATHODE B				
14	COMMON ANODE				
PINS 4, 5, 6, 12: NO PIN					

Common Cathode Right-Hand Decimal

HDSP-313E/313G/313Y/313A

PIN NO.	CONNECTION
1	ANODE G
2	ANODE F
3	COMMON CATHODE
4	ANODE E
5	ANODE D
6	ANODE DP
7	ANODE C
8	COMMON CATHODE
9	ANODE B
10	ANODE A

Absolute Maximum Ratings at $T_A = 25$ °C

Description	HER HDSP-31xE	Green HDSP-31xG	Deep Red HDSP-31xA	Yellow HDSP-31xY	Units
Power Dissipation Segment	65	65	52	52	mW
Forward Current Segment	25 ^a	25 ^b	20 ^c	20 ^d	mA
Peak Forward Current per Segment	100 ^e	100 ^e	60 ^f	80 ^e	mA
Operating Temperature Range	-35 to +85	-35 to +85	-40 to +85	-35 to +85	°C
Storage Temperature Range	-35 to +85	-35 to +85	-40 to +85	-35 to +85	°C
Reverse Voltage per Segment or DP	N	Not designed for re	verse bias operation	on	V
Wavesoldering Temperature for 3 Seconds (at 2-mm distance from the body)	250	250	250	250	°C

- a. Derate linearly as shown in Figure 1.
- b. Derate linearly as shown in Figure 5.
- c. Derate linearly as shown in Figure 12.
- d. Derate linearly as shown in Figure 13.
- e. Duty factor = 10%, frequency = 10 kHz.
- f. Duty factor = 10%, frequency = 1 kHz.

Electrical/Optical Characteristics at $T_A = 25$ °C

High Efficiency Red (HER)

Device HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
311E	Luminous Intensity/Segment ^{a, b, c}	I _V	_	1.49	_	mcd	I _F = 5 mA
313E			1.25	3.20	_		I _F = 10 mA
	Forward Voltage ^d	V _F	_	2.05	2.40	V	I _F = 20 mA
	Peak Wavelength	λ _P	_	635	_	nm	
	Dominant Wavelength ^e	λ_{d}	_	620	_	nm	
	Reverse Voltage ^f	V_{R}	5	_	_	V	I _R = 100 μA

- a. The luminous intensity, I_V, is measured at the mechanical axis of the package.
- b. The optical axis is closely aligned with the mechanical axis of the package.
- c. Tolerance is ±15%.
- d. Forward voltage tolerance is ± 0.1 V.
- e. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- f. Indicates product final test condition. Long term reverse bias is not recommended.

Green

Device HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
311G	Luminous Intensity/Segment ^{a, b, c}	I _V	1.25	3.20	_	mcd	I _F = 5 mA
313G	Forward Voltage ^d	V _F	_	2.06	_	V	I _F = 10 mA
			1.80	2.25	2.60		I _F = 20 mA
	Peak Wavelength	λ_{P}	_	568	_	nm	
	Dominant Wavelength ^e	λ_{d}	_	573	_	nm	
	Reverse Voltage ^f	V _R	5	_	_	V	I _R = 100 μA

- a. The luminous intensity, I_V , is measured at the mechanical axis of the package.
- b. The optical axis is closely aligned with the mechanical axis of the package.
- c. Tolerance is ±15%.
- d. Forward voltage tolerance is ± 0.1 V.
- e. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- f. Indicates product final test condition. Long term reverse bias is not recommended.

Deep Red

Device HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
311A	Luminous Intensity/Segment ^{a, b, c}	I _V	_	4.54	_	mcd	$I_F = 5 \text{ mA}$
313A			3.20	7.50	_		I _F = 10 mA
	Forward Voltage ^d	V _F	_	2.00	2.60	V	I _F = 20 mA
	Peak Wavelength	λ _P	_	660	_	nm	
	Dominant Wavelength ^e	λ_{d}	_	640	_	nm	
	Reverse Voltage ^f	V _R	5	_	_	V	I _R = 100 μA

- a. The luminous intensity, I_V , is measured at the mechanical axis of the package.
- b. The optical axis is closely aligned with the mechanical axis of the package.
- c. Tolerance is ±15%.
- d. Forward voltage tolerance is ± 0.1 V.
- e. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- f. Indicates product final test condition. Long term reverse bias is not recommended.

Yellow

Device HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
311Y	Luminous Intensity/Segment ^{a, b, c}	I _V	_	0.86	_	mcd	$I_F = 5 \text{ mA}$
313Y			0.80	1.50	_		I _F = 10 mA
	Forward Voltage ^d	V _F	_	2.15	2.60	V	I _F = 20 mA
	Peak Wavelength	λ _P	_	595	_	nm	
	Dominant Wavelength ^e	λ_{d}	_	590	_	nm	
	Reverse Voltage ^f	V _R	5	_	_	V	I _R = 100 μA

- a. The luminous intensity, I_V , is measured at the mechanical axis of the package.
- b. The optical axis is closely aligned with the mechanical axis of the package.
- c. Tolerance is ±15%.
- d. Forward voltage tolerance is ± 0.1 V.
- e. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- f. Indicates product final test condition. Long term reverse bias is not recommended.

Intensity Bin Limits (mcd at 10 mA)

HER/Green		Yel	low	Deep Red		
Bin Name	Min. ^a	Max. ^a	Min. ^a	Max. ^a	Min. ^a	Max. ^a
G	N/A	N/A	0.801	1.250	N/A	N/A
Н	1.251	2.000	1.251	2.000	N/A	N/A
I	2.001	3.200	2.001	3.200	N/A	N/A
J	3.201	5.050	N/A	N/A	3.201	5.050
K	N/A	N/A	N/A	N/A	5.051	8.000
L	N/A	N/A	N/A	N/A	8.001	12.650

a. Tolerance for each bin limit is \pm 15%.

Color Bin Limits (nm at 10 mA)

		Dominant Wavelength (nm		
Color	Bin	Min. ^a	Max. ^a	
Green	3	569.1	571.1	
	4	571.1	573.1	
	5	573.1	585.5	
Yellow	1	585.5	588.5	
	2	588.5	591.5	
	3	591.5	594.5	

a. Tolerance for each bin limit is 1 nm.

AV02-3585EN Broadcom

High Efficiency Red (HER)

Figure 1: Maximum Allowable Average or DC Current vs. Ambient Temperature

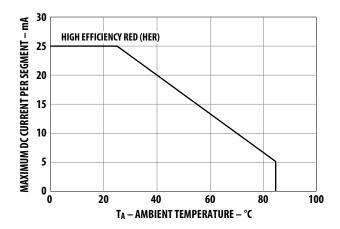


Figure 2: Forward Current vs. Forward Voltage

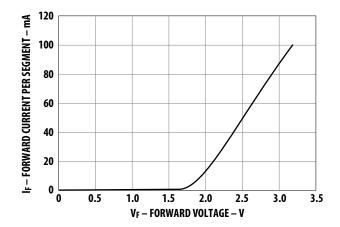


Figure 3: Relative Luminous Intensity vs. DC Forward Current

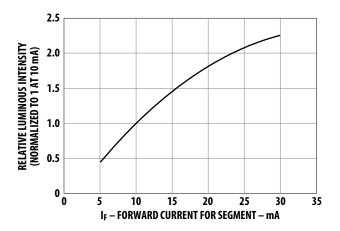
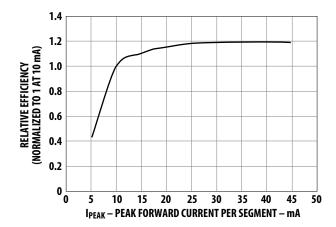



Figure 4: Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current

Green

Figure 5: Maximum Allowable Average or DC Current vs. Ambient Temperature

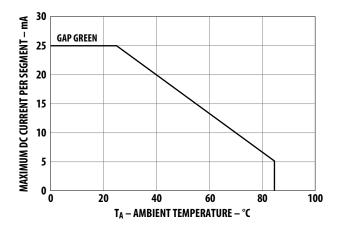


Figure 6: Forward Current vs. Forward Voltage

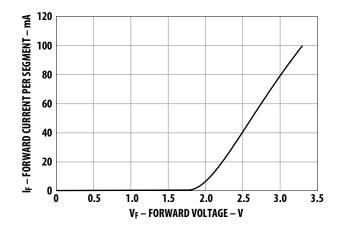


Figure 7: Relative Luminous Intensity vs. DC Forward Current

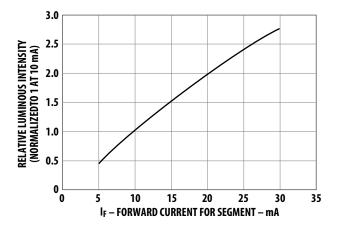
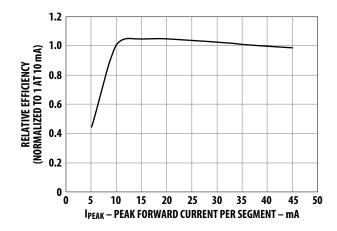



Figure 8: Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current

Deep Red

Figure 9: Spectral Power Distribution

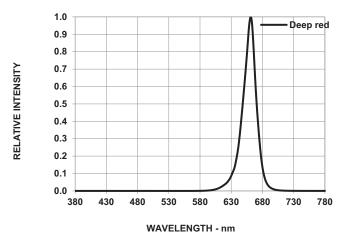


Figure 10: Forward Current vs. Forward Voltage

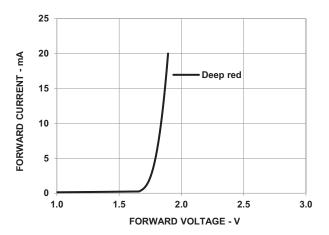


Figure 11: Relative Luminous Intensity vs. Forward Current

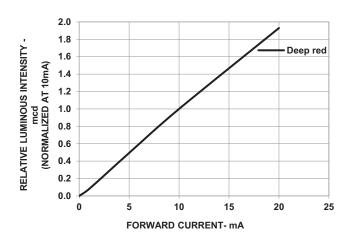
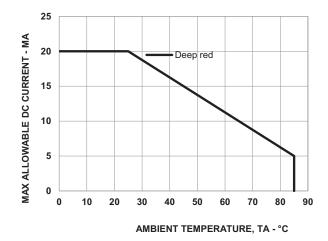



Figure 12: Maximum Forward Current vs. Ambient Temperature

Yellow

Current

Figure 13: Maximum Allowable Average or DC Current vs. Ambient Temperature

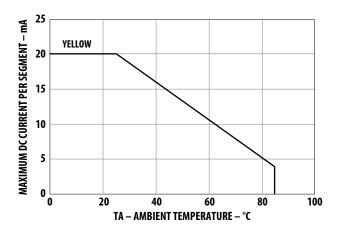


Figure 15: Relative Luminous Intensity vs. DC Forward

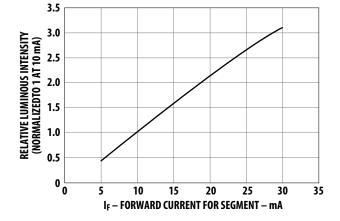
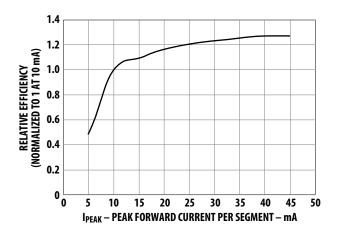
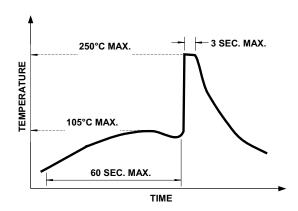



Figure 14: Forward Current vs. Forward Voltage

Figure 16: Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current


Precautionary Notes

Soldering and Handling Precautions

- Set and maintain the wave soldering parameters according to the recommended temperature and dwell time. Perform daily checks on the profile to ensure that it conforms to the recommended conditions. Exceeding these conditions will over-stress the LEDs and cause premature failures.
- Use only bottom preheaters to reduce thermal stress experienced by the LEDs.
- Recalibrate the soldering profile before loading a new type of PCB. A PCB with different size and design (component density) will have different heat capacity and might cause a change in temperature experienced by the PCB if the same wave soldering setting is used.
- Do not perform wave soldering more than once.
- Loosely fit any alignment fixture used during wave soldering and do not apply stress on the LEDs. Use non-metal material because it absorbs less heat during the wave soldering process.
- At elevated temperatures, the LEDs are more susceptible to mechanical stress. Allow the PCB to be sufficiently cooled to room temperature before handling. Do not apply stress to the LED when it is hot.
- Use wave soldering to solder the LED. Use hand soldering only for rework or touch up if unavoidable, but it must be strictly controlled to following conditions:
 - Soldering iron tip temperature = 315°C maximum
 - Soldering duration = 2 seconds maximum
 - Number of cycles = 1 only
 - Power of soldering iron = 50W maximum
- For ESD sensitive devices, apply proper ESD precautions at the soldering station. Use only an ESD-safe soldering iron.
- Do not touch the LED package body with the soldering iron except for the soldering terminals because it may cause damage to the LED.
- Confirm beforehand whether the functionality and performance of the LED are affected by soldering with hand soldering.
- Keep the heat source at least 1.6 mm away from the LED body during soldering.
- Design an appropriate hole size to avoid problems during insertion.
- Do not use cleaning agents from the ketone family (acetone, methyl ethylketone, and so on) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, and so on) to

- clean the LED displays. All of these solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.
- For the purposes of cleaning, wash with DI water only.
 Perform the cleaning process at room temperature only.
 Clear any water or moisture from the LED display immediately after washing.
- Use *No clean* solder paste for soldering.

Figure 17: Recommended Wave Soldering Profile

NOTE: The measurements are performed with a thermocouple mounted at the bottom of the PCB.

Application Precautions

- The drive current of the LED must not exceed the maximum allowable limit across temperature as stated in the data sheet. Use constant current driving to ensure consistent performance.
- The circuit design must cater to the entire range of forward voltage (V_F) of the LEDs to ensure the intended drive current can always be achieved.
- The LED exhibits slightly different characteristics at different drive currents, which may result in a larger variation of performance (such as intensity, wavelength, and forward voltage). Set the application current as close as possible to the test current to minimize these variations.
- The LED is not intended for reverse bias. Use other appropriate components for such purposes. When driving the LED in matrix form, ensure that the reverse bias voltage does not exceed the allowable limit of the LED.

- Avoid rapid changes in ambient temperature, especially in high-humidity environments, because they cause condensation on the LED.
- If the LED is intended to be used in a harsh or an outdoor environment, protect the LED against damages caused by rain, water, dust, oil, corrosive gases, external mechanical stresses, and so on.

Eye Safety Precautions

LEDs may pose optical hazards when in operation. Do not look directly at operating LEDs because it might be harmful to the eyes. For safety reasons, use appropriate shielding or personal protective equipment.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2012–2021 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

