LarTPC Electronics Meeting Current Work at MSU

http://www.pa.msu.edu/~edmunds/LArTPC/Talks/Talk_Feb_2010/

Fermilab

Dan Edmunds

23-February-2010

History of the MSU LArTPC Electronics Work

- Built a small warm DAQ system for the Bo LArTPC
- Built a warm DAQ system with cold Bias Voltage distribution for the ArgoNeuT LArTPC
- About one year ago Stephen Pordes ask us to work on a small multiplexed readout DAQ system that would operate cold in LArTPC test cryostats

Motivation and Goals of Our Current Work

- Test this DAQ system in the Bo LArTPC
- Provide a DAQ system for the "no pump out" long drift LAPD LArTPC at Fermi
- Gain experience with multiplexed readout and cold electronics in a LArTPC DAQ system
- Gain experience with digital signals inside the LArTPC cryostat
- Work on ideas to reduce the cost of the DAQ system for a big detector (3 box to 2 box system)

<u> 3 Box LArTPC DAQ System</u>

Cryostat

Rev. 17-FEB-10

Project Sections of our Current Work:

- 1. Characterize components at LN2 temperature
- 2. Inside the cryostat
 - Preamplifier
 - Filter
 - Multiplexer
 - Line Driver
 - Digital Control of the Multiplexer
- 3. At the Cryostat Feedthrough
 - Passive Noise Filters: power supply, analog common mode, digital control signal coupling transformers
- 4. In the DAQ Rack
 - Back of the backplane card: power supply regulators, analog signal receivers, digital control signal drivers
 - Firmware for the ADF-2 VME Readout Card
- 5. DAQ system software

<u>2 Box LArTPC DAQ System</u>

Rev. 17-FEB-10

Design Considerations:

- Operate at RT or LN2 temperature without significant adjustment
- Per readout card have a single twist-flat cable running inside:
 - 4 differential analog signals
 - 2 differential digital control signals
 - 3 power supplies (6 conductors)
 - 8 grounds (16 conductors)
 - 50 100 mV signal levels
- Control electrical noise inside the cryostat

<u>Cold MOSFET Preamplifier</u>

<u>Cold 3-Pole Filter</u>

The Drift Velocity is 1.5 mm/usec in a 500 V/cm field. For a 3 to 5 mm plane spacing the risetime will be 2 to 3.3 usec. For now pick a 2.5 usec peaking time or about 64 kHz.

R1C1 Tau 1.64 usec	R2C2 Tau 560 nsec	R3 = 845 Ohm	R5C4 Tau 500 nsec	R6C5 Tau 110 nsec
R1 = 2k Ohm	R2 = 10k 0hm	L1 - 560 uH	R5 = 49.9k Ohm	R6 = 499 Ohm
C1 - 820 pFd	C2 = 56 pFd	C3 = 2.2 nFd R4 = 10k 0hm	C4 = 10 pFd	C5 – 220 pFd
				See the Cold
R2/R1 = 5.0		1/SQRT(L1 C3) = 901k	R5/R4 = 5.0	Mux Circuit
R3/(2xL1) = 754k				
Wo $> v \rightarrow$ underdamped				

<u>Cold 3-Pole Filter</u>

Filter Step Response

Collection Plane Signal Preamp and Filter

<u>Cold Analog Multiplexer</u>

Line Driver MC Cold

Line Driver and Cable Response

<u>Cold Digital Control Signal Receiver</u>

Rev. 22-0CT-09

<u>Cold Multiplexer Digital Control</u>

<u>Warm Digital Control Signal Driver</u>

R1 = 412 Ohm R2 = 51 Ohm R3, R4 = 25 Ohm C1 = 10 nFd

Rev. 17-SEPT-09

Output from the Chain: Buffer, Multiplexer, Line Driver, Cable, and VME ADF-2 (ADC) Card Checking for Crosstalk

2 Channel Preamp-Filter Card

- 4 layer with ground fill on all layers
- double via connections
- relieved ground plane under Hi Z traces
- compromise between size and ease of modification

16 Channel Mother Board

Engineering Comments:

If Fermi is going to be involved with the DAQ system for a large LArTPC detector (e.g. LBNE) then the electrical engineering work for that system should start soon.

- Technical Challenges
- Cost Control
- Remote Assembly and Operation

DAQ system engineering needs to be integrated with the mechanical and cryogenic engineering.

We should "prove" that a fully thought out warm electronics system will not work before committing to put "all" of the electronics inside. As far as I know the HEP community has no examples of a large system operating for 10 or 20 years without needing to work on its electronics.

This is a one detector experiment, i.e. it must work.

A thin wall stainless steel vessel will not shield electrical noise. There is no "ground" inside and there is no shield inside.

Need a respected "Noise Czar" early (e.g. now).

Lots of room for DAQ design work:

- Filtering of the hit data
 Inline Digital and Offline
 Slope dependent hit filtering
 Raw data beauty vs information content
- Data Compression: Coding, ROI Readout
- Triggering: Beam Spill vs Continuously Alive
- Low Temperature Components:
 - Some just don't work.
 - Subtle problems.
 - Circuit implications.

Backup

<u>2 Box LArTPC DAQ System</u>

Cryostat

Rev. 17-FEB-10