The ICARUS Project

FRONTIERS IN CONTEMPORARY PHYSICS II

Vanderbilt University, March 5-10, 2001

Sergio Navas (ETH Zürich)

- Detection Principle
- ✓ The T600 Module
- Physics Programme:
 - Atmospheric neutrinos
 - Solar and Supernova neutrinos
 - Long Baseline neutrinos
 - Proton decay searches

ICARUS liquid argon imaging TPC

* The performance of a neutrino detector is proportional to its total mass and also to its geometrical granularity with which the events can be reconstructed.

Neutrino and rare process physics with ICARUS

Supernova neutrinos

Solar neutrinos

Long Baseline neutrinos

Event imaging in liquid Argon

★ The LAr TPC technique is based on the fact that ionization electrons can drift over large distances (meters) in a volume of purified liquid Argon under a strong electric field. If a proper readout system is realized (i.e. a set of fine pitch wire grids) it is possible to realize a massive "electronic bubble chamber", with superb 3-D imaging.

$$E = 500 \text{ V/cm}$$

$$I_0 = e(v^+ + v^-)/d$$

Electron-ion pairs are produced Electrons give the main contribution to the induced current due to the much larger mobility

A set of wires at the end of the drift give a sampling of the track. No charge multiplication occurs near the wires \Rightarrow electrons can be used to induce signals on subsequent wires planes with different orientations \Rightarrow 3D imaging

ICARUS: a graded strategy

✓ After several years of R&D and prototyping, the ICARUS collaboration is now realizing the first 600 ton module, which will be installed at Gran Sasso in the year 2001.

ICARUS 15 ton (10m³) prototype (1999-2000)

- A major step of the R&D program has been the construction and operation of a 10m³ prototype
 - ① Test of the cryostat technology
 - 2 Test of the "variable-geometry" wire chamber
 - ③ Test of the liquid phase purification system
 - **④** Test of trigger via scintillation light
 - Large scale test of final readout electronics
 - → First operation of a 15 ton LAr mass as an actual "detector"

T15 installation @ LNGS (Hall di Montaggio)

Tracks in 15 ton prototype

10m³ Module at LNGS

Cosmic Ray tracks recorded during the 10 m³ operation

The ICARUS T600 module

Under construction

First half-module delivery in Pavia (Feb 29, 2000)

Assembly of the T600 internal detector (Mar-Jul 2000)

Sergio Navas, ETH/Zürich, ICARUS Collaboration, 7/3/2001

Wire installation in detector (Jul-Oct 2000) **T600** internal

Sergio Navas, ETH/Zürich, ICARUS Collaboration, 7/3/2001

T600 - Completed Internal Detector view

Slow control sensor (behind wire planes)

The three wire planes at 0°,±60° (wire pitch = 3mm)

Readout electronic installation on top of dewar (Dec 2000-now)

Status of the T600 (first half module)

- ✓ Assembly of the internal detector mechanics finished.
- ✓ Wires positioning (3 planes) completed.
- Central cathode, auxiliary instrumentation, photomultipliers, sensors and signal cables installed and tested.
- Thermal insulation and cryogenic system proceeded in parallel.
- ✓ Electronics and DAQ system delivered.

Planning

• Next steps:

- The ICARUS T600 detector has a **physics program** of its own, immediately relevant for neutrino oscillation physics: **solar+SN neutrinos**, **atmospheric neutrinos**
- It should be installed in LNGS tunnel next year.

Perspectives of ICARUS

- * The ICARUS T600 detector
 - has a physics program of its own, immediately relevant for neutrino oscillation physics: solar+SN neutrinos, atmospheric neutrinos
 - Though with limited statistics, due its relatively small mass, compared to the standard for underground detectors set by the operating SuperKamiokande.
- However, the T600 should also be considered as one more step towards larger detector masses.
 - solving technical issues associated with actual operation of a large mass LAr device in an underground site (LNGS Tunnel).
 - fully establish the imaging, PID, calorimetric energy reconstruction capabilities of REAL events, during steady detector operations
 - In situ proof of actual physics performance of this novel detector technique, in particular measurement of backgrounds, extrapolable to larger mass detectors
- Physics issues for both present and future LAr detectors:

Atmospheric v Solar+SN v CNGS+Nufactory v p decay

Solar neutrinos detection in ICARUS

- Primary electron track
- * Absorption: surrounded by low energy secondary tracks (${}^{40}K^*$ de-excitation).
- Prototype setup: electron track visible down to kinetic T = 150 KeV
- Electron track threshold = 5 MeV (needed to reduce background contribution and to establish the e⁻ direction in elastic scattering).
- ✤ Sensitive to ⁸B component of the solar spectrum.

Elastic scattering v event

Signal selection

* Elastic events :

- → Angular distribution of the electron peaked in the solar v direction:
- ★ Absorption events :
 - → Electron track directions can be considered isotropically distributed

The off-line selection can be done in terms of the energy of the main electron and the correlation between multiplicity and energy of the associated tracks.

Absorption v event

Typical Montecarlo Gamow -Teller digitised event

e (420 keV)

Solar neutrinos sensitivity

$$R = \frac{N^{ES} / N^{ES}_{theory}}{N^{ABS} / N^{ABS}_{theory}}$$

Independent of the ⁸B total v flux predicted by solar models..

Supernova neutrinos expected rates

ICARUS can detect neutrinos coming from stellar collapses in our Galaxy via the same two processes! *

Supernova neutrino rates in 5 KTON ICARUS

64

120

240

424

T600 PHYSICS : Atmospheric neutrinos (I)

*The accumulated statistics will be modest. For a 2 kton x year exposure they will be comparable to first generation water Cerenkov detectors: Kamiokande, IMB

270 $\nu_{\mu} + \nu_{\mu}$ CC 150 $\nu_{e} + \nu_{e}$ CC 190 v NC \Rightarrow 610 events in total

*Complicated final events with multi-pion products will be completely analyzed and reconstructed ⇒ Zenith angle reconstruction significantly improved!

*Events can be fully reconstructed up to kinematics production threshold (50% of the total predicted rate has $P_{lepton} < 400 \text{ MeV}$) \Rightarrow Fundamental contribution to the understanding of the low energy part of the atmospheric neutrino spectrum

T600 PHYSICS : Atmospheric neutrinos (II)

For a 2 kton x year exposure, we will measure a significant deficit of upward-going muon-like events

	2 kton×year						
		$\Delta m_{23}^2 \; (\mathrm{eV}^2)$					
	No osci	5×10^{-4}	1×10^{-3}	3.5×10^{-3}	5×10^{-3}		
Muon-like	270 ± 16	206 ± 14	198 ± 14	188 ± 14	182 ± 13		
Downward Upward	$\begin{array}{c} 102\pm10\\ 94\pm10 \end{array}$	$\begin{array}{c} 102\pm10\\ 46\pm7 \end{array}$	$\begin{array}{c} 102\pm10\\ 46\pm7 \end{array}$	$\begin{array}{c} 98\pm10\\ 47\pm7 \end{array}$	$\begin{array}{c} 95\pm10\\ 49\pm7 \end{array}$		
Electron-like	152 ± 12	152 ± 12	152 ± 12	152 ± 12	152 ± 12		
Downward Upward	$\begin{array}{c} 56\pm7\\ 48\pm7 \end{array}$	$\begin{array}{c} 56\pm7\\ 48\pm7 \end{array}$	$\begin{array}{c} 56\pm7\\ 48\pm7 \end{array}$	$\begin{array}{c} 56\pm7\\ 48\pm7 \end{array}$	56 ± 7 48 ± 7		

 $v_{\mu} \rightarrow v_{\tau}$ or $v_{\mu} \rightarrow v_{s}$ oscillations? The clean NC sample measured allows "indirect" v_{τ} appearance search

$$R_{NC/e} = \frac{NC^{data} / v_e CC^{data}}{NC^{MC} / v_e CC^{MC}}$$

Expected error on $R_{NC/e}$: 15% (22%) for a 2 (1) kton x year

Uncertainty similar to the one obtained by Super-Kamiokande (we are not dominated by systematic uncertainty on poorly known cross sections, e.g. single π^0 production)

Atmospheric CC events

$$P_e = 200 \text{ MeV}$$

Proposed setup ICARUS 5kt in LNGS Hall B

Sergio Navas, ETH/Zürich, ICARUS Collaboration, 7/3/2001

Atmospheric neutrinos

		5 kton×year				
				Δm_{23}^2	$_{3} (eV^{2})$	
p,He,		No osci	5×10^{-4}	1×10^{-3}	3.5×10^{-3}	5×10^{-3}
VII VII	Muon-like	675 ± 26	515 ± 23	495 ± 22	470 ± 22	455 ± 21
	Contained	418 ± 20	319 ± 18	307 ± 18	291 ± 17	282 ± 17
	Partially-Contained	$\frac{110}{257 \pm 16}$	196 ± 14	188 ± 14	$\frac{1}{179 \pm 13}$	173 ± 13
νμ	No proton	260 ± 16	190 ± 14	185 ± 14	170 ± 13	165 ± 13
	One proton	200 ± 10 205 ± 14	150 ± 14 160 ± 13	100 ± 14 150 ± 12	145 ± 19	109 ± 19 140 ± 12
Earth	Multi-prong	200 ± 11 210 ± 14	165 ± 13	160 ± 12 160 ± 13	110 ± 12 155 ± 12	$\frac{110 \pm 12}{150 \pm 12}$
	$\mathbf{D} < 400 \mathrm{MeV}$	905 17	905 ± 14	900 ± 14	105 14	175 19
	$P_{lepton} < 400 \text{ MeV}$	280 ± 17 200 ± 20	200 ± 14 210 \pm 19	200 ± 14 205 ± 17	180 ± 14 285 ± 17	173 ± 13 280 ± 17
almost isotropic source	$I_{lepton} \ge 400$ MeV	390 ± 20	310 ± 10	290 ± 17	200 ± 17	200 ± 17
(geomagnetic effects)	Electron-like	380 ± 19	380 ± 19	380 ± 19	380 ± 19	380 ± 19
	No proton	160 ± 13	160 ± 13	160 ± 13	160 ± 13	160 ± 13
	One proton	120 ± 11	120 ± 11	120 ± 11	120 ± 11	120 ± 11
	Multi-prong	100 ± 10	100 ± 10	100 ± 10	100 ± 10	100 ± 10
π, κ hadronic cascade + decays	$P_{\rm turner} < 400 { m MeV}$	185 ± 14	185 ± 14	185 ± 14	185 ± 14	185 ± 14
i e	$P_{lepton} \ge 400 \text{ MeV}$	100 ± 11 195 ± 14	100 ± 11 195 ± 14	105 ± 11 195 ± 14	$\frac{100 \pm 11}{195 \pm 14}$	105 ± 11 195 ± 14
	NC	480 ± 22	480 ± 22	480 ± 22	480 ± 22	480 ± 22
ν _μ ν _μ		400 ± 22	400 ± 22	400 ± 22	400 1 22	400 ± 22
	Tatal	4505 5				
	IOTAI	1535 E	vents/ye	ar		

Simulation based on FLUKA interaction and transport code, 3D representation of Earth and atmosphere, Geomagnetic effects included, All relevant physics taken into account: energy losses, polarized decays

v_{μ} disapearance: L/E distribution

CNGS neutrino beam

The expected v_e and v_{τ} contamination of the CNGS beam are of the order of 10⁻² and 10⁻⁷ respect to the dominant v_{μ} .

Primary protons: **400 GeV**, Pots per year: **4.5x10¹⁹ pots**

Planned beam commissioning: May 2005

CERN Neutrino Beam in the Direction of Gran Sasso

CNGS events in 5 kton, 4 years running

	20 1	kton×year	(4 years runr	ung)
$\theta_{aa} = 45^\circ \theta_{aa} = 7^\circ$			$\Delta m_{23}^2 \; (eV^2)$	
$v_{23} - 43$, $v_{13} - 7$	No osci	1×10^{-3}	3.5×10^{-3}	5×10^{-3}
$\nu_{\mu} CC$	54300	53820	49330	44910
$\bar{\nu_{\mu}}$ CC	1090	1088	1070	1057
$\nu_e \ { m CC}$	437	437	437	436
$\bar{\nu_e} CC$	29	29	29	29
$\nu \text{ NC}$		1	7550	
$\bar{\nu} \text{ NC}$			410	
$\nu_{\mu} \rightarrow \nu_{e} \ \mathrm{CC}$	-	7	74	143
$\nu_{\mu} \rightarrow \nu_{\tau} \ CC$	-	52	620	1250
$\bar{\nu_{\mu}} \to \bar{\nu_{e}} \ \mathrm{CC}$	-	< 1	< 1	1
$\bar{\nu_{\mu}} \to \bar{\nu_{\tau}} \ CC$	-	< 1	6	13

0011 1 •)

- Analysis of the electron sample *
 - → Exploit the small intrinsic v_e contamination of the beam (0.8% of v_μ CC)
 - → Exploit the good e/π^0 separation

Statistical excess visible before cuts \Rightarrow this is the main reason for performing this experiment at long baseline !

$v_{\mu} \rightarrow v_{\tau}$ oscillations

 Reconstructed visible energy spectrum of electron events clearly evidences excess from oscillations into tau neutrino

ICARUS 4 years (after cuts)

$\Delta m^2 \; (\mathrm{eV^2})$	$\nu_{\tau} CC$	$\nu_e, \ \bar{\nu}_e \ \mathrm{CC}$	$\nu_{\mu}, \ \bar{\nu}_{\mu} \ CC$	$\nu_{\mu} \text{ NC}$
1×10^{-3}	3			
2×10^{-3}	12			
3×10^{-3}	26			
$3.5 imes10^{-3}$	35	4.1	1.0	< 1
5×10^{-3}	71			
7×10^{-3}	121			
1×10^{-2}	248			

$v_{\mu} \rightarrow v_{e}$ oscillations : Search for $\theta_{13} \neq 0$

$\Delta m_{32}^2 = 3.5 \times 10^{-3} \text{ eV}^2; \sin^2 2\theta_{23} = 1$

ICARUS 4 years

Cuts: Fiducial, $E_e > 1$ GeV, $E_{vis} < 20$ GeV							
$\Delta m_{23}^2 = 3.5 \times 10^{-3} \text{ eV}^2, \ \theta_{23} = 45^o$							
θ_{13}	$\sin^2 2\theta_{13}$	$\nu_e \text{ CC}$	$\nu_{\mu} \rightarrow \nu_{\tau}$	$\nu_{\mu} \rightarrow \nu_{e}$	Total	Statistical	
(degrees)			$\tau \to e$			significance	
9	0.095	79	74	84	237	6.8σ	
8	0.076	79	75	67	221	5.4σ	
7	0.058	79	76	51	206	4.1σ	
5	0.030	79	77	26	182	2.1σ	
3	0.011	79	77	10	166	0.8σ	
$D(11 - 111) = 112^{4} 0 - 112^{2} 0 - 12^{2}$							
$P(v_{\mu} \rightarrow v_{\tau}) = \cos \theta_{13} \sin 2\theta_{23} \Delta_{32}$ $P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \Delta_{32}^{2}$						$\theta_{13}\sin^2\theta_{23}\Delta^2_{32}$	

Sensitivity to θ_{13} in three family-mixing

Sensitivity to $v_{\mu} \rightarrow v_{e}$ oscillations in presence of $v_{\mu} \rightarrow v_{\tau}$ (three family mixing)

★ Factor 5 improvement on $sin^2 2θ_{13}$ at $\Delta m^2 = 3x10^{-3} eV^2$

Almost two-orders of magnitude improvement over existing limit at high Δm^2

Nucleon decay search

5 kTons detector \implies 3 × 10³³ nucleons \Rightarrow $\tau_{\rm p}$ (10³² years) > 6 × T(yr) × ϵ @ 90 C.L.

$\mathbf{p} \rightarrow \mathbf{e^{+}} \pi^{\mathbf{0}}$ and $\mathbf{p} \rightarrow \mathbf{K^{+}} \overline{v}$ decay kinematics

Nuclear effects: pion absorption and rescattering included (FLUKA)

Exposure: 1000 kton x year

Conclusions

- * The ICARUS T600, based on a novel technique, is now almost ready
- Given the past record with previous prototypes, we are confident that also the T600 will come into operation smoothly...
 - → We hope to present the first 20 m long tracks with 3 mm granularity soon!
 - → It will demonstrate that the technique, even on such large scales, is now mature.
- Operation inside the Gran Sasso tunnel in the course of next year (2002) should allow an appropriate scaling up for the increase of the mass
- * The technology, once it is scaled to the "right" size, will become a powerful tool in order to explore
 - ✓ **neutrino oscillations** from both, accelerator and non-accelerator beams
 - ✓ Solar and Supernova neutrinos
 - ✓ and nucleon decay searches.