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To the first edition 

This book has been written for users of lock-in equipment and for those with an 
interest in the practical aspects of signal recovery and measurement using 
synchronous detection. The subject matter has been tackled for the most part at a 
systems level on the understanding that this is the approach most appreciated by 
research workers whose main specialization is in an area other than electronic 
instrumentation. Circuit designers will therefore look in vain for detailed circuit 
implementations; extensive mathematical developments are similarly avoided in 
favour of a more qualitative approach to identifying the essential features of lock-
in detection systems. A basic familiarity with Fourier series and transforms 
provides adequate preparation for the main part of the text and it is hoped that the 
review of system configurations and specifications given there will prove both 
interesting and useful to specialists and generalists alike. 
 

To the e-edition 

It is now thirty years since Lock-in amplifiers: principles and applications was 
first published. In the intervening period it has become established as a minor 
classic, being amongst the most widely cited text books of its kind. Of even 
greater importance to me personally is that, despite a lapse of almost 25 years 
since the final printing, I continue to receive requests from researchers and 
students seeking a copy – hence my wish to create an 'authorised' electronic 
version and make it freely available. 

Unlike the PDF held by Google Books (and numerous plagiarised versions 
circulating elsewhere) this e-edition has been newly compiled from the original 
typescript and diagrams. I make no apologies for leaving the content substantially 
the same as before, with no extensive revisions or additions. This reflects my 
view that, while there have been significant developments in the technology and 
implementation of lock-in systems, the greater part of the book, dealing with 
principles and guides to good practice, remains valid and useful. I might also 
confess that I am enjoying my retirement too much to spend more than the time 
necessary to correct obvious mistakes and to improve on the type-setting of 
equations which was less than satisfactory in the printed edition. There is, of 
course, the danger that this reworking is prone to fresh errors and, here, I am 
more than happy to apologise for any difficulty caused and fully prepared to 
amend and reissue any pages where errors are reported. 

 

Mike Meade 
Carlton 
Bedford, UK 

November 2013 
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CHAPTER 1

Introduction

Signal recovery instruments will always be in demand as long as experiments are 
attempted with progressively smaller samples, weaker concentrations and fainter 
excitations. Nowadays it is more or less standard practice to design experiments 
to take advantage of signal-recovery techniques. Only then does it become 
possible to carry out measurements in the crucial stage of an investigation where 
the signals of interest become obscured by high levels of noise and interference. 
Of all the techniques that have been developed for signal recovery, methods 
based on the phase-sensitive detector and its modern counterpart, the lock-in 
amplifier, are by far the most widely applied in all fields of scientific research. 
Indeed, for many research workers, the terms 'signal recovery' and ‘lock-in 
recovery' are virtually interchangeable.

Fig, 1.1 A general experimental system

To see why this should be the case, let us begin with the general experimental 
system shown in Fig. 1.1. The system could be electrical, mechanical, optical, 
biological or any combination of such systems. The excitation source evokes a 
response in the output and the response is converted to an electrical signal in the 
transducer. We can suppose that the person who devised the experiment has a 
clear idea of how to interpret the signal.

In some experiments it may be essential to recover the entire output signal so that 
its waveform can be made available for analysis. When the signal is obscured by 
high levels of noise, some form of a signal averaging will be necessary and the 
experimenter might specify a multipoint averager or Fourier transform analyser 
for this purpose. Signals of a transient nature, triggered by repetitive pulses from 
the excitation source, are often dealt with in this fashion.

In experiments using 'static' or 'd.c.' excitations the output signal usually appears 
in the form of a slowly varying direct voltage proportional to an experimental 
parameter of interest. Severe measurement problems then result when the voltage 
falls to a level comparable with the error voltages due to offsets and drift in the 
transducer and its associated amplifier.

The temperature-dependent drift of d.c. coupled equipment is usually treated as a 
component in the 1/f noise or flicker noise that plagues low-frequency 
measurements. The effect of flicker noise on the determination of a fixed voltage 
level Vo is shown schematically in Fig. 1.2. The record shows a characteristic 
deviation from the initial condition established at time t = 0, resulting in an 
increasing measurement error as longer observation times are taken.
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Fig. 1.2 D.C. output from an experimental system perturbed by low-
frequency noise

In the light of these problems it is now established practice to interrupt normally 
'static' excitations by providing some form of modulator at the input to an 
experiment. A typical research institute is usually a fruitful source of vibrating 
reeds, rotating discs and other electromechanical 'choppers' that have been 
engineered for this purpose. In most cases the net result is an ON/OFF 
modulation of the excitation source. The output voltage that originally had the 
form shown in Fig. 1.2 is then transformed to a 'chopped' voltage with amplitude 
Vo superimposed on the flicker noise voltage fluctuation. This new situation is 
depicted in Fig. 1.3(a).

Fig 1.3 (a) Switched output voltage obtained by periodically interrupting the 
excitation source; (b)  Output voltage with residual noise after 
high-pass filtering

In practice, the modulation or chopping frequency is usually made as high as 
possible to facilitate separation of the chopped output voltage from low-
frequency noise components. This separation is achieved by using a high-pass 
filter and results in the a.c. signal shown in Fig. 1.3(b). The amplitude of this 
signal is proportional to the experimental parameter of interest and will usually 
vary in the course of an experiment. Note that in Fig. 1.3(b) the short-term noise 
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fluctuations that appeared on the original signal have been transmitted by the 
high-pass filter and so appear in the final output. One way to overcome this 
residual fluctuation, when measuring the signal amplitude Vo, is to apply a 
differential measurement procedure to the output voltage. The idea is to measure 
the mean voltage difference between successive ON/OFF intervals and then 
average results over a number of modulation cycles. An improved estimate of the 
amplitude Vo will be obtained as the overall observation time is increased and a 
greater number of modulation cycles is taken into account.

In 1946, Dicke [1] showed how this type of measurement could be carried out 
automatically by using a phase-sensitive detector. A phase-sensitive detector 
measures the difference voltage of interest by using a synchronous reference
voltage derived from the input modulator. We shall find that detection with 
respect to a synchronous reference enables the use of very long averaging times 
for the purpose of signal-to-noise ratio improvement and that practical systems 
are capable of operating with signals well below the background noise level.

The importance of this capability cannot be overstated since in many experiments 
the noise level due to thermal noise alone may be of the order of several 
millivolts peak-to-peak while the signal of interest has an amplitude measured in 
microvolts. Add to this the effect of incidental pick-up and interference and the 
result is a real signal recovery 'problem' awaiting solution.

In this context, phase-sensitive detectors offer a significant advance over 
alternative amplitude-demodulation schemes employing non-linear devices such 
as envelope detectors. The latter make no fundamental distinction between signal 
and noise components whereas a phase-sensitive detector is engineered to 
respond specifically to the information-bearing signal. If the term signal recovery
implies that we have some prior knowledge of a signal, then the phase-sensitive 
detector is a true signal recovery device in that it takes account of the distinctive 
structure of the signal imposed by the use of a modulated excitation.

A phase-sensitive detector is responsive to the amplitude of a signal but is also 
sensitive to the phase difference between a signal and the derived reference. 
Phase-sensitive detector-based systems can therefore be devised to measure 
variations in both the amplitude and phase of periodic signals in the presence of 
noise and interference. Systems operating on the phase-sensitive detector 
principle are termed lock-in systems and the usual way of introducing a phase-
sensitive detector into an experiment is to use a lock-in amplifier. This term has 
come to mean a free-standing instrument that incorporates a phase-sensitive 
detector, supported by preamplifiers, post-detection amplifiers and a 
comprehensive reference processing section.

A number of lock-in amplifier applications are listed in Appendix 1 which also 
serves to emphasize the widespread use of periodic excitations in experimental 
research. In the majority of cases the signal of interest appears in the output of the 
experiment at the same frequency as the fundamental excitation frequency. This 
certainly includes all measurements where the experimental processes are 
essentially linear insofar as no new frequencies are generated between input and 
output; for example, in a wide range of optical and electronic systems. To this 
broad class of experiments we can add examples where additional frequencies are 
produced, but where, once again, the frequency of interest is identified with that 
of the excitation source or bears a harmonic relationship to it. In any of these 
cases the phase-shift introduced by the experiment might be of interest, but, very 
often, it is sufficient to monitor changes in the magnitude of the output signal. On 
further examination we find that the applications can be broadly divided into two 
main categories. First of all, we have those many areas of activity where lock-in 
systems are used in their long-established role as signal-recovery tools for the 
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measurement of modulated signals in noise. Secondly, there are many examples 
where lock-in systems are used for the precision measurement of signals, in 
situations where signal-recovery capability does not appear to be a prime 
consideration.

This essentially dual function of modern lock-in systems will be emphasized 
throughout the following chapters. When dealing with the principles of lock-in 
detection in Chapter 2 we shall begin along the lines followed by most authors in 
the field of telecommunications under the heading 'synchronous' or 'coherent' 
detection [2 ,3] Beyond this, however, we must improve upon the standard text-
book treatment which is usually very disappointing to those whose interest is in 
experimental applications where signals are very slowly varying or may even be 
'fixed' for the time available for measurement. Also, while some authors 
acknowledge that synchronous detectors are mathematically capable of 
withstanding adverse signal- to-noise ratios we find that very little attention is 
given to the practical aspects of demodulation under such conditions.

This is scarcely surprising since in many communication systems, signal-to-noise 
ratios of less than 10:1 or 20 dB would be considered quite unacceptable, while in 
signal-recovery work a typical starting point is with signal-to-noise ratios of less 
than 1:10, that is 20 dB or worse. We shall therefore find it necessary to discuss 
aspects of linearity and dynamic range and to make the transition from an ideal 
detector model to practical devices furnished with a range of specialist 
specifications. Most of the principles and techniques to be described could apply 
to lock-in amplifiers operating in almost any frequency range. Furthermore, the 
definitions of key specifications are independent of the particular technology used 
in the implementation of the lock-in amplifier. When dealing with 'typical' 
specifications, however, we shall take examples from commercial lock-in 
amplifiers optimized for the low-frequency range extending from less than 1 Hz 
up to a maximum of about 1 MHz. This corresponds to the frequency range in 
which the most significant developments in phase-sensitive detector technology 
have occurred and which satisfies the greatest number of applications.

The object throughout is to present information against a background of 
experimental work and to develop an awareness of the nature of signals and noise 
in experimental systems. The archetypal measurement system introduced at the 
beginning of this chapter will prove to be useful in this respect and is used as the 
basis for a general discussion about signals and noise in Chapter 2 which aims to 
put lock-in detection into a proper perspective. In Chapter 2, and throughout the 
following chapters, the treatment is mainly qualitative, with the principal 
mathematical developments left to the numerous Appendices.

Discussion on lock-in systems in the early chapters is confined to the so-called 
'traditional' or 'conventional' variety of lock-in amplifier where the overall 
handling characteristics are essentially those of the switching phase-sensitive 
detector. These include some undesirable features, notably the susceptibility of 
the phase- sensitive detector to interference signals at the odd harmonics of the 
reference frequency.

The drawbacks of conventional systems are briefly reviewed in Chapter 6 in 
preparation for the following chapters which deal with various 'advanced' systems 
operating on the heterodyne and the pulse-width-modulation principles. Here we 
shall find that the odd harmonic responses referred to above are suppressed 
through more extensive processing of the signal and reference voltages, but that 
the switching phase-sensitive detector is retained on account of its ability to 
maintain linear operation under the most adverse noise conditions. At the same 
time, the more complex system configurations are found to be characterized by a 
number of additional spurious responses which must be minimized at the design 
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stage. There are also certain inevitable trade-offs, notably with respect to 
dynamic range and frequency coverage, which must be taken into consideration, 
and we shall take account of these where appropriate.

Heterodyne and pulse-width-modulation lock-in amplifiers are almost invariably 
supplied and used as self-contained units. In Chapter 7, however, we find that the 
topic of phase-locking bridges the gap between 'conventional' and 'advanced' 
systems in that reference processing can be arranged by using standard modules 
such as phase-sensitive detectors and voltage-controlled oscillators. Readers 
familiar with the literature on this subject will find the approach here heavily 
biased towards locking with noisy signals, the object being to derive a ‘local’ 
reference voltage when this is otherwise unavailable. The treatment is 
unavoidably mathematical in this case, but it is nevertheless intended that non-
specialist readers will benefit from a review of the problems of locking in noisy 
conditions. The optimization procedures described represent but one way of 
approaching the phase- lock problem. They do, however, take account of long-
term variations in signal amplitude, a feature which is noticeably lacking in the 
general literature.

Chapter 10 deals with some of the problems inherent in bringing signal-recovery 
equipment under computer control. Here, as elsewhere, it is hoped that the 
development of ideas will be accessible to readers with an interest in lock-in 
systems as measurement tools but who are otherwise non-specialists in the 
general areas of electronics and telecommunications.

The same remarks apply to Appendices 5 and 6 which give an appraisal of noise 
in amplifiers and the problems associated with signal connections, in particular 
the avoidance of ground loops. It is noted there that lock-in recovery can be a 
more-or-less straightforward business provided that proper attention is paid to 
signal handling. While acknowledging that familiarity with specifications and the 
basic rules of instrument management are best learned 'at the bench', it is hoped 
that the guidelines established in this book are of the sort which make lock-in 
recovery a reasonably exact science and that they will ensure that many common 
pitfalls leading to erroneous or misleading results will be avoided.

1.1 References
1 DICKE, R.H. (1946): "The measurement of thermal radiation at microwave 
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CHAPTER 2 

Basic concepts in lock-in recovery 
 

 

 

2.1 Introduction  
Lock-in amplifiers are characterized by a wide dynamic range which gives the 
ability to measure signals accompanied by relatively high levels of noise and 
interference. It is appropriate therefore to begin with an examination of the signal 
and noise voltages which might appear at the output of an experimental system of 
the general type introduced in Chapter I and, in particular, to identify the 
combinations of signals and noise which give rise to a signal recovery 'problem'. 
As we shall see, a fairly close examination is necessary in order to give substance 
to the vague, if popular, notion of signals 'buried in noise'. We shall then turn our 
attention to methods of signal measurement and outline the principles of 
synchronous detection which underlie the operation of lock-in amplifiers.  

It was shown in the introductory chapter that signal recovery applications of lock-
in amplifiers usually involve the measurement of amplitude variations and - to a 
lesser extent - phase variations of periodic signals. In support of this, Appendix 2 
gives some attention to the structure of modulated signals and gives methods of 
estimating signal bandwidth. In many signal recovery applications, however, the 
signal modulations are relatively slowly varying, not just with respect to the 
excitation frequency but also with respect to observation intervals ranging from 
several seconds up to many hours. Indeed, in many circumstances the signal may 
have fixed characteristics throughout the time available for measurement. We 
shall find in this chapter that many of the important differences between 
synchronous detection methods and other, non-linear, detection methods can be 
readily demonstrated on this assumption.  

This chapter includes an introduction to basic lock-in amplifiers. A brief appraisal 
of the various system components highlights some of the main topics for 
discussion in the chapters to follow. 

2.2 Evaluating the signal recovery 'problem'  
In the following we shall suppose that signals are obtained in the form of a 
voltage variation either directly from an electrical transducer or from a suitable 
combination of transducer and preamplifier. Although of extreme importance, the 
technicalities of amplifier selection and the practicalities of signal connections 
will not be a major concern at this stage; our objective will be to examine the 
general characteristics of signals and noise which might be encountered in the 
course of a typical measurement.  

We define ‘noise’ as all unwanted signals, so all sources of random disturbance 
must be included in its description, together with the effect of more-or-less well-
defined interference originating from neighbouring experiments and installations. 
The broad spectrum of interference phenomena is charted in Appendix 2 and 
includes several well-known - if not notorious - sources such as mains-frequency 
‘hum’, r.f. breakthrough from pulsed experiments and pick-up from t.v. and radio 
transmissions. Interference phenomena in general have a different status to the 
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noise sources that are inherent in the experimental processes under investigation, 
in the amplifying devices employed and in the transducers used to provide the 
output signals. For example, interference effects can often be suppressed - if not 
entirely eliminated - by careful experiment design, so it is useful to make a 
distinction between noise which is fundamental to the system and noise of 
external origin.  

 

 

Fig. 2.1 Typical oscilloscope view of a signal contaminated by noise and 
discrete interference  

At the same time we should not make the mistake of supposing that the system 
noise is so ‘fundamental’ that it cannot be reduced further. In practice there is 
often scope for improvement through selection of amplifiers, a topic which is 
treated at some length in Appendix 5. 

The first direct contact with signals in a laboratory is usually made via an 
oscilloscope. In the case of noisy signals the resulting display is often a confused 
jumble for example. Fig. 2.1 which shows the effect of noise, including discrete 
interference, on a low-level signal.  

The term ‘buried in noise’ seems to be most appropriate here, but in many cases 
this conclusion tells us more about the method of display than it does about the 
signal. Let us look therefore at an alternative way of displaying the characteristic 
of the signal, by using a spectrum analyser.  

The spectrum-analyser approach gives a more explicit and graphical 
interpretation of the relationships between signals and noise in a system. We find 
that by making the transformation from time domain to frequency domain we can 
often sort the signal and noise into their respective categories, a process which 
overcomes the confusing superposition of the time domain picture.  

Fig. 2.2 is such an example and uses the same input voltage as displayed on the 
oscilloscope. The signal is now very much in evidence and well separated in 
terms of frequency from sources of interference such as high-frequency 
breakthrough from a neighbouring experiment. The noise which appeared to 
dominate the oscilloscope display is now seen to be spread quite ‘thinly’ over a 
wide range of frequencies.  
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Fig. 2.2 Spectrum-analyser display of the signal shown in Fig. 2.1. On 

this scale the mains frequency pick-up region is immediately 
adjacent to the zero frequency marker 

The spectrum analyser picture also serves to remind us that many sources of 
interference can be described quite adequately in terms of a ‘line’ spectrum, 
representing the concentration of power at discrete frequencies while the 
fundamental noise and other interference sources give rise to a continuous 
spectrum of noise up to the upper cut-off frequency of the output transducer or 
output amplifier. Appendix 2 gives a breakdown of the principal interference 
mechanisms according to their characteristic frequency ranges and spectral 
signatures, and then gives attention to providing simple mathematical models for 
the various kinds of spectrum which might be encountered in practice. These 
include broadband spectra resulting from thermal noise and shot noise, 
narrowband spectra and the ubiquitous flicker-noise or 1/f noise. The latter is 
associated with a rise in noise power density at low frequencies. These models 
provide the means of estimating the contribution to an observed fluctuation which 
emanates from different parts of the noise spectrum in preparation for the first 
step in signal recovery; this is the elimination of unwanted noise by filtering. 
Thus, given a combination of signal and noise spectra such as that shown in 
Fig. 2.2, we find that there is ample scope for improvement by introducing filters 
to ‘clean-up’ the signal prior to detection. The elimination of unwanted 
components in this way is an important aspect of signal conditioning and is often 
effective in bringing about a substantial increase in signal-to-noise ratio. In this 
example, the use of a bandpass filter centred on the signal component indicated in 
Fig. 2.2 results in the displays shown in Fig. 2.3. The signal of interest is now 
relatively noise-free so that variations in, say, signal amplitude could be 
measured using a conventional a.c. voltmeter without incurring a serious noise 
penalty.  

The idea of noise reduction by bandwidth reduction is of course central to an; 
discussion of signal recovery. If, however, we restrict ourselves to the question of 
signal-to-noise improvement before demodulation, then we find that the benefit 
obtained by signal conditioning can be very limited. 
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Fig. 2.3 (a) Signal of Fig. 2.2 following the introduction of a bandpass 

filter centred on the signal frequency; (b) corresponding 
frequency-domain picture 

To illustrate this let us look at the idealized case shown in Fig. 2.4 where a 
bandpass filter with bandwidth Bo is used to reduce the noise power appearing 
with the signal, leaving the signal unaffected. It is shown in Appendix 2 that the 
noise power is reduced by a fraction Bo/BI where BI is the ‘input’ noise bandwidth 
to the filter. If, at some later stage in the measurement, the signal amplitude 
should be reduced, then the output signal-to-noise ratio can only be maintained 
by a further reduction in filter bandwidth. For example, if the signal amplitude 
falls by a factor of 10 (signal power reduced by 100) the filter bandwidth must be 
reduced to 1/100 of its former value in order to restore the signal-to-noise ratio.  

Clearly, this process cannot be repeated indefinitely. First of all, if the signal is 
carrying modulation it will occupy a finite bandwidth, and this, in turn, will 
determine the smallest filter bandwidth that can be used. Secondly, there are 
practical limits to designing filters with very high selectivity, which, in any case, 
results in a tightly ‘tuned’ measurement system. This, almost invariably, gives 
rise to additional problems such as susceptibility to drift and the inability to 
follow even small variations in signal frequency.  
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Fig 2.4 (a) Spectrum of signal and noise; (b) amplitude response of 

bandpass filter used for noise reduction. In this ideal case, the 
filter signal bandwidth, Bo is equal to the noise equivalent 
bandwidth  

Bearing these points in mind we can make a clear distinction between our 
original example and the case shown in Fig. 2.5. The noise power is now 
concentrated with high density in the region of the signal frequency and the 
signal is over-shadowed by a massive interference component nearby. We are 
now faced with a signal recovery problem of quite a different order, where 
adequate separation of a signal and noise cannot be achieved by filtering and a 
substantial fraction of the noise and interference must filter through to the 
equipment used for demodulation. 

 
Fig. 2.5 Frequency-domain view of a signal recovery ‘problem’  
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In evaluating the effect of noise on a signal, therefore, we are interested more in 
the distribution of the noise components with frequency rather than in the total 
noise power which accompanies the signal. Thus, the total peak-to-peak 
fluctuation which can so seriously obscure an oscilloscope display is not in itself 
sufficient to prevent measurement of a signal, provided that adequate noise 
reduction can be achieved through signal conditioning. If this approach fails, then 
the final outcome of an experiment will depend entirely on the ability of the 
demodulator to function in the presence of noise. 

2.3 Demodulators for signal recovery  
It was suggested in Chapter 1 that the term ‘signal recovery’ implies some prior 
knowledge of a signal and that this knowledge is used to advantage at the point of 
detection.  

The use of signal conditioning filters is an example of how ‘prior knowledge’ of 
the signal can aid the process of detection. Let us now turn our attention to the 
provision of a demodulator and ask: are there any techniques available which take 
specific account of the ‘character’ of the signal imposed by the choice of 
excitation source? In answering this question we would separate the ‘true’ signal 
recovery techniques from those which make no fundamental distinction between 
signals and noise. We would find an essential difference in that demodulators for 
signal recovery are almost invariably supplied with a reference signal which is 
precisely synchronized with the signal of interest. 

 
Fig. 2.6 (a) Incorporation of a synchronous detector in an experimental 

system;  (b) multiplier model for a synchronous detector  

It is the availability of the reference which enables us to exploit the principle of 
synchronous detection referred to in Chapter 1. The use of the term ‘lock-in 
systems’ in this context reminds us that we are dealing with demodulators which 
are ‘locked’ to a signal of interest by virtue of a synchronous or coherent 
reference voltage. Fig. 2.6(a) is fairly typical in that the reference has been 
obtained directly from the excitation voltage at a fixed level.  

The response of a synchronous detector to variations in the amplitude and phase 
of a synchronous signal will be considered in the next section. In general terms, 
operation depends on the high degree of correlation which is known to exist 
between a periodic signal of interest, s(t), and the reference r(t). The presence of 
correlation is tested using the scheme outlined in Fig. 2.6(b), by first multiplying 
the two inputs to form the product 

vp(t) = r(t) [s(t) + n(t)] 

where n(t) represents the entire disturbance due to additive noise and interference.  
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When r(t) and s(t) are closely correlated, their product gives rise to a distinctive 
response which depends upon the amplitude of the signal and its phase relative to 
the reference. For example, in the important case of practical interest where s(t) is 
a sinewave having fixed characteristics during some stage of a measurement, the 
product term r(t)s(t) will give rise to a voltage which includes a constant term 
proportional to signal level. The purpose of the low-pass filter shown in Fig. 
2.6(b) is to separate this voltage from the higher-order products of multiplication 
and allow it to filter to the final output. Regarding the noise, there should be no 
correlation with the reference in this case and the average value of the noise 
product r(t)n(t) is always zero in the final output. The response to a fixed signal is 
quite unambiguous because there is no error due to rectified noise components: 
any residual fluctuations due to noise appear as an a.c. variation which does not 
affect the average value of the ‘true’ output voltage due to the signal. In principle, 
these residual fluctuations can always be attenuated to an acceptable level by 
reducing the bandwidth of the output low-pass filter. This represents the major 
mechanism for signal-to-noise improvement in synchronous detection systems. 

 
Fig. 2.7 Meter indications at the output of: (a) a synchronous detection 

system;  (b) an envelope detector. The ‘true’ deflection due to 
signal corresponds to half-scale in each case 

The response to a signal with changing amplitude will be a varying output 
voltage with additive noise. When the amplitude is changing very slowly we can 
interpret the response as a slowly varying ‘d.c.’ level. In this case an output filter 
with very small bandwidth can be used to smooth the fluctuation due to noise. 
The problem is then to estimate the value of the d.c. component. This might be 
achieved by observing the output on a voltmeter as shown in Fig. 2.7(a). With a 
synchronous detector there is no residual deflection due to rectified noise and the 
desired d.c. response is given by observing the average deflection of the meter. 
Other types of detector, for example envelope detectors, give a meter indication 
characterized by Fig. 2.7(b). Here the response is subject to an error due to 
rectified noise components which contribute to the net deflection of the meter. 
This source of error cannot be removed by using a low-pass filter. The only 
recourse in this case is to eliminate noise components before detection by the use 
of filters tuned to the signal frequency. 

A further point to be noted is that rectifier-detectors are subject to inter-
modulation effects whereby signals and noise become multiplied together. 
Intermodulation is inevitable in any process which depends on a non-linear 
operation such as squaring or envelope detection. The effect can be safely 
ignored at high input signal-to-noise ratios, but when the signal is reduced the 
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intermodulation products dominate and give rise to the phenomenon of threshold 
or signal suppression. This generally occurs at input signal-to-noise ratios below 
about 1:1 and corresponds to a loss of information in that the detector output no 
longer contains a term which is simply proportional to the desired modulation. 

In the light of this general discussion it is evident that ‘ideal’ multiplier 
synchronous detectors do not generate products of the type s(t)n(t); a distinct 
separation between signal and noise is maintained throughout. As a result, the 
residual noise output adds to the desired response. We can say that synchronous 
detectors are linear insofar as the principle of superposition can be applied in 
order to combine the responses due to individual components in the signal and 
noise voltages. 

Let us now turn from these general considerations and look at some specific 
relationships between the reference, signal and noise in a synchronous detection 
system. 

2.4 Operation of synchronous detectors 
2.4.1 Introduction 
We shall begin by summarizing basic mathematical relationships which apply to 
the ideal multiplier followed by a low-pass filter shown in Fig. 2.8.  

 
Fig, 2.8 Synchronous detector with sinewave signal and reference 

A sinewave reference will be used and we shall calculate the response to a single 
sinewave component in the signal path. Signal and reference are conveniently 
expressed in terms of their r.m.s. values Vs and VR: 

s(t) = √2 Vs cos [ωst + φs] 

r(t) = √2 VR cos [ωRt + φR] 

If we now form the product of signal and reference we can separate the result into 
sum and difference components:  

€ 

vp t( ) =VsVR cos ωs +ωR( )t +φs +φR[ ]
+VsVR cos ωs −ωR( )t +φs −φR[ ]

 

This is an operation which will recur in succeeding chapters and which is almost 
invariably linked to the assumption that the low-pass filter cuts off at a frequency 
much less than ωR. In this case the sum-frequency component is effectively 
eliminated from the final output. The fate of the other component will depend on 
the magnitude of the difference frequency Δω = ⎢ωs − ωR ⎢. If this is less than or 
comparable with the bandwidth of the low-pass filter we find that the output 
appears in the form of an alternating or ‘beat’ response at frequency Δω. To 
calculate the magnitude of this response we require the frequency-response 
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function HL(jω) of the low-pass filter. In general, the beat’ component will have 
amplitude  

⎢vo ⎢= VsVRAL(Δω) 

where 

AL(ω) = ⎢HL (jω) ⎢ 

Since AL(ω) has a cut-off well below ωR we find that the system is able to accept 
only those signal components which lie very close to the reference frequency. 
This can be described in terms of a transmission window centered on the 
reference frequency with a characteristic dependent on AL(ω) as shown in 
Fig. 2.9. We can thus argue that the combination of reference, multiplier and low-
pass filter functions as a band-pass system giving a response only to signals in the 
vicinity of the reference frequency.  

 
Fig. 2.9 (a) Frequency-response magnitude of low-pass filter;  

(b) transmission window derived from the characteristics of the 
low-pass filter and centred on the reference frequency, ωR 

2.4.2 Demodulation with a synchronous reference  
Let us now turn to the case of greatest practical significance, where the signal and 
reference are derived from the same source, for example in the experimental 
scheme shown in Fig. 2.10 below. 

The excitation of the experiment is sinusoidal at frequency ωR and provides a 
reference which is to be used for detection of the output signal. The output signal 
appears at the same frequency as the excitation and suffers a phase-shift φs in the 
experiment. The reference is applied to the multiplier via a variable phase-shift 
network. 

 

Fig. 2.10 Using a synchronous detector with a variable phase-shift 
network in the reference path   
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At this stage let us assume that the signal is noise-free. The output from the low-
pass filter can then be calculated by putting ωs = ωR in the results derived earlier. 
For signals with fixed amplitude and phase we obtain the classic phase-sensitive 
response in the form of a d.c. indication:  

vo = kRVs cosφ 

where  

φ = φs − φR 

kR = VRAL(0) 

Usually the reference amplitude is fixed so that kR is a constant scaling factor. 
The response is then simply proportional to the signal amplitude and exhibits a 
phase dependence through the cosine term. Let us now see how the reference 
phase- shifter can be used to measure some specific modulations on the signal. 

2.4.3 Amplitude demodulation 
The reference phase is adjusted to bring the signal and reference in phase at the 
multiplier to give an output: 

 Vo = kRVs  

for 

φR = φs  

The output will follow variations in signal amplitude provided that the low-pass 
filter has a bandwidth wide enough to transmit the modulation signal without 
distortion. For example, when the signal has the form:  

vs(t) = m(t) cos ωot 

the output voltage will be  

vo(t) = kRmF (t) 

where mF(t) is a low-pass filtered version of the modulation signal m(t).1  

In this case the output voltage of the synchronous detector will have a spectrum;  

Vo(jω) = kRM(jω)HL(jω) 

            = M(jω)HD(jω) 

Here, M(jω) is the Fourier transform of the modulation signal and we identify  

HD(jω) = kRHL(jω) 

as the frequency-response function of the synchronous detector.  

2.4.4 Phase demodulation  
To use the synchronous detector as a phase demodulator we must assume that the 
signal amplitude is constant. The first step is to null the output of the detector by 
bringing the signal and reference into quadrature at the multiplier, giving; 

                                                        
1 If we denote the impulse-response of the low-pass filter by hL(t), the filtered version of the 
modulation function will be given by:  

  

where ⊗ denotes convolution. 
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φR = φs − π/2 

If the signal phase subsequently changes by an amount φm the response of the 
detector will be  

vo = kRvs sinφm 

The synchronous detector will operate as a linear phase detector only for small 
phase variations. In this case we restrict the magnitude of φm, so that sinφm ≅ φm 
and obtain the approximately linear response:  

vo ≅ kRvsφm 

Let us now take the general case where φm is a time-varying phase-shift φm(t). 
When ⎢φm(t)⎜ << l this corresponds to low-index phase modulation. We must now 
consider the effect of the low-pass filter on the frequency components of φm(t). If 
the phase modulation has a Fourier transform Φm(jω) the required relationship is  

Vo(jω)  = kRVsΦm(jω)HL(jω)   

            = Vs Φm(jω)HD(jω) 

or, in terms of a time variation;  

vo(t)  = kRVsφm(t) ⊗ hL(t)   

The sensitivity of the system to phase variations is thus proportional to the 
amplitude of the signal. Otherwise, the detector frequency-response function 
HD(jω) plays the same role in amplitude and phase detection.  

2.4.5 Mixed modulations  
In general, we must expect that the signal of interest appears with both amplitude 
and phase modulations, in the form  

s(t) = m(t) cos [ωt + φs + φm(t)]  

If the reference phase is adjusted to bring signal and reference in phase at the 
multiplier such that φs = φR the system response becomes:  

Vo(t) = kRm(t) cosφm(t) ⊗ hL(t)  

        = kRm(t) ⊗ hL(t)  

for ⎢φm(t)⎜ << l radian  

We see that amplitude detection is first-order independent of phase variations on 
the signal. The implication is that small errors in setting-up the ‘in-phase’ 
condition do not seriously affect accuracy when signal amplitude is to be 
measured. Indeed an error of ±10° in the in-phase condition leads to an error of 
only ±1.5 % when measuring the amplitude of a fixed signal.  

It is worth noting that the operation of a synchronous amplitude detector does not 
depend on m(t) being constrained to take only positive values. Negative values of 
m(t) correspond to a phase reversal of the carrier signal which will be faithfully 
reproduced as negative voltages in the output of the detection system.  

Turning now to operation as a phase detector, we have noted that the overall 
response is proportional to signal amplitude. This simple system is therefore 
unsuited to operation as a phase detector when the signal carries amplitude 
modulation.  

More complex systems which involve two synchronous detectors operated in 
quadrature will be considered in later chapters. These systems allow amplitude 
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and phase variations to be measured simultaneously without restrictions on the 
maximum allowable phase shift. The key to this mode of operation lies in the 
phasor representation of the signal and reference voltages given in Fig. 2.11, 
drawn with respect to the reference phase. The output of a synchronous detector 
is now seen to be proportional to the in-phase component of the signal, while 
changing the reference phase by π/2 gives us a measure of the quadrature 
component of the signal. With the possibility of generating these two pieces of 
information we begin to see the potential of synchronous detection systems for 
phasor analysis and signal characterization beyond their traditional role in signal 
recovery. 

 
Fig. 2.11 Phasor representation of a sinusoidal signal drawn with respect 

to reference phase  

2.4.6 Noise rejection  
The response of a synchronous detector to a synchronous signal of fixed 
amplitude and phase is always obtained in the form of a d.c. indication. In 
contrast, asynchronous signals such as noise and discrete interference 
components always give rise to an alternating response in the form of ‘beat’ 
frequency products as discussed in Section 2.4.1. Furthermore, we have seen that 
the only unwanted components which can give rise to spurious outputs are those 
which originate in the immediate vicinity of the reference frequency, confined to 
the transmission ‘window’ defined by the characteristics of the low-pass filter. 
We can conclude, therefore, that the rejection of a large part of the background 
noise spectrum is inherent in the operation of a synchronous detector and that the 
frequency selectivity of the detector is governed by the properties of the low-pass 
filter. In practice, the experimental system itself will set limits to the maximum 
rate of change in the amplitude and phase of the signal of interest. This in turn 
will determine the minimum bandwidth which can be tolerated in the low-pass 
filter if the recovered information is to be transmitted without distortion. In many 
applications this maximum rate of change is deliberately restricted in order to 
achieve the smallest possible value of output bandwidth and so enhance the noise 
rejection properties of the detector (for example, by reducing the scan rate of 
spectrometers and swept-response analysers). The case of a signal accompanied 
by a wide band of white noise is given consideration in Appendix 3. Because of 
the inherent linearity of synchronous detectors we find that the classic noise 
reduction formula can be applied to calculate the signal-to-noise improvement 
obtained by demodulation. This is defined in terms of the ‘output’ signal-to-noise 
ratio (SNRo) of the recovered information signal and the ‘input’ signal-to-noise 
ratio (SNRI) of the modulated signal. The latter is assumed to appear in white 
noise with bandwidth BI. For the recovery of amplitude modulation we have  

€ 

Improvement factor =
SNRo

SNRI
=
BI

Bo
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where Bo is the (noise) bandwidth of the low-pass filter, set to a value just wide 
enough to pass the modulation signal.  

The use of the filter noise bandwidth ensures that noise transmitted in the ‘tails’ 
of the filter beyond the signal cut-off frequency is accounted for in the 
calculation. The noise bandwidths of several important filter types are given in 
Appendix 4.  

To conclude this section let us review some of the practical advantages of 
synchronous detection schemes compared with methods of non-linear detection. 
We can begin with Fig. 2.12 which compares the signal-to-noise improvement 
obtained for amplitude demodulation using a synchronous demodulator and an 
envelope detector.  

 
Fig. 2.12 Comparison of input and output signal-to-noise ratios for (i) an 

envelope detector and (ii) a synchronous detector 

For a valid comparison to be made we must ensure that the systems are identical 
with respect to the noise-rejection filters used before and after demodulation. We 
find that for strong signal conditions the two methods are comparable. The 
improvement factor is constant here, with SNRo strictly proportional to SNRI (a 
discrepancy of a few dB is barely significant in signal recovery terms). The 
situation is quite different, however, when the input signal-to-noise ratio is low. 
The synchronous demodulator is capable of maintaining a constant improvement 
factor for all levels of SNRI whereas the envelope detector deteriorates rapidly 
when the input ratio falls to about 1:1. In the region below threshold the output 
signal-to-noise ratio of the envelope detector falls faster than SNRI, and the 
demodulated output becomes grossly distorted.  

In addition, the performance of the envelope detector is degraded for signal-to- 
noise ratios which would normally be considered quite favourable in a signal 
recovery context. We therefore find it necessary to provide noise suppression 
filters centred on the signal frequency to ensure a high signal-to-noise ratio before 
detection. In difficult conditions this probably means that we require highly 
selective tuned circuits which are subject to drift and other temperature effects 
and which render the system incapable of operation if the signal frequency is 
changing by accident or design.  

Synchronous demodulators, and hence lock-in systems, are normally operated 
without front-end filters and the final noise rejection takes place by averaging in a 
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low-pass filter which follows the multiplier. This final bandwidth need be no 
wider than to transmit the information signal without distortion. In many 
applications the signal variations are of such a long-term nature that a final 
bandwidth of a few hertz may be quite adequate. The practical significance of 
defining such a narrow bandwidth by means of a low-pass filter, rather than by 
using a highly selective bandpass filter at the signal frequency, cannot be 
overstated. As a direct result we find that lock-in systems are ideally suited to 
swept-response measurements. By using a swept reference, it is possible to track 
signals over many decades of frequency.  

A plot similar to Fig. 2.12 can be drawn to show the occurrence of a noise 
threshold in systems used for phase demodulation. Lock-in systems are free of 
this effect for small index phase variations but this aspect is rather overshadowed 
by the growth in importance of lock-in systems used for precision measurements 
of amplitude and phase on relatively ‘clean’ signals.  

This is a relatively new development brought about by improvements in 
electronic circuit and system design during the last decade and which will be 
given due attention in the following chapters.  

2.5 Basic lock-in amplifiers  
2.5.1 Introduction  

 
Fig. 2.13 A basic lock-in amplifier  

The requirements of a basic lock-in system are shown in Fig. 2.13. Although such 
a system could be built up by interconnecting individual units, the purchase of a 
lock-in amplifier usually represents a more cost-effective approach. Lock-in 
amplifiers incorporate all the features of Fig. 2.13 in a single unit which is 
optimized for operation over a range of frequencies. The major advantages of 
using an integrated system of this type are that the controls are calibrated directly 
in terms of full-scale sensitivity for a synchronous signal and that the relative 
phase of the signal and reference channels can be maintained to within close 
limits over the recommended frequency range.  

Let us now identify the essential requirements of each main block in the lock-in 
amplifier and take the opportunity to review some practical aspects of lock-in 
operation.  
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2.5.2 The signal channel  
An amplifier is necessary to bring the signal to a level sufficient to overcome the 
self-noise of the multiplier, and the provision of switched gain permits the 
sensitivity of the system to be varied. As shown in Fig. 2.13 lock-in amplifiers 
are usually provided with an optional range of preamplifiers. The objective here 
is not merely to boost the gain but to provide an optimum noise match to the 
signal source. In this way we can ensure that the spectrum of noise in the vicinity 
of the signal frequency is not enhanced at the expense of the signal due to an 
excessive noise contribution from the amplifier. The main considerations in 
choosing a suitably ‘low-noise’ amplifier are reviewed in Appendix 5. An 
associated problem is the occurrence of ground loops and pick-up in a complex 
experimental system which serve to degrade the signal-to-noise ratio even 
further. This topic is discussed further in Appendix 6 which outlines a basic 
stratagem for making interconnections between instruments. 

2.5.3 Signal conditioning  
As we have seen, there is no fundamental requirement to ‘clean up’ the signal 
prior to detection in a synchronous system. It might seem surprising, therefore, 
that many lock-in amplifiers are provided with an array of filters for this very 
purpose.  

The reason is that signal conditioning is often an essential step when a high 
amplification factor is required to obtain the required system sensitivity. If a 
substantial fraction of the noise and interference were not eliminated in this way 
the amplifier could be driven into saturation at an undesirably low gain factor. 
The resulting distortion and intermodulation would then seriously degrade system 
performance.  

Practical multiplier circuits are similarly designed to cope with a specified range 
of signal and noise voltages, so that a degree of signal filtering might be 
necessary to protect the vital detection process against overload. In either case, 
the main target in providing filters is often the spectrum of discrete interference 
components. If an electronic circuit is to saturate on noise it will most likely be 
the discrete frequency components occurring at large peak-to-peak values which 
make the greatest contribution.  

A review of the main types of signal-conditioning filter is given in Appendix 4, 
which describes their frequency-response characteristics and catalogues their 
noise bandwidths. Of these, one of the most useful is a sharply tuned ‘notch’ filter 
which can be used to suppress a dominant interference component, say at mains 
frequency. The remaining components can then be reduced along with the out-of-
band noise by the use of high- and low-pass filters as indicated in Fig. 2.14.  

The attenuation of the remaining discrete frequency components will be 
obtainable from the amplitude responses of the filters which combine to form a 
band-pass response extending from fL to fH. In an extreme case a resonant filter 
tuned to the signal frequency might be used, but, as we have seen, this would 
introduce undesirable features which we have been so anxious to avoid in 
electing to use a lock-in system. The effects of introducing a tuned filter in the 
signal channel are discussed further in Chapter 4. For the moment it is sufficient 
to note that the inclusion of filters in the signal channel introduces undesirable 
restrictions on a signal recovery system and even the most simple high-pass or 
low-pass filter introduces a phase shift which must be compensated in the 
reference path. Fortunately, the capability of modern systems is such that filtering 
can be kept to a minimum in all but the most demanding of applications. 
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Fig 2.14 (a) Spectrum of fundamental noise; (b) amplitude spectrum of 

signal and discrete interference;  (c) combined amplitude-
response characteristic of a mains-frequency notch filter, a high-
pass filter cutting off at fL and a low-pass filter with cut-off 
frequency fH   

2.5.4 The multiplier  
The basic principles of synchronous detection have been established in terms of 
an ‘ideal’ multiplier which can maintain its performance under all applied levels 
of signals and noise. If the advantages cited in Section 2.4 are to be realized, 
therefore, practical multipliers must possess exceptional dynamic range. 
Otherwise, departures from linearity under conditions of even moderate signal-to-
noise ratio will give rise to intermodulation effects and the eventual suppression 
of the desired response.  

A major objective in the past has been to identify those circuit configurations 
which offer the widest dynamic range in order to maximize the signal recovery 
capability of practical systems. These efforts have resulted in the almost universal 
adoption of the switching multiplier or phase-sensitive detector which is found at 
the heart of all lock-in recovery systems. The essential difference in this case is 
that the multiplier is now driven by a squarewave switching waveform that is 
precisely synchronized to the applied reference waveform as described in the next 
section.  

The operating characteristics of phase-sensitive detectors are dealt with in some 
detail in the next chapter and it is shown there how the properties of a 
synchronous detection system are modified by the inclusion of a switching 
multiplier. On the basis of our discussions so far we can emphasize the need for 
good dynamic performance and note that linearity at the point of detection must 
be supported by linearity elsewhere in the system. As we have seen, this applies 
mainly to the signal-channel amplifier, which is expected to handle small signals 
accompanied by relatively large noise and interference voltages. Not surprisingly, 
we find that commercial systems are rigorously monitored to detect the onset of 
overload at all critical points and that the allowable range of voltages for linear 
operation is clearly specified.   
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2.5.5 The reference channel  
The phase-sensitive detector is supported by a reference channel which supplies 
the precise switching waveform required for signal detection. The switching 
waveform is triggered in the first instance from the positive zero crossings of an 
applied reference waveform as shown in Fig. 2.15, and is always arranged to be 
precisely symmetrical irrespective of the symmetry of the original reference 
input. The displacement φR is usually introduced by means of a calibrated phase 
control. In a ‘broadband’ reference channel this phase-shift can be maintained to 
a high degree of precision over a wide range of reference frequencies and the 
symmetry of the switching waveform is rigidly controlled.  

 
Fig. 2.15 (a) Reference input; (b) Symmetrical switching waveform 

triggered from (a) and phase-shifted φR 

Provided the phase conventions are observed there is no ambiguity in defining the 
phase shift of the (internal) reference switching waveform with respect to any 
applied (external) waveform. Fig. 2.16 gives an example where a non-sinusoidal 
reference waveform is available. The ‘zero phase’ switching waveform is 
generated in synchronism with the positive zero crossings of the applied 
reference and a phase shift of 90° corresponds to displacing the reference  

 
Fig- 2.16 (a) Non-sinusoidal reference waveform; (b) ’zero phase’ 

reference switching wave form; (c) switching waveform 
displaced by 90º  
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switching waveform by one quarter of a reference cycle. Phase-shift controls are 
usually provided in the form of a continuously variable adjustment covering the 
range 0º–100°, together with 90° and 180° pushbuttons for quadrant selection.  

In addition, even the most basic lock-in amplifier is usually provided with a '2f' 
facility whereby the system becomes synchronized at the second harmonic of the 
applied reference waveform. The 2f mode is normally made available by 
pushbutton selection up to reference frequencies of one half the maximum value 
allowed in normal operation   

2.5.6 The low-pass filter  
The low-pass filter provided with the majority of lock-in amplifiers is based on 
either a single-section or two-section RC filter giving a roll-off of 6 dB or 12 dB 
per octave beyond the cut-off frequency. A range of bandwidths is supplied and 
the range switch is almost invariably presented as a time-constant control, that is 
in terms of the characteristic time T0 = RC of the filter. The characteristics of 
these filters are presented in Appendix 4. In calculations involving noise, the 
noise bandwidth of the filter must be used, the appropriate values being 
1/(4T0) Hz for a single section filter and 1/(8T0) Hz for a two-section filter. The 
smaller value of noise bandwidth for the filter with sharper roll-off reminds us 
that it is more effective in suppressing noise at frequencies beyond cut-off. Also, 
it should not be forgotten that the signal bandwidth of a two-section filter is 
smaller than that of the corresponding single-section filter; the bandwidth 
B = 1/(2πT0) gives the −6 dB frequency in the first case and the −3 dB frequency 
in the second.  

In the majority of experiments it is advisable to use the smallest possible value of 
time constant to ensure that the response of the lock-in amplifier is not too 
sluggish. The settling time of the filter is important in this context since it takes 
account of the recovery of the filter following a ‘step’ change in signal level. This 
could also apply to an increment in sensitivity caused by range switching or to 
switching a phase increment in the reference channel. The step responses of the 
two filter types are shown in Fig. 2.17.  

 
Fig. 2.17 Step responses of R-C low-pass filters.  
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We find that a settling time of four time constants brings the output of the single-
section filter to within 2% of its final value while the two-section filter output is 
in error by 10%. For a given value of time constant, therefore, we must be 
prepared to trade noise rejection for the ability to follow a changing signal. 
Clearly, for time constants of 10 s or greater, the settling time can become a 
major factor.  

In this respect it should be noted that both the settling time and the mean-square 
fluctuation due to residual noise in the filter output are reduced in proportion to 
the time constant setting. Using the results of Appendix 3 with the appropriate  
value of noise bandwidth for the low-pass filter, we obtain improvement factors:  

I1 = 4BIT0,   6dB/octave filter  

I2 = 8B1T0,  12dB/octave filter  

where B1 is the input noise bandwidth.  

The improvement factors refer to the mean-square fluctuations attending the 
signal before and after detection. Since, in most practical cases, the r.m.s value of 
a signal is of interest, it is usual to consider the r.m.s. value of the output 
fluctuation. Thus, increasing the time constant by a factor x increases the settling 
time by the same amount but brings a reduction of only √x in the r.m.s. value of 
the noise measured on an output meter or chart recorder. 

2.6 Signal recovery ‘capability’  
The word ‘capability’ is used throughout the literature supplied by lock-in 
amplifier manufacturers. ‘Capable’ systems are those which can withstand the 
effect of massive levels of noise while maintaining a linear response to a 
synchronous signal. When dealing with theoretical models we can assume infinite 
‘capability’. Also we find that the signal-to-noise improvement obtained through 
synchronous detection is limited only by the minimum allowable output 
bandwidth. As we have seen, this depends upon the nature of the recovered 
information signal: if the signal parameters are effectively fixed for the duration 
of a measurement the output bandwidth can be made very small and the potential 
for signal-to-noise improvement is correspondingly high.  

In a practical experiment the improvement factor must bridge the gap between the 
input signal-to-noise ratio, SNRI and the desired output signal-to-noise ratio, 
SNRo. SNRI must, of course, be restricted in order to preserve linear operation 
while the improvement factor should be achievable within the time set aside for 
the experiment. If an arbitrarily long time is not available for measurement the 
desired improvement factor might not be attainable even though the input signal-
to-noise ratio lies within the ‘capability’ of the lock-in system. The following 
discussion will provide a valuable perspective on system performance when we 
consider aspects of specification at a later stage.  

Let us begin by supposing that we have a sinusoidal signal appearing against a 
background of white noise with bandwidth BI. In order to maximize the prospects 
of recovery we shall assume that the amplitude and phase of the signal are fixed. 
We can then choose whatever output bandwidth we wish without being 
constrained to respond to variations in signal level. 

The improvement factor brought about by synchronous detection is B1/Bo, where 
Bo  is the noise bandwidth of the output filter. The output signal-to-noise ratio is 
therefore 
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€ 

SNRo =
B1
Bo
× SNR1 

The normal experimental procedure is to select Bo to give an acceptable value of 
SNRo for a given value of input signal-to-noise ratio. The problem arises when 
the required value of Bo is so small that it results in an excessively sluggish 
response and inconveniently long settling time in the output circuit. Under these 
circumstances we must either accept a lower value for SNRo or conclude 
reluctantly that the input signal-to-noise ratio is too low to permit measurement to 
the required precision in the available time.  

At a time constant of 100 s the response of a synchronous detector is such that a 
settling time approaching 10 minutes is required to recover from the slightest 
disturbance in the signal. In many circumstances therefore, an output signal-to-
noise ratio of about 1:1 would represent a reasonable limit to detection in view of 
the length of time required to average the response from the residual noise 
background. Let us therefore limit the maximum time constant to 10 s and 
demand that the output indication appears with a signal-to-noise ratio of about 
10:1 (that is about 3:1 in terms of r.m.s. fluctuation). Putting Bo = 1/(8T0) with 
T0 = 10 s, we obtain the following bound on the input signal-to-noise ratio: 

SNR1 > 1/(8B1)   (B1 given in hertz)  

For detection of audio-frequency signals in an input bandwidth of about 10 kHz 
we find that for reasonable precision at a moderate observation time the input 
signal- to-noise ratio must be better than 1/80 000 (−50 dB). If the noise appears 
in a wider bandwidth (with a correspondingly lower noise density in the vicinity 
of the signal) or if a larger time constant can be tolerated, the limit could be 
relaxed to about −60 dB. This corresponds to measuring the amplitude of a 
100 µV signal in a noise background of 100 mV r.m.s. Even at this level, the 
achievable performance falls well short of the popular notion of recovering 
signals from 100 dB of noise. What is important here is that we have reached this 
conclusion without referring to linearity or the ability of electronic circuits to 
function correctly with noisy inputs. It would appear that a lock-in amplifier 
capable of handling signals in the presence of 60 dB of wideband noise would be 
able to fulfil all but the most demanding of measurement tasks. Unfortunately, the 
simple calculations given here refer only to disturbance by white noise, whereas 
this idealized situation is rarely observed in practice. It can safely be assumed that 
the most spectacular claims in respect of lock-in amplifier ‘capability’ refer to 
disturbance by narrowband noise or to large-scale interference components 
appearing at frequencies well removed from any transmission ‘windows’ 
associated with the phase-sensitive detector. 
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CHAPTER 3 

Phase-sensitive detectors 
 

 

 

3.1 Introduction 
The wide dynamic range of modern lock-in amplifiers results from the use of a switching 
multiplier as a synchronous detector. The adoption of a switching circuit leads to a degree of 
precision which cannot be matched by ‘true’ multipliers and, moreover, has the added 
advantage of operational simplicity. This is evident from the block diagram given in Fig. 3.1. 

 
Fig 3.1 Phase-sensitive detector: principles of operation 

We shall find it convenient at this introductory stage to maintain a distinction between the 
switching network and the low-pass filter in the output circuit. For the most part, however, we 
will conform with the usual practice of referring to the entire combination as a phase-sensitive 
detector1. Thus, when we come to consider the specification of phase-sensitive detectors it 
will be the behaviour of the switch/filter combination which is of interest. 

In line with comments made in the Preface we shall be concentrating on the systems aspects 
of phase-sensitive detectors rather than on detailed circuit implementations. Those with an 
interest in circuit techniques are recommended to read the paper by Carter and Faulkner [1] 
which contains several circuit configurations of phase-sensitive detectors and examines 
sources of error in practical designs. This paper is one of the very few published accounts 
where the level of treatment is appropriate to the performance of commercial systems. 

                                                        
1  The alternative forms, ‘mixer’ and ‘demodulator’, are widely used. 
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3.2 Principles of operation 
The key to the operation of the phase-sensitive detector is the two-state switch which is 
controlled electronically from the reference voltage. The switch changes position between 
points A and B as the reference changes polarity. This action gives a systematic change of 
gain between +1 and −1 in the signal path.  

We shall be considering the classic operation in which the phase-sensitive detector spends 
equal times in its two states, an arrangement which gives rise to the well known waveforms of 
Fig. 3.2 

 
Fig 3.2 Waveforms in a phase-sensitive detector operating with an in-phase 

sinewave signal 

In Fig 3.2, the sinewave signal and applied reference are precisely in phase. The reference 
changes polarity in a symmetrical fashion, in step with the signal, and so causes full-wave 
rectification of the signal at the switch output. 

The output of the switch is then applied to the low-pass filter which smooths out the ripple 
component and delivers a d.c. voltage which is proportional to the amplitude of the signal. 

 
Fig. 3.3 Waveforms in a phase-sensitive detector for different phase conditions:      

(a) φ  = 180°; (b) φ  = 90°; (c) arbitrary phase



 

Chapter 3–3 

 

In most applications the signal and reference will not arrive at the phase-sensitive detector 
exactly in phase; hence, Fig. 3.3(a) which shows the effect of a phase reversal, giving a 
negative d.c. level, and Fig. 3.3(b) which shows the output when the phase displacement is 
90°. In this case the output from the switching stage is a bipolar waveform which averages to 
zero and gives no net response from the low-pass filter. Finally, Fig. 3.3(c) shows the output 
at some intermediate value of phase shift, giving a d.c. level somewhere between the positive 
and negative maxima obtained with φ = 0° and φ = 180°. 

To determine the exact relationship between signal and reference, we recognize that the 
switching operation is equivalent to multiplication of a signal by a squarewave taking values 
of +1 and −1. We can therefore use the ideal multiplier model shown in fig. 3.4 where the 
reference waveform has the Fourier series representation 

€ 

r(t) =
4
π
[cos(ωRt +φR) −

1
3
cos 3(ωRt +φR) +

1
5
cos5(ωRt +φR) − ...] 

Fig 3.4(b) shows the switch output for the case where the signal and reference are 
asynchronous. The switched signal has zero average value and its general form can be 
obtained by forming the product: 

€ 

vp(t) = r(t)s(t)  

where 

€ 

s(t) = 2Vs cos(ω st +φ s)  

Multiplying term by term and separating into ‘sum’ and ‘difference’ components we obtain 

€ 

vp(t) =
2 2Vs

π
[cos(ωRt ±ωst +φR ±φs) −

1
3

cos(3ωRt ±ωst + 3φR ±φs)

           +
1
5

cos(5ωRt ±ωst + 5φR ±φs) − ...]
 

The development is thus similar to the case of the ‘ideal’ synchronous detector discussed in 
Section 2.4. For synchronous operation we put ωs = ωR and, as before, we assume that the 
low-pass filter cuts off well below the reference frequency. This eliminates multiplier 
products at frequencies 2ωR, 4ωR, 6ωR, etc. from the final output which contains only the 
phase-sensitive d.c. component: 

€ 

Vo =
2 2
π

VsAL(0)cos(φR −φs)  

Here, AL(0) gives the magnitude of the filter response at zero frequency. 

Apart from a scaling factor, the response of a phase-sensitive detector to a synchronous 
sinewave is identical to that of an ideal multiplier-detector operating with a sinewave 
reference. The essential difference in this case is that the phase-sensitive detector will also 
give a phase-sensitive d.c. output in response to signals at frequencies 3ωR, 5ωR etc. This is 
shown in Fig. 3.5 for a sinewave signal at the third harmonic of the reference frequency. The 
relative sensitivity of the detection system at these additional frequencies is 1/3, 1/5 and so 
on, corresponding to the relative magnitudes of the reference Fourier components.   

A detection system with this property is said to be harmonically responding. We shall find 
that there is minimal practical advantage in having a harmonically responding system; indeed, 
the additional responses are frequently dismissed as ‘anomalous’ or ‘spurious’. In later 
chapters, we shall be investigating ways in which the harmonic responses can be suppressed 
by improved system design. It is significant, however, that all these improved systems 
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continue to rely on a switching phase-sensitive detector to provide the dynamic range 
essential for signal recovery operation.  

 
Fig 3.4 (a) Ideal multiplier model for a phase-sensitive detector; (b) output from 

switch, before low-pass filter, for a sinusoidal signal with ω s < ωR

 
Fig. 3.5 Waveforms in a phase-sensitive detector for a signal synchronized to the 

third reference harmonic 

3.3 Harmonic transmission windows 
The idea of a transmission ‘window’ was introduced in Chapter 2 as a convenient way of 
representing the response of a synchronous detector to signals with frequencies close to the 
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reference frequency. If we now consider the effect of using a squarewave reference waveform 
we find that the additional harmonic components lead to the set of transmission windows 
illustrated in Fig. 3.6. 

The transmission windows are centered on the odd harmonics of the reference frequency and 
the maximum magnitude of each window is weighted by the magnitude of its associated 
reference Fourier component. Before a signal can produce a response at the output of the 
phase-sensitive detector it must lie within one of the transmission windows. In order to 
produce a ‘true’ d.c. response, a signal must be synchronous with one or more of the 
reference Fourier components as was shown in Fig. 3.5. Otherwise, the output will appear as 
an alternating ‘beat note’ at the difference frequency between the signal and the centre 
frequency of the transmission window. 

 
Fig. 3.6 The first five harmonic transmission windows of a switching phase-sensitive 

detector 

 
Fig. 3.7  The Kth transmission window of a phase-sensitive detector corresponding to 

a 6 dB/octave low-pass filter with time constant To  
The amplitude response of the noise equivalent filter is shown as a dashed 
characteristic

Fig. 3.7 shows the form of one of these windows obtained when a low-pass filter having a 
roll-off of 6dB/octave is used to follow the switching stage. It is centered on the harmonic 
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frequency KfR where K takes values 1, 3, 5 etc. The −3 dB and noise bandwidth are always 
independent of the centre frequency. 

The practical importance of the transmission windows stems from the fact that they represent 
frequency regions where the phase-sensitive detector is susceptible to large-scale discrete 
interference components. ‘Ideal’ synchronous detectors operating with a sinewave reference 
are, of course, relatively immune to such components unless they originate very close to the 
reference frequency. The additional susceptibility of switching phase-sensitive detectors to 
interference above the reference frequency, together with possible measurement ambiguities 
resulting from a harmonically responding system, can be a severe limitation in some 
circumstances. Some of the problems associated with the harmonic responses are discussed in 
Chapter 6. 

3.4 Noise bandwidth of phase-sensitive detector 
When a signal in broadband noise is measured using a phase-sensitive detector, the post-
detection noise output is increased over the level which would be calculated for a multiplier-
detector using a sinewave reference. This is because of the effect of the additional 
transmission windows which are able to ‘leak’ noises through to the final output. 

The total effect for a band of white noise can be calculated with the help of Figs. 3.7 and 3.8. 

 
Fig. 3.8 Calculation of noise output from a phase-sensitive detector for a white-noise 

output.  Each transmission window is replaced by a rectangular noise 
equivalent window with Bandwidth 2Bo 

The noise bandwidth of each transmission window is given by 2B0 where B0 is the noise 
bandwidth of the low-pass filter. The noise outputs due to components which fall within each 
window will have mean-square values proportional to WN B0, where WN is the spectral 
density of the white noise.  

The mean-square value of the noise transmitted by the fundamental window can be written as 

€ 

n1
2 = aNWNB0 

where the constant aN takes account of the scaling factor of the phase-sensitive detector and 
any associated amplifiers (see Appendix 3). 
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To calculate the noise output from any other window we must include a weighting factor 
which depends on the magnitude of the associated Fourier component. The noise output from 
a window from the Kth harmonic is therefore 

  

€ 

nK
2 = aNWNB0 /K 2,   K = 3, 5, 7 … 

There is no coherence in the noise contributions from the individual transmission windows. 
This means that the total noise output can be obtained directly by summing mean-square 
values. We obtain 

€ 

nT
2 = aNWNB0 1+1/9+1/25+ ...( )  

Noting that 

€ 

1/(2n +1)2
n=0

∞

∑ = π2 /8  

We obtain a total mean-square noise voltage: 

€ 

nT
2 =

π2

8
aNWNB0 ≅1.23× aNWNB0  

This result shows an increase of only 23% over the mean-square noise transmitted by the 
fundamental window and represents an increase of around 11% in the r.m.s. output 
fluctuation. We can conclude that for white noise the effect of noise in the higher-order 
windows is negligible in practical terms. However, for exact calculations, the standard noise 
reduction formula derived in Appendix 3 for an ideal synchronous detector can be modified to 
give a less optimistic improvement factor.   

€ 

SNRI
SNRo

=
BI
B0
×8 /π2  

Here, BI is the input noise bandwidth and π2B0/8 is the exact noise bandwidth of the phase-
sensitive detector. 

3.5 Non-sinusoidal signals 
3.5.1 Introduction 
So far, the properties of synchronous detection systems have been discussed solely in terms of 
sinusoidal signals. We shall now extend the discussion to include all types of periodic signal 
and pay particular attention to some waveforms which have special practical importance. 

We shall assume that a synchronous reference squarewave is available for detection of the 
signal. In practice, this would usually be generated by a reference unit of the type described in 
Section 2.5.5, triggered in the first instance by the positive zero crossings of an applied 
reference voltage. 

A problem which is common to many measurements involving phase-sensitive detectors is to 
introduce the reference switching waveform in the correct phase to maximize the d.c. 
response to a given signal. This must often be achieved under noisy conditions for a signal 
where the d.c. response varies with the reference phase setting in a complicated way. 

In the special case of sinewave signals we have seen that the switching phase-sensitive 
detector response follows a cos law, where represents the relative phase of the signal and 
switching waveform measured at the phase-sensitive detector. The following procedure can 
therefore be adopted to adjust the phase of the detection system, starting from an arbitrary 
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initial phase condition. First, the phase-sensitive detector output is ‘nulled’ by adjusting the 
reference phase. This enables a quadrature condition at the phase-sensitive detector. The 
desired ‘in-phase’ condition is then obtained by shifting the set phase by 90°. For a sinewave 
signal the ‘in-phase’ reference setting arrived at through this procedure maximizes the 
response of the detection system. In practice, the ‘null’ point can be determined with high 
accuracy even when the signal is extremely noisy and the procedure defines a precise and 
repeatable reference condition for subsequent measurements. 

This approach to setting the phase of a phase-sensitive detector is widely applied to periodic 
signals of all shapes and forms. This procedure is often justified on the assumption that a 
phase displacement of 90° from the null-point automatically maximizes the response of the 
phase sensitive detector to all types of periodic signal. Unfortunately, this is not necessarily 
the case as we shall see in the following section. 

3.5.2 General considerations 
Let us take a periodic signal with fundamental frequency ω0 having a Fourier description 

€ 

s(t) = αn
n=1

∞

∑ cos nω0t + βn
n=1

∞

∑ sinnω0t  

In describing s(t) we have omitted a d.c. component since, in practice, signals are invariably 
a.c. coupled prior to phase-sensitive detection. 

The signal is switched by a synchronous squarewave with the Fourier series: 

€ 

r t( ) =
4
π

−1( )n
n=0

∞

∑
cos 2n +1( ) ω0t +φR( )[ ]

2n +1( )
 

where φR is the phase of the reference unit defined with respect to an externally applied 
reference waveform. 

The d.c. response of the phase-sensitive detector is obtained by forming the product s(t)r(t) 
and extracting the difference-frequency terms at zero frequency. Since the reference 
comprises only odd harmonic components it is only the odd harmonics of the signal which 
enter the calculation. We obtain an output voltage:∗ 

€ 

Vo =
2
π

−1( )n
n=0

∞

∑ α2n+1
cos 2n +1( )φR

2n +1( )
−
2
π

−1( )n
n=0

∞

∑ β2n+1
sin 2n +1( )φR
2n +1( )

 

In general, for any set of αn and βn, there will be a value of φR which leads to Vo = 0 and 
which therefore corresponds to the ‘null’ point referred to earlier. We shall denote this value 
by φq. 

At some other value of φR, denoted by φi, the magnitude of Vo will be a maximum. This value 
is obtained by solving 

 

where 

 

                                                        
∗ We assume that

€ 

AL 0( ) =1in this case 
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We shall not attempt a general solution in either case. It is sufficient to note that if the value 
of φq is determined, either by calculation or experiment, the value of φq ± 90º will not satisfy 
the condition for maximum response unless the signal waveform is subject to certain 
constraints. These will now be investigated. 

3.5.3 Symmetrical periodic signals 
Many non-sinusoidal waveforms of practical importance such as squarewaves, triangle and 
rectangular pulse waveforms, possess a high degree of symmetry. In all these cases the time 
origin can be chosen to give a waveform which is either an even or an odd function of time. 
The corresponding Fourier series then consists only of cosine terms in the first case (βn = 0) 
and sine terms in the second (αn = 0). Inspection of the expressions for Vo and dVo/dφR shows 
that for waveforms with this essential symmetry we always arrive at values of φq and φi which 
satisfy 

φi = φq ± 90º 

Relationships between the reference switching waveform and a number of non-sinusoidal but 
symmetrical signals are shown in Fig. 3.9. We can make the following observations about the 
types of signal chosen.  

 
Fig. 3.9 (a) - (c) Symmetrical waveforms; (d), (e) reference switching waveforms 

introduced at φR = φ i and φR = φq respectively 

i) Setting the reference channel phase by first nulling the phase-sensitive detector output 
and then shifting the phase by 90° automatically maximizes the d.c. output of the phase-
sensitive detector. We shall refer to this as the ‘null-shift’ procedure. 

ii) The conditions for zero output and maximum response correspond to bringing the Fourier 
components of the reference switching waveform first in quadrature and then in phase 
with the corresponding components of the signal. 

iii) The null-shift procedure summarized in (i) does not depend on absolute phase calibration. 
For recovery work, a variable phase-shifter and a calibrated phase increment of 90° are 
sufficient to achieve optimum detection of symmetrical signals. 
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iv) When the reference channel is calibrated according to a convention such as that described 
in Section 2.5.5 the null-shift procedure provides a basis for measuring the phase-shift of 
a sinewave signal relative to that of an applied reference voltage. It is now apparent that 
the validity of such a measurement will be in doubt if the sinewave signal is subject to 
harmonic distortion. This aspect is discussed further in Chapter 4 in relation to precision 
phase measurement. 

3.5.4 Asymmetrical periodic signals 
In the present context, ‘asymmetrical’ signals are those for which it is impossible to choose a 
time origin such that s(t) = ±s(–t). In practice signals in this category are most likely to occur 
when a normally symmetrical signal is subject to linear filtering giving rise to waveforms 
such as those shown in Fig 3.10. The waveforms in Figs. 3.10(b) and (c) in particular will 
often be encountered in experiments using ‘chopped’ excitation where a squarewave signal 
has been transmitted by a low-pass or a high-pass signal conditioning filter. To this general 
class of signals we can add the important case of sinewaves subjected to arbitrary harmonic 
distortion. 

In all these cases it is possible to determine a value of reference phase-shift which nulls the 
phase-sensitive detector output. In general, however, changing the phase by 90° from the null 
point fails to maximize the phase-sensitive detector output. Fortunately, in all but the most 
extreme cases, the resulting output is normally within 10% to 20% of its maximum possible 
value. In addition, the null output obtained for φR = φq provides an ideal datum point for 
setting the phase which can be reproduced on future occasions even under noisy signal 
conditions. 

 
Fig. 3.10  Examples of asymmetrical waveforms 

In view of these remarks, the procedure of nulling followed by introducing a phase offset of 
90° has much in its favour even when the resulting response is less than optimum. As a result, 
this approach is almost universally adopted in signal recovery work where it is sufficient to 
obtain a consistent measure of signal magnitude in the presence of noise. It is, nevertheless, 
worth bearing the following points in mind. 

i) With symmetrical signals the derivative dVo/dφR is zero for φR = φq ±90º. The phase-
sensitive detector output is then maximized and becomes first-order independent of small 
phase adjustments in the reference channel. This advantage is lost when the null-shift 
procedure is applied to asymmetrical signals. 

ii) In the two-phase lock-in systems described in Chapter 5, an automatic phase control loop 
is sometimes used to determine the null point φR = φq. Detection is subsequently carried 
out at relative phase φR = φq − 90º. In the light of our discussions we must expect that the 
overall response of such a system to an asymmetrical signal will have less than its 
maximum value. 
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iii) We can conclude that the only way in which the null-shift procedure can be applied to 
give a maximum response to all forms of periodic signal is to use a detection system with 
‘fundamental-only’ response. Some methods of suppressing the harmonic responses of 
phase-sensitive detectors are discussed in Chapters 8 and 9. 

3.5.5 Squarewave signals: a special case 
Fig. 3.11 illustrates the waveforms which result when a squarewave of Vs volts peak is 
applied to a switching phase-sensitive detector with an in-phase reference. The switch output 
is a constant level of Vs volts, the ‘ripple’ component which is characteristic of operation with 
sinewaves being absent in this case (compare Fig. 3.2). 

The net response is larger than that obtained with a sinewave of the same r.m.s. value because 
there is now a contribution from each of the fully synchronous Fourier components of the 
signal and reference voltages. 

Thus, if we begin with a sinewave signal and then convert it to a squarewave by adding 
Fourier components of the correct magnitude and phase, the d.c. output voltage will increase 
by a factor 

€ 

1+1/9+1/25+ ...[ ] = π2 /8  

which, from Section 3.4, is the factor by which the mean-square noise is increased when 
white noise is ‘leaked’ through the harmonic transmission windows. The effect of adding the 
additional Fourier components to the sinewave signal is, therefore, to boost the signal 
indication at the expense of the noise. The response is increased by 23%, which is more than 
compensates for the 11% increase in the r.m.s. noise fluctuation. The reason is, of course, that 
the signal contributions add coherently while the individual noise outputs must be added in a 
mean-square sense.  

In terms of an ideal multiplier model we could reach similar conclusions for any signal 
waveform which is perfectly ‘matched’ to the reference. In a wider sense, this topic belongs 
to the realm of matched filter theory which aims to devise schemes for the optimum detection 
of signals in white noise.There are more complex lock-in systems to be discussed in 
Chapter 9 which are capable of approaching this type of operation; however, as in the case of 
squarewave signal and reference, the noise benefits are often marginal and usually 
outweighed by benefits in other areas. 

 
Fig. 3.11 Waveforms in a phase-sensitive detector with in-phase squarewave signal 



 

Chapter 3–12 

 

For example, when operating a switching phase-sensitive detector with an in-phase 
squarewave signal, the principal practical advantage arises because of the absence of 
components at 2fR, 4fR and so on in the output of the multiplier. When using sinewave 
signals, the time constant of the output signal should always be sufficiently long to suppress 
these ‘ripple’ components, irrespective of whether the signal is noisy or clean. This can often 
lead to inconveniently long response times when measuring with low-frequency signals (say, 
below 10 Hz). When squarewave signals are used in this regime it may be possible to relax 
requirements on the low-pass filter and so obtain results more quickly. At the same time, the 
effects of opening wide the transmission windows should be taken into consideration. As we 
saw in Section 3.3 the susceptibility to interference is then greatly increased even when 
wideband noise is not identified as a major problem. 

Finally, let us examine the phase relationships in squarewave operation using Fig. 3.12, which 
gives us the waveforms at an arbitrary phase-shift φ. The phase dependence could be 
determined by multiplying together the Fourier series for signal and reference and extracting 
the low-frequency output, but it is more convenient to deduce the form of the dependence 
directly from Fig. 3.12(a). At arbitrary phase, a low-pass filter is obviously necessary to 
‘smooth’ the products of multiplication. The d.c. component remaining in the final output is 
then 

€ 

Vo =Vs 1−φ /90[ ],  0 ≤φ ≤ 90°  

with φ expressed in degrees. 

In lock-in amplifier systems the phase shift introduced in the reference channel can be varied 
in the full range 0º − 360°, which gives rise to a characteristic piecewise-linear variation in 
the d.c. output as drawn in Fig. 3.12(b). The classic response to a synchronous sinewave is 
also shown for comparison, to remind us how the handling characteristics of a phase-sensitive 
detector can change with different types of signal. 

 
Fig. 3.12 (a) Waveforms in a phase-sensitive detector with a squarewave signal and 

reference at arbitrary phase shift; (b) phase response for a squarewave 
signal. The cos  dependence is shown for a sinewave signal with the same 
r.m.s. value 

3.6 Phase-sensitive detector specifications 
3.6.1 Introduction 
At this stage we shall be concerned only with identifying some key features of the 
specifications of phase-sensitive detectors. The extension to more comprehensive systems 
will be left until the next chapter. It has been remarked elsewhere that the major 
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developments in lock-in amplifier design have been achieved for instruments operating in the 
frequency range up to 1 MHz and the ‘typical’ specifications given in the following sections 
will be for phase-sensitive detectors of this type. In recent years it has become common 
practice for manufacturers to quote some specification figures at ‘midband’ or at a specified 
operating frequency, say 1 kHz. The deterioration of such ‘typical’ specifications towards 
lower or higher operating frequencies is not always given. At best it may be possible to obtain 
the required information by carefully reading the data sheet. At worst it must be assumed that 
some deterioration will occur. 

3.6.2 Full-scale sensitivity 
Phase-sensitive detectors are ‘general purpose’ in the sense that they are capable of operating 
with a wide range of signal types. However, we have seen that the magnitude of the response 
depends on the Fourier composition of the signal and so must differ in each case. 

To enable a sensible comparison to be made between alternative designs the scaling factor of 
phase-sensitive detectors is almost invariably specified for a synchronous sinewave signal. A 
simple scaling factor relates the d.c. output voltage to the r.m.s. value of an in-phase 
synchronous sinewave at the phase-sensitive detector input. In practical systems the d.c. 
output must be limited to some maximum value. This is the full-scale output which is usually 
±10 V in modern systems. The full-scale sensitivity of a phase-sensitive detector is defined as 
the r.m.s. value of an in-phase synchronous sinewave which gives a full-scale d.c. output, and 
is expressed in volts, millivolts or even microvolts. 

If the full-scale sensitivity SD is known, the d.c. response to a synchronous sinewave with 
r.m.s. value Vs and relative phase-shift φ is 

€ 

Vo =VF Vs /SD( )cosφ  

where VF is the full-scale output voltage. 

As is usual with this sort of specification, a phase-sensitive detector with ‘high’ sensitivity 
has a low value of SD and is able to give a full-scale response to signals at ‘low’ level. 

3.6.3 Linearity and out-of-phase rejection 
We have seen in Chapter 2 that an ‘ideal’ synchronous detector is inherently free from non-
linear effects. Thus, in principle, a synchronous signal can be measured in the presence of 
noise without incurring errors due to intermodulation and offsets due to rectified noise 
components. 

In making the transition to practical devices we must first recognize that there is a maximum 
level of noise voltage - asynchronous voltage - that a phase-sensitive detector can withstand. 
This is determined by the level of asynchronous input that gives rise to gross detection errors 
due to distortion and ‘clipping’ in the electronic circuits. Unfortunately, in practical devices, 
the effects of non-linearity, and the resulting detection errors are likely to be discernible when 
the signal of interest is accompanied by asynchronous voltages well below the clipping level. 
In an attempt to reflect these limitations it used to be common practice for manufacturers to 
quote a specification known as out-of-phase rejection. This measure was widely used a 
number of years ago for comparing competing instruments. 

Out-of-phase rejection is specified and measured with a synchronous sinewave signal 
adjusted to give an output at or near full scale. A second, asynchronous, sinewave at a 
frequency well removed from any transmission windows is added to the first and increased 
until a pre-determined change in the output occurs. This output change is generally attributed 
to non-linearity in the phase-sensitive detector transfer function although the precise nature of 
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the non-linearity is not usually specified. The standard approach is to calculate the out-of-
phase rejection using: 

 

For example, if we choose a fractional change of 1% and this change corresponds to an 
asynchronous/synchronous voltage ratio of 1000:1 the out-of-phase rejection will be 
 ×100 000 or 100 dB. The high value of voltage ratio obtained emphasizes that to be of use in 
signal recovery applications a phase-sensitive detector should be able to sustain the effect of 
asynchronous voltages far in excess of a full-scale synchronous signal. 

This fractional change in a near full-scale output increases with increasing asynchronous 
voltage in a highly non-linear fashion. Thus, if out-of-phase rejection were to be measured for 
a 0.1% or 10% change in output, entirely different values would be obtained. 

Users of phase-sensitive detector-based equipment should therefore be aware that there is a 
trade-off between linearity and the level of asynchronous voltage permitted at the phase-
sensitive detector. The overall behaviour is such that, for good linearity, the asynchronous 
voltage should be maintained at a relatively low level in order to restrict the total voltage 
swing at the phase-sensitive detector. In cases where a signal is very noisy, the user might 
permit a larger voltage swing due to asynchronous components but would then suffer a 
penalty in the form of reduced linearity at the point of detection. Clearly, the ‘maximum 
allowed’ asynchronous input to the phase-sensitive detector would be quite different in these 
two extreme examples, determined in each case by the errors due to non-linearity that could 
be tolerated by the user. We shall return to this topic when discussing the linearity of different 
system configurations in Chapter 4. 

3.6.4 Dynamic reserve 
When considering the specification of out-of-phase rejection in the last section it became 
evident that a small fraction of the total input range of a phase-sensitive detector is in fact 
‘used’ by synchronous signals while a much larger fraction is held ‘in reserve’ for noise and 
interference. This idea leads to the definition of a prime phase-sensitive detector 
specification; this is input dynamic reserve∗, given by the ratio: 

 

Dynamic reserve thus gives a direct measure of the worst-case signal-to-noise ratio that can 
be tolerated at the input to a phase-sensitive detector consistent with maintaining a full-scale 
output. The term ‘overload capability’ is also used in this context, but we shall be using this 
description in a more specialized sense in Chapter 4. 

Dynamic reserve is a useful concept but only serves as a basis for comparing different 
systems when there is general agreement on defining ‘maximum allowable’ asynchronous 
input. 

One way to do this is to identify the level of asynchronous input that causes a change of 5% 
in the response to a full-scale signal. This approach has its roots in the specification of out-of-
phase rejection and is a way of reaching a compromise between two conflicting requirements: 
first of all, to achieve the largest possible input voltage swing, thus maximising the signal 
recovery ‘capability’ of the phase-sensitive detector; secondly, to restrict the total input to a 
level where errors due to non-linearity are - for most practical purposes - just discernible. 

                                                        
∗ Usually known simply as "dynamic reserve" 
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An alternative approach is simply to equate the maximum allowed level with a value 
marginally less than the input clipping level. This is the input overload level quoted by 
manufacturers beyond which gross measurement errors will be incurred. Circuit designers 
find this definition attractive since the input clipping level is usually a well-defined circuit 
parameter, unlike the 5% error limit which can only be determined by painstaking 
observations at the phase-sensitive detector output. 

In many cases, these two approaches give rise to very similar results for dynamic reserve. It 
might be thought, therefore, that the first approach is by far the most satisfactory because it 
incorporates the twin ideals of ‘capability’ and linearity. However, in practice, the second 
approach is almost universally adopted since it establishes a predictable relationship between 
the internal gain of a phase-sensitive detector and dynamic reserve. 

To see this, let us consider some specification figures for a modern phase-sensitive detector. 
The input dynamic reserve would typically lie in the range 60 dB – 80 dB (×1000 to ×10 000) 
while the input overload level is of the order of several volts peak-to-peak. It follows that the 
full-scale sensitivity must be correspondingly high. For example, a phase-sensitive detector 
with a dynamic reserve of 60 dB might have a full-scale sensitivity of 1 mV r.m.s. (~ 3 mV 
peak-to-peak). This would allow an interference voltage to rise around 3 V peak-to-peak 
before the overload indicators gave warning of improper operation. 

Let us suppose now that the low-frequency gain of the output low-pass filter is increased by a 
factor of 10. The sensitivity, and hence the signal required for a full-scale output, is now 
100 µV r.m.s., while the input overload level remains at 3 V peak-to-peak. 

When dynamic reserve is defined on the basis of input overload level we have no hesitation in 
stating that the dynamic reserve of this more sensitive phase-sensitive detector is ×10 000 or 
80 dB. We thus reach the important conclusion that dynamic reserve increases in proportion 
to the d.c. gain of the post-detection filter. This direct relationship would clearly be lacking 
when the definition of dynamic reserve involved a detailed evaluation of measurement errors 
at different levels of applied signal and noise. 

It is usually assumed that the definition of dynamic reserve is valid for a sinusoidal 
interference voltage and for interference from a broadband noise source. In the latter case the 
phase-sensitive detector output will contain a residual noise fluctuation due to noise 
transmitted by the fundamental and higher-order transmission windows. ‘Linear’ operation of 
the phase-sensitive detector then implies that the mean output voltage due to a synchronous 
signal is unaffected by the presence of noise at the input. From the discussion given at the end 
of Chapter 2, however, it is evident that, if a phase-sensitive detector was operated with a 
signal and broadband noise at the dynamic reserve limit, then the main limitation to precision 
measurement would result from the relatively large fluctuation remaining in the final output 
(unless an extremely long time were available for measurement). The justification for 
providing very high values of dynamic reserve is therefore to enable measurement to be 
carried out in circumstances where the dominant interference is due to narrowband noise or 
discrete frequency pick-up. 

In view of this, manufacturers often make use of the alternative definition: 

 

When a sinewave interference voltage is assumed, this definition is equivalent to that given at 
the beginning of this section. 
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Fig. 3.13 (a) Evaluating the effect of a sinewave interference; (b) dynamic reserve 

characteristics of a broadband phase-sensitive detector 

It should not be assumed that restriction to a sinewave interference automatically precludes 
difficulty in using the specification provided by a manufacturer. Consider, for example, what 
happens when the frequency of the interfering sinewave lies close to one of the phase-
sensitive detector transmission windows. When a harmonic window is excited, the phase-
sensitive detector output is perturbed by a difference-frequency ‘beat’ component which may 
be of sufficient peak-to-peak value to cause a severe output overload. When the interference 
frequency is fixed, the output overload can be overcome by reducing the bandwidth or the 
output low-pass filter. When experimental constraints determine the minimum usable 
bandwidth, the output overload can only be prevented by reducing the level of the interfering 
component. The result is a loss of dynamic reserve in certain critical frequency ranges. These 
effects can be evaluated using the experimental set-up shown in Fig 3.13(a). Fig 3.13(b) 
shows the resulting dynamic reserve characteristics of a broadband phase-sensitive detector 
referenced at 10 kHz. 

In the light of these observations, the standard data-sheet presentation of dynamic reserve as a 
single unqualified figure appears to be rather inadequate. At the very least, the figure should 
be read as maximum achievable dynamic reserve. Also, wherever possible, operation at the 
specification limit should be avoided in the interests of maintaining good linearity. It can be 
argued that linearity is often of secondary importance when tackling the more fundamental 
problem of obtaining a measure of signal obscured by high levels of noise and interference. 
When extreme levels of noise cannot be avoided it is evident that a very detailed 
understanding of the actual dynamic characteristics of the phase-sensitive detector under the 
proposed measurement conditions is required. 

3.6.5 Output stability and minimum detectable signal 
If the total signal input to a phase-sensitive detector is removed and the reference waveform is 
left connected, the output should, ideally, fall to zero. The application of a millivoltmeter will, 
however, reveal a residual offset voltage and long-term observation will show the effect of 
drift in the output. The offset is, moreover, dependent upon the reference frequency and will 
usually increase quite markedly if the reference frequency is increased beyond about 10 kHz. 
This effect is known as h.f.offset and is due to stray reactive coupling of switching spikes 
from the reference input through to the final output. 

Provision is usually made to trim the offset voltage to zero under a particular set of operating 
conditions and, if this is done, the drift component in the output represents the limiting factor 
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to precision measurement. The drift is usually labelled as output ‘stability’ and quoted as a 
fraction of the full-scale output voltage per Kelvin. 

Let us now consider the problem of measuring either very small synchronous signals or small 
changes in a synchronous signal. In these cases measurement difficulties will result whenever 
the corresponding change in output voltage is comparable with the drift component of the 
phase-sensitive detector. When operating at full-scale sensitivity SD we accordingly define the 
minimum detectable signal smin as 

smin = δ × SD 
where δ is the fractional drift/K. 

Note that this expression serves as a definition of minimum detectable signal which will be 
more or less useful in a given practical situation. Also, when calculating smin, only the 
numerical part of the drift specification is used. Thus, by convention, the minimum detectable 
signal is expressed in volts or, more usually, in microvolts. 

It is worth noting that the d.c. response to a signal at the minimum detectable level can be 
separated from the spurious outputs due to offset and drift by introducing a phase reversal of 
180° in the reference channel. The d.c. output due to the signal will then reverse its polarity 
while the polarity and magnitude of the offset (being phase-insensitive) will be unchanged. 

This method of overcoming limitations due to offset has been exploited in systems operating 
on the synchronous heterodyne principle, described in Section 8.8. 

3.6.6 Dynamic-reserve/output-stability trade-off 
It was shown in Section 3.6.4 that both the sensitivity and the dynamic reserve of a phase-
sensitive detector can be increased by increasing the d.c. gain of the post-detection filter. In 
practice, this additional gain can always be obtained by incorporating an output d.c. amplifier. 

Unfortunately, improved dynamic reserve can only be achieved at the expense of precision 
since all errors due to offsets and drift in the phase-sensitive detector are enhanced by the gain 
of the output amplifier. If the sensitivity of a phase-sensitive detector was controlled solely by 
switching output gain we would find a very uncomfortable situation in which high sensitivity 
was linked with high reserve and low sensitivity was required for good output stability. 

For maximum flexibility, a phase-sensitive detector should have switched output gain and be 
supported by a variable-gain amplifier in the signal path. The balance between dynamic 
reserve and output stability can then be adjusted at a given level of sensitivity. This aspect of 
system performance will be discussed in Chapter 4. 

3.6.7 Dynamic range 
By ‘dynamic range’ of a phase-sensitive detector we usually mean the input dynamic range. 
This is defined at one extreme by the maximum allowed input voltage swing and at the other 
by the minimum detectable signal. If we denote the maximum allowed voltage swing by Δv, 
the input dynamic range is simply: 

€ 

DI = Δv / smin  

It was shown in Sections 3.6.3 and 3.6.4 that the ‘maximum allowed’ input voltage to the 
phase-sensitive detector can have different values depending on the errors due to non-linearity 
that can be tolerated. In general, the linearity of the phase-sensitive detector is degraded as 
larger and larger asynchronous voltage swings are permitted, so we see that there is an 
important trade-off to be made between input dynamic range and linearity such that one can 
be improved only at the expense of the other. In order to specify input dynamic range, it is 
usual to equate the maximum allowed input voltage with the input overload level, that is to 
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use the same voltage swing that appears in the specification of dynamic reserve. When this is 
done, both Δv and smin can be expressed in terms of the full-scale sensitivity SD of the phase-
sensitive detector. Using the results of Sections 3.6.3 and 3.6.5 we obtain: 

 

and 

 

where ri is the dynamic reserve and δ is the fractional output stability. We can therefore arrive 
at the following expression for input dynamic range∗: 

 

The result is quite properly independent of the phase-sensitive detector sensitivity and any 
post-detection gain stages: any attempt to increase dynamic reserve by increasing the output 
gain is accompanied by a deterioration in output stability. We thus see that, to achieve wide 
dynamic range, a phase-sensitive detector must be capable of giving good output stability at a 
high level of dynamic reserve and this has proved to be one of the main objectives in phase-
sensitive detector design. As a rough guide, in modern systems, a combination of ×2 000 
dynamic reserve and 100 p.p.m./K output stability represents ‘good practice’ corresponding to 
a dynamic range of: 

DI = 1000 / 10−4 = 107 (140 dB) 

Since the concept of dynamic range incorporates the two key specifications of phase-sensitive 
detectors it provides the best figure of merit to be used when comparing competing systems. 
It should now be clear that dynamic reserve alone is no guarantee of quality and should 
always be viewed in the light of the stability specification. 

3.6.8 Summary of specifications 
The specifications covered so far can be conveniently summarized in diagram form as shown 
in Fig 3.14. The diagram also serves to define two additional quantities, namely output 
dynamic reserve and the output dynamic range. 

 
Fig. 3.14 Summary of phase-sensitive detector specifications 

                                                        
∗ Again, we use only the numerical part of δ, giving DI as a voltage ratio 
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To be of any practical use a phase-sensitive detector must be able to give a full-scale response 
to a synchronous signal and yet be able to accommodate a residual output fluctuation due to 
noise transmitted by the low-pass filter. The residual noise will carry the output beyond full 
scale and there should be sufficient margin in the output circuit to allow this to happen 
without an overload indicator permanently flashing; hence the provision of output dynamic 
reserve which enables the output to exceed full scale by around 20% - 30% without suffering 
distortion due to ‘clipping’ in the output amplifier. 

The output dynamic range is given as the ratio of the full-scale output voltage to the output 
drift component. If the drift is specified as a fraction of full scale- as we have assumed 
throughout - then the output dynamic range is simply 1/δ. In high-stability operation, phase-
sensitive detectors are capable of operating with a relative drift of less than 10 p.p.m./K. This 
corresponds to an output dynamic range of ×100 000 (100 dB) and would enable a change of 
100 µV to be observed in a full-scale output voltage of 10 V. Obviously, such a mode of 
operation presupposes a signal which is correspondingly free from noise. 

Using the definition of output dynamic range given above, together with the results of Section 
3.6.7, we see how dynamic reserve provides a link between input and output dynamic range: 

Input dynamic range = Dynamic reserve × Output dynamic range 

In the following chapter it is shown how the trade-offs between dynamic range and linearity, 
and between dynamic reserve and output stability, can be improved by incorporating filters in 
the signal channel of an otherwise broadband lock-in system. 
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CHAPTER 4 

Lock-in amplifier specifications 
 

 

 

4.1 Introduction 
The basic essentials of a lock-in amplifier were introduced in Chapter 2 and a 
brief description was given of each of the component parts. Of these, the phase-
sensitive detector has been given more detailed attention and we have seen how 
its performance can be evaluated in the light of some key specifications. 

In this chapter we shall continue with the same theme but concentrate on the 
specification of lock-in amplifiers as a whole, rather than of phase-sensitive 
detectors in isolation. It is intended that the approach adopted will be applicable 
equally to lock-in amplifiers as self-contained instruments or to lock-in recovery 
systems plugged together from several individual units. Since we have already 
identified several specifications relating to phase-sensitive detectors it will be of 
interest to see how these contribute to the performance of a larger system and to 
see how systems can be set up to give an optimum solution to different types of 
measurement problem. 

 
Fig. 4.1  Block diagram of a lock-in amplifier. The reference channel 

incorporates an optional internal oscillator and a frequency 
doubler to permit phase-sensitive detection at twice the applied 
reference frequency. 

To this end, we can refer to the block diagram in Fig. 4.1 which is an extended 
version of the one given in Chapter 2. The signal channel is shown with variable 
gain which is obtained through a combination of amplifiers and attenuators. The 
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arrangement in a commercial system gives a near-optimum noise performance in 
all switched positions and provision is made for signal-channel filtering, both 
internal and from external ‘plug-in’ modules. 

We shall assume that the phase-sensitive detector has fixed sensitivity but that the 
output gain can be controlled by a switched d.c. amplifier. The amplifier is 
labelled as an ‘expand’ amplifier since it serves to expand the output from the 
phase-sensitive detector. 

The essentials of the reference channel are also sketched in. These comprise a 
precision trigger circuit to respond to the positive zero crossings of an externally 
applied reference waveform, a broadband precision phase-shifter, and a 
squarewave generator to supply the final drive to the phase-sensitive detector. 
The phase-shifter takes the form of a control loop which sets up a phase-shift in 
response to a control voltage generated at the front-panel phase dial. Control over 
a full 360° range is usually achieved using pushbutton selection of phase 
quadrants in conjunction with a 0−100° continuous phase control. We shall be 
able to identify several critical specification features for the reference channel 
from a general review of system behaviour.  

Note that the system shown in Fig. 4.1 incorporates two other features that are 
commonly found in commercial units. These are a reference-channel frequency 
doubler, which enables the detection system to be synchronized at the second 
harmonic of the applied reference frequency, and an ‘internal’ oscillator. The 
latter can be used as an excitation source for an experiment and is sometimes 
controllable from the front panel of the lock-in amplifier. When switched into 
operation, the internal oscillator makes a direct connection to the reference-
channel phase-shifting circuits and so overcomes the need for an external cable 
connection. 

4.2  Calibration: full-scale sensitivity 
As in the case of phase-sensitive detectors, the full-scale sensitivity of a lock-in 
amplifier gives the r.m.s. value of an in-phase synchronous signal required to 
give a full-scale output. An essential difference between modular lock-in 
amplifiers and those supplied as integrated units is that the latter are supplied 
with a single sensitivity switch which enables the full-scale sensitivity to be set 
up immediately. In this case, the individual gains of the signal channel amplifiers 
and the phase-sensitive detector need not be known, whereas in a modular system 
these can normally be read from the front panel settings of the individual units. 

In either event, the full-scale sensitivity measured from the signal channel input 
socket is 

Full-scale sensitivity, SF	
  =	
  SD/(GaGe)	
  

where SD denotes the full-scale sensitivity of the phase-sensitive detector, 
calibrated on a sinewave, and Ga	
  and	
  Ge are the gains of the signal channel and 
expand amplifiers. 

In lock-in amplifiers the usual convention is to control only the signal channel 
gain from the sensitivity switch which is calibrated at a given expand setting 
GCAL. If we denote the indicated sensitivity on the front panel by SI, then we have 

Full-scale sensitivity, SF = SI × Ge/GCAL	
  

When a synchronous sinewave, with r.m.s. value Vs, is applied to a lock-in 
amplifier having a full scale d.c. output of ±VF, the d.c. response of the system 
will be 
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Vo = VF(Vs/SF) cos φ 

where φ is the phase difference of the waveforms appearing at the phase-sensitive 
detector. In most modern instruments VF has a value of 10 V. 

If the system is put into a quadrature condition to detect small phase variations 
(Section 2.4.4) the resulting sensitivity to small phase offsets is 

VF(Vs/SF) volts/radian 

When VF = 10 V, this corresponds to a sensitivity of 10 V/radian with a full-scale 
signal. 

When used as an amplitude detector or as a phase detector, the response to 
modulations will be modified by the effect of the output low-pass filter as 
discussed in Sections 2.4.3 and 2.4.4. 

4.3  Phase-sensitive detector related 
specifications 

4.3.1  Introduction 
It is not unusual to find that lock-in amplifiers can cater for input voltages 
ranging over six decades, having full-scale sensitivities calibrated in the range 
1 µV to 5 V (exclusive of any additional gain provided by preamplifiers). A 
typical system might offer up to 12 switched ranges in the signal channel 
amplifier (linked to the sensitivity control) and perhaps three levels of output 
expansion (×1, ×10 and ×100). It follows from this that there must be a number of 
combinations of a.c. and d.c. gain which give the same overall sensitivity, so let 
us now see how the choice of gain combination influences the dynamic 
performance of the lock-in system. 

4.3.2  System dynamic reserve 
The idea of dynamic reserve was introduced in Section 3.6.3 and defined in terms 
of the voltages applied to the input terminals of a phase-sensitive detector. The 
same idea can be applied to the lock-in system as a whole except that we must 
transfer all measurements to the input of the signal channel amplifier since the 
phase-sensitive detector input is no longer directly accessible. 

To illustrate this let us identify some voltages in the system using Fig. 4.2. First, 
the signal vs at the input is a full-scale signal giving a full-scale indication on the 
output meter. Secondly, ΔvN represents the peak-to-peak value of the input noise 
and, finally, Δv is the maximum allowed voltage swing at the input to the phase-
sensitive detector. 

	
  
Fig. 4.2 Identification of voltages in a phase-sensitive detection system 

 



The dynamic reserve is measured with a broadband signal channel so that there is
no selective attenuation of the input noise components. The most convenient 
starting point is to assume that the lock-in amplifier is operating at its dynamic 
reserve limit. Referring to Fig. 4.2, the peak-to-peak voltage*, Ga(vs + ∆vN), at the
phase-sensitive detector input is therefore equal to the maximum allowed level, 
∆v. The ratio ∆vN/vs measured at the signal channel input is thus equal to the 
system dynamic reserve. If the system dynamic reserve was now measured using 
an interfering sinewave as described in Section 3.6.4, we would find a 
characteristic identical to that of the phase-sensitive detector, including the 
influence of the harmonic transmission windows.

It is this feature which distinguishes ‘broadband’ lock-in systems, where the 
overall response to asynchronous inputs reflects the properties of the phase- 
sensitive detector.

Let us now return to a discussion which was first opened in Section 3.6.6. Any 
increase in input noise beyond ∆vN peak-to-peak will overload the phase-
sensitive detector but can be offset by reducing the signal-channel gain. The 
reduced response to the synchronous signal can then be ‘expanded’ using the d.c. 
output amplifier in order to restore the overall sensitivity to its original value. For
a fixed level of synchronous input to the instrument we find that the system can 
tolerate progressively higher input noise levels as the a.c. gain Ga is reduced and 
the expand factor Ge is increased to maintain constant overall gain. In this way, 
the dynamic reserve measured at the signal channel input can be controlled by 
changing the internal gain distribution.

In the interests of linearity it is essential to limit the voltage swing at the input to 
the amplifier to a well defined maximum value. This is the input overload level 
which is usually of the order of a few volts peak-to-peak. If a full-scale signal of 
100 mV r.m.s. is presented to the lock-in amplifier, then the input noise-to-signal 
ratio must be less than about 10:1 to avoid overloading the amplifier input. We 
thus see that the full dynamic reserve of the system can only be exploited for 
relatively small signal inputs where the lock-in amplifier is operated at 
correspondingly high sensitivity. In systems offering dynamic reserves of × 1000 
(60 dB) and greater this corresponds to operating at a minimum sensitivity of 
around 1 mV r.m.s.

4.3.3 System overload capability

The dynamic reserve of a signal recovery system is always measured with a 
broadband signal channel and the specification is normally valid over many 
decades of frequency − subject to the effect of the harmonic transmission 
windows discussed in Section 3.6.4.

In a typical measurement the signal will be perturbed by noise which is non-white
in character and a substantial fraction of the input noise voltage might be 
attributable to discrete interference components appearing in a well-defined 
frequency range. Under these circumstances, the total peak-to-peak value of the 
disturbance reaching the phase-sensitive detector can often be reduced 
significantly by using signal conditioning filters. By eliminating noise 
components before detection the dynamic reserve of the system can appear to be 
much greater than when operating with a broadband signal channel. We now 

* When operated in the dynamic reserve limit the noise input to the phase-sensitive detector will 
usually exceed a full-scale signal by at least a factor of 10, giving ∆vN>>vs.

Chapter 4–4



refer to the overload capability of the system, which should always be specified 
with respect to a particular set of operating conditions.

Because overload capability is a narrowband specification the achievable value 
will depend entirely on the variety of filters available for signal conditioning and 
on the separation of the signal frequency from the characteristic frequencies of 
any associated noise and interference. At any sensitivity setting, the maximum 
achievable overload capability will be

ysensitivit scale-full

channel signal of level overloadinput 

In a lock-in amplifier which offers a maximum sensitivity of 1 µV r.m.s. and an 
input overload level of a few volts peak-to-peak the best achievable overload 
capability will be of the order ×  1 000 000 (120 dB)) even though the 
(broadband) dynamic reserve is a maximum of ×  10 000 (80 dB). It must be 
emphasized, however, that this order of performance is likely to be realized in 
practice only for high-level interference components at well-defined frequencies 
which can be subjected to the maximum degree of suppression by suitable choice 
of signal channel filters. Also, by describing the specification as essentially 
‘narrowband’ we are reminded that high overload capability is achievable only at 
the expense of flexibility in the choice of operating frequency. In a basic 
detection system, extremely high overload capability is not generally compatible 
with the ability to track signals over a wide frequency range, because of the fixed 
characteristics of the noise-rejection filters.

Fig. 4.3 Relationship between the specifications of a lock-in amplifier

The relationship between overload capability and dynamic reserve is brought out 
in the presentation of Fig. 4.3. The diagram extends the one given in Section 
3.6.8 for a phase-sensitive detector by including the effect of signal channel 
amplification and signal conditioning filters. It is evident that if a given level of 
overload capability is required, the signal conditioning filters must be capable of 
reducing unwanted components by a factor:

€ 

F =
desired overload capability

dynamic reserve
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4.3.4 Dynamic reserve and output stability trade-off

We have seen that the effect of incorporating variable gain amplifiers before and 
after detection is to produce a lock-in amplifier with controllable dynamic reserve
at a given sensitivity. In order to realize the full practical potential of such a 
system we must take into account the effect of gain selection on output stability 
and see how dynamic reserve and stability can be jointly controlled to the best 
effect.

We can formulate a basic approach to setting up a detection system as follows: 
first of all for very ‘noisy’ signals. Here, the signal channel gain Ga should be 
held at a sufficiently low value to avoid premature overload at the input to the 
phase-sensitive detector. The desired sensitivity is then obtained by increasing the
gain of the expand amplifier. The output stability is degraded, but we argue that 
our main problem in this case is to detect the signal at all. A loss of output 
stability is not likely to be significant or even discernible when the final output 
contains a relatively large component of residual noise transmitted by the low-
pass filter.

The situation is quite different for relatively ‘clean’ signals. These can be 
subjected to a large amplification factor without exceeding the maximum 
allowable voltage swing at the phase-sensitive detector. The minimum value of 
expand gain can then be used to ensure that the signal is measured with the best 
possible precision.

These two modes of operation can be summarized for a lock-in amplifier offering
two levels of output expansion by means of the example given in Table 4.1.

Table 4.1

Signal Sensitivity 
selection

Expand gain Output 
stability, 
p.p.m./K

Dynamic 
reserve

‘clean’
‘noisy’

100 µV
1 mV

×  1
×  10

< 10
< 100

×  100
×  1000

Overall sensitivity = 100 µV f.s.

In an attempt to combine flexibility with ease of use the principal lock-in 
amplifier manufacturers have incorporated pushbutton selection of either ‘high 
stability’ or ‘high reserve’ operation. One way that this can be achieved is to 
retain the expand amplifier, leaving this to be controlled by the user, and to 
arrange for the distribution of gain between the signal channel and the phase-
sensitive detector to be switched automatically as shown in Fig. 4.4.

Fig. 4.4 Switch selection of high stability mode and high reserve mode in 
a lock-in amplifier
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In ‘high stability’ mode the phase-sensitive detector sensitivity is reduced at the 
expense of signal channel gain. In ‘high reserve’ mode the signal channel gain is 
reduced while that of the phase-sensitive detector is automatically increased so as
to retain the same overall sensitivity. With two levels of output expansion 
available the system can be adapted to meet a wide range of measurement 
requirements as demonstrated by the example in table 4.2.

Table 4.2

Mode 
selection

Sensitivity 
selection

Expand 
gain

Output 
stability 
p.p.m./K

Dynamic 
reserve

High 
Stability

High
Reserve

100 µV
1 mV

100 µV
1 mV

×  1
×  10

×  1
×  10

< 10
< 100

< 100
< 1000

×  100
×  1000

×  1000
×  10 000

Overall sensitivity = 100 µV f.s.

4.3.5 Overload capability and output stability trade-off

Section 4.3.4 dealt only with dynamic reserve. As a result the trade-off between 
noise rejection and output stability has been demonstrated only for a broad-band 
signal channel which introduces no selective attenuation of noise components. 
There is, however, an aspect of noise rejection which applies to the case where a 
normally ‘clean’ signal is perturbed by large-scale interference. ‘Hum’ pick up on
a low-frequency a.c. bridge provides a good example; the difficulty is to measure 
the signal to a high degree of precision.

In the absence of signal conditioning filters, the only approach to this particular 
problem would be to select a suitably high value of dynamic reserve. This would 
avoid the danger of overload on the interference component, but would 
automatically result in a relatively poor output stability and a consequent loss of 
precision.

The importance of signal conditioning becomes evident when we realize that for 
every 20 dB of suppression brought about by using, say, a notch filter, the system
reserve can be switched down by 20 dB and the output stability improved in 
direct proportion. Ultimately it might be possible to achieve the desired precision 
with only a modest amount of suppression obtained through signal conditioning, 
provided that the relative magnitudes of signal and interference are brought 
within the capability of the phase-sensitive detector at the desired level of output 
stability.

In the light of earlier discussions it is evident that obtaining improved overload 
capability at a given level of output stability is equivalent to increasing the input 
dynamic range of a detection system. Furthermore, in circumstances where it is 
desirable to obtain high overload capability in conjunction with the best possible 
output stability, it is clear that the signal-channel gain should be switched to the 
maximum possible value consistent with avoiding overload at the phase-sensitive
detector. Unfortunately, the linearity of the detection system will be degraded 
under these conditions, so it is important that we examine the relationship 
between dynamic range and linearity in practical lock-in systems.

4.3.6 Dynamic range and linearity trade-off

Suppose we wish to measure the amplitude of a 100 µV r.m.s. signal in the 
presence of an interference component at a level just below 10 mV r.m.s. A lock-
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in amplifier with the characteristics summarized in Table 4.2 would enable this 
signal to be measured at full-scale in a high-stability mode, using a dynamic 
reserve of × 100. The output stability would then have its best value, < 10 p.p.m., 
however, the linearity of the system would be degraded on account of the large 
asynchronous voltage swing presented to the phase-sensitive detector.

If good linearity is required, an obvious step is to reduce the pre-detection, a.c. 
gain by, say, a factor of 10. The total input voltage to the phase-sensitive detector
is then reduced, linearity is improved and the sensitivity can be restored by using 
a larger ‘expand’ gain.

The improvement in linearity is observed as an increase in out-of-phase rejection 
(Section 3.6.3) since, at an input asynchronous/synchronous voltage ratio of 100, 
the error in the full-scale response will be reduced. However, in this new 
situation, with the ‘expand’ gain increased to × 10, the output stability will be 
degraded while the improved dynamic reserve cannot be exploited without 
incurring a larger voltage swing at the phase-sensitive detector. A possible 
increase in dynamic reserve must therefore be sacrificed in favour of an 
improvement in linearity. Since the output stability is worse, the net result is a 
loss of input dynamic range.

The situation can be improved when interference components are rejected in 
advance of detection by using signal-channel filters, but a trade-off exists 
nevertheless. We have seen that, when wide dynamic range is the main 
consideration, the signal-channel gain following a stage of filtering should be 
increased to its maximum allowed value. When good linearity is required, the 
signal-channel gain must be maintained at a relatively low value so as to restrict 
the input swing to the phase-sensitive detector. The overall sensitivity would then
be restored by an increase in ‘expand’ gain. The linearity, measured in terms of 
out-of-phase rejection at the input to the signal channel, is improved while the 
system suffers a degradation in output stability. The dynamic range under these 
conditions could be greater than that obtainable without filters but will inevitably 
be less than the maximum achievable value.

4.4 Using a tuned filter in the signal channel of a 
conventional lock-in amplifier

4.4.1 Influence on overload capability

Early lock-in detection systems were traditionally operated with signal channels 
tightly ‘tuned’ to the signal and reference frequency in order to overcome the 
limited dynamic range of the then available phase-sensitive detectors. Although 
modern systems have much better performance, there are instances where they 
can benefit from the rejection properties of a tuned filter, and most commercial 
systems are supported by a range of options which includes a tuned filter.

The type of filter most often used has a symmetrical band-pass characteristic of 
the type described in Appendix 4. Commercial units are, moreover, almost 
invariably active filters which use operational amplifiers with capacitive and 
resistive feedback elements to simulate the circuit behaviour of inductors and so 
avoid the use of large inductor values at the lower frequencies required. An active
filter usually has a gain greater than unity at frequencies close to the centre 
frequency, although this is sometimes compensated by including an output 
attenuator to give a net gain of unity.

When dealing with active filters we must be prepared to identify overload 
conditions in all the internal amplifiers, and it is usual to specify the maximum 
allowable input voltage swing at ‘in-band’ and ‘out-of-band’ frequencies. Fig. 4.5
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shows how this can be done for a tuned filter considered in isolation using the 
filter frequency-response characteristic. At mid-band, interference components 
are subject to the full gain, Go, of the filter, and their magnitude must be 
restricted to avoid driving the filter output into saturation. The increased input 
capability at frequencies removed from the centre frequency reflects the greater 
attenuation provided by the filter. The transition to a flat characteristic at larger 
frequency offsets marks the point where the input cannot be increased further 
without exceeding the maximum allowable input level to the filter. If a passive 
filter had been used, the curve would have continued along the dashed lines. In 
most practical active filter designs it turns out that the absolute maximum voltage
swings allowed at input and output are the same, being almost equal to the power 
supply voltages applied to the filter.

Fig. 4.5 Maximum allowable voltage swing at the input to an active tuned
filter with midband gain Go.

∆vi and ∆vo denote the peak-to-peak overload levels at the input 
and output of the filter.
The dashed characteristic would be obtained with a passive filter 
followed by a voltage amplifier, giving a net gain of Go at 

midband.

In normal operation the filter is tuned precisely to the reference frequency and 
inserted in the signal path. It now becomes essential to examine the relative 
merits of providing amplification before and after the filter in order to determine 
its optimum location within the signal channel. To do this, we return to the 
concept of dynamic reserve which can be generalized to any combination of 
filters and amplifiers. Following the arguments presented in Section 4.3.2 for the 
special case of phase-sensitive detectors, we find that the ability to handle large-
scale interference components is enhanced by increasing post-filter gain at the 
expense of pre-filter gain. In other words: the allowable input voltage for out-of-
band components reduces in proportion to the amount of gain which is introduced
in front of the filter.

This conclusion is particularly relevant when the user is able to modify the 
configuration of the signal channel by interchanging amplifier and filter modules.
The first step in obtaining high overload capability is to obtain the maximum 
possible voltage swing at the input to the signal channel. If a degree of flexibility 
is available this can be achieved by introducing the filter at the earliest possible 
stage. Unfortunately, the resulting improvement in overload capability is usually 
obtained at a cost. In this case, the penalty is an increase in system noise. Active 
tuned filters are generally more noisy than the high-quality amplifiers used in a 
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lock-in signal channel. The result is that the filter makes an increasing 
contribution to system noise as the gain distribution is altered in favour of post-
filter amplification.

The final location of the filter always reflects a compromise between system 
noise and overload capability. In commercial lock-in amplifiers the filter is 
usually introduced immediately after the low-noise input amplifier, the objective 
being to maintain acceptable noise performance in the high-sensitivity positions. 
In a modular system dedicated to measuring signals in a very noisy environment, 
the increase in system noise resulting from a filter directly at the signal input may
well be of no significance. The incorporation of a filter in this position must then 
be considered as a valid means of increasing noise-handling capacity.

Whatever combination of amplifiers and filters is used it is possible to arrive at a 
maximum allowable input voltage swing for out-of-band frequency components. 
If the total available input swing is to be utilized, then the filter must supply 
enough attenuation to bridge the gap between the desired overload capability and 
the best achievable dynamic reserve at the phase-sensitive detector.

The Q-factor of a tuned filter with a centre frequency fR is defined by

Q = fR/fB

Where fB is the −3 dB bandwidth of the filter. For interference components offset 
by several bandwidths, the frequency response of the filter relative to its mid-
band value is (Appendix 4):

€ 

H( jωi)

H( jωR )
=

fi / fR

Q1− fi
2 / fR

2
;    fi − fR >> fR /Q

where fi is the frequency of the interference component.

Suppose we have a lock-in system which can withstand a total voltage of 3 V 
peak-to-peak at its signal channel input. The phase-sensitive detector has a 
dynamic reserve of × 1000 (60 dB) and a signal of 10 µV r.m.s. is to be measured
in the presence of 3 V peak-to-peak interference. The signal frequency is 5 kHz 
and the interference frequency is 1 kHz.

The interference voltage is at the maximum allowable value of 3 V peak-to-peak 
(≅  1 V r.m.s.). If the signal is to be measured at full-scale we require an overload 
capability of 1/(10.10–6) or 105 while the dynamic reserve is only × 1000; the 
filter must therefore introduce an attenuation factor of 100. The required Q-factor
can now be calculated from:

€ 

fi / fR

Q1− fi
2 / fR

2
≤1/100

Putting fR = 5 kHz, fi = 1 kHz, we obtain a value of about 20 for the filter 
Q-factor. Let us now look at the stability of a system incorporating a filter with 
this order of selectivity.

A Q-factor of 20 at a centre frequency of 5 kHz implies an effective operational 
bandwidth of 250 Hz. This means that the signal/reference frequency must be 
maintained to within ± 21/2% to stay within the filter bandwidth. If this is not 
achieved, the magnitude of the signal reaching the phase-sensitive detector will 
be in error by more than 3 dB or 30%.

The next point to be considered is the phase shift introduced by the filter. The 
system would normally be set up initially with the filter tuned precisely to the 
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reference frequency. The phase-shift introduced by the filter would then, ideally, 
be zero, but we can suppose that any small phase error could be compensated by 
trimming the phase of the reference channel. The phase-shift of the filter close to 
the tuned condition is given in Appendix 4. We find that the change in phase 
which occurs when the signal drifts by a relative amount ∆f/fR is given by:

tan ∆θ  ≅  2Q ×  ∆f/fR

Using a Q-factor of 20, we calculate an incremental phase-shift of about 22° for a 
one per cent change in signal frequency. The stability of the signal source and of 
the filter itself must therefore be of a very high order to avoid excessive 
amplitude and phase modulation due to drift. It is unlikely, for example, that 
tuned filters with this degree of selectivity could ever be used satisfactorily with 
many mechanically derived excitations such as optical choppers.

In view of these constraints, most practical lock-in systems incorporating tuned 
filters are designed for a maximum Q-factor of around 5. Provided the 
signal/reference source is of reasonable stability, the overload capability of a 
broadband detection system can then be substantially improved without incurring
excessive measurement errors. This is especially true when a tuned filter is used 
in the signal channel of a two-phase lock-in system. It is shown in the next 
chapter that two-phase systems can be used in a phase-independent mode and so 
overcome the excess phase-shift introduced by a tuned filter. In addition, the use 
of a tuned filter ensures that harmonics of the signal are greatly suppressed in 
advance of phase-sensitive detection. The result is a measurement system where 
the only significant response to either signals or noise is in the vicinity of the 
reference frequency. This aspect will be discussed further in the next section.

In conclusion, it should be stated that the general considerations regarding the 
location of a signal-channel tuned filter can be extended to any of the basic high- 
pass, low-pass and notch filters which are commonly used with lock-in systems. 
In any of these cases an overload characteristic can be drawn using the frequency 
response function of the filter or any desired combination of filters. In all cases 
the amplitude and phase responses of the filter must be considered as possible 
sources of error when the frequency of the signal/reference source is subject to 
drift. Ideally, the signal frequency should be as far as possible from the cut-off 
frequencies of any filters which are introduced for signal conditioning and, as we 
have seen, the tuned filter falls short of this ideal. In many cases, a far better 
approach to suppressing discrete interference components is to use a sharply 
tuned notch filter. When a dominant interference component is well removed 
from the signal frequency the inclusion of a notch filter leaves the signal 
substantially undisturbed. It should be remembered that many sources of 
interference such as line pick-up and breakthrough from radio transmitters are 
extremely stable in terms of their characteristic frequencies. In these 
circumstances, a tightly tuned notch filter can be accurately set and maintained 
for long periods without further adjustment.

4.4.2 Suppression of-harmonic responses

Subject to the limitations on system flexibility, a tuned filter can also be effective 
in suppressing the effect of harmonically related components of the signal which 
would normally be applied directly to the phase-sensitive detector.

Again, we shall suppose that the filter has a symmetrical band-pass response of 
the type used in the last section.

If we imagine that a filter of this type is tuned to a signal and reference frequency
at angular frequency ωR then the filter response at the Kth harmonic of ωR is
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H(jKωR) = 

€ 

jK /Q

(1− K 2) + jK /Q

For Q ≥  5 we can approximate the gain magnitude by

| H(jKωR)|  ≅  

€ 

K

(K 2 −1)Q
 

The relative sensitivity of a switching phase-sensitive detector at the K th 
harmonic of the reference frequency is I/K; hence the relative sensitivity when a 
band-pass filter is included is

| H(jKωR)|  /K=

€ 

1

(K 2 −1)Q

Thus, the relative sensitivity at the third harmonic is reduced to 1/40 (−32dB) for 
a Q-factor of 5.

Note that, in order to approach the 3rd harmonic sensitivity of the order of −60 dB
offered by modern fundamental-only responding instruments, a Q-factor of 100 
would be required, a value which would render most systems quite unusable. This
assumes, of course, that a ‘standard’ second-order band-pass filter is being used. 
If, as an alternative, we consider the low-pass tuned filter defined in Appendix 4 
we find that the roll-off beyond the centre frequency is now 12 dB/octave rather 
than 6 dB/octave as in the band-pass case. Repeating the calculations given 
above, using the appropriate frequency response function, we now obtain a 
relative sensitivity of approximately 1/(K3Q) at the K th harmonic. In this case, a 
Q-factor of 40 or so would achieve the target figure of −60 dB at the 3rd 
harmonic, while a Q-factor of 5 would give a relative sensitivity of less than −40 
dB.

This aspect of tuned-filter operation is discussed further in Chapter 8 in relation 
to the performance of heterodyne lock-in amplifiers. It is shown there that, for a 
given level of attenuation, alignment problems can be greatly reduced by using 
two filters in cascade, each of which has relatively low Q-factor. There is no 
reason in principle why this approach should not be used to improve the 
performance of the 'conventional' lock-in systems described so far, however, 
implementation is likely to be easiest when operation is confined to a small range
of signal and reference frequencies.

4.5 Reference channel specifications
4.5.1 Introduction

Up to this point we have concentrated almost exclusively on the dynamic 
performance of lock-in amplifiers. In practice, this performance will never be 
realized unless the reference channel is capable of giving adequate support to the 
phase-sensitive detector. It turns out that the lock-in systems with the best all-
round performance are those with genuine broadband reference channels giving 
precisely calibrated phase-shifts allied to good stability. In the following sections 
we shall be looking at some specifications which are commonly used in relation 
to reference channels with these general characteristics.

A typical broadband reference channel operates as a closed-loop control system 
and generates a phase shift in response to a control voltage supplied from a front-
panel phase control. By ‘broadband’ we mean a system able to operate with 
reference frequencies covering a range of several decades without adjustment. A 
range of 105:1 to 106:1 is quite common in modern lock-in amplifiers, say from 
less than 1 Hz to 100 kHz.
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At midband frequencies, good phase accuracy can be obtained with relatively 
short response time in the control loop, while the same control loop might not be 
so effective at lower reference frequencies. In view of this, most lock-in 
amplifiers incorporate an automatic changeover system which selects control 
circuitry with longer response times for reference frequencies below about 50 Hz.

If operation is required at very low frequencies, for example down to 0.1 Hz, the 
user can often increase the response time of the loop still further by switch-
selecting a ‘slow’ or ‘low-frequency’ reference mode. The result is a considerable
improvement in low-frequency phase accuracy obtained at the expense of a still 
more sluggish response. The provision of a switch together with an automatic 
changeover point ensures that the system can be made to approach its optimum 
performance in any frequency range of interest, but it must be expected that 
offset errors and noise in the control loop will always conspire to give a phase 
shift differing from that indicated by the phase dial. In practice, such errors might
be insignificant or gross as demonstrated by the following extreme modes of 
operation.

The first concerns signal recovery work. Here the null-shift procedure defined in 
Section 3.5 can be applied to a variety of signal types and overcomes the need for
a continuous phase adjustment with more than a nominal calibration. In this case 
a continuous phase adjustment in conjunction with a calibrated increment of 90° 
is sufficient to reach an optimum detection condition. The phase-sensitive 
detector is, moreover, relatively insensitive to small phase changes when adjusted
for maximum output. The overall system is thus tolerant of noise in the reference 
control circuits and an error of a few degrees in the 90° phase increment would 
not seriously affect the response to a noisy signal.

The second category of measurements includes all those where the phase-shift of 
a signal is to be determined relative to the applied reference or where the lock-in 
amplifier is required to respond to small phase increments. The reference phase- 
shift should now be defined and calibrated in accordance with some agreed 
convention and the user expects to have specification limits on phase accuracy 
and on stability if small phase changes are to be resolved.

It was shown in Section 2.5.5 that the reference-channel phase-shift can be 
defined unambiguously for an applied reference voltage of any waveform. For 
the purpose of this section, however, we shall assume that both the signal and the 
external reference are of sinewave form. Besides removing any doubt which may 
remain about the validity of phase specification for non-sinusoidal signals, this 
approach also avoids problems arising from waveform distortion when non-
sinusoidal signals are transmitted by a signal channel of finite bandwidth.

We shall begin by identifying the numerous components of a typical lock-in 
amplifier phase specification and then consider briefly the performance of a 
broad-band reference channel under swept-frequency conditions. The next step is 
to investigate how the phase accuracy of a lock-in system can be checked in 
practice. It turns out that the procedures involved are rigorous in the extreme and 
serve as useful guidelines to the more general problem of precision phase 
measurement with signals and systems. For this reason the principal sources of 
error in phase measurement are listed in a self-contained section, together with 
ways to minimize their effect. This last section enlarges on some of the more 
general properties of phase-sensitive detectors and lock-in amplifiers introduced 
so far, and shows how some key specifications can be brought to bear on a 
specific type of measurement problem.
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4.5.2 Phase accuracy: points of specification

We suppose that a sinewave signal and an in-phase sinewave reference are 
applied to a lock-in amplifier. In any practical system the relative phase of the 
signal and reference switching waveform measured at the phase-sensitive 
detector will have several components which can be written in the form

φ =  φR + ∆φR + ∆φs + φN(t)

Here φR represents the phase-shift dialled on the front panel of the lock-in 
amplifier, ∆φR is a static phase error associated with the reference control circuit 
and ∆φs represents a residual phase-shift in the signal channel which we assume 

is set to its maximum bandwidth. The quantity φ N(t) represents phase noise 
which is attributable to noise in the reference channel control circuit and has 
components distributed over a wide frequency range.

In principle, these individual sources of error could be evaluated separately, but 
this more likely to be done by the manufacturer who has access to the internal 
workings of the lock-in amplifier. Otherwise, it is difficult to devise a 
measurement which would isolate the two contributions ∆φR and ∆φs. 
Fortunately, in any application where phase is an important factor, it is usually 
sufficient to have a measure of the total phase error given as the sum of a static 
error ∆φR + ∆φs and a fluctuation component φN(t). We shall see how this 
information can be inferred from measurements carried out at the input and 
output terminals of the lock-in amplifier.

When comparing the phase specifications of competing equipments it is clearly 
necessary to check manufacturers’ data sheets very carefully. In some cases the 
static phase errors might be specified separately; in others, the figures quoted 
could be for composite phase errors. In either case the specifications will be 
frequency-dependent and show a deterioration towards the extremes of the 
recommended range of signal and reference frequencies. Also, it is usual to 
specify only the maximum anticipated value of static phase error at any spot 
frequency. If more detailed information is required, for example the phase error 
corresponding to a particular phase setting, φR, it is up to the user to devise his 
own measurement procedures following the guidelines given in later sections.

Fig.4.6 Static phase error of a typical broadband lock-in amplifier

Fig. 4.6 shows the composite, static, phase error of a typical broadband lock-in 
amplifier measured over the entire range of operating frequencies. This form of 
presentation, allied to a measure of the phase noise, is usually sufficient for all 
but the most demanding applications, but the figures given are strictly valid only 
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at a quoted value of laboratory temperature. A full specification will also give a 
measure of the anticipated phase drift as a function of temperature. It turns out 
that the phase drift is usually far more important than the phase noise in 
measurements involving the detection of small phase increments in a signal.

4.5.3 Phase noise (phase jitter) and phase drift

Phase noise (or phase jitter) is specified in such a way that its effect on precision 
phase measurements can be easily predicted.

We suppose that the lock-in amplifier is supplied with a stable sinewave signal 
and reference at the reference frequency of interest. The reference phase-shifter is
then adjusted to null the output from the phase-sensitive detector. The effect of 
reference channel phase noise is to give a residual fluctuation measured from the 
null point. Using the notation of the last section the net phase shift at the null 
point corresponds to a value

φ = φN(t) ± π/2

measured at the phase-sensitive detector.

When the total error due to noise is much less than one radian the phase-sensitive 
output of the lock-in amplifier approximates to (Section 4.1.2)

vN(t) = VF(Vs/SF) φNF(t)

The variation φNF(t) represents the low-frequency components of φN(t) which are 
transmitted by the output low-pass filter. Following the approach used in Section 
2.4, these are given by the convolution

φNF(t) = φN(t) ⊗ hL (t)

where hL(t) is the impulse response of the low-pass filter.

The phase noise of the lock-in amplifier is specified in terms of this filtered 
fluctuation and measured by measuring the r.m.s. value of the output voltage at a 
stated value of filter time constant. The measurement is carried out on a time 
scale which precludes the effect of temperature variations on the null position. 
The influence of noise in the signal channel is minimized by using a ‘clean’ 
sinewave signal at a low level of system gain. The phase noise is then calculated 
from

[φNF(t)]r.m.s.= (SF/VFVS)  ×  [vN(t)]r.m.s. ×  180/π

Here, the factor 180/π gives a conversion from radians to degrees. This 
conversion brings the specification to a standard form, a typical specification 
being:

phase noise:  0.01° r.m.s. at a reference frequency of 1 kHz,
 0.1 s time constant at 12 dB/octave.

In general, the r.m.s. phase noise will increase for reference frequencies at the 
extremes of the lock-in amplifier frequency range but its influence on the final 
output can always be reduced by switching to longer time constants. The effect of
phase noise is to introduce noise even when, for practical purposes, the output 
from the signal channel is noise free. In any event, its effect, like that of phase 
drift, is both phase-sensitive and proportional to signal amplitude and maximized 
when signal and reference are brought into quadrature at the phase-sensitive 
detector.
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Phase drift is recognized as a temperature-dependent deviation from the 
quadrature null point, observed under conditions where the instability of the 
phase-sensitive detector has negligible effect.

If any doubt persists, then the output contribution due to phase drift will be 
recognized by its variation with sensitivity setting while phase-sensitive detector 
drift can be observed under zero signal conditions, being dependent only on the 
output or expand gain.

The phase drift of a good-quality lock-in amplifier is of the order 0.03°/K. It is 
shown in Section 4.7.5 that the phase drift will usually make a far larger 
contribution to measurement errors than phase-sensitive detector instability when 
a lock-in amplifier is set up for precision phase measurement.

4.5.4 Reference channel slew rate

If a signal and reference are applied to a lock-in amplifier and the frequency is 
changed, the inertia of the reference channel control system will result in an 
instantaneous phase error known as phase ‘slip’. When the frequency stops 
changing the phase slip gives way to the pre-existing phase condition. In most 
commercial systems the phase slip θ and the rate of change of reference 
frequency are related by:

dfR/dt = AfRθ

where fR is the instantaneous reference frequency and A is a constant of the 
reference channel.

The rate of change of reference frequency corresponding to a phase slip of 5° is a 
frequency-dependent quantity known as reference channel slew rate. Slower rates
of change than the slew rate will give less phase slip. Faster rates of change give 
increased phase slip up to the point where phase control, and hence reference 
channel lock, is lost completely.

Fig. 4.7 Slew rate specification for a typical broadband lock-in amplifier

The phase slip of 5° represents the maximum phase error which could be tolerated
if swept-frequency meaurements are to be carried out to a reasonable level of 
precision. In most applications the slew rate is considered to be the maximum 
usable rate of change of reference frequency.

When slew rate is specified by means of a graph, the effect of an automatic 
changeover point in the reference channel is to divide the graph into two distinct 
regions as shown in Fig. 4.7. The system is then characterized by two values of 
the constant A, corresponding to operation with reference frequencies above and 
below the changeover point. In the light of the discussion given earlier we expect 
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the slew rate to be much lower below the changeover point where the response 
time of the control system is larger. In Fig. 4.7, the constants differ by a factor of 
100, which is typical of' many commercial systems.

The logarithmic dependence of slew rate on reference frequency means that slew 
rate can be translated into ‘minimum sweep time per decade’. Broadband 
reference channels are usually characterized by slew rates in the range 
1−5 seconds/decade in the frequency region above the changeover point.

4.6 Measurement of phase accuracy
4.6.1 Introduction

In measuring phase accuracy it may be sufficient to determine whether the 
relative phase of the signal and reference channels, as indicated on a front panel 
dial, is correct to within the limits specified by the manufacturer. In other cases, 
where phase is of critical importance, it may be necessary to make a detailed 
investigation of the relative phase-shift in order to catalogue system phase errors 
as a function of frequency and indicated phase. 

Problems arise in practice because the phase difference of the two waveforms 
appearing at the phase-sensitive detector is not directly accessible in a typical 
lock-in amplifier. This essential information must therefore be inferred from a 
series of auxiliary measurements made at the input and output sockets of the 
instrument. The usual procedure is to apply strictly in-phase sinewaves to the 
signal and reference inputs and then to check that the output from the phase- 
sensitive detector follows the cosφR law as the phase-shift φR is varied by means 
of the front-panel phase control. Ideally we should be able to interpret deviations 
from the cosφR law in terms of system phase errors, but this can be done only 
when other sources of external error have been eliminated. As we shall see, the 
procedures involved are rigorous to the extent that a lock-in system of the highest
precision can be made to appear second-rate if they are not properly applied.

The principal sources of error affecting phase measurements are given as follows:

(i) 'Trigger’ errors in the reference channel

(ii) Signal and applied reference not strictly in-phase

(iii) Errors due to oscillator distortion

(iv) Errors due to phase noise, phase drift and phase-sensitive detector instability

Ways of minimising these various sources of error are dealt with under separate 
headings below. It is hoped that these final sections will provide a useful cheek 
list for those with a special interest in phase measurements.

4.6.2 Trigger phase errors

Trigger errors are incurred at the ‘front end’ of the reference channel, in the input 
trigger circuit. The relevant waveforms are shown in Fig. 4.8.
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Fig. 4.8 Waveforms in a broadband trigger circuit

It is usual for the trigger circuit to be designed with a relatively large hysteresis 
band, vh of the order of 100 mV. The input is invariably a.c. coupled and we shall
assume that the phase-shift of the reference channel is to be generated with 
respect to the instant where the input waveform makes a positive zero crossing. 
Once ‘fired’, the output from the trigger circuit stays securely at a HIGH level 
and does not switch LOW until the input voltage falls below the hysteresis 
threshold. This is sufficiently removed from zero voltage to ensure that the 
trigger circuit is free from multiple triggering when the reference input is 
perturbed by low-level noise (amplitude up to 2vh. peak-to-peak). When the 
reference input has relatively low amplitude, the output waveform will be highly 
asymmetrical. However, this is corrected in the phase-control system which 
follows the trigger circuit.

If phase accuracy is an important consideration we must assume that the 
reference waveform is free from noise. In a precisely adjusted trigger circuit the 
output will then accurately reflect the positive zero crossings of the input. In 
practice, however, we must allow for a small error, ε, in defining the zero point as
illustrated in Fig. 4.9.

The phase error measured between the reference input and trigger output is 
simply

φε = sin–1ε/VR

    ≈  ε/VR radians, ε << VR

Thus, for a trigger phase error of 0.1° or less we have the condition

VR /ε  ≥  600

In a well designed circuit, ε can be held at a level of a few millivolts over the 
normal range of laboratory temperatures. For sinusoidal reference voltages, 
therefore, a peak-to-peak input of a few volts will be sufficient to ensure good 
trigger accuracy. Smaller inputs − of the order of 100 mV or so − will incur trigger
phase errors of up to 1°, which is comparable with the expected phase accuracy of
many systems. In fact, most manufacturers specify a reference level of 1 V r.m.s. 
for best accuracy.

Chapter 4–18



Fig.4.9 Trigger phase error

4.6.3 Defining in-phase signal and reference

The next problem is to ensure a strictly in-phase condition at the signal and 
reference inputs to the lock-in amplifier. Although oscillators are available giving
‘signal’ and ‘reference’ or ‘SYNC’ outputs, we cannot, in general, rely on these 
for the required phase precision. The only satisfactory way to achieve this is to 
derive both inputs from the same oscillator terminal using a resistive potential 
divider as shown in Fig. 4.10.

Fig. 4.10 Defining in-phase signal and reference voltages

In the arrangement shown it is assumed that the resistor R is much greater in 
value than the source resistance Rs and that R, in turn, is much less in value than 
the input resistance of both the signal and reference channels. The idea is that the 
screened cable connections to the lock-in amplifier are driven from sources of 
roughly equal resistance Rs. Provided that the screened cables are of equal length,
differential phase-shifts due to cable capacitance will then be kept at a minimum .

Cable capacitance is typically of the order of 100 pF per metre run. When 
operating at a reference frequency fR, the spurious phase-shift introduced by a 
cable of capacitance C connected to a signal source of resistance Rs is

θe = tan–1 −2πfRCRs
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Suppose we have C = 200 pF with Rs = 1 kΩ at a frequency of 10 kHz. The 

cable-related phase-shift is then about 0.7°, increasing to over 7° at fR = 100 kHz. 
Obviously an uncompensated phase-shift of this magnitude would be a serious 
source of error in any system set up for precision phase measurement.

4.6.4 Errors due to oscillator distortions

Let us now consider the requirements for the signal oscillator. If the accuracy of a
lock-in system is to be measured in terms of its response to a sinewave as the 
system phase is varied, then every step must be taken to ensure that a strictly 
sinusoidal input is applied. We cannot expect the measurement system to follow 
the cosφR law if the signal is grossly distorted; it follows that, for precision 
measurements, the distortion of the signal waveform must be correspondingly 
small.

The response of a phase-sensitive detector to a general periodic signal was 
considered in Section 3.5. From the results obtained there, it is obvious that the 
calculation of phase errors due to distortion components is a complicated 
business, suited more to numerical computation then to general analysis. Also to 
concentrate solely on the signal might distract attention from the reference which 
should similarly be free from distortion if misleading results are to be avoided.

To see why, let us turn to Fig. 4.11 which shows synchronous signal and 
reference voltages subjected to arbitrary harmonic distortion (greatly exaggerated
for emphasis). The effect of the harmonic components is to shift the zero 
crossings of the reference voltage relative to those of its fundamental component. 
As a result, the ‘zero-phase’ switching waveform triggered from the positive zero
crossings of the reference waveform exists in an arbitrary phase relationship with 
the fundamental component of either signal or reference.

Fig. 4.11 Phase error due to waveform distortion

There is a common misconception that a ‘fundamental only’ responding lock-in 
system automatically compensates for harmonic distortion in phase 
measurements, but this is clearly not the case. It is true that, if the system is able 
to suppress harmonic responses, then the null-shift procedures given in Section 
3.5 can be applied to bring the reference switching waveform directly into phase 
with the fundamental component of the signal. However, at this point the 
reference phase indicated by the phase-control dial will differ from zero degrees 
despite the precise synchronization of the externally applied voltages. The system
will indicate an apparent phase error θe, which depends on the level of distortion, 

and the output will vary according to cos (θR + θe), where θR is the set phase of 
the reference channel.
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When the lock-in system has harmonic responses, the null-shift procedures do not
generally apply to distorted signals and the cosine dependence is no longer 
obtained. To arrive at a bound on the level of distortion which can be tolerated, 
we can take the special case of second-harmonic distortion where the positive 
zero crossings of a signal or reference are shifted by up to D2/D1 radians relative 
to those of the fundamental component. Here, D1 and D2 are the magnitudes of 
the fundamental and distortion components, with D2 < < D1.

Second harmonic distortion at a level of 1% can therefore contribute an apparent 
phase error of up to 0.01 rad or 0.5°. On this basis, and taking additional 
experimental evidence into account, it appears that a total harmonic distortion of 
0.1% represents a suitable target for the signal/reference oscillator. Failure to 
achieve this target means that the oscillator contribution to phase error cannot be 
entirely ruled out: unfortunately this level of distortion is far below that of typical
laboratory oscillators. Oscillators of the ‘function generator’ variety often have 
harmonic distortion in excess of 2% or 3% and are usually quite unsuited to 
applications where phase accuracy is a critical factor.

4.6.5 Phase noise, phase drift and phase-sensitive detector 
instability

When the output of a phase-sensitive detector is maximized by adjusting phase, 
the response is first-order independent of phase variations due to noise and drift 
in the reference channel. In this condition, the main sources of error in precision 
measurements will be offset and drift in the phase-sensitive detector, which must 
be minimized by using the detection system in a ‘high stability’ mode as defined 
earlier.

In most lock-in amplifiers an adjustment is provided to trim the offset of the 
phase-sensitive detector before measurements begin, leaving the drift component 
as the principal limitation on precision. In a good-quality system this can be as 
low as 5 to 10 p.p.m./K, equivalent to 10 µV/K or less in a 10 V output, 
independent of the a.c. gain provided before phase-sensitive detection.

Instability in the reference channel has its worst-case effect when measurements 
are carried out close to the point where the phase is adjusted for an output ‘null’. 
The ability of the system to maintain a nulled output is then affected jointly by 
phase drift in the reference channel and output drift in the phase-sensitive 
detector.

If we suppose the system is first brought to a precise null condition, the 
subsequent variation of the output for a temperature change of 1 K can be 
expressed in the form

∆vo = Vs(VF/SF)φT ×  π/180 + VFδ

where φT is the phase drift (degrees/K) and δ is the fractional output stability of 
the phase-sensitive detector operating with a maximum ouput voltage VF at full-
scale sensitivity SF.

It was noted earlier that the contribution due to phase drift depends on signal 
magnitude and system sensitivity while the error due to phase-sensitive detector 
instability will be fixed for a given level of output gain. We shall assume that the 
latter is switched to its lowest possible value. The effect of phase-sensitive 
detector drift will then be negligible compared with the phase-drift contribution, 
provided:

Vs(VF/SF)φT ×  π/180 >> VFδ
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In most phase measurements the ratio Vs/SF  is either close to unity or deliberately
increased to the order of 10 or even 100 in order to enhance the phase-sensitivity 
of the system. Let us suppose that Vs/SF is made equal to 10, giving a net phase 

sensitivity of 10 VF volts/radian, while the phase drift is specified as 0.03°/K. If 
the drift of the phase-sensitive detector is not to dominate the final measurement 
it must satisfy the condition

δ << 0.0052 (∼ 5000 p.p.m./K)

We have seen that this criterion is easily satisfied with modern lock-in 
equipment. The conclusion is that phase drift in the reference channel is likely to 
make a much larger contribution to errors in phase measurement than phase-
sensitive detector instability.

So far we have ignored the effect of short-ternm fluctuations due to phase noise. 
The time scale of these fluctuations is such that their contribution to the final 
output can always be reduced by increasing the output time constant. Usually the 
residual noise has minimal affect when setting the phase for a null output, its 
worst effect being to obscure the system response to small phase variations.

At reasonably large time constants the r.m.s. value of the output fluctuation due 
to phase noise is usually much less than the long-term deviation due to 
temperature related phase drift. In this case, the smallest incremental phase-shift 
which could be measured over a period of time would be comparable with the 
uncertainty due to phase-drift in the reference channel.

4.7 References
Discussion on the systems aspects of lock-in amplifiers is confined, for the most 
part to manufacturer’s data sheets and application notes. See, for example:

1 'Specifying lock-in amplifiers’. Technical Note 116, Princeton Applied 
Research Corp., Princeton, NJ.

2 MUNROE, D.M. (1973): The heterodyning lock-in amplifier’ Technical 
Bulletin, Ithaca Corp., Ithaca, NY.
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CHAPTER 5

Two-phase lock-in amplifiers

5.1 Introduction

Fig. 5.1 Two-phase lock in amplifier

Two-phase lock-in amplifiers incorporate a pair of phase-sensitive detectors 
operated with quadrature reference waveforms as shown in Fig. 5.1. They were 
originally envisaged as a means of measuring the in-phase and quadrature 
components of a synchronous sinewave signal, a typical application being in 
network analysis as depicted in Fig. 5.2.

Fig. 5.2 Two-phase lock-in amplifier used in network analysis. The vector
computer converts the ‘in-phase’ and ‘quadrature’ outputs to 
polar form

For a lock-in amplifier with full-scale sensitivity SF and output voltage swing ±VF

the output voltages VA and VB following the low-pass filters are:

VA = Vs(VF/SF) cosφ

VB = Vs(VF/SF) sinφ
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where Vs is the r.m.s. value of the signal and the ratio VF/SF gives the scaling 
factor of the lock-in amplifier.

The ‘vector computer’ indicated in Fig. 5.2 has become a standard feature of 
commercial two-phase lock-in amplifiers. This is an electronic circuit which 
operates on the two output voltages VA and VB to produce voltages proportional 

to signal amplitude VS and the relative phase φ, giving:

Vo = Vs(VF/SF) = (VA
2 + VB

 2)½,

φ = tan–1 VB/VA

Two-phase lock-in amplifiers can thus display their outputs in either cartesian or 
polar form and are generally associated with measurements in two main areas. 
The first includes applications which make use of the quadrature components of a
signal such as a.c. bridge measurements, Nyquist plotting and general impedance 
measurements. The second involves applications where signal magnitude is to be 
measured in the face of large phase variations and the polar form of the output is 
particularly valuable. Experiments using a swept-frequency signal and reference 
usually fall into this category.

The most powerful systems currently available are those which are capable of 
suppressing harmonic responses and so behave as if the signal is multiplied by a 
sinewave. These more advanced systems − to be described further in Chapters 8 
and 9 − will respond only to the fundamental component of a periodic non-
sinusoidal signal. In the case of two-phase systems with fundamental-only 
response, the amplitude of the fundamental component of a signal and its phase 
shift relative to the reference can be measured in a true ‘vector’ mode without 
ambiguity.

When the lock-in amplifier is of the conventional type and subject to the 
harmonic responses of the phase-sensitive detector, the application of a vector 
computer is only meaningful when the signal is of sinewave form. Also, we shall 
find that the vector computer falls short of the ideal when signals are very noisy, 
resulting in a severe limitation on dynamic range. There is, therefore, a good case
for investigating two-phase techniques which extend the benefits of phase-
tracking to non-sinusoidal signals while retaining the noise rejection inherent in 
the synchronous detection process.

It is significant that the majority of two-phase systems are catalogued as ‘lock-in 
analysers’ by their manufacturers, thereby emphasising their role in the analysis 
of both signals and systems. In support of this we shall be reviewing the 
operation of two-phase systems as wave analysers and spectrum analysers and in 
other applications where noise is not identified as a particular problem. This is in 
addition to a brief survey of some ‘classic’ two-phase applications. Features 
common to most of these applications are the need for wide dynamic range and 
the ability to operate with extremely high resolution in the frequency domain. We
should also add ‘cost- effectiveness’ to this list. The relatively low cost of lock-in
systems allied to their versatility and the possibility of computer-control (Chapter
10) increases their appeal as general-purpose measurement tools.

5.2 Examples of ‘classic’ two-phase applications
5.2.1 A.C. bridge balancing

The ability of two-phase lock-in amplifiers to simultaneously measure the in-
phase and quadrature components of a low-level signal perturbed by noise makes 
them ideally suited to null detection on a.c. bridges. A typical experimental 
arrangement with a four-arm bridge is depicted in Figure 5.3. The bridge output 
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is fed to the differential inputs of a preamplifier or directly to the lock-in 
amplifier if this has a differential input stage. The notes on signal connections 
and on the disruption of ground loops given in Appendix 6 are highly relevant to 
this particular application.

Fig. 5.3 A.C. bridge balancing using a two-phase lock-in amplifier

The lock-in amplifier is referenced directly from the bridge excitation source with
zero phase shift in the reference channel. The in-phase and quadrature 
components of the bridge output voltage are measured with respect to the 
reference voltage and displayed directly on the twin outputs of the lock-in 
amplifier.

Using the notation of Fig. 5.3 the residual output voltage from the bridge is:

Vo = 

€ 

Z4

Z1 + Z4

− Z3

Z2 + Z3

 ⎡

 ⎣
 ⎢

 ⎤

 ⎦
 ⎥Vi

Where Z1 etc. represent the complex impedances of the bridge arms. The balance 
condition for a null output is now:

Z1Z3 = Z2Z4

And balance is only achieved when the real and imaginary parts of Z1Z3 and Z2Z4 

are separately equal.

Putting the impedances in the form:

Z = R + jX

we obtain the balance conditions:

   Re {Z1Z3}= Re {Z2Z4}

R1R3 − X1X3 = R2R4 − X2X4

and

   Im {Z1Z3} = Im {Z2Z4}

R1X3 + X1R3 = R2X4 + X2R4

We must avoid the pitfall of assuming that the in-phase and quadrature 
components of the bridge output can be separately and uniquely identified with 
each of the balance conditions. This has been responsible for abortive attempts to 
null one component independently of the other. Even worse is the incorrect 
assumption that the in-phase component can be nulled by balancing resistive 
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elements and the quadrature component nulled by balancing reactances.* In 
general, we must expect that balance is obtained when the in-phase and 
quadrature components are both zero and that each component will only be zero 
when each of the null conditions is satisfied.

This rather pessimistic conclusion is tempered in practice by the relative ease of 
use of the two-phase lock-in amplifier in this application. No adjustments are 
required except to the sensitivity control which can be switched to register deeper
and deeper nulls as balancing proceeds. This should be contrasted to 
measurement with a single-phase lock-in amplifier which would require continual
switching between in-phase and quadrature components to cheek the outcome of 
the smallest adjustment.

Null detection makes full use of the noise-rejection properties of the lock-in 
system, but is subject to a source of error resulting from distortion on the bridge 
excitation oscillator. If the bridge is frequency selective it should be possible to 
achieve a null at the fundamental excitation frequency, leaving a residual voltage 
in the output made up from the distortion components of the oscillator. These are,
of course, harmonically related to the excitation − and hence the reference − 
frequency. If these unwanted components are allowed to contribute to the output 
of the lock-in amplifier, an error will result in the determination of the null point.

Even when the excitation oscillator is of exceptionally high purity it is probable 
that non-linearities in the bridge elements will contribute measurable harmonic 
components in the bridge output. This applies particularly to bridges containing 
cored inductors and includes some important examples as the Maxwell, Owen 
and Carey-Foster bridge configurations.

The only solution is to use a lock-in amplifier with fundamental-only response, 
and this has become the preferred type of system in bridge balancing 
applications.

The extremely high sensitivity of lock-in systems, obtained through the use of 
external preamplifiers, means that in critical applications the level of excitation 
can be drastically reduced to avoid excessive dissipation in the bridge elements. 
The entire detection system including all connections to the bridge should be 
designed very carefully to avoid ground-loop problems, particularly if detection 
is envisaged down to a level of tens of nanovolts.

The scaling factor of lock-in amplifiers is such that a bridge offset voltage of this 
order could be made to provide a response of up to 10 V from the phase-sensitive 
detector. Such an output could then be used to provide a feedback signal for a 
control system; for example a temperature control system where the bridge 
balances about a 'set' point corresponding to a particular temperature.

5.2.2 A. C. impedance measurements

We shall use the example of semiconductor capacitance measurement which uses
an experimental set-up similar to that shown in Fig. 5.4

The voltage source at the frequency of interest is arranged to have a very small 
output impedance by virtue of the attenuator and is coupled to the device under 
test by a large capacitor CB. Application of a d.c. voltage VDC causes CB to 
charge and develop a ramp voltage VBIAS which is applied to the device under test
together with the a.c. excitation vs. The device under test is terminated at the 

* This misconception probably arises because of confusion with the method for a.c. impedance 
determination described in the next section.
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virtual earth input of the current amplifier, and so sustains the full input voltage  
vs + VBIAS.

The signal current is now:

Is = vs [Gx + jBx],   Bx = ωCx

Which comprises components in phase and in quadrature with the excitation 
source.

When the phase of the reference channel is set correctly, the in-phase output of 
the lock-in amplifier becomes proportional to Gx and the quadrature output 
becomes proportional to Bx.

Fig. 5.4 Semiconductor capacitance measurement. Provision is made to 
apply a ramp bias voltage to the device under test

The system can be set up for phase and sensitivity as follows. First of all the 
output from the excitation source is adjusted to give as large an a.c. voltage as is 
allowable across the device under test. A suitable full-scale meter reading for Cx 
is chosen and a capacitor of this value is put in the test point. The reference phase
is then adjusted to give no output from the in-phase phase-sensitive detector and 
the overall sensitivity is adjusted to give a full-scale reading on the quadrature 
output. The phasing can be recheeked by inserting a non-reactive resistor at the 
test point when it should be observed that the quadrature output is zero.

Fig. 5.5 Measurement of low impedances. The series resistor Rs is chosen 

so that Rs >>| Zx|

An alternative approach is often used when the impedance to be measured has 
very low magnitude in the frequency range of interest. This is to supply the 
device under test from a source of relatively high impedance and to use a voltage 
amplifier as shown in Fig. 5.5. When the series resistor Rs >> | Zx|  the device 
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under test is supplied with substantially constant current vi/Rs which is in-phase 
with the signal source. The voltage developed across Zx is then, to a good 
approximation:

vs = vi (Rx + jXx)/Rs

This method is most appropriate when accurate results are to he obtained with 
very low power dissipation in the device under test. The notes on amplifier noise 
matching given in Appendix 5 are relevant when the output voltages are 
particularly low since it is difficult to maintain a good noise figure when 
amplifying from a source of very low impedance. Fortunately, lock-in amplifiers 
are usually supported by a range of preamplifiers and matching transformers 
which enable a near-optimum noise match to be obtained under a wide range of 
signal and source conditions.

5.2.3 Phase measurements

We can identify three main types of application where the relative phase of a 
signal is to be measured, each of which involves the lock-in amplifier in a 
different set of measuring procedures.

The first is where the phase-shift of a sinewave signal is to be measured with 
respect to a reference voltage to a high order of precision. This can be achieved 
using the null-shift procedure introduced in Section 3.5, carried out with regard to
the precautionary measures given at the end of Chapter 4. The null-shift 
procedure brings the signal and reference in phase at the phase-sensitive detector,
whereupon the phase-shift of the signal can be read directly from the reference 
channel phase settings. Either a single-phase or a two-phase lock-in amplifier can
be used in this type of measurement.

The second type of measurement involves the detection of small phase variations 
or small phase increments on a signal. The lock-in amplifier is then set up to 
operate as a linear phase detector by defining a ‘null’ condition with the signal 
and reference in quadrature at the phase-sensitive detector. The two-phase lock-in
amplifier comes into its own in this type of application because the amplitude of 
the signal can be continuously monitored on the in-phase phase-sensitive detector
while the phase variations of interest are monitored on the quadrature channel. 
The accuracy to which a two-phase system can maintain quadrature between the 
two phase- sensitive detectors is usually of a very high order, typically 0.1° at 
mid-band. In practice, any departure from ‘true’ quadrature can be compensated 
when nulling the output from the quadrature channel, leaving the system to 
register small phase increments to a high level of precision. Sources of error are 
the phase noise and phase drift of the reference channel and the output drift of the
phase-sensitive detector. These must be taken into account as described in 
Section 4.6.5.

The general rule is to operate with the maximum possible value of time constant 
in order to minimize fluctuations due to phase noise and to operate at the best 
achievable output stability, that is with the minimum value of expand gain 
following the phase-sensitive detector. The overall sensitivity to phase variations 
can then be enhanced by increasing the a.c. gain of the system. This is a 
legitimate step to take in a system with large dynamic reserve; even though the 
output from the in-phase channel may now be greater than full-scale, the 
quadrature output will maintain a linear response to small phase variations 
provided the allowable input swing to the phase-sensitive detector is not 
exceeded. As demonstrated in Section 4.6.5, it is usually possible to overcome 
the drift of the phase-sensitive detector to give a measurement accuracy limited 
only by the phase drift of the reference channel. In extreme cases, entire lock-in 
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systems have been enclosed in environmental chambers to stabilize operating 
conditions and minimize temperature-dependent phase errors.

The final type of measurement is the exclusive preserve of two-phase systems, 
where continuously changing phase angles in the range 0° to 360° are to be 
monitored without adjusting the controls of the lock-in amplifier. A two-phase 
lock-in amplifier with a vector computer is normally used in this situation; 
however, when the signal is particularly noisy, a vector tracking system of the 
type described in Section 5.4 often provides a more accurate measure of phase 
shift.

5.3 Noise limitations of the vector computer
The ability to measure the amplitude of signals independently of phase setting 
has proved to be so attractive that commercial systems have become available in 
which the vector magnitude provides the sole output. Aimed specifically at the 
spectroscopy market, these systems offer ease of use with the phase control 
entirely eliminated, and have become known as ‘phase-insensitive’ detectors or 
p.i.ds. There are, in addition, many research workers operating with conventional 
two-phase systems who habitually make use of the vector computer output in 
routine signal recovery applications as opposed to precision vector analysis. In 
view of this, it is appropriate to investigate the behaviour of the vector computer 
when the signal is noisy and subject to large variations in amplitude - as might be
expected in a typical spectroscopy application. We, therefore, begin with an input
to the lock-in amplifier of the form:

v(t) = √2 Vs sin (ωst + φs) + n(t)

where n(t) represents wideband random noise which accompanies the signal.

The response of a synchronous detection system to random noise components is 
discussed in Appendix 3 and the effect of the harmonic responses of a phase-
sensitive detector have been reviewed in Section 3.3. The net result is that a two-
phase system produces output voltages

VA = [Vs cos φ + nA(t)] VF/SF

VB = [Vs sin φ + nB(t)] VF/SF

where nA(t) and nB(t) are uncorrelated noise voltages derived from the 
components of n(t) which originate close to the reference frequency and its odd 
harmonics.

The prime advantage of synchronous detection methods over competing 
techniques is that the residual noise voltages which filter to the final output 
appear with zero average value and so make no net d.c. contribution to the overall
response. As explained in Chapter 2, this is a result of the essential linearity of 
the synchronous detection process. Bearing this in mind, let us now consider the 
effects of subjecting the output voltages VA and VB to a stage of non-linear 
processing, using a vector computer. This provides an output voltage:

Vo = (VA
2 + VB

2)½

The most noticeable effect of the vector computer is observed under zero or low 
signal conditions. The system output then becomes:

Vo = [nA
2(t) + nB

2(t)]½ VF/SF

The squaring operation ensures that Vo can take only positive values and is thus 
equivalent to a stage of rectification. The zero signal output is then a fluctuating 

Chapter 5–7



unipolar waveform having a non-zero average value which we shall denote by the
symbol ∆:

∆ = Ave. value [nA
2 (t) + nB

2(t)]1/2 VF/SF

It is not necessary to enter into detailed calculations to predict the general effect 
of this noise offset in the output. If we assume that the input noise is fixed while 
the signal is allowed to vary, then the input signal-to-noise ratio must be greater 
than some threshold value before the response to the signal begins to register in 
the final output. The system will be subject to gross measurement errors for 
signals close to the noise threshold; calculations then show that the average 
output voltage due to the signal must be greater than 5∆ before the vector 
computer is in error by less than 21/2%. The error decreases rapidly as the signal 
increases beyond this point, falling as the square of the signal.

When operating a spectrometer under noisy conditions the effect of a vector 
computer will be to introduce distortions on small features close to the baseline. 
An estimate of the noise offset, ∆, should always be made at the outset, therefore,
to predict the range over which a linear response can be obtained. Fortunately, in 
many cases, this is easily achieved by temporarily shutting off the signal. If this 
cannot be done without losing the noise, an alternative method of estimating the 
noise offset is given by first of all estimating the fluctuation on either of the 
output voltages VA or VB. When operating with large time constants and 
correspondingly long response times this can be measured in terms of the peak-
to-peak fluctuation of the output meter; otherwise it will be necessary to observe 
the fluctuation by connecting VA or VB directly to an oscilloscope. The value of 
the noise offset is then given to a good approximation by:

∆ = Vp-p/4

where Vp-p is the observed peak-to-peak fluctuation in volts. If the resulting value

of ∆ is judged to be too high compared with the smallest value of output voltage 
then the most obvious step is to reduce the fluctuations nA and nB by increasing 
the time constants on both phase-sensitive detectors. It will be recalled that the 
r.m.s. fluctuation is reduced in proportion to the square root of the time constant; 
hence increasing the time constant by a factor of 10 brings a reduction of √10 in 
∆.

In cases where the maximum allowable time constant is established by 
considerations such as spectrometer scan time, it is common practice to accept a 
relatively poor output signal-to-noise ratio and then to introduce a stage of post-
detector averaging. In most cases this consists of crude averaging ‘by eye’ of 
output chart records, while in others, use is made of signal averagers and 
waveform ‘eductors’ which store and average the results of several successive 
scans to a high degree of precision. Unfortunately, even these relatively 
sophisticated techniques cannot restore the loss of dynamic range incurred 
through the use of a vector computer. In general, the success of any averaging 
technique depends upon the noise having zero average value. It follows that the 
best place for such equipment is directly on the output of the phase-sensitive 
detector. In fact, this should present no problem in spectroscopic measurements 
where signal and reference usually exist in a fixed phase relationship at all times.

5.4 Vector tracking
When operating a broadband harmonically responding lock-in amplifier the use 
of a vector computer is restricted to sinusoidal signals. Also, if the signal is very 
noisy and the maximum allowable time constant is restricted by external factors 
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(such as spectrometer scan time), the vector computer can impose a limitation on 
dynamic range.

We shall now investigate a mode of operation known as vector tracking which 
overcomes the noise limitations of the vector computer while retaining the ability
to monitor the magnitude of non-sinusoidal signals independently of reference 
phase setting. The method is, in effect, an automated version of the null-shift 
procedures discussed in Section 3.5 and uses a two-phase system in the 
configuration illustrated in Fig. 5.6.

Fig. 5.6 Vector-track configuration

The arrangement operates as a closed-loop control system in which the output of 
phase-sensitive detector B is integrated and fed back to control a voltage-
controlled phase-shifter in the reference channel. The control conditions are such 
that the net input to the integrator is zero at all times, which implies that the 
phase-shift is automatically adjusted to enforce a null condition at the output of 
phase-sensitive detector B. The reference phase at phase-sensitive detector A is 
displaced by 90° and will always yield a maximum response for signals which are
‘symmetrical’ in the sense defined in Section 3.5. Otherwise, the response will 
not necessarily be a maximum.* The best that we can say in the general case is 
that the phase is controlled to a well-defined condition which ensures that a 
consistent measure of signal magnitude can be obtained under adverse conditions,
irrespective of the initial phase setting of the lock-in amplifier.

Vector tracking systems can accommodate variations in signal phase-shift up to a 
limit set by the voltage-controlled phase-shifter, usually ±100°. When the phase-
shifter follows a linear law over its full range, the internal feedback voltage 
becomes directly proportional to the phase offset of the reference channel and can
be scaled and displayed on a meter calibrated in degrees. If the signal requires a 
phase offset greater than the range of the phase-shifter it will be necessary to 
change quadrants by switching increments of 90° from the front-panel phase 
controls. The phase offset can then be obtained by adding the set phase of the 
reference channel to the phase indicated by the output meter.

The capacitive feedback of the control-loop integrator is usually switched from 
the time-constant control of phase-sensitive detector B which should now be 
treated as a means of adjusting the transient response of the overall system. The 
control loop contains one integrating element which is readily identifiable, but in 

* Unless of course the system is fundamental-only responding. In this case, a control loop based on 
the null-shift procedure will always maximize the response to the fundamental component of a non-
sinusoidal periodic waveform.
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examining the system response we must also take into account the behaviour of 
the voltage-controlled phase-shifter. This cannot respond instantaneously to 
changes in the feedback voltage and will be characterized by a time constant 
which enters the control loop equations. As a result, the overall system has a 
response which is at least second-order and liable to exhibit oscillatory transients 
following abrupt changes in signal or reference-channel phase-shift. The 
erstwhile time-constant control on channel B is important in this respect as it can 
be used to control the damping of the system and adjusted to give a response free 
from excessive over- shoot, increased damping being equivalent to a longer time-
constant selection.

The amplitude of the signal also influences the behaviour of the control loop 
since any change in amplitude is equivalent to adjusting the internal gain of the 
system. The effect is to bring about an increase in damping coupled to an increase
in response time as the signal is reduced. If the transient response of the system is
important in a particular application, the recommended procedure is to adjust the 
damping at maximum signal strength knowing that the damping can only 
increase* when the amplitude is reduced in the course of an experiment.

A vector tracking lock-in amplifier can thus ensure that the detection system is 
brought to a well-defined condition for all types of periodic signal. This is 
achieved with minimal effort on the part of the user and without generating 
spurious offsets at the output due to rectified noise components. Vector tracking 
can be advantageous under many circumstances, but it must be remembered that 
if a non-sinusoidal signal suffers large phase variations in the experiment under 
investigation then it is possible that the waveform will also change and that the 
overall calibration of the measurement system will vary accordingly. The only re-
course here is to use a lock-in system which responds only to the fundamental 
component of a synchronous signal. This would include systems using a signal 
channel with a tuned filter which were discussed in Section 4.4. In this case the 
vector track mode serves to compensate phase variations caused by signal 
frequency drift relative to the centre frequency of the tuned filter.

5.5 Asynchronous operation

5.5.1 Introduction

Up to this point we have assumed that the two-phase lock-in amplifier is 
operating with the signal and reference precisely synchronized. In this section we 
shall be relaxing this restriction and looking at the possibilities of using a two-
phase system fitted with a vector computer in applications where the signal and 
reference are asynchronous. This will provide a background to the numerous 
applications where two-phase lock-in amplifiers are used as wave analysers and 
for high-resolution spectrum analysis.

5.5.2 Operation as a wave analyser

It has been established that the response of a synchronous detection system to an 
asynchronous sinewave signal has the form of a ‘beat’ component at the 
difference frequency of the signal and reference. In practice, the only beat 
components which survive to perturb the final output are those which correspond 
to a frequency difference less than the bandwidth of the output low-pass filter.

* These observations on response should be contrasted with these given in chapter 7 in relation to 
phase-locked loops. We will find there that damping is reduced along with the signal level. The 
difference is due to a modification of the integrator in phase-locked operation which gives 
independent control of damping and response time (loop bandwidth). This feature is not usually 
included in standard vector systems as supplied by manufacturers.
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Suppose a lock-in amplifier with output voltage swing ± VF and a full-scale 

sensitivity SF is provided with a reference at frequency ωR and an asynchronous 
signal:

Vs(t) = √2 Vs sin (ωst + φs)

where the phase angle φs is referred to some common time origin. When ωs ≅  ωR 

the final output will be sinusoidal at frequency ∆ω = | ωs −ωR|  with amplitude and
phase determined by the frequency-response of the low-pass filter:

HL(jω) = AL(ω) exp jθL(ω)

AL(0) = 1

The final output thus takes the form:

VB(t) = Vs(VF/SF)AL(∆ω)sin [∆ωt + φR  − φs + θL(∆ω)]

If VA and VB are now applied to a vector computer capable of handling time-
varying signals the system will indicate a signal magnitude:

Vo = [VA
2 (t) + VB

2(t)]½

     = Vs(VF/SF)AL (∆ω)

This is a static response which can be maximized by carefully tuning the 
reference signal to the frequency of the asynchronous signal. If the latter 
represents a signal of interest, the two-phase lock-in amplifier provides a means 
of amplitude determination when a synchronous reference signal is not available. 
This approach offers an advantage over conventional, heterodyning, wave 
analysers in that the detection bandwidth is determined by the properties of a 
low-pass filter and can consequently be made very small indeed.

In deriving the response it was assumed that the quadrature phase-sensitive 
detectors were supplied with identical low-pass filters. Indeed, if these are not 
perfectly matched, the output of the vector computer appears modulated at 
frequencies related to the difference frequency ∆ω. Also, as we have remarked, 
the vector computer must be able to give a true response to time-varying signals. 
The usual design target is for a bandwidth in excess of 10 kHz, enabling 
operation over a wide range of filter time constants.

5.5.3 High-resolution spectrum analysis

In the present discussion the only distinction we wish to make between a wave 
analyser and a spectrum analyser is that the latter is furnished with a swept-
frequency reference and is usually coupled to some form of display such as an 
oscilloscope or chart recorder. A typical set-up is shown in Fig. 5.7.
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When the signal of interest is characterized by a mixture of frequency 
components distributed over a wide frequency range the harmonic responses of a 
conventional broadband lock-in amplifier can have a serious affect both on the 
distribution and accuracy of the components in the final read-out. For this reason,
it is virtually mandatory to use a system with fundamental-only response in this 
type of application.

In spectrum-analyser mode, the response to a single Fourier component of the 
signal has a ‘line shape’ equivalent to one of the lock-in amplifier transmission 
windows discussed in Section 3.3. The frequency resolution obtainable is thus 
equal to twice the bandwidth of the low-pass filter and is given by:

∆f = 1/(πTo)

This result gives the −3dB resolution for a 6dB/octave filter with time constant TO 
and the −6dB resolution for a 12dB/octave filter.

In deciding on the rate of frequency sweep in this and any other swept-frequency 
application in the slew rate of the reference channel defined in Chapter 4 must be 
taken into consideration. The main reason for using a lock-in amplifier is, 
however, that it represents a relatively inexpensive way of obtaining 
measurements with a very high resolution in the frequency domain. It is found, 
almost invariably, that this resolution − and hence the output filter bandwidth − 
sets the main limitation on the rate of frequency sweep; high resolution is only 
obtained at the expense of long observation times.

This is illustrated by Fig. 5.8. Fig. 5.8(a) demonstrates the ability of a two-phase 
lock-in system to resolve 10 Hz sidebands centered on a signal frequency of 
10 kHz. The display was obtained at a resolution of 1 Hz and required a sweep 
rate of 0.2 Hz/s. The overall frequency sweep from 9975 Hz to 10025 Hz thus 
took approximately 4 minutes. The penalty of using too high a scan rate is 
illustrated in Fig. 5.8(b) for a single spectral line. As in all spectrum analyser 
work a rapid scan leads to a distorted display with the line peak shifted in the 
direction of the frequency sweep,

The oscillatory nature of the response under fast sweep conditions is 
characteristic of system using filters of low order, giving roll-offs of 6 dB or 
12 dB/octave. The oscillatory effect is not generally observed on conventional 
spectrum analysers which use bandpass filters of much higher order, although the
shift of the spectral peak is observed.
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Fig. 5.8 (a) High resolution spectrum obtained with a two-phase lock-in 

amplifier; (b) line distortion resulting from a rapid scan

When deciding upon measurement bandwidth in a lock-in amplifier based system
the maximum acceptable value should be taken, corresponding to the smallest 
acceptable value of output time-constant on the two phase-sensitive detectors. 
This is because the allowable sweep rate, R (Hz/s) has an inverse dependence on 
the square of the time constant (subject, of course, to the slew rate limitation of 
the reference channel not being exceeded). For a distortion-free display the sweep
rate R should satisfy the criteria:

R = 1/(50 To
2),   6 dB/octave filter

R = 1/(100 To
2),   12 dB/octave filter

Note that the better frequency resolution of a 12 dB/octave filter demands a 
correspondingly longer sweep rate. To see the practical significance of these 
criteria suppose we wish to measure the frequency components of a signal 
appearing in the range 950Hz to 1050 Hz at a resolution of 10 Hz using a 
6 dB/octave filter. The required value of time constant is:

To = 1/(10π) ≅  30 ms

The recommended sweep rate for a distortion-free display is now:

R = 1/(50 To
2)

   = 22.2 Hz/s

The total frequency scan required is 100 Hz; hence the minimum scan time must 
be 4.5 s. If, in a subsequent measurement, the frequency resolution was required 
to be 1 Hz, the scan time would have to be increased to 450 s, a figure which 
emphasizes the need to work with the maximum possible bandwidth.

To conclude, it is worth giving another set of criteria which can speed up the 
measurement process in some circumstances. These give the sweep rate required 
to display a spectral line with an error of less than 2% in amplitude, accompanied
by a small shift in the response peak but with negligible distortion otherwise. The
criteria are much less stringent than before:

R ≤  1/(4 To
2),   6 dB/octave filter
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R ≤  1/(8 To
2),   12 dB/octave filter

Under these conditions, the shift of the line peak will be less than the system 
resolution, giving an overall accuracy quite adequate for preliminary 
measurements.

5.6 References

References and further two-phase applications:
1 ‘The automatic measurement of semiconductor junction capacitance’. 

Application Report 5, Brookdeal Electronics, Bracknell, England

2 ‘Bridge balancing and the two-phase lock-in amplifier’. Application Note 
104B; and ‘Engineering applications of the lock-in amplifier’. Application 
Note 146. Princeton Applied Research Corp., Princeton, NJ
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CHAPTER 6 

Limitations of conventional lock-in systems 
 

 

 

6.1 Introduction 
This short chapter provides an interlude where we can review the main 
characteristics of conventional lock-in amplifiers before going on to consider 
more complex system configurations. Of particular interest are the aspects of 
performance which limit the effectiveness of conventional systems in different 
applications. If a list of these performance limitations were to be drawn up it 
would almost certainly include the following items: 

(1) Dependence on the availability of a synchronous reference voltage 

(ii) Trade-off between key specifications; for example, dynamic-range/linearity, 
dynamic-reserve/output-stability 

(iii) Harmonic responses of the phase-sensitive detector appearing in the overall 
response of a lock-in amplifier 

(iv) Slew-rate limitations in the reference channel 

This list is not intended to be comprehensive, nor is it meant to imply that items 
(i) to (iv) are identified as shortcomings in every application. What we can say is 
that shortcomings in these areas have prevented conventional lock-in amplifiers 
from being adopted as general-purpose measurement tools and from performing 
tasks beyond their traditional role in signal recovery.  

The absolute dependence of synchronous detection systems on a reference 
voltage would appear to be a prime candidate in this respect, yet, in practice, 
most research workers seem able to devise experiments where a ‘local’ reference 
is made available. There are, nevertheless, several examples of experiments 
where the signal source is remote from the detection system and a local reference 
must be generated by phase-locking an oscillator to the incoming signal. 

An example in this category, the reception of satellite ‘beacon’ signals, is 
described in the next chapter. It should not be thought, however, that all phase-
lock applications are of this ‘remote’ type. For example, in Fourier-transform 
photometry the traditional light ‘chopper’ is often replaced by a rotating optical 
grating. This may be so fine-ruled that the usual method of generating a reference 
by means of an auxiliary light source and phototransistor is impossible to apply. 
In this case a reference can be generated by phase-locking to the signal in the 
output of the experiment using the general arrangement illustrated in Fig. 6.1.  

The problem of phase-locking to noisy signals merits a fairly extensive 
discussion in the next chapter where we shall see how phase-locked systems can 
be bust up using standard lock-in amplifiers and off-the-shelf modules. 

Regarding the second item, it must be expected that some sort of trade-off will be 
encountered when any electronic instrument is operated at its performance limits. 
The trade-offs referred to in (ii) are inevitable when a conventional lock-in 
amplifier is operated with a broadband signal channel, but we have seen that the 
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trade-offs can be improved when filters are used to eliminate unwanted 
components before detection. For example, the increase in signal-to-noise ratio 

 
Fig. 6.1 General arrangement for generating a local reference in a lock-in 

recovery system. The phase-locked loop normally incorporates a 
second lock-in amplifier or phase-sensitive detector 

obtained by filtering can be made equivalent to an increase in dynamic range; the 
noise-handling capacity of the system is improved without incurring a penalty 
due to increased offset and drift in the output. Alternatively, the filters could be 
used to reduce the total level of signal and noise at the input to the phase-
sensitive detector with a possible increase in dynamic range sacrificed in favour 
of an improvement in linearity. 

In either case, the improvements attributable to the use of filters are obtained at 
the expense of wideband capability. Furthermore, the use of filters offers no 
solution to restoring the loss of dynamic range which is always observed when a 
phase-sensitive detector is operated towards the upper limit of its recommended 
frequency range. In general applications, therefore, there may come a point where 
the trade-offs can only be improved by moving to systems with inherently better 
performance. This might mean purchasing a conventional lock-in amplifier from 
a later generation than existing equipment. From the point of view of a designer 
working at the limits of available technology, it might be more appropriate to 
investigate techniques which enhance the dynamic range of ‘state of the art’ 
phase-sensitive detectors. Methods of achieving this last objective, by means of 
synchronous heterodyning, will be described in Chapter 8. 

The remaining limitations arising from harmonic responses and slew rate can be 
summarized with reference to specific measurement difficulties that have come to 
light in earlier chapters. Some solutions will be found in Chapters 8 and 9 which 
deal with more complex lock-in systems operating on the heterodyne and pulse-
width-modulation principles. Unlike the phase-locked systems discussed in the 
next chapter, heterodyning and p.w.m. lock-in amplifiers are almost invariably 
supplied and used as self-contained units and cannot, in general, be built up as 
modular systems. It will be found that some drawbacks of these more advanced 
systems are highlighted along with their inherent advantages. Certainly no single 
lock-in amplifier will address all the limitations identified at the beginning of this 
chapter; it is up to the user to define his own requirements and select the system 
most suited to his needs. 
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6.2 Limitations arising from harmonic responses 
6.2.1 Susceptibility to interference 
The response of a switching phase-sensitive detector is characterized by a set of 
transmission windows centered on the reference frequency and its odd harmonics. 
As discussed in Chapter 3, the higher-order windows have negligible effect on 
the final noise output when the signal is accompanied by broadband white noise, 
but can have the most serious effect when the signal is accompanied by 
narrowband noise, or by discrete interference components. 

The situation is by far the worst when the lock-in amplifier is synchronized to a 
low-frequency reference signal at 100 Hz or less. For example, a reference 
frequency of 100 Hz gives rise to 499 transmission windows between 100 Hz and 
100 kHz at, or near to which, the lock-in amplifier can respond to interference 
voltages. Moreover, at 100 kHz, where the relative magnitude of the harmonic 
windows is of the order 1/1000, the window frequencies are only 0.2% apart, 
leaving a very small margin for adjusting the reference frequency if large-scale 
high-frequency interference components are to be avoided. 

The problem is particularly acute when operating photometric equipment 
incorporating infra-red detectors. Such detectors often exhibit considerable 
thermal inertia and so limit the usable chopping frequency to a rnaximum of 
10 Hz or so. The measurement difficulties are often aggravated by the need for a 
matching transformer in the signal path to ensure a good noise match to the lock-
in amplifier (Appendix 5). This renders the system susceptible to inductive pick-
up and can result in relatively high-level interference at mains frequency. 
Because the chopping frequency is limited to about 10 Hz it is necessary to 
choose a value of this which does not have an odd harmonic within a few hertz of 
mains frequency.* Otherwise, measurements will be perturbed by a difference-
frequency beat component in the final output. Although the beat can always be 
reduced by using a larger output time-constant, this may not always be acceptable 
in view of the increased response time of the measurement system. 

The standard technique of suppressing harmonic responses by using a tuned filter 
in the signal channel of a lock-in amplifier was described in Section 4.4.2. From 
the discussion given there it is evident that a tuned filter offers only a partial 
solution to the present problem unless the stability of the chopping system 
(usually mechanical) is of a very high order. The use of a mains-frequency notch 
filter would usually provide a better solution to measurement difficulties in this 
case. 

6.2.2 Ambiguity due to the harmonic responses 
In a harmonically responding. system the output due to a sinusoidal signal at 
frequency fR is indistinguishable from one with three times the amplitude and the 
correct relative phase at frequency 3fR. This ambiguity in the response is not so 
serious when the requirement is for signal recovery at a fixed frequency with 
synchronous signal and reference, but can give rise to misleading results 
elsewhere. For example, the problems with signal distortion in a.c. bridge 
measurements have been described in Chapter 5. Also in that chapter were 
examples of operation with asynchronous signals, where the lock-in amplifier is 
used for wideband spectrum analysis. In this case the harmonic responses. will 
give rise to spurious lines in the output spectrum which occur whenever an odd 
harmonic of the reference coincides with a frequency component of the signal 

                                                        
* 9.3 Hz and 11 Hz are popular choices of chopping frequency in infra-red spectroscopy for this 
reason. 
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under investigation. Clearly, the use of a tuned filter for harmonic suppression 
has no.relevance to this type of measurement where the frequency is changing 
continually. 

A further example relates to the discussion on phase-locked loops in Chapter 7. If 
the phase detector in such a loop is provided by a phase-sensitive detector or 
lock-in amplifier with harmonic responses it is possible for the loop to lock 
securely at an odd sub-harmonic of the incoming signal frequency. If, in addition, 
the signal has squarewave rather than sinewave form, there will be a large 
number of additional frequencies where lock could be acquired. The effect here 
will be at its worst when the phase-locked loop is required to operate 
automatically. When the locking signal is very noisy it is recommended that the 
initial locking conditions are brought under manual control. This would normally 
be sufficient to ensure that spurious locking to harmonic components was 
avoided in signal-recovery applications. 

6.2.3 Detection of non-sinusoidal signals 
The limitation here refers to the problem of obtaining a maximum response to 
non-sinusoidal signals in the presence of noise. It was shown in Section 3.5 that 
there is no problem in principle with so-called symmetrical signals. Here, the 
null-shift procedures can always be applied to produce a maximum response 
which is first-order independent of errors in the reference-channel phase setting. 
Otherwise, the response will be less than maximum, resulting in a loss of output 
signal.to-noise ratio and an increased susceptibility to phase changes in the 
reference channel and in the applied signal. 

The null-shift procedures can be applied with confidence to all types of periodic 
signal when the lock-in amplifier has fundamental-only response. The detection 
system is always brought to a condition where the fundamental components of 
the signal and reference are in phase at the phase-sensitive detector. These 
systems will also ensure that this condition is reached by the automatic vector 
tracking system described in Chapter 5 in relation to two-phase lock-in 
amplifiers, and when the lock-in amplifier is brought under computer control as 
described in Chapter 10. 

In practice, the loss of sensitivity to asymmetrical signals is often marginal in 
conventional systems and the null-shift procedures offer the ultimate advantage in 
giving a phase setting which can be reproduced under the noisiest conditions. The 
problem of defining the phase-shift to give maximum response to an 
asymmetrical signal remains, however, and serves as another example of the 
measurement difficulties associated with harmonically responding systems. 

6.3 Slew rate limitations 
The specification of reference-channel slew rate was dealt with in Chapter 4. The 
loss of accuracy, or indeed loss of lock, that results from a rapidly changing 
reference frequency must be considered when setting up any experiment 
involving a frequency sweep at the reference input. 

In most cases, when using time-constant settings of a few hundred milliseconds 
or greater, the primary limitation on sweep speed comes from the response of the 
output filter of the lock-in amplifier. This aspect was discussed in some detail in 
Chapter 5 when outlining the behaviour of a two-phase system used as a high-
resolution spectrum analyser. When operating at lower resolution, however, say 
with resolution bandwidths of several hundred hertz, and with a relatively wide 
frequency sweep (covering, for example, the entire audio frequency range), the 
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maximum allowable sweep speed will often be determined by the slew rate of the 
reference channel. 

To take an example: suppose we operate with a 12 dB/octave output filter and a 
time constant setting of 1 ms. This gives a −6 dB frequency resolution of 

Δf = 1/(πTo) ≅ 300 Hz 

The maximum allowed sweep-rate to avoid errors greater than 2% in the output 
filter has been given in Chapter 5. We obtain 

Rmax = 1/(8To2) = 125 kHz/s 

If it was required to sweep from 2 kHz to 20 kHz, the system would allow a 
sweep time 

Ts = 18.103/125.103 = 144 ms 

This short sweep time would allow the spectrum-analyser output to be displayed 
in conventional fashion on an oscilloscope. The problem is, of course, that a 
sweep time of 144 ms over the range 2 kHz to 20 kHz is equivalent to 
72 ms/decade, a figure which is well beyond the slew rate capability of most 
conventional lock-in amplifiers. The reference processing circuits incorporated in 
pulse-width-modulated systems offer a solution to the slew rate problem as will 
be shown in chapter 9. 
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CHAPTER 7 

Phase-locking to noisy signals 
 

 

 

7.1 Introduction 
Phase-locked loops are used extensively in communications systems in 
demodulators for phase-and frequency-modulated signals1-3 . They also form an 
important component in the reference channels of some conventional lock-in 
amplifiers and their more sophisticated counterparts to be described in Chapters 8 
and 9. The requirement there is for frequency synthesis with the emphasis on 
precision and wideband capability. In the present context, however, we are 
specifically interested in the local generation of a reference waveform which is 
synchronized to a signal which may be obscured by noise. As explained in 
Chapter 6, this has relevance to all situations where it is not feasible to provide a 
direct reference connection. 

An example of a ‘remote’ application is in the reception of satellite ‘beacon’ 
signals. Microwave beacons are transmitted at fixed power level while received 
power at an earth station is subject to variations related to atmospheric conditions 
on the propagation path. Detailed information about earth-space path attenuation 
can thus be obtained through long-term monitoring of the received signal4. 

 
Fig. 7.1 Application of a phase-locked loop for the precision 

measurement of satellite beacon signals 

On reception, the microwave signal is translated to successively lower 
frequencies and measurement of received signal strength is made at the output of 
the final i.f. stage. When the signal is subject to deep fading due to attenuation by 
rain on the propagation path, the output signal-to-noise ratio is seriously degraded 
and phase-sensitive detection provides the solution to precision measurement 
over a wide amplitude range. There is no reference directly available, so this must 

a voltage-controlled oscillator is synchronized to the final i.f. signal. Usually, the 
be obtained by phase-locking. In the most simple arrangement, shown in Fig. 7.1, 
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beacon signal is unmodulated, which enables a very narrow bandwidth to be 
defined for the purpose of signal-to-noise improvement. In experimental systems 
the final i.f. is often chosen to be less than 1 MHz to enable the use of 
commercial lock-in amplifiers with wide dynamic range, both for phase detection 
within the loop and signal measurement. 

Fig. 7.1 represents a simple form of coherent receiver in which the phase detector 
measures the instantaneous phase difference between the voltage-controlled 
oscillator and the i.f. signal, which − in this context − is referred to as the locking 
signal. The phase detector output constitutes an error signal which is filtered and 
fed back to the control input of the v.c.o. The noise-rejection properties of the 
loop are determined by the choice of loop filter which also serves to control the 
dynamic behaviour of the loop. 

 
Fig. 7.2 Example of a heterodyne phase-locked loop. 

The loop is arranged to synchronize the output of the mixer to a 
stable reference oscillator 

Many variations of this basic loop are used in receiver design2,3. Very often, the 
final mixer is incorporated within the loop to enable the final i.f. signal to be 
synchronized to a stable reference oscillator as shown in Fig. 7.2. This 
arrangement is widely used in satellite beacon monitoring5. Loops involving 
frequency changing are examples of ‘derived’ loops and broadly classified as 
heterodyne loops. A further example of a heterodyne loop used for frequency 
synthesis in a heterodyne lock-in amplifier is discussed in the next chapter. 

The purpose of this chapter is to review the procedures whereby the basic loop of 
Fig. 7.1 can be made to operate successfully when the locking signal is very 
noisy and has variable amplitude. We shall find it possible to achieve 
synchronization when the locking signal is as much as 30 dB below the 
broadband noise level. However, to achieve such extremes of operation it is 
essential to understand the role of the loop filter in the locking process and to be 
able to select loop parameters in a systematic way. We shall therefore be looking 
at the mathematical background to loop operation and selecting some important 
results which have appeared in the literature in recent years. 

In most mathematical treatments of the phase-locked loop the phase detector is 
modelled as an ideal multiplier. This is entirely suited to our purposes here since 
it enables us to extend our conclusions to systems using phase-sensitive detectors 
as phase detectors. In fact, multiplier-detectors are the preferred type when the 
locking signal is very noisy. Alternative types such as sequential or edge-
triggered phase detectors are reserved for applications where the locking signal is 
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free from noise; for example, in the reference processing systems mentioned 
earlier. 

When describing the properties of the loop we shall maintain a clear separation 
between the multiplier phase detector and the loop filter, but we must recognize 
that this separation is not so easily achieved when both functions are incorporated 
in a fully integrated lock-in amplifier. In fact, many users find the problem of 
relating the specifications of lock-in equipment to the circuit blocks of an ideal 
loop model very difficult to overcome. We shall accordingly give due attention to 
this most important practical aspect and derive optimization procedures on the 
basis of ‘real’ equipment. 

The literature relating to phase-locked loops is extensive but the general level of 
treatment is such that the non-specialist reader will probably have considerable 
difficulty in following the complexities of loop behaviour under conditions of 
extreme noise. He will also find that signal amplitude variations are often 
excluded from the analyses entirely. Both of these aspects are of key interest to 
one whose involvement in phase-locking is motivated by signal recovery, and we 
shall attempt to take them into account in the course of this chapter. 

7.2 ‘Static’ analysis of a phase-locked loop 
7.2.1 Phase detector output 
We shall assume at the outset that the locking signal is noise-free and 
unmodulated and that the phase-locked loop has succeeded in pulling the v.c.o. 
frequency until it coincides exactly with that of the locking signal. 

 
Fig. 7.3 Static analysis of a phase-locked loop 

vs(t) = √2Vssinω it 
vo(t) = √2Vocos (ω it + θε) 

We shall use a multiplier model for the phase detector and refer to the voltages in 
the loop identified in Fig. 7.3. On examining the loop in the locked condition we 
find an immediate consequence of using a multiplier-detector, namely that the 
loop must force a quadrature relationship between its two inputs to ensure proper 
operation (Section 2.4.4). We accordingly write the two phase detector inputs in 
the form: 

vs(t) = √2 Vs sinωit 

vo(t) = √2 Vo cos(ωit + θε) 

where θε represents a small error measured from the ideal quadrature condition. 
Introducing a constant K, we obtain an output 

vD = KVsVo sin θε 



Chapter 7–4 

 

from the phase detector, which, in turn, supplies the feedback essential to loop 
control. 

It is usual to express this result in the form 

VD = KD sin θε 

Where KD (volts/radian) measures the sensitivity of the phase detector. Since the 
amplitude of the v.c.o. is usually fixed we find that the phase detector sensitivity 
is proportional to the amplitude of the locking signal. In most of the ‘standard’ 
analysis which follows it will be assumed that KD is fixed, but we must 
eventually consider the effect of variations in signal amplitude. 

7.2.2 Static phase error 

The notion of phase error must arise in a general description of any phase-control 
system. To calculate its magnitude we must first consider the operation of the 
v.c.o. 

A linear model is to be used in which the frequency offset Δω from the v.c.o. 
free-running frequency, ωo, is proportional to the applied control voltage vc. This 
gives 

Δω = Kovc 

where Ko is the v.c.o. gain factor with dimensions radians/V-s. 

Under the essentially static conditions assumed here, when the amplitude and 
phase of the locking signal are free from variations, the v.c.o. offset frequency 
will be 

Δω = ωi − ωo 

which is maintained by a control voltage 

vc = KDF(0) sin θε 

Here, F(0) is the magnitude of the zero frequency response of the loop filter. The 
static frequency offset of the v.c.o. from its free-running frequency is therefore 

Δω = KoKDF(0) sin θε 

The loop is usually designed to make the static phase error very small. In this 
case we can make the approximation sin θε ≅ θε and so obtain 

θε =

€ 

Δω
KoKDF(0)

 

The static phase error can accordingly be reduced by increasing the d.c. gain of 
the loop, KoKDF(0), and by initially setting the free-running frequency of the 
v.c.o. as close as possible to the incoming frequency, thus minimizing Δω. 

7.2.3 ‘Hold-in’ range 

If we now suppose that the incoming frequency is subject to a slow drift, the loop 
will track and accommodate the frequency change by a change in the v.c.o. offset 
frequency. However, the results of the last section show that the maximum 
possible value of the frequency offset is 

|Δω|max = K0KDF(0) 

corresponding to a phase error magnitude of π/2. 
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Beyond this point, the loop loses control and synchronization is lost. We 
accordingly define the hold-in range of the phase-locked loop: 

ωH = 2KOKDF(0) 

The hold-in range is proportional to the d.c. gain of the loop and in practice may 
be far greater than the range over which the static phase error might be 
considered acceptable. 

7.3  Dynamic response 
7.3.1 Introduction 
Consideration of the static behaviour of the phase-locked loop does not involve 
any detailed specification of the loop filter. At this point all we can say is that the 
filter must be effective in suppressing unwanted components at the output of the 
phase detector and that a high value of gain at zero frequency makes an important 
contribution to reducing static phase errors and increasing the hold-in range of 
the loop. These must be major considerations in selecting a filter but the final 
choice must be consistent with an overall loop response which is stable and 
predictable. These considerations involve a study of the dynamic behaviour of the 
loop when locked to an incoming signal which carries phase modulation. 

7.3.2  The loop equation 
We begin with reference to Fig. 7.4 which shows the relevant voltages at 
different points in the phase-locked loop. 

 
Fig. 7.4 Deriving the loop equation. The input to the loop is taken to be 

the phase variation of the locking signal 

The loop is assumed to be in a locked condition with quadrature voltages at 
frequency ωi applied to the phase detector. The v.c.o. phase is modulated by a 
variation θo(t) in response to the phase-modulation θi(t) carried by the locking 
signal. It is the nature of this response which is of interest here, in particular: how 
effective is the loop in ‘following’ the input phase variation? 

The loop operates on the difference between θi(t) and θo(t), which produces a 
phase detector response 

vD (t) = KD sin [θi(t) − θo(t)] 

We recall that KD  is strictly proportional to the amplitude of the incoming signal, 
which is assumed to be fixed throughout the following discussion. 
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The phase detector response is modified by the loop filter. The resulting output 
provides the control voltage, vc(t), to the v.c.o. and can be expressed in terms of 
the convolution: 

Vc(t) = KD sin [θi(t) − θo(t)] ⊗ fL(t) 

where fL(t) is the impulse response of the loop filter. 

The resulting frequency deviation of the v.c.o. is proportional to vc(t), and for our 
purposes it is convenient to express this deviation in terms of the time derivative 
of the v.c.o. phase, giving 

Δω(t) = dθo(t)/dt = KoKD sin [θi(t) − θo(t)] ⊗ fL(t) 

This is the general non-linear equation describing the operation of the phase-
locked loop. The non-linearity is inherent in the phase detector response, but can 
be over-come by assuming that the loop is designed to give a very small dynamic 
phase error. In this case, we write 

sin [θi(t) − θo(t)] ≅ θi(t) − θo(t) 

for |θi(t) − θo(t)| << 1 radian 

and so obtain the linear loop equation 

dθo(t)/dt = KoKD[θi(t) − θo(t)] ⊗ fL(t) 

The conventional approach to this equation is to derive the transfer function 
relating the ‘input’ and ‘output’ phase variations. We accordingly take Laplace 
transforms of both sides: 

sθo(s) = KoKD [θi(s) − θo(s)] F(s) 

and rearrange to obtain the transfer function 

H(s) = 

€ 

θo(s)
θi (s)

=
K0KDF(s)

s+K0KDF(s)
 

 
Fig. 7.5 Magnitude of a second-order closed-loop transfer function at 

various values of the damping ratio, b 
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Given H(s) we can calculate the behaviour of the v.c.o. phase in response to 
variations in the phase of the locking signal. If we put s = jω we obtain the 
closed-loop frequency-response function H(jω) which could − in principle − be 
of any order, determined by the frequency-response function of the loop filter. In 
reality phase-locked loops are more often second-order, characterized by two 
parameters; natural frequency ωN and damping ratio b. Variation of these 
parameters gives rise to a family of frequency responses with the magnitudes 
shown in Fig. 7.5. When the damping is light the loop is resonant and susceptible 
to oscillatory transients following abrupt changes of phase on the locking signal. 
As we shall see, it is important to have sufficient design variables to shape the 
response of the loop. The choice of loop filters in this respect is discussed below. 

7.4 The second-order loop 
A second-order loop can be obtained by using a loop filter of the simple RC low-
pass type, shown as an active filter in Fig. 7.6. 

The filter has a frequency-response function 

F(jω) = F(0)/(1 + jωT0) 

  F(0) = R0/R1,   T0 = R0C 

resulting in a closed-loop frequency response function: 

H(jω) = 

€ 

K0KDF(0) /T0
K0KDF(0) /T0 + jω /T0 −ω

2  

This is the frequency response which would be obtained if a commercial phase-
sensitive detector with a standard RC filter and ‘time constant’ control was used 
in a phase-locked loop. For the purpose of this and following sections we can put 
the denominator of H(jω) in the standard form 

ωN2 + 2jbωωN − ω2 

and then identify the natural frequency and damping factor. In this case, we have 

ωN  = (KoKDF(0)/T0)½,   b = ½ (KoKDF(0)T0)½  

 
Fig. 7.6 Active RC low-pass filter. The inverter is included to correct for 

the phase reversal in the first amplifier.  F(jω) = V2(jω)/V1 (jω) 

The d.c. gain of the loop, K0KDF(0) is correctly identified as the loop gain. We 
find that the natural frequency increases with loop gain while the damping is 
reduced. In fact, there are insufficient design parameters available to ensure that a 
particular combination of loop characteristics can be obtained. For example, at a 
given value of loop gain, the loop bandwidth can only be narrowed by increasing 
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the time constant of the loop filter, resulting in a loss of damping. The transient 
response of the loop can thus be seriously degraded when narrow bandwidths are 
required. 

These problems can be overcome by adopting the approach used by control 
engineers: to use a loop filter with a lag-lead response as in Fig. 7.7. This simple 
modification is effective because the additional resistor gives control of the 
damping of the phase-locked loop. Hence, for a fixed value of the loop gain, the 
natural frequency and damping can be set independently. 

A variation on this filter type is shown in Fig. 7.8. We shall refer to this as an 
‘imperfect integrator’. Both lag-lead filters and imperfect integrators are used in 
commercial lock-in amplifiers adapted for phase-locking. The extremely high 
value of low-frequency gain obtainable with the imperfect integrator gives a 
phase-locked loop with wide tracking capability consistent with a low value of 
static phase error. 

In most systems using lag-lead filters, however, the ratio R0/R2 is so high that 
there is relatively little difference in handling characteristics between the two 
filter types. 

 
Fig. 7.7 A lag-lead filter 

F(∞) = R2/R1,  R0  >> R2 

 
Fig. 7.8 An imperfect integrator 

F(∞) = R2/R1 

As we shall see, the recommended procedures for optimizing the loop noise 
performance are the same in each case. We can adopt a uniform approach that 
deals correctly with both filter types by expressing the loop filter frequency 
response functions as follows: 



Chapter 7–9 

 

€ 

lag - lead filter (R0 /R2 >>1)
imperfect integrator

⎫ 
⎬ 
⎭ 

 F( jω) = F(∞)(1+ jωT2) / jωT2,  T2 = R2C  

where in both cases, the high-frequency gain of the filter, F(∞) is a real ratio, 
R2/R1. 

If the loop-frequency response function is now derived, we find, for both loop 
filters: 

ωN = (K0KDF(∞)/T2)½ 

and 

b = ½ ωNT2 

The expression for b is exact for the imperfect integrator and an excellent 
approximation for the lag-lead filter, for all reasonable values of damping 
(b2 >> R2/R0). 

Gardner1 has shown that for this type of filter the loop gain is correctly given by 
the quantity K0KDF(∞). 

The noise bandwidth of the loop becomes very important when we deal with the 
problems of phase-locking in noise. This can be expressed in terms of ωN and b 
as: 

€ 

BL =
ωN
2

b+
1
4b

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

For any value of ωN the noise bandwidth is minimized when b = ½, and is then 
given by ωN/2. Note that, following convention, the noise bandwidth is given in 
hertz, while ωN is expressed in radians/s. 

When using a lag-lead filter or imperfect integrator the natural frequency of the 
loop and the loop damping ratio exhibit a square-root dependence on loop gain. 
The practical significance of this becomes evident when the amplitude of the 
locking signal is allowed to vary in the course of a phase-locked experiment. We 
saw in section 7.2.1 that the phase-detector constant KD is strictly proportional to 
Vs. If all the other loop components are held at a fixed value we obtain the 
following functional dependence on Vs for ωN and b: 

ωN  = c1Vs½ 

b = c2Vs½ 

where c1 and c2 are suitably defined constants. The variation of the noise 
bandwidth now takes the form: 

€ 

BL =
c1
8c2

1+ 4c2
2Vs[ ]  

showing that BL increases in direct proportion to the signal amplitude. 

7.5 Noise and phase-locked loops 
When the locking signal is accompanied by a random noise disturbance, noise 
enters the phase-locked loop via the phase detector and gives rise to a random 
phase error on the v.c.o. output. When the phase error is small it appears as phase 
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noise or phase jitter on the v.c.o.* relative to the phase of the locking signal. In 
general, a small amount of jitter should not seriously affect an associated lock-in 
amplifier when the v.c.o. output is used as a reference voltage for measuring the 
amplitude of the locking signal. 

If the noise input to the loop is allowed to exceed a certain level, the resulting 
phase error will become sufficiently large to seriously affect loop operation. In 
the extreme case the loop will drop out of lock completely, but before this point 
is reached there is a range of noise inputs where the loop is susceptible to a 
phenomenon known as ‘cycle slipping’. In this regime the loop can be kicked 
temporarily out of lock by a random noise event and then restore its equilibrium 
an integral number of cycles away from its original condition. The effect can 
recur repeatedly when the noise levels are sufficiently high. 

The analysis of loop operation in this regime is formidable, corresponding as it 
does to non-linear operation. Fortunately, our main concern is to ensure that the 
random phase error never reaches a point where there is a significant probability 
of cycle clipping. Only then can we ensure that the signal recovery system will 
operate for long periods of time without falling out of lock. 

In principle, the random phase error due to external noise can always be reduced 
by designing for a loop frequency response function with small bandwidth. In 
this context, the noise bandwidth of the loop introduced in the last section 
becomes the relevant factor. Its role in evaluating the effect of noise in the input 
can be clarified as follows. We imaging that the phase-locked loop is a special 
kind of bandpass filter which accepts a noisy signal at frequency fs. The output is 
a clean signal at the same frequency having a residual phase error due to noise. 
The filter has a frequency response function given by translating the loop 
frequency-response to the signal frequency fs. This gives an effective noise 
bandwidth of 2BL as illustrated in Fig. 7.9. 

 
Fig. 7.9 Filter effect of a phase-locked loop 

For the purpose of calculation, the loop can be regarded as a 
bandpass filter with noise bandwidth 2BL 

The input noise has a bandwidth BI with uniform spectral density WN. The input 
signal-to-noise ratio is therefore 

                                                        
* The effect of phase noise inherent in the v.c.o. will be mentioned at a later stage. we shall 
generally assume that the noise in the loop, giving rise to a fluctuating phase error, is largely of 
external origin; that is, noise appearing with the locking signal. 
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SNRI = Vs2/(2BIWN) 

while the signal-to-noise ratio measured within the effective bandwidth of the 
loop is 

SNRL = Vs2/(4BLWN) 

We shall not attempt to attach any physical significant to SNRL which is often 
loosely called the loop signal-to-noise ratio. It can be shown nevertheless that the 
probability of cycle slipping will be very small provided that this noise measure 
is greater than about 6 dB (see, for example, the results reviewed by Gardner1 and 
Blanchard2). We shall err on the side of safety when calculating the required 
value of BL and use the criterion: 

SNRL = Vs2/(4BIWN) ≥ 10 

In this condition the system is amenable to a small-signal analysis. The results in 
the literature1 give a good estimate of the mean-square phase error* on the v.c.o. 
output, namely: 

€ 

θN
2 =

1
2SNRL

 

Let us now assume that the signal-to-noise ratio of the locking signal has been 
estimated and that the input bandwidth is known. We have: 

SNRL = SNRI BI /(2BL) 

and, putting SNRL  ≥ 10, we obtain the condition: 

BL ≤ SNRI BI /20 

to ensure that lock is maintained in the presence of noise on the locking signal. 
With this condition satisfied, the v.c.o. has a mean-square phase error 

€ 

θN
2  ≤ 0.05 radian2 

The next step is to derive optimization procedures which guarantee that these 
conditions obtain even when the signal amplitude is allowed to vary over a wide 
range. This will represent a significant improvement over the ‘standard’ treatment 
where the signal − and hence the loop parameters − are fixed, and changes in 
signal-to-noise ratio are ‘arranged’ by allowing the noise intensity to vary. 

It was noted earlier that we have taken no account of phase noise which is 
inherent in the v.c.o. itself. In designing phase-locked loops for high precision it 
is normally arranged that the loop bandwidth is wide enough to accommodate the 
bulk of these variations, and it can be shown that their effect is reduced in 
proportion to the loop gain of the system. This requirement is obviously 
incompatible with choosing a narrow loop bandwidth to combat noise of external 
origin. Also, it will be shown that having determined the bandwidth of the loop, 
consistent with a reasonably high damping ratio, the choice of loop gain is 
restricted. It turns out, however, that when operating in the audio-frequency range 
with loop components of reasonable stability, any residual jitter due to 
imperfections on the v.c.o. will be masked by noise on the locking signal, 
provided that the loop bandwidth is not made unnecessarily small. This is also an 
important consideration when the loop is expected to track ‘slow’ frequency 
variations on the locking signal as will be shown in Section 7.7. 

                                                        
* The mean square phase error is calculated on the assumption that the static phase error of the loop 
(see Section 7.2.2) has been trimmed to zero. 
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7.6 Optimization procedure 
The optimization procedure will be derived for a classic signal recovery example, 
where the locking signal amplitude is varying over a wide range against a noise 
background with uniform spectral characteristics. It is necessary for us to have an 
estimate of the minimum value of the locking signal, corresponding to the worst-
case signal-to-noise ratio at the input to the loop, (SNRI)MIN. 

When the loop incorporates a lag-lead filter or imperfect integrator, the noise 
bandwidth will be dependent upon signal level as described in Section 7.4. We 
accordingly design the loop to have its minimum noise bandwidth at minimum 
signal level. Using the result of Section 7.5, the minimum noise bandwidth is 
chosen to satisfy: 

(BL)MIN ≤ (SNRI)MIN BI /20 

The behaviour of the loop as the signal increases from its minimum value can be 
predicted as follows. 

First of all we note that the loop signal-to-noise ratio is given by: 

SNRL = Vs2/(4BLWN) 

Since BL increases, at most, linearly with signal we find a steady improvement in 
SNRL as the locking signal increases, causing a proportional reduction in the 
mean-square phase error (= (2SNRL)−1) due to external noise. The rise in noise 
bandwidth also makes the loop more effective in reducing the effect of phase 
noise inherent in the v.c.o. It is shown in section 7.4 that the loop damping will 
also rise with signal level. Fortunately, this rise is accompanied by an increase in 
the natural frequency ωN. This joint behaviour results in a response which is not 
too ‘sluggish’ as would be the case if b, alone, were to increase. 

Turning now to the question of loop damping: this would normally be chosen to 
have a minimum value of about ½ to ensure that the loop transient response is not 
marred by excessive overshoot and ‘ringing’. It also turns out that choosing this 
particular minimum value greatly simplifies the optimization procedures. The 
damping ratio falls with locking signal amplitude; we therefore arrange for a 
minimum damping ratio of ½ at the minimum anticipated signal level. 

The general expressions for noise bandwidth and damping ratio are: 

BL = 

€ 

ωN

2
b+

1
4b

⎡ 

⎣ ⎢ 
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b = ½ωNT2 

Hence, if we put b = bMIN = ½ and decide on a minimum value for BL we find 
that T2 is given immediately: 

T2 = 1/(2BL)MIN 

while the minimum value of ωN is given by 

(ωN)MIN = 1/T2 = 2(BL)MIN 

Using the value of the phase detector constant appropriate to minimum signal 
level, together with the required value of T2, the loop can now be designed to 
give ωN = (ωN)MIN  at b = bMIN. From the results given in Section 7.4 this implies 
that the minimum value of loop gain is given by 

K0(KD)MIN F(∞) = 1/T2 
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T2 has already been determined, so we cannot improve the minimum loop gain. 
We have already noted that residual phase noise on the v.c.o. will make a 
contribution to phase jitter under conditions of low loop bandwidth and low loop 
gain. The effect of these incidental variations must be checked in a trial run using 
a noise-free signal. This is, in any case, a useful first step in setting up a phase-
locked loop of even moderate complexity. 

7.7 Notes on acquisition and tracking 
‘Acquisition’ is a general term which is used to describe the extremely complex 
processes by which a phase-locked loop picks up an incoming signal and moves 
towards lock. 

When the loop is in an unlocked condition the output from the phase detector will 
initially be a ‘beat’ waveform which contains the difference frequency between 
the locking signal and the instantaneous frequency of the v.c.o. The maximum 
possible peak-to-peak value of the beat waveform is ±KD volts which is 
subsequently attenuated by the effect of the loop filter. If the resulting voltage 
swing at the v.c.o. is sufficient to make the v.c.o. and input frequencies coincide, 
the system moves smoothly into lock without slipping cycles. 

In a second-order system using a lag-lead filter the attenuation at high beat 
frequencies (corresponding to a high initial frequency difference between the 
locking signal and the v.c.o.) has a constant value F(∞). In this case the 
maximum available swing of the v.c.o. frequency is ±K0KDF(∞) which defines 
the capture range of the loop. 

For initial frequency offsets within the capture range, locking is assured and fast. 
However, an important consequence of using an integrating loop filter is that the 
loop will eventually ‘pull-in’ to a locking signal which is at a frequency far 
removed from the v.c.o. frequency. The reason is that the ‘beat’ waveform is 
highly asymmetrical and contains a d.c. component. This can build up in the 
integrator and gradually drive the v.c.o. towards the signal. Pull-in can be a 
cumbersome and time-consuming process which is greatly affected by noise on 
the signal. It is usually overcome by manual tuning of the v.c.o. to bring the 
frequency difference within the capture range of the loop. Locking is then, for 
practical purposes, instantaneous. 

It must be assumed that acquisition is always assisted when locking to very noisy 
signals and that the loop is finally trimmed to minimize the offset frequency of 
the v.c.o. As indicated in Chapter 6, manual assistance of acquisition serves also 
to avoid ambiguities in locking when the phase detector has responses to odd 
harmonics of the v.c.o. frequency. 

Finally, let us look briefly at the case where the locking signal frequency is 
subject to a slow variation or drift. It can be shown that a loop containing an 
imperfect integrator is capable of tracking a locking signal with a changing 
frequency, but that the phase of the v.c.o. suffers a ‘slip’ relative to the phase of 
the locking signal. This is analogous to the phase slip observed in the reference 
channel of a lock-in amplifier in response to a changing reference frequency, as 
discussed in Section 4.5. In the case of the phase-locked loop the rate of change 
of locking frequency R is related to the phase slip θ by 1,2: 

2πR = ωN2θ 

where R is expressed in Hz/s. Note that the phase slip is exclusive of any transient 
phase error that may occur following the application of a frequency sweep. 

When designing a loop for recovery from noise it has been suggested that the 
natural frequency has a minimum value 
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(ωN)MIN = 2(BL)MIN 

If the phase slip is to have a maximum value θMAX then we obtain the condition 

R ≤ 2(BL)2MIN θMAX/π 

For example, a maximum phase slip of 5° gives 

θMAX = 5 × π/180 radians 

If (BL)MIN = 100 Hz, then 

R ≤ 556 Hz/s 

The consequence of using very low noise bandwidths is a severe reduction in the 
allowed tracking rate. Thus if (BL)MIN is only 5 Hz we obtain 

R ≤ 1.39 Hz/s 

The same quadratic dependence of frequency sweep-rate on system bandwidth 
was noted in Section 5.5 in relation to spectrum analysis.. 

7.8 Using a lock-in amplifier for phase-locking 
7.8.1 Introduction 
So far, the treatment of phase-locked loops has been fairly general in the sense 
that a clear distinction has been made between the phase detector and the loop 
filter. As remarked in the introduction to this chapter, this separation is not so 
easily achieved when using a fully integrated lock-in amplifier. Let us therefore 
begin with Fig. 7.10, which shows the internal arrangement of a lock-in amplifier 
fitted with a ‘phase-lock’ option. 

 
Fig. 7.10 Internal arrangement of a lock-in amplifier with ‘phase-lock’ 

option. Time constant T0 = CR0 in ‘normal’ mode 

The phase-sensitive detector is shown schematically as a multiplier-detector 
while the output filter now serves a dual function. In ‘normal’ mode the filter 
capacitors are selected from the time-constant control, giving a range of values 
T0 = R0C. In ‘phase-lock’ mode the damping resistor R2 is switched into circuit 
while R0, the feedback resistor, may be removed if the loop filter is to be an 
imperfect integrator. One problem is that R2 is not usually specified by 
manufacturers and may not be obtainable except through inquiry or by looking at 
the circuit diagram. It is certain, however, that the ratio R0/R2 will be large. R0 is 
usually of the order of 10 MΩ while R2 is commonly 10 kΩ (for example, in the 
Brookdeal series of phase-sensitive detectors and lock-in amplifiers). 
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7.8.2 Identifying the loop constants 
When used as a phase detector with a time-constant filter, the observed sensitivity 
of a lock-in amplifier to static phase errors is, from Section 4.1: 

VF(Vs/SF) volts radian 

This observed phase sensitivity is inclusive of the d.c. gain of the time-constant 
filter, R0/R1. In ‘phase-lock’ operation, the phase detector sensitivity KD that 
appears in the loop equations is exclusive of the gain provided by the filter block. 
We thus obtain: 

KD = 

€ 

VsVF
SF

(R1/R0) 

In practice, the ratio R0/R1 accounts for the bulk of the phase-sensitive detector 
dynamic reserve. The phase detector constant to be used in the loop equations is 
therefore given approximately by the overall phase sensitivity reduced by a factor 
equal to the dynamic reserve. For either a lag-lead filter or imperfect integrator 
we have F(∞) = R2/R1. The loop gain is accordingly 

K0KDF(∞) = K0 

€ 

Vs VF

SF

R1

R0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
R2

R1
 

Putting T2 = R2C,   T0 = R0C we obtain 

K0KDF(∞) = K0 

€ 

Vs VF

SF

T2

T0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Here, T0 is the time-constant setting on the front panel of the lock-in amplifier. In 
view of our earlier remarks about assigning a value to R2, T2 might have to be 
identified from a circuit diagram or by inspection of the time constant switch. 

Using this value of loop gain, the natural frequency of the loop can now be put in 
the form 

ωN = 

€ 

K0VsVF
SFT0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2
 

In the usual arrangement, T0/T2 appear in a fixed ratio: 

T0/T2 = R0/R2 = r 

The damping ratio is therefore: 

b = ½ωNT2 = ½ωNT0/r 

Provided that r can be identified, the loop parameters ωN and b are now given in 
terms of Vs and the lock-in amplifier settings; time constant T0 and sensitivity SF, 
for an output voltage swing ±VF. 

7.8.3 Optimization procedures for lock-in amplifiers 
The specification for the locking signal gives us a minimum anticipated r.m.s. 
signal level VMIN, an input noise bandwidth BI and a worst-case signal-to-noise 
ratio (SNRI)MIN. This enables us to choose a minimum value of loop noise 
bandwidth (BL)MIN commensurate with the input conditions: 

(BL)MIN ≤ (SNRI)MIN BI /20 
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Using the outline procedure given in Section 7.6 we design for bMIN = ½ and 
immediately obtain a bound on the required value of T0 (= rT2): 

€ 

T0 ≥
r

2 BL( )MIN
 

This leaves us to choose K0 and SF to satisfy 

(ωN)MIN = r/T0 = 

€ 

K0VMINVF
SFT0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

 

In summary: 

(i) Determine minimum required value of BL; 

(ii) Calculate the time-constant setting T0 to ensure (BL)MIN at the smallest 
anticipated signal level; 

(iii) Choose values of K0 and SF to satisfy 

K0VMIN /SF = r2/(VFT0). 

The following examples will help to put the optimization procedures for lock-in 
amplifiers into perspective. 

Example 1 

A lock-in amplifier has a maximum time constant of 100 s with the ratio  
r = R0/R2 = 1000. What is the smallest value of noise bandwidth that can be 
achieved consistent with a minimum damping ratio of ½? 

The smallest achievable noise bandwidth in phase-locked loop operation is 

€ 

r
2 T0( )MAX

= 5 Hz 

Example 2 

What is the worst possible signal-to-noise ratio on the locking signal that can be 
handled by a lock-in amplifier in phase-lock mode? 

This is a question which is often asked but to which there is no direct answer. If 
we calculate the minimum achievable noise bandwidth − as in example 1 − then 
the best we can do is find a bound on the product SNRIBI: 

SNRIBI ≥ 10r/(T0)MAX 

In example 1, the system could cope with a mean-square signal-to-noise ratio of 
−10 dB (1/10) in an input bandwidth of 1 kHz, or a ratio of −30 db (1/1000) in a 
100 kHz bandwidth. We could also be certain that the phase-locked loop could 

was taken in Section 7.5. It is likely, however, that if the design were carried out 
with a less stringent bound or with the minimum damping reduced much below 
½, then the resulting handling characteristics and phase jitter would verge on the 
unacceptable. 

Example 3 

Using the lock-in amplifier specified in example 1, outline the optimization 
procedures for a signal of 50 kHz appearing at a minimum level of 1 mV with an 
estimated worst-case signal-to-noise ratio of −20 dB (1/10). The input noise 
bandwidth is set by signal conditioning filters to a value of 5 kHz and a v.c.o. is 
available with a sensitivity K0 of 2π104 radians/V−s at the signal frequency. 

hold lock under more adverse conditions, since a fairly conservative bound on BL 
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First of all, the noise bandwidth of the loop: at minimum signal level this must 
satisfy 

(BL)MIN ≤ (SNRI)MIN BI /20 

              ≤ 10−1 × 5 × 103 /20 Hz or 25 Hz 

The smallest time constant consistent with this value is: 

T0 = r/(2 × 25) 

We have r = 1000; hence 

T0 = 20 s 

If a time constant of 20 s is not available, the next largest should be selected. The 
optimization procedures will ensure that the damping ratio will have a minimum 
of ½ as required. 

Finally: 

K0VMIN/SF = r2/(VFT0) 

K0  has been given. Using VF = 10 V we obtain: 

VMIN/SF = 0.079 

The minimum anticipated signal level is 1 mV r.m.s. The lock-in amplifier should 
therefore be set to a full-scale sensitivity 

SF = VMIN / 0.079 = 12.6 millivolts 

In practice, a full-scale sensitivity of 10 mV will be indistinguishable from the 
optimum setting. Note that the locking signal may subsequently take larger 
values which exceed the full-scale sensitivity of the lock-in amplifier without 
incurring a fault condition, provided the total allowable swing on the signal input 
is not exceeded.* 

If an inconveniently low or high ratio VMIN/SF is predicted, there may be scope to 
change the value of K0. It should not be overlooked that many v.c.o.s found in 
measurement laboratories have overlapping decade ranges. By judicious choice 
of operating frequency it may be possible to change K0 by a factor of 10 or even 
100, depending on range selection. 

When very narrow loop bandwidths are required, the ability to track signals of 
changing frequency (Section 7.7) must be taken into consideration. Also, a trial 
run using a noise-free signal should be carried out to assess the residual phase 
jitter in the loop arising from incidental phase- and frequency-modulation on the 
v.c.o. Here again, the ability to switch between overlapping ranges might prove 
useful and enable the v.c.o. to be operated in a region where its self-noise is 
lower. 

7.9 The final measurement 
Let us finally return to the measurement system proposed at the beginning of this 
chapter, where the v.c.o. output is used as a reference voltage for the detection of 
the locking signal in a second lock-in amplifier. 

Two-phase lock-in amplifiers modified for phase-locking are ideal for this type of 
measurement; ‘quadrature’ channel B is used for phase-locking, leaving the 

                                                        
* This comment is in line with the procedures for increasing the phase sensitivity of lock-in 
amplifiers that were given in Sections 4.7.5. and 5.2.3. 
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signal to be measured in ‘in-phase’ channel A. When the dual phase-sensitive 
detectors are fitted with independently switched ‘expand’ amplifiers it is possible 
to operate the two channels at sensitivities differing by a factor of 10 or even 100. 
This is usually sufficient to ensure that the sensitivities of the two phase-sensitive 
detectors can be separately optimized for phase locking and for signal detection. 

When the signal is noisy, the v.c.o. output inevitably exhibits phase jitter relative 
to the locking signal. Fortunately, as a result of the cosθ dependence, this phase 
jitter has only a second-order effect on the measurement at the second phase- 
sensitive detector. It turns out in practice that if the phase jitter in the loop is 
sufficiently small to ensure long-term locked operation without slipping cycles 
(as we have assumed throughout), then the phase jitter will have minimal effect 
in the final measurement. In the worst case, at minimum signal level, its effect 
can be reduced by increasing the output time constant in the second lock-in 
channel beyond the value normally used at a given signal-to-noise ratio. 

7.10 References 
1 GARDNER, F.M. (1979): ‘Phase lock Techniques’ (John Wiley, New York) 

2 BLANCHARD, A. (1976): 'Phase-locked loops: Application to coherent 
receiver design’ (John Wiley, New York) 

3 LINDSEY, W.C. (1972): ‘Synchronization systems in communication and 
control’ (Prentice-Hall, N.J.) 

4 HOGG, D.C. and CHU, T.S. (1975): ‘The role of rain in satellite 
communications’, Proc. IEEE, 63, pp. 1308-1331 

5 BAYLISS, A. (1974): ‘A guide for orbital test satellite experiments’. Proc. 
European Conf. on Electrotechnics, Eurocon ’74, Amsterdam 



Chapter 8–1

CHAPTER 8

Heterodyne lock-in amplifiers

8.1 Introduction
In a heterodyne lock-in amplifier, phase-sensitive detection is carried out at a 
relatively high, fixed, frequency following a stage of frequency translation of the 
applied signal. Since the phase-sensitive detector operates at a frequency that 
bears no harmonic relationship to the applied signal, the harmonic responses that 
characterize a conventional lock-in system are suppressed. Practical lock-in 
amplifiers operating on the heterodyne principle thus conform very closely to 
ideal fundamental-only responding systems. The first of these, offering relative 
freedom from harmonic responses over a moderate frequency range, was the 
Ithaco Dynatrac lock-in amplifier. This was introduced in both single- and two-
phase versions in the early 1970s.

In the early system the benefits of fundamental-only response were obtained to 
the detriment of performance in other areas. For example, the true frequency 
range was only about one decade and coverage of the audio-frequency range 
required a total of five sets of plug-in circuit cards. Also, the phase accuracy left 
much to be desired, particularly at the extremes of the individual ranges. Even 
under the most favourable conditions, this heterodyne system suffered by 
comparison with the high precision of conventional lock-in amplifiers. The 
system nevertheless enjoyed considerable success and served to focus attention 
on the limitations associated with harmonic responses which were reviewed in 
Chapter 6.

The block diagram of the Ithaco Dynatrac begs comparison with that of a 
superhet radio, and so the system attracted the "heterodyne" label from the time 
of its first introduction. This description is now applied more or less 
indiscriminately to all lock-in amplifiers that incorporate one or more stages of 
frequency translation. It can be argued that these systems bear only a superficial 
resemblance to classical heterodyne systems and that the use of expressions such 
as "intermediate frequency" and "i.f. filter" in relation to lock-in amplifiers is 
likely to cause confusion, especially with those who have a clear understanding 
of the conventional usage of these terms. It is therefore necessary to introduce a 
note of caution about the terminology employed in this chapter which reflects the 
usage that is now prevalent among lock-in amplifier manufacturers and appears 
in data sheets and publicity material.

The Ithaco Dynatrac has since been matched by alternative and improved 
heterodyne lock-in amplifiers from the EG&G companies, PAR and Brookdeal. 
These lock-in amplifiers have greatly benefited from developments in technology 
relating to both reference channel and phase-sensitive detector design. In this 
chapter we shall be taking note of these developments and aiming to highlight 
areas of specification which are peculiar to heterodyne lock-in amplifiers.

Of particular interest in this respect will be the problem of identifying the 
spurious responses which occur when the frequency of an asynchronous signal 
lies close to a "critical" frequency. In a conventional system these critical 
frequencies correspond to the odd harmonics of the reference frequency. We shall 
show that in principle heterodyne systems can be designed to be inherently free 
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of these harmonic responses. There are nevertheless a number of additional 
critical frequencies, each with its related transmission window, which must be 
taken into account when a heterodyne model is adopted. A major objective of 
heterodyne system design is therefore to achieve a high degree of suppression of 
all unwanted responses, consistent with maintaining wideband, wide dynamic 
range performance.

Unfortunately, as we shall see, this last requirement cannot be achieved without 
sacrificing the total rejection of harmonic responses, which is inherent in an 
"ideal" heterodyne system. In our discussions we must therefore make a clear 
distinction between principles and practice and be prepared to examine the trade-
offs which are necessary to produce heterodyne systems with good all-round 
performance.

Also included in this chapter is an appraisal of the synchronous heterodyne 
technique. Synchronous heterodyning offers a means of improving the dynamic 
range of phase-sensitive detectors and lock-in amplifiers. The technique can also 
be used to counteract the loss in dynamic range which occurs when an otherwise 
conventional phase-sensitive detector is operated towards the upper limit of its 
frequency range.

This last approach is used to obtain a competitive dynamic range specification in 
the EG&G Brookdeal heterodyne lock-in amplifiers where phase-sensitive 
detection is carried out at a fixed high frequency. We shall also be giving 
consideration to the spurious responses associated with synchronous 
heterodyning. The treatment given falls short of a full analysis, but it is shown 
how some of the major contributory factors can be overcome in practical systems.

8.2 Principles of heterodyne operation
The principles of heterodyne lock-in amplifiers can be established in terms of the 
idealized system shown in Fig. 8.1.

The frequency translator has inputs from the signal channel amplifier, from the 
applied reference signal and from an internal oscillator. The latter operates at 
frequency fI which we shall call the intermediate frequency. The purpose of the 
frequency translator is to produce an output with magnitude proportional to the 
signal input but with its frequency shifted from fs to a new and higher value 
fI  fR  fs. The translated signal is then applied to a phase-sensitive detector 

which we assume is referenced and phase-shifted at the intermediate frequency.

Fig. 8.1 Basic heterodyne lock-in amplifier, showing the frequencies at 
different points in the system

When the signal and reference are fully synchronous, fs  fR. The translated 
output then appears at frequency fI and yields a classic phase-sensitive response 
at the phase-sensitive detector.
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For signals with frequencies close to fR the response will be an alternating output 
at frequency fR  fs , which is attenuated in the usual way by the output low-pass 

filter. However, in this system there is no scope for unwanted responses when the 
signal frequency is coincident with an odd harmonic of fI . The latter are included 
on the assumption that a switching phase-sensitive detector is used with its 
associated harmonic transmission windows.

The critical signal frequencies are therefore those which satisfy the relationship:

fI  fR  fs  KfI

where K is an odd integer. Solving for fs, we obtain the critical frequencies:

fs  1K fI  fR

and, 

fs  1K fI  fR

For each value of K there are therefore two frequencies where an interference 
component will be able to excite a harmonic response in the phase-sensitive 
detector. The relative sensitivity of the system to inputs at these critical 
frequencies is denoted by SK and is given by

SK 1/ K

Fig. 8.2 Location and relative magnitude of transmission windows in a 
heterodyne system, for K = 1, 3, 5, 7 and 9.  fI = 10fR

The transmission windows of the overall detection system are thus derived from 
the phase-sensitive detector windows and are located at frequencies determined 
jointly by the intermediate and reference frequencies. The transmission windows 
corresponding to K in the range 1 to 9 are drawn schematically in Fig 8.2 for the 
relationship, fI 10 fR . The weighting factor assigned to each window is shown in 
each case and gives the relative sensitivity of the detection system to inputs at the 
appropriate critical frequency.

Fig. 8.2 reminds us that there must be two transmission windows, corresponding 
to 1K , where the relative sensitivity is unity. These windows correspond to the 
"primary" response at fs  fR, and the "image" response given by signals with 
frequency fs  2 fI  fR . An image response occurs in all systems operating on the 
heterodyne principle. In this case, a signal for which fs  2 fI  fR yields a 
translator output close to the intermediate frequency and the resulting behaviour 
of the detection system cannot then be distinguished from the "true" response 
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when fs  fR. The only satisfactory way to deal with the image response is to 
eliminate signal components at the image frequency by filtering. The most 
convenient arrangement is to use a low-pass filter in the signal channel with a 
sharp cut-off defined at a frequency below 2 fI  fR .

This filter must be introduced before the frequency translator and should have a 
cut-off frequency greater than fRMAX, the maximum anticipated value of the 
reference frequency. An image filter is an essential component in a heterodyne 
lock-in amplifier, irrespective of the precise system configuration.

It turns out that in the present, ideal, case a properly designed image suppression 
filter would be effective in suppressing inputs at all other critical frequencies. 
This ideal heterodyne system is thus inherently free from responses at harmonics 
of the reference frequency and can be made relatively immune to the incidence of 
spurious responses at other, non-related, frequencies.

8.3 Practical considerations
8.3.1 Frequency translation

When discussing principles of operation it was assumed that the frequency 
translator had the characteristics of a single-sideband generator; a single 
component at frequency fs gave rise to a translated output at a single frequency 
fI  fR  fs. Single-sideband generators can be devised and constructed to operate 

with the required degree of precision. Unfortunately, the implementation of such 
a scheme to operate over a wide frequency range is both complex and expensive. 
A more cost-effective solution is to use double-sideband generation in which the 
required translation is achieved with a signal channel mixer and frequency 
synthesizer as shown in Fig. 8.3.

Fig. 8.3 Heterodyne system with double-sideband frequency translation

The frequency synthesizer provides an output at a precisely defined frequency 
fI  fR which yields mixer products at frequencies fI  fR  fs. When the signal 

and reference are fully synchronous, the mixer output will consist of two 
components, one at frequency fI and the other at fI 2 fR . The first of these will 
give rise to a phase-sensitive response as before. The second gives rise to an 
alternating output at frequency 2 fR . This is no more serious than the "ripple" 
component which is expected in conventional phase-sensitive detector operation. 
As is usually the case, the ripple component is rejected by the low-pass filter in 
the phase-sensitive detector output.

Turning now to asynchronous signals, we find an important consequence of using 
a double-sideband generator. This is a reduction in the allowable voltage swing 
due to asynchronous components at the input to the signal channel. Each of these 
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gives rise to two mixer products of equal amplitude. The input voltage swing at a 
given sensitivity is thus limited to half the value which could be sustained when 
using the phase-sensitive with a single-sideband frequency translator. For a 
phase-sensitive detector of given characteristics the achievable dynamic reserve 
is consequently reduced by 6 dB.

Further complications arise in a practical implementation of the frequency 
translator. The signal channel mixer, like the phase-sensitive detector, is almost 
invariably a switching multiplier which uses a squarewave drive at frequency 
fI  fR . This is another example where linearity and dynamic range are obtained 

through the adoption of a switching operation. The result is that the output of the 
signal mixer consists of a large number of components at frequencies

N fI  fR  fs,   N odd

The amplitude of each of these components is weighed by a factor 1/N, reflecting 
the reduction in the harmonics of the switching waveform with increasing order.

As we shall see, the use of a switching mixer leads to a reappearance of the 
harmonic responses which were so successfully rejected by the ideal heterodyne 
scheme. 

8.3.2 Formulation of spurious responses

Spurious responses will be generated when one of the mixer products has a 
frequency coincident with the intermediate frequency or one of its odd 
harmonics. Denoting the odd harmonics by KfIas before, we obtain the critical 
frequencies:

fs  N K fI NfR

and

fs  N K fI NfR

To calculate the relative sensitivity of the detection system to inputs at these 
critical frequencies, we must take the following factors into account: First of all, a 
factor 1/N resulting from the use of a squarewave drive to the mixer; secondly a 
factor 1/K to allow for the reduction of the phase-sensitive detector transmission 
windows with increasing harmonic order. The relative sensitivity at frequencies 
corresponding to given values of N and K is therefore:

SN,K 1/ NK

For example, when N = K = 1 we obtain the primary response corresponding to 
fs = fR and the image response corresponding to fs = 2fI + fR. The relative 
sensitivity of the system to inputs at these frequencies is unity in both cases.

Let us now take 1 KN . In this case, the system will be sensitive to inputs at 
fs = NfR and 2NfI NfR . The response to the Nth harmonic of fR is thus reinstated 
at a relative sensitivity of 1/N2, compared to the figure of 1/N which would be 
obtained in a conventional system.

As noted in section 8.2 an image suppression filter would be essential in any 
practical system. Unfortunately this has no influence on signal components at 
frequencies NfRthat fall within the filter bandwidth. The resulting harmonic 
responses can only be satisfactorily suppressed by using a second, tuned, filter in 
front of the phase-sensitive detector.
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8.3.3 Suppression of the spurious responses

We envisage a system such as that shown in Fig. 8.4 which includes an image 
suppression filter in the signal channel and a tuned filter following the signal 
mixer.

Fig. 8.4 Incorporation of tuned filter in a heterodyne system

The image suppression filter is a low-pass filter which exhibits a "flat" amplitude 
response for all signal frequencies up to the maximum value of the reference 
frequency as shown in Fig. 8.5.

Fig. 8.5 General transmission characteristics of an image-suppression 
filter

The filter is designed for certain minimum attenuation at the lowest expected 
image frequency and gives progressively higher attenuation for frequencies 
beyond the image frequency. An attenuation of the order 60 to 80 dB at the image 
frequency would be typical of practical systems. We thus find that asynchronous 
signals characterized by frequencies:

fs  N K fI NfR;    N , K 1

all lie beyond the cut-off of the image filter and are effectively eliminated before 
the signal mixer.

The only asynchronous signals which are likely to yield discernable responses 
must therefore have frequencies which satisfy the condition:

fs  N K fI NfR

The nature of the responses corresponding to different values of N and K are 
summarized in Table 8.1.
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Table 8.1 Catalogue of responses for asynchronous signals with frequencies 
|(N – K)fI + NfR|

KN , Comments

1 KN fs  fR: primary respoonse of system

N > K Asynchronous signals always have frequencies  image 
frequency

N > K ≠ 1 Spurious responses whenever asynchronous signal has 
frequency fs  NfR up to bandwidth of image filter

K > N Miscellaneous spurious responses for asynchronous signals 
lying within the bandwidth of image filter

The first of the categories listed in Table 8.1 corresponds to the "wanted" 
response of the system while signals in the second category are suppressed by the 
image filter. In the absence of a tuned filter, the system would display a relative 
sensitivity SN,K 1/ NK at all critical frequencies in the final two categories. The 

effect of a tuned filter will be to introduce additional attenuation of these 
responses giving a relative sensitivity:

SN,K  H jKI  / NK

Here, H j  is the frequency response of the tuned filter normalized to a 

magnitude of unity at the intermediate frequency.

We note that the largest spurious response will be obtained when 3 KN , 
corresponding to an asynchronous signal with frequency 3 fR

*. The tuned filter 
should therefore be set up to reduce this response to an acceptably small value.

8.3.4 Tuned filter requirements

In all commercial systems the tuned filter is of the low-pass type described in 
Appendix 4. The use of a tuned filter for suppressing the harmonic responses of a 
phase-sensitive detector was discussed in Section 4.5.2. For a low-pass filter
tuned to the intermediate frequency fI , the attenuation at frequency KfI in the 
high-Q approximation is:


H jKI  1

(K 2 1)Q
,    K  3, 5, 7, K

The relative sensitivity of the heterodyne system, SN,K , can now be written as

SN,K  1

NK(K 2 1)Q

The value of the Q-factor required for a given level of suppression can thus be 
calculated.

For example, suppose the system is required to have a relative sensitivity of 10-4

(–80 dB) to a signal with frequency close to 3 fR . From Table 8.1 we put 
3 KN and calculate the required Q-factor of the tuned filter:

                                                     
* Note that the response due to K = 3, N = 1 corresponds to an asynchronous signal at frequency 
2fI – fR.This would normally be heavily attenuated by the image filter.
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Q 104 /(3 38) 139

From the discussion given in Section 4.5.1 it is clear that operation with such a 
high value of Q-factor places severe demands on the system with regard to 
alignment and maintaining good phase accuracy. This is all the more troublesome 
in a purpose-built system where the filter is not usually accessible for routine 
realignment by the user.

An alternative approach which greatly eases alignment problems and which 
places less demands on filter performance has been used in the EG&G Brookdeal 
heterodyne system. This is to use two filters of relatively low Q-factor in cascade. 
The attenuation introduced by the filter stage then becomes:

H jKI   1

(K 2 1)2Q2

In this case, a Q-factor of 5 is sufficient to give a relative sensitivity of –83 dB to 
signals with frequency fs  3 fR .

Of course, these figures for harmonic rejection are strictly theoretical. There is a 
considerable technical hurdle to be overcome in order to realize these figures in 
practice and commercial systems usually specify suppression factors of around
–60 dB (1/1000). In any specific case, it is always worth checking whether the 
figure given refers solely to third-harmonic rejection or to the maximum level of 
spurious responses arising from all possible sources.

8.3.5 Phase-shifting

It has been assumed so far that the user-controlled phase-shifter which is essential 
for phase-sensitive detection is introduced at the intermediate frequency, on the 
"reference" side of the phase-sensitive detector. This has a distinct advantage in 
that the phase-shifter can be designed to operate at a fixed frequency rather than 
over a wide range of frequencies as is usually the case.

In principle, there is no reason why phase-shifting should not be carried out at the 
original reference frequency or, indeed, on the output of the frequency 
synthesizer, at frequency fI  fR . These are all found to be equivalent when 
system operation is analysed. Phase-shifting at the reference frequency requires 
similar broadband circuitry to that found in a conventional lock-in amplifier, 
whereas a phase-shifter placed at the output of the frequency synthesizer, 
assuming fI  fRMAX , would require relatively narrowband capability.

8.4 Practical limitations
8.4.1 The frequency synthesizer

The generation of a waveform at a precisely defined frequency fI  fR in response 
to an external signal applied at frequency fR is the most demanding task facing the 
designers of heterodyne lock-in systems. The ultimate objective is to produce a 
system which:

(i) Maximises the range of reference frequencies which can be handled at a 
particular intermediate frequency.

(ii) Has an acceptably low level of both random and discrete phase-noise over the 
specified frequency range.

(iii) Minimizes phase errors between the absolute phases of the synthesized 
waveform and the applied reference waveform.

(iv) Has an acceptable value of reference slew rate and a small acquisition time.
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A shortfall in any of these areas would be noticed by any user whose interest in 
lock-in amplifiers extended beyond the detection of noisy signals at a fixed 
frequency. The designer's difficulty is to reconcile these requirements and make 
the correct trade-offs to produce a system with all-round acceptable performance. 
The problems encountered in reaching an acceptable compromise in synthesizer 
performance can be highlighted by referring to the system illustrated in Fig. 8.6. 

Fig. 8.6 Heterodyning phase-locked loop

This example of a "heterodyning" phase-locked loop received considerable 
publicity when the Ithaco Dynatrac lock-in amplifiers were first introduced1.The 
phase detector compares the phase of its two inputs and its output is amplified 
and smoothed by the loop filter. The v.c.o. is controlled from the loop filter 
output and produces an output at frequency fV , which is mixed with a signal at 
the intermediate frequency fI provided from a stable sinewave oscillator. The 
purpose of the low-pass filter is to transmit only the low-frequency mixer product 
at frequency fV  fI to the phase detector. The difference frequency fV  fI is thus 
phase-locked to the incoming reference signal at frequency fR , making fV equal 
to fI  fR .

When a strictly conventional approach is taken to designing the phase-locked 
loop, following the treatment given in Chapter 7, the designer is faced with a 
difficult decision in choosing the loop characteristics. The loop bandwidth should 
be small enough to suppress discrete phase modulations resulting from unwanted 
mixer components at the output of the low-pass filter, and yet wide enough to 
accommodate the phase noise inherent in the v.c.o. and to give adequate slew rate 
performance. In addition, severe phase errors might be incurred when the low-
pass filter achieves the desired separation of mixer products by virtue of a sharp 
cut-off. Almost inevitably, the trade-offs are such that acceptable performance 
can only be achieved over a relatively small range of reference frequencies. 
Limitations are observed in terms of poor phase tracking and excessive phase 
noise at the extremes of the operating frequency range.

In the loop used by EG&G Brookdeal, switching waveforms derived from the 
applied reference and from the intermediate-frequency oscillator are combined in 
a multiplexer. The output is a switching waveform in which the positive 
transitions occur an average rate ( fI  fR ) / 4. This entire waveform is then used 
to phase-lock a v.c.o. in a phase-locked loop which incorporates a ÷4 counter. In 
a conventional phase-locked loop, the output from the v.c.o would be a 
squarewave at frequency fI  fR subjected to a high level of discrete phase-
modulation which could only be suppressed by using a loop of small bandwidth. 
In the EG&G Brookdeal system the unwanted modulation is well defined and can 
be suppressed to a high order by adding a compensation signal to the output of 
the phase detector. Provided the compensation signal is accurately generated and 
controlled, the constraints on loop bandwidth are considerably relaxed. The loop 
characteristics can then be optimized with respect to a low incidence of phase 
noise and obtaining acceptable handling characteristics over a wide range of 
reference frequencies. The system, in fact, proves capable of operating with 



Chapter 8–10

reference frequencies from less than 1 Hz up to about one fifth of the 
intermediate frequency. The quoted figures of phase noise and phase drift for the 
overall lock-in amplifier are similar to those given in Chapter 4 for conventional 
systems. Also, because the method of generation does not rely on the use of 
filters to separate mixer products, the frequency synthesizer itself does not 
contribute a reference frequency-dependent phase error of major significance.

8.4.2 The image filter

It has been noted that the image filter should have a flat response up to signal 
frequencies corresponding to fRMAX. The rate of cut-off beyond this point must 
then be extremely large in order to introduce adequate attenuation at the image 
frequency. In most commercial systems the ratio fI / fRMAX is less than 10, so that 
a filter of high order, 4 to 6 pole, is required to achieve the necessary roll-off.

Like all filters used for signal conditioning, the image filter introduces phase 
errors into the measurement system. When the filter is of high order, the phase 
error can be in excess of 100 at about one half of the cut-off frequency. A 
fortunate consequence of using high-order filters is that the amplitude response 
can be made uniformly flat up to frequencies very close to cut off. In addition, the 
phase shift within this range can be made proportional to frequency. When the 
filter approximates to such a linear-phase model, the phase-shift of the signal 
channel can be compensated by introducing a suitable time delay in the reference 
channel. In the Ithaco Dynatrac, the image-filter phase characteristic was actually 
compensated by the characteristic of the low-pass filter in the synthesizer phase-
locked loop. In other systems, such as that from EG&G Brookdeal, the 
synthesizer has inherently low phase error and the compensating time delay need 
be no more complicated than a monostable circuit operating at a fixed pulse 
width.

When we take matching constraints into account and add uncompensated phase 
errors accrued in the intermediate-frequency filter and in the synthesizer, we 
conclude that the overall phase precision of heterodyne systems must fall short of 
that obtainable in a conventional lock-in amplifier operating in the same 
reference frequency range.

8.4.3 The signal mixer

The most serious performance limitations associated with the signal mixer are 
due to non-linearity and "feedthrough". It has been stressed elsewhere that the 
synchronous demodulation process should be supported by linearity in all 
preceding stages; hence the linearity of the signal mixer should be at least of the 
same order as the linearity of the phase-sensitive detector. This requirement is 
eased in practice because the two components, being similar in concept, draw 
upon similar technologies.

"Feedthrough" is a phenomenon associated with voltage offsets and capacitive 
coupling in the signal mixer, whereby components at the switching frequency, 
fI  fR , appear at the mixer output in the absence of signal, and independently of 

signal channel gain selection.

Feedthrough is not normally specified explicitly but its effect becomes evident 
when operating a heterodyne lock-in amplifier at high dynamic reserve. It 
appears as an alternating component at frequency fR in the output of the system 
and appears at its worst when operating at low reference frequencies with a 
relatively short time constant selected.

A level of feedthrough of 10–5 (–100dB) represents a reasonable target for a 
signal channel mixer operating with an intermediate frequency in excess of 
100 kHz. When used in conjunction with a phase-sensitive detector having a 
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dynamic reserve of 104 (80 dB) the output a.c. variation at frequency fR could 
have a maximum value of 1/10 (–20 dB) of full scale. Unless the intermediate-
frequency tuned filter has unusually high Q-factor - and correspondingly narrow 
bandwidth - it is unlikely to have much influence on the level of feedthrough 
reaching the phase-sensitive detector.

8.4.4 The phase-sensitive detector

It was noted in Chapter 3 that the dynamic range of switching phase-sensitive 
detectors is reduced at high reference frequencies owing to the appearance of the 
so-called "h.f. offset". The mechanisms at work here are very similar to those 
which give rise to feedthrough in switching mixers. It is claimed, quite 
reasonably, that in heterodyne lock-in amplifiers operating at a fixed value of 
intermediate frequency, the dynamic range is constant over the entire range of 
signal and reference frequencies. It should also be said, however, that the phase-
sensitive detector is fated always to operate at a relatively high frequency where 
its dynamic range is less than optimum. In the Ithaco system, operation in a given 
frequency range involved selecting plug-in circuit cards to provide a suitably high 
value of intermediate frequency. Not surprisingly, the figures for dynamic range 
showed a marked deterioration as the system was configured to operate at higher 
reference frequencies and correspondingly higher values of intermediate 
frequency.

In the EG&G Bookdeal heterodyne lock-in amplifier the maximum intermediate 
frequency is 1 MHz, which allows operation with reference frequencies over the 
entire audio-frequency range up to 200 kHz. In this case, the dynamic range of 
the phase-sensitive detector is maintained at a competitively high value 
(>120 dB) by a technique known as synchronous heterodyning. It is shown in 
Section 8.8 that this approach can be used to improve the dynamic range of 
phase-sensitive detectors operating in either a conventional lock-in amplifier or in 
a heterodyne system. Synchronous heterodyning is not an alternative to the 
heterodyne mode of operation described so far; rather it is a supplementary 
technique applied with the objective of improving dynamic range.

8.5 Overload capability of heterodyne systems 
It was the advent of the Ithaco Dynatrac that focused popular attention on the 
specification of overload capability in lock-in amplifiers. Clearly, a simple 
statement of phase-sensitive detector dynamic reserve is not sufficient when a 
lock-in system is so heavily supported by filters. 

From the point of view of overload capability, the image suppression filter in any 
heterodyne lock-in amplifier can be regarded as a low-pass signal conditioning 
filter. The rate of cut-off of the image filter is extremely high and this leads to a 
dramatic improvement in overload capability for asynchronous signals having 
frequencies greater than about one half the intermediate frequency.

The selectivity of the tuned intermediate-frequency filter is chosen solely on the 
grounds of suppressing harmonic responses. Claims that the tuned filter is 
responsible for a significant increase in overload capability should therefore be 
treated with caution, particularly when the reference frequency is very low 
compared with the intermediate frequency. In a heterodyne system the overload 
characteristics are similar to those of a conventional lock-in amplifier using a 
tuned filter at the reference frequency with a bandwidth equal to that of the 
intermediate frequency filter, fI /Q . The effective Q-factor is thus dependent on 
the reference frequency and is given by Qeff Q fR / fI. As a result, the filter is 
likely to have a significant effect on overload capability only when the reference 
frequency approaches its maximum value; even then the maximum reference 
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frequency fRMAX should represent a substantial fraction of fI . Moreover, the Q-
factor of the tuned filter itself should also be high; if sharp cut-off is obtained by 
cascading low-Q sections as described in Section 8.3.4. the overload 
characteristics will be broadly independent of frequency within the bandwidth of 
the image-suppression filter.

The interference rejection characteristics plotted in Fig. 8.7 serve to emphasize 
these points. The graphs are drawn for a system in which fI  5 fRMAX and the 
intermediate-frequency tuned filter has a Q-factor of 20. These conditions 
approximate to those it the Ithaco Dynatrac lock-in amplifier. In a system such as 

Fig. 8.7 Interference rejection in a heterodyne lock-in amplifier
(a) fR = fRMAX/10; (b) fR = fRMAX/2; (c) fR = fRMAX

the EG&G Brookdeal heterodyne, the reference frequency is allowed to take 
values up to 6 decades below the intermediate frequency. Rejection 
characteristics of type (a) in Fig. 8.7 are thus applicable over most of the 
operating frequency range.

8.6 Double heterodyne lock-in amplifiers
In the heterodyne system described so far, the final detection has been carried out 
at the intermediate frequency. In a double heterodyne detection is carried out at 
the original reference frequency as shown in Fig. 8.8.

Fig. 8.8 Double-heterodyne lock-in amplifier showing the principal 
frequencies of interest
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The intermediate frequency stage incorporates a filter of extremely high 
selectivity. In the case of the EG&G PAR Crystal-Het lock-in amplifier a two-
section crystal filter is used to define a Q-factor of 50 000 at the intermediate 
frequency of 1MHz. The resulting 20 Hz bandwidth is significantly smaller than 
the reference frequency over much of the 100kHz frequency range, and thus has a 
profound effect in removing harmonically related components and noise before 
detection.

Fig 8.9 Effective bandpass response at different values of reference 
frequency

The system can be thought of in terms of a tracking filter with a fixed bandwidth 
of 20 Hz, giving an effective Q-factor, Qeff  50 000 fR / fI . The effectiveness of 
the system in rejecting interference components is illustrated in Fig. 8.9 which is 
drawn for different reference frequencies.

As might be expected, the phase-tracking of such a narrowband system is greatly 
inferior to that of a conventional lock-in amplifier. The level of spurious 
responses is nevertheless very low at midband. This is evident from the results 
given in Fig. 8.10 for operation at a reference frequency of 1kHz. The largest 
spurious response in this case occurs at a level of – 70dB relative to the "primary" 
response at 1kHz.

Fig. 8.10 Spurious responses of the EG&G PAR Crystal-Het at a reference 
frequency of 1kHz
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8.7 Brief comparison of single and double 
heterodyne systems

It is evident that the role of the intermediate frequency tuned filter is quite 
different in the two cases. In the single heterodyne system, which has attracted 
most of our attention, the tuned filter is essential in order to maintain relative 
freedom from unwanted responses, particularly those occurring at the odd 
harmonics of the applied reference frequency. The system then approximates to a 
fundamental-only responding lock-in amplifier over the entire operating 
frequency range. As we have seen, however, the tuned filter might have only a 
marginal influence on overload characteristics, becoming effective in a limited 
way towards the high end of the operating frequency range.

In a double heterodyne lock-in amplifier the tuned signal has similar status to a 
tuned filter incorporated in the signal channel of a conventional lock-in amplifier. 
The considerations of Section 4.4 thus apply provided that allowance is made for 
the variation of the effective Q-factor with operating frequency. The essential 
difference between the two heterodyne schemes is that, in the double heterodyne 
system, harmonic rejection depends on the effective Q-factor; in a single 
hetrodyne, harmonic rejection depends only on the actual Q-factor of the tuned 
filter measured at the intermediate frequency. We can conclude from this that the 
double heterodyne approximates to a fundamental-only responding system only 
for reference frequencies greater than a specified value. In the case of the EG&G 
PAR Crystal-Het system referred to earlier, this minimum value of reference 
frequency must certainly be greater than 20 Hz, which limits the system's
effectiveness in the critical low-frequency regime identified in Chapter 6.

It is also evident that alignment problems in a double heterodyne system are far 
worse than those encountered in a single heterodyne operating at the same 
intermediate frequency and covering the same range of reference frequencies. As 
we have seen, the double heterodyne lock-in amplifier requires a tuned filter with 
a Q-factor several orders of magnitude higher than that required by a single 
heterodyne system. In the case of the Crystal-Het system the crystal filter and the 
crystal-controlled intermediate-frequency oscillator are based on carefully 
matched components and a high level of performance is maintained by matching 
temperature coefficients of drift and holding the devices at a controlled 
temperature. The benefits are obtained in the form of greatly improved overload 
capability and a much lower level of spurious responses compared with a single 
heterodyne lock-in amplifier. 

8.8 Synchronous heterodyning
8.8.1 Introduction

In the mid 1970s EG&G PAR introduced a lock-in amplifier known as the 
Syncro-Het which offered a considerable improvement in dynamic range over 
conventional lock-in amplifiers. The system enjoyed success in its own right, but 
attracted little in the way of direct competition. It appears that no attempt was 
made to refine the basic technique or to develop further commercial instruments 
operating on the synchronous heterodyne principle. This was the situation until 
recently when synchronous heterodyning was revived in the context of high-
frequency lock-in systems. The objective was stated in Section 8.4.4; namely to 
improve the dynamic range of phase-sensitive detectors operating at a high 
frequency.

It was remarked in Section 3.6.5 that the d.c. response to a synchronous signal 
can be separated from offset voltages at the output of a phase-sensitive detector 
by introducing a phase reversal of 180 in the reference channel. This approach to 
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signal detection forms the basis of the synchronous heterodyne system illustrated 
in Fig. 8.11. Here, the phase reversal is introduced by systematically switching 
the signal with a squarewave taking values +1 and –1. The switching is carried 
out at a frequency fSYN. Final detection takes place in the phase-sensitive detector 
referenced at fSYN. The output, shown in Fig. 8.12(f), is smoothed by the action 
of the output low-pass filter. The system thus yields a conventional phase-
sensitive response as the relative phase-shift of the signal and reference inputs is 
varied at frequency fR .

Fig. 8.11 Principles of synchronous heterodyning

Fig. 8.12 Waveforms in the system of Fig. 8.11

In this mode of operation we find that the phase-sensitive detector can be 
constrained to operate in a frequency range well below the actual value of the 
reference frequency fR . For example, phase-sensitive detection of a signal at 
100 kHz could be achieved with a "syncrohet" frequency, fSYN, of 100 Hz. The 
overall dynamic range would then be equivalent to that obtainable when 
operating the phase-sensitive detector in a conventional fashion at 100 Hz rather 
than the higher value of 100 kHz. It is this aspect of operation that has made the 
synchronous heterodyne approach so attractive in heterodyne systems where the 
phase-sensitive detector is referenced at a high value of intermediate frequency.

8.8.2 Dynamic range improvement

The synchronous heterodyne system described so far offers no inherent 
improvement in dynamic range at low reference frequencies. This was obtained 
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in the EG&G PAR Syncro-Het system by imposing a filter between the final 
mixer and the phase-sensitive detector as shown in Fig. 8.13.

Fig 8.13 Improvement of dynamic range by using an interstage filter in a 
synchronous heterodyne lock-in amplifier. The filter is of the 
"synchronous" or "rotating capacitor" variety switched at 
frequency fSYN

The filter used in the Syncro-Het system is a so-called "synchronous" or "rotating 
capacitor" filter2 which is supplied with a reference at the final detection 
frequency fSYN. The synchronous filter has the correct response characteristics to 
transmit the components of a squarewave at frequency fSYN, while attenuating all 
asynchronous components due to noise, signal related "ripple", and drift in the 
mixer stages. The filter output thus conforms closely to a squarewave with a 
amplitude proportional to the in-phase component of the synchronous signal. The 
squarewave is, moreover, relatively free from noise and can be subjected to a 
further stage of a.c. amplification before detection. To restore the sensitivity, the 
output d.c. gain can then be reduced in proportion to the extra a.c. gain supplied 
in the signal path. The result is a system which offers improved output stability at 
a given level of dynamic reserve. In the light of the definitions given in 
Chapter 3, this is equivalent to a system with improved dynamic range. 

The Syncro-Het lock-in amplifier operated with fSYN = 11 Hz and proved capable 
of 3000 (70 dB) dynamic reserve, consistent with an output stability of 
10 p.p.m. This is equivalent to an input dynamic range of a massive 3.108

(170 dB). Unfortunately, the overall performance was marred by a series of 
spurious low-frequency outputs which occurred for critical combinations of the 
applied reference frequency and the internal "syncrohet" frequency fSYN.

Mixer feedthrough, giving rise to a residual mixer output in the absence of signal, 
is a major cause of these low-frequency "beat" products. In general, the residual 
output from the second mixer will comprise components at combinations of fR,
fSYN and their odd harmonics, characterized by frequencies:

MfSYN NfR  ;   M , N odd

The phase-sensitive detector is referenced at frequency fSYN and is responsive to 
inputs at frequencies K fSYN where K is an odd integer. Spurious responses will 
occur whenever fR takes values such that:

MfSYN NfR  KfSYN

It should be stressed that the effect of mixer feedthrough is observed in the 
absence of signal and that spurious responses are obtained for critical values of 
the applied reference frequency, given by:
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fR 
M K

N
fSYN

and

fR 
M K

N
fSYN

Since M, N and K are odd we find that spurious responses can be avoided (at least 
with respect to mixer feedthrough) provided that fSYN is constrained to be an odd 
submultiple of fR . If this condition is established, the worse-case effect will be a 
beat product from the phase-sensitive detector at frequency fSYN. This response 
will not be discernible provided fSYN is chosen to be greater than the maximum 
bandwidth of the low-pass filter in the output of the phase-sensitive detector.

Clearly, such a well-defined relationship is lacking in the Syncro-Het lock-in 
amplifier, where fSYN is fixed and fR is allowed to take values over a wide range. 
As we shall see, however, the constraint is not a serious one when synchronous 
heterodyning is applied to a heterodyne lock-in amplifier operating at a fixed 
intermediate frequency.

8.8.3 Application to heterodyne lock-in amplifiers

The implementation of synchronous heterodyning in the EG&G Brookdeal 
heterodyne lock-in amplifiers follows the block diagram shown in Fig. 8.14(a). 
The phase sensitive detector operates at a frequency fSYN which is well below the 
highest intermediate frequency of 1MHz. The complexities of interstage filtering 
are avoided, and further reduction in complexity is achieved by using only one 
mixer as opposed to the double mixer stage assumed earlier.

Fig. 8.14 (a) Incorporation of synchronous heterodyning in a heterodyne 
lock-in amplifier. Reference processing and provision for phase-
shifting are omitted for clarity
(b) Generation of the switching input to the syncrohet mixer  
fSYN is obtained by odd-integer frequency division from fI to 
minimize spurious responses. In practice,  fSYN will be several 
orders of magnitude less than the highest value of intermediate 
frequency
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In our original description of synchronous heterodyning, the signal was mixed 
successively with signals at frequencies fSYN and fR. For a signal s(t), the output 
from the second mixer has the form:

s(t) R1(t) R2(t)

where R1(t) and R2(t) are squarewaves at fSYN and fR .

The alternative approach, using only one mixer, is to multiply the signal directly 
by a two-state waveform:

R3(t) = R1(t) R2(t)

In practice, R3(t) can be formed by combining the individual switching 
waveforms R1(t) and R2(t) in an exclusive-NOR circuit. The resulting waveforms 
are derived in Fig. 8.14(b). In the EG&G Brookdeal heterodyne lock-in amplifier, 
fSYN is chosen to be about 1 kHz, to lie beyond the bandwidth of the output filter, 
and is generated by odd-integer frequency division from the intermediate 
frequency oscillator. As explained in the last section this minimises the incidence 
of spurious outputs resulting from feedthrough in the syncrohet mixer. The 
method of generation avoids the coincidence of transitions in the switching 
waveforms R1(t) and R3(t) which is, in itself, a source of spurious outputs in 
systems where fSYN takes arbitrary values.

8.9 Conclusions
This chapter has shown how a simple idea, that of frequency-shifting to avoid 
harmonic responses, has been progressively modified to allow for practical 
limitations in the performance of the various subsystems which comprise a 
heterodyne lock-in amplifier. The result is an instrument operating at a level of 
complexity greatly in excess of a conventional broadband lock-in amplifier and 
which falls short of conventional systems in several important specification areas, 
notably dynamic range and phase accuracy.

These drawbacks, to judge from the popularity of heterodyne systems, are more 
than offset by the advantages in operating with fundamental-only response allied 
to a low level of spurious responses. In terms of all-round performance, therefore, 
heterodyne systems confirm most closely with the characteristics demanded of a 
"general purpose" measurement tool capable of making unambiguous 
measurements with a variety of signal types over a wide range of operating 
frequencies. The availability of these instruments with a comprehensive facility 
for digital control adds to their appeal in a wide range of applications. Some of 
the characteristics of these systems are reviewed in Chapter 10, while a 
comparison with p.w.m. systems, which offer an alternative approach to 
achieving fundamental-only response, is given at the end of Chapter 9.
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CHAPTER 9 

P.W.M systems 
 

 

 

9.1 Introduction 

Single and double heterodyne systems were developed to overcome the problem 

of harmonic responses in lock-in detection while retaining the ability to track 

signals over a wide frequency range. In this chapter, we shall be looking at an 

alternative method of suppressing harmonic responses, by using pulse-width 

modulation in the reference channel.  

It will become apparent that heterodyne and pulse-width modulation systems 

have rather different status. Whereas heterodyne lock-in amplifiers have a system 

configuration which is far removed from the "conventional" arrangement, the 

pulse-width modulation approach requires only a relatively simple modification 

to an otherwise basic system. As a result, the pulse-width modulation, or p.w.m., 

circuitry can be supplied as an option to a conventional lock-in amplifier, leaving 

the user to select either conventional response or fundamental-only response as 

required. As in the case of heterodyne systems, the suppression of harmonic 

responses is achieved at the expense of spurious responses at apparently arbitrary 

frequencies and is attended by a loss of dynamic range. We shall therefore be 

examining some of the trade-offs which must be made to achieve a detection 

system with overall acceptable characteristics. 

P.W.M. lock-in amplifiers are characterized by phase accuracy of a very high 

order and represent a solution to suppressing harmonic responses which is both 

cost-effective and flexible. Other benefits, such as the potential to operate with 

greatly improved slew rate and the ability to operate the phase sensitive detector 

as an "ideal" multiplier, will also be noted. 

A brief comparison of p.w.m. systems with heterodyne lock-in amplifiers is given 

at the end of this chapter.  

9.2 Principles of operation 

 
Fig. 9.1 Effect of reference waveform symmetry on the average gain of a 

phase-sensitive detector shown for the signal at a fixed level, V1 

volts. The average gain is (a) zero; (b) +m; (c) –m 

The harmonic responses of a phase-sensitive detector result from the abrupt 

change of gain between +1 and –1 which occurs whenever the reference 
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switching waveform changes polarity. If we were to measure the average gain of 

the phase-sensitive detector over many consecutive reference cycles the result 

would of course be zero, provided that the reference switching waveform spent 

an equal amount of time in its two states. As shown in Fig. 9.1(a), (b) and (c) the 

effect of changing the symmetry of the switching waveform is to change the 

average gain of the phase-sensitive detector to a value somewhere between the 

extremes of +1 and -1. 

 
Fig. 9.2 (a) Modulation voltage; (b) pulse-width-modulated switching 

waveform 

Suppose now that the waveform symmetry is subject to a long-term variation 

imposed by modulating the switching waveform as shown in Fig.9.2. The 

average gain of the phase-sensitive detector (Measured over a time which is long 

compared with a switching cycle but short compared with a modulation period) is 

now subject to a continuous variation which is free from discontinuities. The 

variation in gain, moreover, reproduces the modulation waveform exactly. 

This approach, the pulse-width modulated reference channel, provides a means of 

achieving a sinusoidal gain variation in the signal path while retaining the 

dynamic range benefits of a switching phase-sensitive detector. A sinusoidal 

variation has been chosen because this clearly brings us a step closer to a system 

with fundamental-only response. To take a broader view: the system described 

approximates to an ideal multiplier model in which the reference input could be 

of any waveform, supplied in the form of a modulation voltage. Fig. 9.3 shows 

this configuration of a lock-in system working on this principle.  

 
Fig. 9.3 Lock-in amplifier operating on the p.w.m. principle. The output 

is a low-pass filtered version of the product of the signal s(t) and 

a general reference waveform r(t) 
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9.3 Frequency composition of the p.w.m. 
waveform 

P.W.M. waveforms can be generated in a number of different ways. The 

waveform shown in Fig. 9.2 is just one particular type of p.w.m. waveform which 

has been used commercially by EG&G Brookdeal. Analysis of these waveforms 

is generally a protracted business even for a sinusoidal modulation. For the 

moment it will be sufficient to identify some characteristics which are shared by a 

number of p.w.m. schemes that are suited to incorporation in lock-in systems. 

The amplitude spectrum of these modulated switching waveforms can be divided 

into two distinct frequency regions as shown in Fig 9.4. Most important from the 

point of view of signal recovery is the low-frequency region which incorporates 

the complete unmodified spectrum of the modulation waveform. The high 

frequency region contains Fourier components related to the switching frequency 

f0 and its harmonics, each of which carries sidebands derived from the Fourier 

components of the modulation. 

The switching waveform thus combines the Fourier components of the 

modulation voltage with other, non-harmonically related, components at higher 

frequencies. The latter account for the switching characteristics of the waveform 

and each is associated with a transmission window where the detection system is 

susceptible to interference components. 

 
Fig 9.4 Amplitude spectra of: (a) modulation voltage; (b) a typical 

p.w.m. switching waveform 

For fundamental-only response, the modulation will be sinusoidal at frequency fR 

which is usually much less than f0. We then identify the principal components of 

the spectrum at frequencies: 



fR , Kf0  LfR;    K odd, L  0, 1,  2,  3 ...  

Each component in the spectrum, other than at fR, is located at a "critical" 

frequency near which spurious responses will be obtained. As in the case of the 

heterodyne systems discussed in Chapter 8, the ability to suppress responses at 

odd harmonics of fR is offset to some extent by the appearance of responses at 

unrelated frequencies. 



Chapter 9–4 

 

9.4 Basic design considerations 

9.4.1 Dynamic range 

In practical p.w.m. systems giving fundamental-only response the magnitude of 

the component at frequency fR is found to vary linearly with the amplitude of the 

modulation voltage which, in turn, determines the depth of modulation in the 

p.w.m. waveform. The component at fR can take reasonably large values - of the 

same order of magnitude as the dominant high-frequency components - without 

causing over-modulation. This turns out to be very important in phase-sensitive 

detection where the "primary" response at fs = fR should be as large as possible. 

Failure to achieve this means that the overall detection system will suffer a 

significant loss of sensitivity compared to operation with a conventional 

squarewave reference. Some loss of sensitivity is inevitable in a p.w.m. system: 

unfortunately this can be equated to a reduction in dynamic range. The reason is 

that the input overload level to the phase-sensitive detector and the output 

stability remain substantially unchanged as the modulation depth, and hence the 

sensitivity, is varied. At a given modulation depth, the sensitivity can be restored 

by using a larger gain factor either in the signal channel or in the post-detection 

"expand" amplifier. From the considerations given in Chapter 4, we find that the 

first approach results in a loss of dynamic reserve, leaving the output stability 

unaffected, while the second option maintains dynamic reserve at the expense of 

output stability. In either case, the net dynamic range of the system is lowered by 

the same factor; the implication is that the p.w.m. waveform should be modulated 

to the maximum possible depth in the interests of maintaining dynamic range.  

This brings us to an important design trade-off. Increasing the depth of 

modulation on the p.w.m. waveform reduces the loss in dynamic range but is 

accompanied by a rise in the sideband components centred on the switching 

frequencies and its harmonics. Any attempt to recoup dynamic range using this 

approach is consequently matched by an increase in the general level of spurious 

responses. In addition, high-order sidebands which had negligible magnitude will 

now introduce transmission windows in a frequency range closer to the reference 

frequency, and so assume greater practical importance. 

9.4.2 Spurious responses 

In general, the magnitude and extent of the sideband arrays centred on f0 and its 

harmonics vary non-linearly with modulation depth and can only be determined 

for a given modulation scheme by exact analysis. The scheme exploited by 

EG&G Brookdeal in their Sinetrac systems is particularly difficult to analyse 

because, in addition to modulating the mark/space ratio of the switching 

waveform, the modulating signal also causes a shift of the carrier frequency. We 

shall therefore restrict ourselves to a general review of system behaviour. 

In the Sinetrac system, the sinewave modulation voltage at frequency fR is 

specified at a standard level of 1 V r.m.s. The modulation depth corresponding to 

this level of modulation signal gives a loss of 10 dB in the sensitivity of the 

phase-detector. The sensitivity is regained by introducing an extra gain stage of 

10 dB in the signal channel, with a consequent loss of 10 dB in the system 

dynamic reserve. 

When the modulation is at a reference frequency fR which is much lower than f0, 

the sidebands centred on the carrier frequency are closely spaced at frequencies 

RLff 0  but the extent of the sideband array is strictly limited as shown 
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schematically

 in Fig. 9.5. The total width, 



2f , is typically 20 kHz and 

substantially independent of modulation frequency when fR takes sufficiently low 

values, giving a spectrum similar to that of a frequency-modulated carrier under 

conditions of large-index modulation. 

 

Fig. 9.5 General form of the p.w.m. waveform spectrum at low reference 

frequencies 

This general behaviour, giving rise to a p.w.m. spectrum with sensibly fixed 

characteristics, corresponds to operation with fR less than about f0/30. For 

reference frequencies in this range, a clear separation is maintained between the 

low- and high-frequency regions of the spectrum. The lowest critical frequency, 

where a spurious response of significant magnitude could be obtained, is now in 

the region of



f0  f ,which is well removed from fR. 

When fR is increased, keeping the depth of modulation constant, the separation of 

the sidebands becomes correspondingly larger. In order to predict the critical 

frequencies and the magnitude of their associated transmission windows, it now 

becomes necessary to give individual attention to each of the sidebands. In 

practice it will be the sidebands below the carrier frequency which prove to be 

the most troublesome, located at frequencies f0 – LfR.  

It turns out that for sufficiently high reference frequencies, the major contribution 

to spurious responses comes from the low-order sidebands for which 4L . This 

is illustrated by Fig. 9.6, drawn for the specific case where fR = f0/10. Here, the 

separation between the low- and high-frequency regions of the p.w.m. spectrum 

is much less well defined. Also, it is evident that, if fR exceeds a certain value, 

one of the sidebands will enter the frequency range below fR. 

 
Fig. 9.6 Major sideband components for fR = f0/10 , shown relative to the 

"primary" component at fR 

                                                      

 Note that, in the Sinetrac system, application of the modulation voltage shifts the mean carrier 

frequency by about 10% from its "free-running" value. We shall ignore this effect in the following 

discussion. 
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To avoid the possibility of a transmission window appearing at an apparently 

arbitrary frequency below the reference, we must place an upper bound on the 

reference frequency. Assuming that sidebands corresponding to 



L4  have 

negligible magnitude, this gives us the condition 



f0  4 fR  fR  

which limits the reference frequency to the range 



fR  f0 /5 

If responses at harmonics of fR are to be heavily suppressed, the sinewave 

modulation voltage must have very low distortion. Otherwise the distortion 

components will appear in the low-frequency region of the p.w.m. spectrum and 

give rise to a set of harmonically-related transmission windows. In practice it 

must be expected that the modulation voltage has some residual distortion and 

that the modulation process is not perfectly linear, either in principle or in its 

practical implementation. Such deviations from the ideal will inevitably result in 

the occurrence of harmonic responses, albeit at low level. 

9.4.3 Choice of switching frequency 

For maximum separation between the low- and high-frequency regions of the 

p.w.m. spectrum, the switching frequency f0 should be chosen to be much higher 

than the maximum anticipated reference frequency. The limitation on f0 is 

decided ultimately, by the dynamic range of the phase-sensitive detector which 

deteriorates at high switching frequencies. This deterioration is compounded by 

the additional loss in dynamic range inherent in the p.w.m. approach. It has been 

observed that a p.w.m. reference channel can be configured as an option to an 

otherwise conventional lock-in amplifier. If this is the case, the phase-sensitive 

detector will be optimized over a range of frequencies rather than at a fixed high 

frequency. The p.w.m. switching frequency must then be chosen to be 

comparable with the highest frequency envisaged in conventional operation. 

Inevitably, the highest permitted value of fR in p.w.m. operation must then be 

significantly less than this value. The EG&G Brookdeal Sinetrac lock-in 

amplifiers are subject to such a constraint; here the maximum recommended 

reference frequency in p.w.m. operation is 25 kHz in a system which can operate 

to frequencies above 100 kHz in conventional mode. 

9.5 Reference phase-shifting 

As described so far, p.w.m. systems depend on the provision of a sinewave 

reference voltage in order to achieve fundamental-only response. This would 

obviously place a severe restriction on the utility of such systems compared with, 

say, heterodyne lock-up amplifiers which are able to operate with a wide range of 

externally applied reference waveforms. 

Also, to be of practical value, a p.w.m. system must be supported by a reference 

phase-shift network to enable the phase of the sinewave modulation voltage to be 

adjusted relative to a synchronous signal. 

Clearly, these two drawbacks can only be overcome by adding to the complexity 

of the reference channel. In deciding on a suitable processing system, the 

following factors must be taken into account: 

(i) Although we have identified an upper limit on fR, to avoid low-frequency 

spurious responses, there is no fundamental limit on the lowest value of fR 

which might be used. This implies that to exploit the p.w.m. technique to the 

full, the reference processing circuits should be capable of operating over a 

wide range of frequencies, amounting to several decades. 
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(ii) The sensitivity of the phase-sensitive detector, and hence the calibration of 

the overall system, depends directly on the amplitude of the sinusoidal 

modulation voltage, which should therefore have constant value over the 

entire operating range. 

(iii) The sinewave applied to the pulse-width modulator should have a very low 

level of distortion if the detection system is to reject responses at harmonics 

of the reference frequency. 

These requirements are fully met by the reference channel used in the EG&G 

Brookdeal Sinetrac series of lock-in amplifiers. The configuration is shown in 

Fig. 9.7. The reference input stage and the broadband phase-shift network are 

those of a strictly conventional lock-in amplifier, capable of operating with high 

precision over a frequency range in excess of five decades. The phase-shifted 

output of the reference channel is a closely controlled squarewave which is 

subsequently converted, first to a triangle and then to a sinewave. The circuits 

used for squarewave-to-triangle conversion have been described by Carter and 

Faulkner
1
; the final conversion to sinewave form is given by a piecewise linear 

network adjusted for a low level of distortion over the full frequency range. 

 
Fig. 9.7 Broadband lock-in amplifier with facility for fundamental-only 

operation in p.w.m. mode  

Fig. 9.7 also shows the relatively simple arrangement of switches required to 

convert a harmonically-responding, conventional, lock-in amplifier to a system 

with fundamental-only response. An additional signal-channel gain stage of 

10 dB is used to maintain the overall sensitivity of the system in p.w.m. mode. 

The diagram serves to emphasise that the p.w.m. configuration does not rely on 

the use of filters, and is consequently free from phase and amplitude errors due to 

filter misalignment. The phase accuracy and the residual phase noise are 

therefore comparable with those of the basic conventional system and 

significantly better than that of a heterodyne lock-in amplifier operating in the 

same reference frequency range. 

9.6 Two-phase systems 

The extension to two-phase systems requires an additional squarewave-to-

sinewave convertor operating on the squarewave output of the quadrature 

reference channel. A second pulse-width modulator, operating independently of 

the first, is used to supply the reference input to the quadrature phase-sensitive 

detector. 
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It should be noted that p.w.m. systems do not depend on a carefully adjusted 

carrier frequency. In practice, the carrier frequencies of the two pulse-width 

modulators used in a two-phase lock-in amplifier need to be no more than 

nominally equal. 

9.7 Analogue correlation 

"Analogue correlation" is a term used in the context of p.w.m. lock-in amplifiers 

to cover the various modes of operation made possible when an external 

reference waveform is applied directly to the pulse-width modulator. This opens 

up numerous possibilities some of which are reviewed in the following sections. 

9.7.1 Matched detection 

The idea of a "matched" detector was mentioned in Section 3.5.5 in relation to 

the measurement of a squarewave signal using a conventional squarewave 

reference. If we now suppose that a periodic but non-sinusoidal waveform was 

used as the modulation input to a p.w.m. lock-in amplifier, the resulting detection 

system would be characterized by a set of transmission windows which could be 

exactly matched in amplitude, frequency and phase to the Fourier components of 

the signal. Such a system proves capable of yielding the best possible output 

signal-to-noise ratio for signals obscured by white noise. Unfortunately, signal 

recovery problems are usually associated with noise spectra far more complicated 

than this, so that the benefits of matched detection (which are, in many cases, 

marginal) are difficult to realize in practice. It usually turns out that the ability to 

operate in a fundamental only response mode with relative freedom from 

transmission windows close to the reference frequency gives a far greater 

advantage when measuring non-sinusoidal signals in noise. As noted in Section 

3.5.5 and in Chapter 6, the null-shift procedures can be applied when the 

detection system has fundamental-only response, to quickly bring the reference 

phase-shift to an optimum setting under very noisy conditions. 

9.7.2 Two-frequency lock-in analysis 

In a two-phase lock-in amplifier operating on the p.w.m. principle, the pulse-

width modulators associated with each phase-sensitive detector operate 

independently and have separate inputs. These can be supplied with external 

reference waveforms having different fundamental frequencies and different 

waveforms if so required. The ability to use independent reference inputs means 

that different spectral components of the signal can be separately measured on 

each of the phase-sensitive detectors.  

Since direct connection of external references to the modulator inputs bypasses 

the reference phase-shifting networks, this facility is likely to be most useful in 

such applications as optical spectroscopy where there is minimal phase-shift 

between the reference and signal. An example of spectrometer operating with two 

chopper frequencies is shown in Fig. 9.8. The light paths from the two samples 

are combined at the cathode of single photomultiplier. A two-phase p.w.m. lock-

in amplifier is subsequently used to measure the two chopped signals separately 

and simultaneously, using "analogue" reference inputs derived from the drives to 

the optical choppers. A ratiometer can be a useful accessory in this type of 

measurement; however, a digital interface of the type described in Chapter 10 

provides a more flexible approach to processing the outputs from the twin 

channels. 
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Fig. 9.8 A two-frequency lock-in amplifier application. The outputs VA 

and VB are proportional to the signals transmitted by samples 1 

and 2 respectively. 

9.7.3 High slew rate applications 

In principle, the limited slew rate capability of conventional lock-in amplifiers 

could be overcome by bypassing the reference phase-shifting networks and 

applying a swept-frequency switching waveform directly to the phase-sensitive 

detector. Such a procedure is valid when the signal and reference remain sensibly 

in phase over the desired frequency sweep. In practice, the procedure can be 

applied to conventional lock-in systems only when the phase-sensitive detector is 

accessible in the form of a modular unit. 

 
Fig. 9.9 Swept-frequency spectrum analysis using a quadrature oscillator 

A difficulty arises when high slew rate is required in association with 

fundamental-only response. In this case, a p.w.m. lock-in amplifier operated with 

direct access to the pulse-width modulator provides a workable solution. P.W.M. 

systems operating with carrier frequencies of the order of 100 kHz are able to 

respond to rapid frequency sweeps applied to the modulation input. Provided a 

swept-frequency sinusoid is available at the standard level required for proper 

calibration, it is possible to obtain fundamental-only response consistent with 

slew rates far in excess of most practical requirements.  

Wide-band swept spectrum analysis was cited in Chapter 6 as a lock-in amplifier 

application where fundamental-only response and high slew rate were essential 

joint requirements. In order to exploit the characteristics of a two-phase p.w.m. 
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system in this application, it is necessary that the two pulse-width modulators are 

operated in strict quadrature at the swept reference frequency. This highlights the 

need for a swept-frequency oscillator providing quadrature sinewave outputs at a 

standard level. Such oscillators have been made available as accessories to two-

phase p.w.m. lock-in amplifiers for use in the configuration shown in Fig. 9.9. In 

wideband applications using high frequency resolution, the sweep-rate limitation 

in this type of system lies with the output filters as explained in Section 5.5.3. 

9.8 Interference rejection filters 

In an earlier version of the Sinetrac lock-in amplifier, the signal channel was 

fitted with a 2-pole low-pass filter cutting off above the maximum reference 

frequency of 25 kHz but well below the 100 kHz switching frequency. In 

addition, a notch filter was used to enhance the suppression of signal components 

in the region of 100 kHz. The object was to overcome the major spurious 

responses associated with p.w.m. operation. 

 
Fig 9.10 (a) Combined frequency response of signal channel filters. (b), (c) 

Amplitude spectrum of PWM reference at "low" and "high" 

reference frequencies 

In practice, such a combination of filters is likely to prove desirable only at 

comparatively low reference frequencies for the following reasons. First of all, 

we have seen that at low reference frequencies the transmission windows are 

concentrated in the spectral regions close to the switching frequency and its odd 

harmonics. Spurious responses are therefore associated with high-frequency 

interference and the filters are most effective in suppressing these in advance of 

detection. Secondly, at low frequencies the phase-shift introduced by the filters 

will be relatively small, enabling the overall system to operate with good phase 

precision. 

Conversely, at high reference frequencies, the signal channel filters will introduce 

large phase errors into the measurement system while the transmission windows 

move to much lower frequencies by reason of the wider sideband separation. The 

contrasting situations are illustrated in Fig. 9.10. We find that at higher reference 
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frequencies there will be a number of critical frequencies, for example f1 and f2 

which fall within the bandwidth of the signal channel filter. Interference 

components close to these frequencies would suffer minimal attenuation in the 

filter and be able to excite spurious responses. In some cases, therefore, the 

inclusion of the filter acts more to the detriment of the system, introducing large 

phase errors while having only partial success in overcoming the problem of 

spurious responses. 

The decision to eliminate interference rejection filters with fixed characteristics 

in later versions of the Sinetrac system resulted in a lock-in amplifier capable of 

fundamental-only response, consistent with excellent phase accuracy, over many 

decades of frequency. The system is, nevertheless, associated with large spurious 

responses at relatively high frequencies. It was shown in Chapter 6 that 

fundamental-only responding systems have considerable application in 

experiments operating with low reference frequencies. In this regime, signal 

conditioning filters can be used to suppress interference components at 

frequencies comparable with the high-frequency switching components of the 

p.w.m. reference. If a range of optional filters is made available, this can be 

achieved without sacrificing phase accuracy when the system is required to 

operate with fundamental only response up to the highest possible value of 

reference frequency: for example, when measuring the swept-frequency response 

of networks over the full audio-frequency range. 

9.9 Comparison of p.w.m. systems with 
heterodyne lock-in amplifiers 

P.W.M. and heterodyne lock-in amplifiers were devised with the same objective 

in mind; to give a synchronous detection system with wide dynamic range and 

relative freedom from harmonic responses over a wide range of reference 

frequencies. As we have seen, the two approaches to this problem lead to vastly 

different solutions, both of which involve system designers in a number of trade-

offs and compromises. 

On balance, modern heterodyne lock-in amplifiers appear to offer the widest 

frequency range consistent with the lowest level of spurious responses, whereas 

commercial versions of the p.w.m. system operate up to a maximum frequency of 

about 25 kHz and have a number of large transmission windows accessible in the 

frequency range immediately beyond this value. 

The overall phase accuracy of p.w.m. systems is superior to that of heterodyne 

lock-in amplifiers, which are susceptible to alignment errors in a number of sub-

systems and generally require a far more complex configuration. The difference 

in complexity is reflected in system cost, since p.w.m. lock-in amplifiers usually 

offer a cheaper means of obtaining fundamental-only response than their 

heterodyne counterparts. Also p.w.m. systems can usually be converted by 

pushbutton selection to operate as conventional lock-in amplifiers, giving an 

extension of the frequency range and allowing the fundamental-only response to 

be traded for greater dynamic range. This flexibility in choosing the response of 

the system extends to choosing an arbitrary response given by the Fourier 

components of the applied reference waveform.  

A feature that both heterodyne and p.w.m lock-in amplifiers have in common is 

that fundamental-only response at low frequencies is obtained by operating the 

phase-sensitive detector at a relatively high frequency. The result in both cases is 

a system with a dynamic range independent of reference frequency but less than 

that which might be achieved if the phase-sensitive detector was operated in 

conventional fashion. It was shown in Chapter 8 that the dynamic range of 
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heterodyne systems can be recouped by using synchronous heterodyning as a 

supplementary technique. Unfortunately, it is not obvious how this could be 

applied to phase-sensitive detectors operating with a p.w.m. reference without 

incurring additional spurious responses in the low-frequency region. As a result, 

the dynamic range of a heterodyne lock-in amplifier can be comparable with that 

of a p.w.m. system where the phase-sensitive detector is operating at much lower 

frequency. 

9.10 Reference 

CARTER, S.F., and FAULKNER, E.A. (1977): "Accurate broadband square-to-

triangle converter", Electron, Lett., 3, pp. 381-382.  
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CHAPTER 10

Computer-controlled lock-in amplifiers

10.1 Introduction
The advent of the microprocessor and the increasing availabity of desk-top 
computing power have provided a challenge to both designers and users of 
electronic measuring equipment. Instrument designers are faced with a demand 
for ‘intelligent’ instruments capable of performing programmed tasks or able to 
communicate with other instruments via a computer controller. As for the 
instrument user; he is concerned with using these new instruments to the best 
effect and with devising measurement procedures that take advantage of the latest 
developments in instrument technology.

Fig. 10.1 Bus-controlled measurement system

This general situation is reflected in the specific case of instrumentation for 
signal recovery where increasing emphasis is being placed on computer control in 
its widest sense. Developments in this area have been greatly influenced by the 
widespread adoption of the IEEE-488 bus system for providing two-way digital 
communication between measuring instruments and a computer-controller. This 
has resulted in the availability of a large range of compatible instruments that can 
be, literally, plugged together to produce a computer-controlled measurement 
system. Many of the applications listed in Appendix 1 could benefit from such an 
approach; for example, Fig. 10.1 shows a bus-compatible lock-in amplifier 
operated in conjunction with a number of other controllable devices to provide an 
automatic system for frequency-response measurement.

The IEEE-488 bus protocol is rigidly defined; thus, at any time, only one device 
is permitted to ‘talk’, that is send data or commands over the bus, while several 
devices may ‘listen’ in order to receive data or commands. In the example shown, 
the X-Y plotter and signal generator would probably operate as ‘listeners’ while 
the lock-in amplifier would both ‘talk’ and ‘listen’, to transmit data to the 
computer and receive commands. Overall control comes from the computer, 
which is programmed to change the frequency of the signal generator in discrete 
steps, to manage the take-up of data from the lock-in amplifier, and to process 
data for presentation on the X-Y plotter.

In the computer-controlled lock-in amplifiers to be discussed in this chapter, the 
phase-sensitive detector remains intact at the heart of the system, supported by 
signal and reference channels having characteristics similar to those described in 
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earlier chapters. The incorporation of digital control lines to switch the sensitivity 
and the internal configuration of the lock-in amplifier can be achieved without 
compromising key specifications such as input dynamic range and operating 
frequency range. In practice, therefore, the only serious limitation incurred in 
operating with a computer interface is with regard to output dynamic range. This 
is now limited by the use of an analogue-to-digital convertor on the phase-
sensitive detector output. An attempt to match the 100 dB dynamic range of a 
typical analogue output would require a 17-bit conversion and would be difficult 
to justify on grounds of cost in a general-purpose measurement system. The usual 
provision is for a 31/2 digit conversion, giving a resolution of 10 mV in a 10 V 
output with 100% over-range. If this is inadequate for a particular application, the 
analogue output is available on its usual socket and can be separately converted 
to high precision if so required.*

The handling characteristics of the lock-in amplifier being relatively unchanged, 
the main problem in digital control is to create programs which reproduce the 
measurement routines and setting-up routines that are associated with the 
detection of noisy signals. In giving consideration to these routines it will be 
convenient to distinguish between the two main types of controllable lock-in 
amplifier in general use. These are ‘programmable’ lock-in amplifiers where the 
software control routines are resident in an external computer controller, and 
microprocessor-based systems  so called ‘intelligent’ lock-in amplifiers. The 
latter feature a number of stored software routines that can be initiated by front-
panel switch selection or by a command transmitted on the interface bus.

10.2 Programmable lock-in amplifiers
In early lock-in amplifiers, the pushbutton and switch selectors controlling the 
overall system configuration were heavily interlocked and interlinked and 
required front panel assemblies that were both complex and labour-intensive in 
production. At a later stage, f.e.t. switches, controlled by the application of 
standard logic levels, became widely used for both gain selection and mode 
selection and there was a move to transfer hard-wired switching logic to 
integrated circuits mounted on the printed circuit board. This change leads to a 
dramatic simplification in switch design. For example, the sensitivity switch of a 
typical lock-in amplifier is reduced from a multi-wafer assembly to a single-pole 
selector as illustrated in Fig. 10.2. 

Fig. 10.2 Simplification of switching operations by using a combinational 
logic circuit

                                                     
* Note that to exploit the full output dynamic range of these instruments generally places severe 
demands on peripheral equipment, both analogue and digital.
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The sensitivity lines S1 to Sn provide an address input to a combinational logic 
block which is tabled to produce the appropriate output combination on the f.e.t. 
control lines F1 to FN. These are then used to switch the gain of the amplifier 
stages in the lock-in amplifier signal channel. In a comprehensive detection 
system, giving a choice of ‘high stability’ or ‘high reserve’ operation, the address 
lines might be augmented by an additional input which is either HIGH or LOW 
depending on mode selection. The combinational logic circuit is then arranged to 
control the f.e.t. switches for any combination of mode and sensitivity, without 
adding to the complexity of the mechanical switching assembly.

The transition from a ‘standard’ instrument designed along these lines, to one 
where the internal switches can be controlled by the application of logic levels 
from an external source is relatively straightforward. In a fully ‘programmable’ 
lock-in amplifier, all the functions that are normally switched from the front 
panel, such as sensitivity, time constant, phase quadrants and ‘expand’, can be 
controlled from logic levels applied to a ‘digital’ input. In lock-in amplifiers 
having a voltage-controlled phase-shifter, the provision of a digital-to-analogue 
convertor enables the reference phase to be added to the list of controllable 
parameters. In its simplest form, the digital input might be a multi-way socket 
connected to a set of remotely operated switches. In modern instruments, 
however, the digital input is more likely to be a port having access to a standard 
bus system, such as the IEEE-488 bus referred to earlier. When the lock-in 
amplifier output is provided with an analogue-to-digital convertor, a properly 
defined bus system enables data to be transferred to the computer controller and 
to other instruments connected to, and controlled from, the bus.

In order to exploit this type of system effectively, the computer-controller must 
be provided with programs sufficiently powerful to undertake the management of 
the lock-in amplifier under a wide range of signal and noise conditions. We thus 
envisage a control program that defines an overall measurement procedure and 
contains a number of subroutines for sensitivity and phase selection. The 
specification of these subroutines requires a certain familiarity on the part of the 
user with the handling characteristics of lock-in amplifiers and would normally 
involve several stages of refinement before an acceptable solution was found. 
Some essential features of these routines are identified and discussed in Sections 
10.4 and 10.5.

10.3 Microprocessor-based systems
The incorporation of a microprocessor to monitor and supervise the switching 
functions of a lock-in amplifier represents a significant advance in system 
concept and design. The result is a self-contained lock-in amplifier with the 
ability to undertake sequential switching operations controlled by software 
associated with the microprocessor. The control system takes additional data 
from

(i) front panel switch arrays

(ii) a digital interface to an external keyboard or controller

(iii) the outputs of the phase-sensitive detectors.

A lock-in system with this overall capability greatly cases demands on the user 
who no longer requires such detailed familiarity either with lock-in techniques in 
particular or signal recovery in general. For example, the resident software 
routines could enable the lock-in amplifier to adjust sensitivity and phase 
automatically to maximize the output for a given signal. As far as the user is
concerned, the lock-in amplifier now operates like a special type of a.c. 
microvoltmeter which can read the amplitude and phase of a signal in response to 
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a single key stroke or bus command. This reduced level of operational 
complexity is reflected in the amount of programming effort required to control 
the lock-in system when it forms a component part of a larger bus-controlled 
system.

There are other aspects of operation which benefit non-specialist users that apply 
to almost any type of microprocessor-based instrument. For example, the digital 
output can be scaled to reflect the input signal level, taking all factors such as 
sensitivity multipliers and amplifier gains into account. The system is then much 
less prone to operator error than a mechanically switched system fitted with a 
pointer scale where the danger of overlooking a scaling factor is always present. 
Also, since all switching operations from the front panel are supervised by the 
microprocessor, the system is able to inhibit or give warning of undesirable or 
unorthodox combinations of front-panel controls, supported by a display or print-
out of the appropriate error message.

In an instrument such as a lock-in amplifier which is subject to frequency-
dependent errors in the signal and reference channel circuits, there is ample scope 
for using the microprocessor in an automatic calibration routine. This would 
measure and store calibration errors over the frequency range of the instrument 
with the object of providing corrected results in the final measurement. In 
principle, the calibration routine could be extended to correct phase-sensitive 
detector offsets and to compensate the amplitude and phase characteristics of 
signal conditioning filters introduced into the signal channel.

Clearly, the incorporation of a microprocessor has progressively greater impact as 
the complexity of the lock-in system is increased and should, ideally, enable a 
greater number of facilities to be offered without sacrificing case and clarity of 
operation. This objective generally requires a fresh approach to front panel 
design. For example, the familiar phase dial of a lock-in amplifier might be 
replaced by a counter that can be incremented or decremented using a pushbutton 
switch. The reference-channel phase-shifter is then controlled from a digital-to-
analogue convertor taking its input from the microprocessor data bus. The 
problem of monitoring the status of the instrument is overcome by displaying the 
phase setting on a digital panel meter which also serves to display error codes and 
fault conditions when the system is operated.

As an additional constraint on the system designers, experienced users would 
normally require that the system is able to revert to full manual control where 
various combinations of front-panel settings could be tried without being 
restricted to operate from a ‘menu’ of stored routines. This constraint would 
certainly apply to any microprocessor-based lock-in amplifier that was offered as 
a general purpose measurement tool rather than as a special-purpose instrument, 
rigidly programmed to perform a specific range of tasks.

The selection of routines available on commercial instruments is limited but 
carefully chosen to enhance the handling characteristics of the lock-in amplifier 
in a wide range of applications. In addition to the software routines for sensitivity 
and phase selection referred to earlier, there is usually the possibility to offset 
data by a fixed amount and to normalize data, providing an output expressed as a 
fraction of percentage of some predetermined level. Routines of this type are 
therefore applied after detection and serve as a first stage of output processing. If 
more complex processing is required, this would normally be carried out by a 
computer interfaced to the lock-in amplifier, programmed to suit the needs of a 
specific experiment.

Management of this interface by a microprocessor resident in the lock-in 
amplifier offers several advantages over a ‘hardware only’ design. Thus, 
transmitted data can be presented in an easily understood format, only relevant 
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data need be transmitted, and received commands can be less complex and more 
meaningful. The impact of the microprocessor on the design of an IEEE-488 
compatible lock-in amplifier is brought out in Table 10.1. Comparison is made 
with a notional design based on classical techniques, and improvements are 
attributed to specific characteristics of the microprocessor.

Regarding the routines for sensitivity and phase adjustment; it is essential here 
that the criteria for range and phase switching are clearly stated if the lock-in 
amplifier is to behave predictably under the worst conditions of signal and noise. 
The following sections give further discussion on these routines and apply 
equally to a detection system under software control from a microprocessor or 
from an external controller linked by a data bus.

Table 10.1

Instrument 
characteristic

Classical design 
techniques

Improvement in 
microprocessor-
based design

Microprocessor 
characteristic 
leading to 
improvement

Digital display of 
output

Output in range 0 
to  10V scaled 
by reference to 
gain setting and 
1, 2, 5 
multipliers

Direct scaling 
reflecting input 
level

Multiplication 
program

Digital display of 
phase

0 to 99.9
Quadrant 
information on 
+90and +180
switches

0 to 359.9
Direct indication

Addition 
capability

Autorange mode Hardware design 
requiring physical 
links with 
sensitivity and 
time-constant 
switches

Software-only 
design: no 
additional 
hardware required 
to implement 
mode

Digital 
comparison
Data manipulation
Program storage

Zero offset Manual operation Manual-automatic 
operation

Program storage
Data manipulation
Subtraction 
capability

Initial Set-up None Automatic 
operation

Program storage
Data manipulation
Digital 
comparison
Mathematical 
capability

Normalize Manual operation Manual/automatic 
operation

Program storage
Data manipulation
mathematical 
capability
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Table 10.1 (continued)

Variable phase 
and zero-offset 
hardware

3-digit d.a.c. or 
10-bit binary 
d.a.c. plus b.c.d. 
to binary 
conversion 
hardware

10-bit d.a.c. B.C.D. to binary 
program storage

Output conversion 31/2 digit a.d.c. 12-bit binary 
a.d.c.

Binary to b.c.d. 
program storage

IEEE 488 
Transmitted data

Fixed format. 
Interpretation 
required for phase 
and output data

Flexible format
No interpretation 
required
No redundant data 
need be 
transmitted

Data manipulation
Storage of format 
styles
Mathematical 
capability
Read/write 
storage capability

IEEE 488 
Received 
commands

Fixed format: 
hardware 
determined

Flexible format
Meaningful 
commands

Data manipulation
Data storage
Storage of format 
styles

Front panel 
control

Rotary, 
pushbutton and 
toggle switches. 
Hardware 
determined

Pushbutton 
switches only. 
Ergonomic 
improvements. 
Group of controls 
not constrained by 
internal design of 
instrument

Data manipulation
Program storage

10.4 Automatic sensitivity selection
When a lock-in amplifier is operated manually, the response to a synchronous 
signal is usually adjusted by switching sensitivity to obtain an output as close as 
possible to a full-scale reading.

In a single-phase lock-in amplifier, the response will not necessarily be maximum 
and may even take negative values unless the phase of the reference channel has 
been correctly adjusted. When using a two-phase system, the sensitivity is usually 
adjusted to maximize the output of the phase-sensitive detector giving the largest 
response. Alternatively, when the use of a vector computer is appropriate, the 
sensitivity can be adjusted by observing the ‘magnitude’ output of the vector 
computer.

If the residual noise output of the lock-in amplifier is sufficiently large, it will be 
necessary to ensure that fluctuations in the output do not carry the indication due 
to the signal beyond full-scale. This would normally require an observation time 
amounting to several time constants and may result in the system being switched 
to lower sensitivity. Most systems offer a 1:2:5 or 1:3:10 switching sequence, so 
this final step can usually be achieved without a significant loss of output voltage.

The object of a sensitivity routine or autorange routine is to bring this sequence 
of operations under automatic control by comparing the magnitude of the lock-in 
amplifier output with predetermined ‘threshold’ levels. Some of the difficulties 
encountered when autoranging with a noisy signal are demonstrated by the 
following examples.
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Fig. 10.3 Definition of switching thresholds in a decade autoranging 
system.

Suppose we have a lock-in amplifier where the sensitivity control is divided into 
a series of decade ranges, and that the response to a synchronous signal has been 
brought to a level corresponding to about half-scale output as shown in 
Fig. 10.3(a).

The lock-in amplifier controller is programmed to switch to a lower sensitivity 
(range-down) when the signal increases to a level corresponding to full scale 
output, and to switch to higher sensitivity (range-up) when the signal falls to 10% 
of full-scale. To be realistic we must allow for a small amount of residual noise 
appearing with the signal as shown in Fig. 10.3(b); hence the first ‘down’ 
transition will occur when the total output due to signal plus noise exceeds the 
100% level. Fig. 10.3(c) shows the new situation which applies after the 
sensitivity has been switched. Signal and noise appear in the same relation as 
before, so it is only a matter of time before the total output falls below the 10% 
threshold level, causing the system to range-up to its original sensitivity. The 
situation illustrated in Fig. 10.3(b) is thus restored. If the signal remains at a 
constant value the system will attempt to switch gain alternately ‘up’ and ‘down’ 
with the result that a stable condition is never attained. To overcome this 
difficulty it is necessary to redefine the switching thresholds, for example by 
increasing the upper threshold to greater than 100%, or by reducing the lower 
threshold to less than 10%. In this way, the system can be made to tolerate 
residual noise on the output, at least up to a certain peak-to-peak level, and will 
be able to switch sensitivity to reach a well-defined condition.

Let us now look at the behaviour of the system under conditions of very low 
signal. If, at some point, the output signal-to-noise ratio falls drastically, or if the 
signal is removed, leaving only noise in the output, the sensitivity controller will 
attempt to switch gain to the maximum achievable value. The system will then 
remain in a stable condition at maximum sensitivity, provided the output noise 
peaks do not exceed the upper threshold level. If this level is exceeded, the 
controller will switch the sensitivity to a lower value. Unfortunately, the noise is 
bipolar and so repeatedly takes values close to zero voltage. The controller will 
thus restore the sensitivity to its maximum value at the first opportunity and 
subsequently make random transitions between the two most sensitive range 
positions.

These considerations suggest that the maximum usable sensitivity in autorange 
operation is where the peak output noise is just less than the full-scale output. 
This maximum sensitivity can be determined by experiment; the autorange 
program should then be arranged to inhibit the selection of sensitivities beyond 
this maximum permitted value, to avoid the control system becoming unstable 
with low signal inputs.

Next, let us consider the effect of the lock-in amplifier time constant on an auto-
ranging system. It should be remembered that time constants up to about 100 ms, 
which would be considered ‘fast’ by a human observer, are relatively ‘slow’ 
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compared with the response time of a digital controller. Decisions to switch range 
should therefore be deferred for an appropriate time while the output of the lock-
in settles to a new value following a switching operation. In commercial systems 
supplied with an autorange facility, a settling time of four or five time constants 
is usually allowed between successive switching operations. In a fully integrated 
system, the micro-processor will be provided with the time-constant setting as a 
matter of course. In a bus-controlled system, the time-constant setting may have 
to be ‘read’ by the controller via the bus interface and entered into the autorange 
subroutine. The subroutine would usually feature a number of WAIT instructions 
to ensure that the program runs at an appropriate rate for the particular time-
constant selection.

The final point to be taken into consideration concerns the role of ‘expand’ 
selection in determining the sensitivity in autorange operation. It is shown in 
Chapter 4 that, in some lock-in amplifiers, a given sensitivity can he obtained for 
two or more combinations of a.c. and d.c. gain in the system and that the choice 
of combination influences the dynamic performance of the lock-in amplifier. It 
follows that, if the lock-in amplifier is required to autorange in a ‘high reserve’ 
mode, the switching program should be arranged to give a gain combination that 
uses the maximum possible value of expand gain. Conversely, a ‘high stability’ 
switching program would be biased in favour of using high a.c. gain in order to 
achieve the best possible output stability for precision measurements.

In a microprocessor-based system, these factors could be taken into account 
automatically, depending on the mode of operation selected by the user. Other 
facilities that would normally be made available include a procedure for entering 
the maximum autorange sensitivity (in the interests of system stability as 
described above) and a procedure for entering the threshold switching points, 
usually expressed as a percentage of full-scale deflection. In some cases, the 
upper threshold is fixed at 110% of full-scale output while the autorange routine 
covers the 1:2:5 range sequence of the lock-in amplifier. A system with these 
characteristics would switch range until the output indication lay somewhere 
between 40% and 110% of full-scale with the overall switching time determined 
by the time-constant selected on the lock-in amplifier.

It should be acknowledged that autorange switching routines are, at best, 
systematic and, at worst, cumbersome. At a time constant of 1 second, a typical 
autorange routine would take about 1 minute to switch from minimum to 
maximum sensitivity in a 1:2:5 sequence. When operating with a very wide range 
of signal levels, using a programmable system with a choice of programs, there is 
a possibility to include a ‘trial’ routine confined to decade switching. The idea is 
to obtain an order-of-magnitude estimate of signal level; this estimate can then be 
improved using the 1:2:5 switching sequence in a final iteration.

10.5 Automatic phase selection
We can identify two basic routines for phase adjustment in lock-in amplifier 
measurements. The first is used in signal recovery work where the phase of the 
reference channel is adjusted to maximize the output from the phase-sensitive 
detector. The second is associated with precision phase measurement where the 
phase adjustment is made with the objective of nulling the output of the phase-
sensitive detector.

Phase measurements might be made with either a single- or two-phase lock-in 
amplifier. If the latter is used, it is normally the output of the quadrature phase-
sensitive detector which is to be brought to a null condition. Since phase 
measurements are usually made with noise-free signals, the accuracy to which the 
null can be set will depend on the ability of the analogue-to-digital convertor 
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associated with the phase-sensitive detector to resolve small output changes. The 
resolution of the phase-shift control will be similarly limited in a digitally 
controlled system. In commercial systems the phase can usually be advanced in 
increments as small as 0.1, which is comparable with the resolution of a 
conventional phase dial giving a continuous adjustment.

The phase-null routine can be initiated by subtracting increments of about 30
until the output changes sign. Smaller increments, say 5, are then progressively 
added to the set phase until the output changes sign yet again. The procedure is 
repeated with successively smaller increments until the null is achieved to within 
the resolution capability of the system, or to within some specified limit.

Regarding signal recovery applications using a single-phase lock-in amplifier, an 
alternative approach to setting the phase is defined as follows, starting from an 
arbitrary initial phase condition:

(i) ‘read’ the in-phase value of the signal, VA

(ii) add 90 to the set phase of the reference channel

(iii) ‘read’ the quadrature value of the signal, VB.

(iv) compute  = tan–1 VB/VA: reduce set phase by 90

(v) add  to the set phase.

This routine could be accomplished in a time equivalent to about 10 lock-in 
amplifier time-constants. When the lock-in amplifier has fundamental-only 
response, the resulting response will always be maximized and first-order 
independent of errors accrued in the measurement and in the computation of the 
signal phase. This procedure is perfectly adequate for use in general signal 
recovery applications and, more importantly, can be used to extend the usefulness 
of single-phase lock-in amplifiers in tasks which are normally reserved for two-
phase systems.

Of course, if a two-phase system is available, the problem of setting phase need 
not arise in signal recovery work. All that is required is an autoranging control 
system to bring the vector magnitude to a suitable ‘on-scale’ value. In the case of 
a single-phase lock-in amplifier, an autoranging routine would normally be 
executed prior to setting the phase, followed by a final autorange routine to bring 
the maximized response within range.
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APPENDIX 1

Principal applications

The following list catalogues some of the principal applications of lock-in 
amplifiers and phase-sensitive detectors. The compilation was made by the staff 
at EG & G Brookdeal and covers a wide range of disciplines in applied science 
and technology. It is inevitable that a number of applications appear under more 
than one title. To compensate for this, many readers will doubtless find a number 
of important applications that have been overlooked!

Absorption spectroscopy
A.C. bridges
Antenna Patterns
Astronomical spectroscopy
Atomic absorption
Audio amplifier frequency 

response
Audiometry
Auger spectroscopy

Biomedical stimuli response 
measurements

Bode plots

Cochlea microphonics
Common mode rejection 

measurements
Complex impedance 

measurements
Contact potential measurements
Crosstalk in cables, amplifiers, 

etc.
C-V plotting
Cube interferometry

De Haas Van Alphen effect
Densitometry
Detectivity compensation
Displacement measurements
Doppler measurements
Dual-beam optical

measurements

Eddy-current flaw testing
Edge shift in GaAs
Electrochemistry
Electroluminescence
Emission spectroscopy
E.P.R./e.s.r. spectroscopy

Filter calibration
Fluorescence spectroscopy
Frequency-response 

measurements
Frequency-shift measurements

Hall effect: single frequency
Hall effect: double frequency

Infra-red (near and far) 
spectroscopy

Interferometry

Klystron stabilization

Laser research
Line ripple measurement in 

amplifier power supplies

Magnetic-field measurements
Magnetometry
Magnetoresistance studies
Marx gauging
Mass spectroscopy
Microphone calibration
Microwave reflections, 

attenuation
Microwave spectroscopy
Moisture content measurement 

(C-G)
Molecular-beam spectroscopy

N.M.R. spectroscopy
N.O.R. spectroscopy
Nyquist plots

Operational amplifier gain 
measurement

Optical derivative 
measurements
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Photometry
Plasma-physics research
Pyrometry

Radiometry
Raman spectroscopy
Ratiometric measurements
Resistance thermometry
R.F. measurements

Second sound
Seismic measurements
Semiconductor research
Source compensation
Spectrophotometry
Strain gauging

Stress-strain measurements

Temperature control
Temperature measurement
Torque measurements

Ultra-violet spectroscopy

Visible spectroscopy

Whistler signal measurements
Work function measurements

Young’s modulus

Zeeman effect
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APPENDIX 2

Selected topics on signals and noise

A2.1 Introduction
Fig. A2.1 shows the frequency ranges which can be assigned to a number of 
noise sources of practical importance. As explained in Chapter 2, we usually
make a distinction between interference sources of external origin and noise 
which is inherent in the measurement system. The means to combat external 
interference sources are many and varied but inevitably involve the use of 
screening and attention being paid to cable runs. In many cases, susceptibility to 
mains-frequency pick-up can be reduced by physical re-orientation of circuits and 
components; factors giving rise to ground loops whereby mains-borne 
interference is introduced along with the signal are treated in Appendix 6.

Fig. A2.1 Spectrum of noise and interference

In dealing with the spectrum of noise and interference it is usual to treat sources 
of discrete interference separately from random noise sources. The former can 
sometimes be estimated and presented in the form of an amplitude spectrum, 
showing the magnitude of the various interference components relative to that of 
the signal. However, it is often more relevant to estimate the actual peak-to-peak 
values of the interference components; these components often give rise to 
saturation in amplifiers, which is most conveniently expressed in peak-to-peak 
terms.

Of course, the fundamental system noise cannot be treated in terms of an 
amplitude spectrum. The noise manifests itself as a fluctuating voltage in the 
output, which is the resultant of components distributed over a wide frequency 
range. It is characteristic of ‘well-behaved’ noise sources, however, that these 
essentially random fluctuations deliver a consistent average power into an 
external load circuit. In view of this, it is appropriate to express the frequency 
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distribution of the random noise components in terms of a power spectrum or, 
more exactly, a power density spectrum, P(f). P(f) is usually a continuous 
function of frequency and has dimensions of watts/Hz. By definition of a density
spectrum the power delivered from a small frequency range f centered at a 
frequency f is simply P(f)f. Therefore, when P(f) is specified, we can calculate 
the total power in any desired frequency range f1 to f2 from the integral

PTOT  P( f )df
f1

f2
This is shown graphically in Fig. A2.2 for a white noise spectrum with constant 
spectral density P0 and for a more typical spectrum which might be encountered 
in practice. In both cases the total noise power in the frequency range of interest 
is given by the area under the spectral density plot.

Fig. A2.2 Power density spectra for (a) white noise; (b) typical 
experimental noise
The total noise power in the frequency range f1 to f2 is given by 
the area of the shaded region in each case

A2.2 Voltage noise and current noise spectra
The integral of a power spectrum is given practical significance when a bandpass 
filter is used to reject all noise components except for those lying in a selected 
frequency range. The value of the integral then gives a measure of the noise 
power which might be measured in the filter output.

In practice, noise power measurements are usually reserved for v.h.f. and other 
systems operating with well-defined impedance levels. Elsewhere, it is generally 
more convenient to measure the filter output in terms of its mean-square value. 
Since we are concerned here with electronic systems, the output from the filter 
will either be a voltage fluctuation or attributable to a current fluctuation: so we 
express the noise intensity in a given frequency range as a total mean-square 
voltage or current as appropriate.

This change of emphasis leads us to define mean-square voltage and current 
noise spectra, WV(f) and WI(f), expressed in units V2/Hz and A2/Hz respectively. 
In a given frequency range we measure a voltage signal or a current signal in 
association with a total mean-square fluctuation:

v 2  WVf1

f2 ( f )df

or

i 2  WIf1

f2 ( f )df

A further point remains to be considered. In manufacturers’ data sheets, the noise 
inherent in transducers and amplifiers is commonly given as an r.m.s. fluctuation 
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measured in a specified bandwidth. If a noise voltage has a spectral density 
expressed in V2/Hz, then the r.m.s. spectral density must have dimensions V/Hz. 
Thus, doubling the measurement bandwidth for a white-noise spectrum doubles 
the measured intensity while the r.m.s. value increases by only 2.

A2.3 Signal spectra
It is clear that signals have a different status to noise in that a fairly precise 
description can often be given of their time-domain behaviour. Indeed, as has 
often been remarked, we must have at least an outline description for a signal 
before we can embark on the process of signal recovery.

In the restricted view of signal recovery which includes lock-in techniques, the 
signal is usually an amplitude- or phase-modulated carrier described by one of 
the general forms:

s(t) = A0 [1 + m(t)] cos0t

or

s(t) = A0 cos [0t + m(t)]

In each case, the carrier frequency 0 is known within fairly close limits and the 
information or modulation signal, m(t), is to be determined. Just as we have 
general information about the form of the signal, it is likely that the broad 
characteristics of m(t) will also be known; the experiment itself will set limits to 
the maximum amplitude range of m(t) and to its maximum rate of change.

In many instances, the signal is of very simple form and can be separated into 
sinewave components by the use of trigonometric identities, or expanded as a 
Fourier series. The frequency composition of the signal and its representation as 
an amplitude spectrum can then be inferred directly from the time domain 
description.

Elsewhere, a knowledge of Fourier transforms plays a role in deducing the form 
of the signal spectrum, but a rigorous approach is not necessarily the most 
beneficial. In most cases, it is usually sufficient to know: (i) the location of the 
spectrum, (ii) the width of the spectrum and (iii) the mean-square value of the 
signal. Even when the modulation m(t) is only broadly specified, these three 
points can usually be answered. For example, in the case of amplitude-modulated 
carrier, we have:

s(t) = A0 [cos0t + m(t)cos0t]

We suppose that m(t) is a slowly varying function compared with cos0t. If the 
Fourier transform of m(t) exists, and is given by M(j), then we can use the 
narrowband transformation:

 m(t) cos0t 

= ½M(j + j0) + ½M(j  j)

The Fourier transform of the signal is thus

S(j) = 
A0

2
( 0) 

A0

2
( 0) + 

A0

2
M ( j  j0) 

A0

2
M ( j  j0)

An example is shown in Fig. A.2.3 with the modulation strictly limited to a 
bandwidth Bm. A knowledge of this bandwidth is sufficient to estimate the width 
of the spectrum located about the carrier frequency, although the precise shape of 
the spectrum may not be known. In this way points (i) and (ii) raised above can 
be answered. Regarding the mean-square value of the signal we have:
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s2(t)  A0
2

2
[1m2(t)]

If the frequency range of the signal can be estimated together with its mean-
square value we can avoid the need for a formal definition of intensity spectra for 
periodic and other ‘deterministic’ signals. Also, we see, that provided m(t) < 1, 
we can estimate the signal intensity to within a factor of 2 even when m(t) itself 
might not be precisely specified. If this seems inadequate in the light of the 
conventional approach to modulation systems it is no worse than the degree of 
approximation used in estimating the level of the background noise!

Fig. A2.3 Spectrum of an amplitude-modulated carrier

In the case of phase modulation: when m(t) << 1, corresponding to low-index 
modulation, the signal can be expressed as:

s(t) = A0 [cos0t cosm(t)  sin0t sinm(t)]

        A0 [cos0t  m(t)sin0t]

The amplitude spectrum and the effective bandwidth of s(t) is thus the same as 
for amplitude modulation by the same information signal m(t). Note, however, 
that the phase relationships are different in the two cases.

At the other extreme, when the index of modulation is large, Carson’s rule can be 
used to estimate the ‘spread’ of the spectrum from its centre frequency. This 
gives an estimate of the signal bandwidth:

Bs = 2(m(t)max + 1)Bm

where Bm is the bandwidth of the modulation or information signal.

When calculating the mean-square value of phase modulated signals, we find that 
the phase terms make no contribution to the final result. This is simply

s2(t)  A0
2 /2

In general we might expect that the signal carries both amplitude and phase 
modulation. While this is a possibility we should also note that, in the vast 
majority of cases, the modulations can be very slowly varying functions, often 
limited to a bandwidth of a few hertz. Thus, very often, the signals of interest are 
extremely narrowband, occupying a relative bandwidth of no more than a few per 
cent.
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A2.4 Thermal noise and shot noise
There are a number of well defined mechanisms which give rise to broadband*

noise in experimental systems. Some of these, for example, noise due to the 
generation and recombination of charge carriers in semiconductors (g.r. noise), 
are associated with a range of time constants and the spectrum is limited to an 
upper cut-off frequency. In the majority of cases, however, the fundamental noise 
mechanisms can be traced to thermal noise or shot noise, both of which generally 
occupy a frequency range far in excess of the signal frequencies of interest.

In electrical systems, thermal noise (Johnson noise) is generated by the random 
motion of electrons in resistive material at a finite temperature. Shot noise is 
attributed to the passage of discrete charge carriers when current flows through 
electronic devices. In both cases the noise can be modelled by a white-noise 
spectrum over all frequencies of practical importance.

First of all, regarding thermal noise: this is a fundamental source of fluctuation in 
all physical systems in a state of thermodynamic equilibrium. We can be sure, 
therefore, that it will be found in all linear, passive devices, irrespective of their 
form. It is often the case that such devices  and for that matter entire 
experimental systems  can be reduced to a simple description in terms of an 
equivalent electrical analogue circuit. The most common is either the Thévenin 
or the Norton form shown in Fig. A2.4.

Fig. A2.4 (a) Thévenin and (b) Norton source equivalent circuits including 
resistance noise generators

The equivalent source resistor is defined in terms of the physical characteristics 
of the linear device and the thermal noise associated with the source resistance is 
included in the form of a voltage or current noise generator. When Rs is specified 
and the temperature is known we can immediately obtain the spectral density 
functions of these noise generators:

Wv(f) = 4 kTRs V2/Hz

WI(f) = 4 kT/Rs A2/Hz

Here, k is Boltzmann’s constant (1.38  10-23 joules/K), Rs is the equivalent 
source resistance in ohms and T is the absolute temperature.

In calculations involving resistive sources at laboratory temperature it is 
convenient to remember that a resistor of x kilohm is associated with a random 
voltage generator of 4x nanovolts/Hz or a random current generator of 4x 
picoamperes/Hz.

                                                     
* ‘Broadband’ noise is recognised by its having a spectrum that is generally free from local ‘peaks’ 
and extends to zero frequency.



Appendix 2–6

y Shot noise, unlike thermal noise, is always associated with current flow. The 
random passage of charge carriers in vacuum tubes and semiconductors gives rise 
to a fluctuation which depends on the average current. The spectrum is that of 
white noise which extends over a wide frequency range limited only by transit-
time effects in the electronic device. We have

WI(f) = 2qI0 A2/Hz

where q is the electronic charge (1.6  10–19 coulombs) and I0 is the average 
current. The r.m.s. spectral density of the noise caused by a 1 nA current flow is 
therefore about 1.8  10–14 A/Hz.

Shot noise will be present in all semiconductor devices operating with finite bias 
current, and is usually the dominant source of broadband noise in optical 
detectors. Here, a periodic current variation due to a ‘chopped’ light beam must 
often be measured against a more or less steady bias current which flows in 
response to a much greater ‘background’ illumination due to light leakage or 
sample fluorescence. Many such detectors conform closely to an ideal current 
source, and the output can be measured by connecting the detector to an external 
load resistor RL. Fig. A2.5 gives the noise equivalent circuit of this arrangement, 
which shows that the signal current is appears in competition with the shot noise 
of the bias current IDC and the thermal noise of the load resistor. To ensure that 
the signal-to-noise ratio inherent in the detector is not degraded further by the 
thermal noise in RL we investigate the condition:

2qIDC 4 kT/RL

which gives

RL  2kT/(qIDC)

The quantity 2kT/q is approximately equal to 50 mV at laboratory temperatures. 
Thus, for a bias current of 1 mA, the source will be dominated by shot noise 
provided that RL is in excess of 50 . In fact, the usual tendency is to choose very 
large values of RL to increase the output voltage due to the signal current. In this 
case, the shot-noise contribution is usually the dominant one even at low bias 
currents. This topic is discussed further in Appendix 5 in relation to amplifier 
selection and the use of current amplifiers.

Fig. A2.5 Noise equivalent circuit for a detector terminated in a resistor 
RL.  RL is much less than the output resistance of the detector 

ish
2  2q IDCf ;    iNR

2  4kTf / RL

A2.5 Noise bandwidth
The overall bandwidth of the noise appearing with a signal of interest will always 
be limited to some finite value, if only because of the effect of stray reactance. 
More usually, however, the bandwidth is fixed at a well defined value owing to 
the low-pass filter effect of the transducer and output amplifier.
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When the noise inherent in the experimental process is broadband in nature, the 
combined frequency response of the transducer/amplifier combination is often 
responsible for the spectral characteristics of the noise observed in the final 
measurement. For example, suppose the experimental noise has constant spectral 
density WN over a wide frequency range, and that we can identify a frequency-
response function, H(j), with comparatively narrow bandwidth. The spectrum of 
the ‘output’ noise can then be approximated by

W(f) = WN H(j)2,    = 2f

Conversely, an observed noise spectrum can often be modelled by assuming that 
it originates from the passage of broadband white-noise through a filter with 
appropriate frequency-response characteristics. ‘Broadband’ spectra and 
‘narrowband’ spectra such as those shown in Fig. A2.6 are examples where this 
approach is often successful.

In order to calculate the total fluctuation due to the noise we integrate its 
spectrum over all frequencies to obtain the mean-square value:

N0 = WN 


0
H(j)2d /2

Since the integral depends only on the filter transfer function we can simplify all 
subsequent discussions by defining the noise equivalent bandwidth of the filter. 
This gives the bandwidth of the rectangular filter shown in fig. A2.6 which 
transmits the same fluctuation as the actual filter of interest.

The noise output of the noise-equivalent rectangular filter with bandwidth BN is

N0 = WN HMAX 2BN

hence, equating this with the integrated noise in the filter characteristic H(j), we 
obtain the filter noise-equivalent bandwidth in terms of the integral:

BN = 
H( j) 2

HMAX

20

 d /2

Fig. A2.6 (a) Broadband and (b) narrowband noise spectra obtained by 
filtering white noise. BN denotes the noise equivalent bandwidth

The noise-equivalent bandwidth (or, simply, noise bandwidth) of a practical filter 
is somewhat greater than its 3 dB bandwidth, but becomes closer for filters of 
higher order. This reflects the sharper cut-off of high-order filters, which 
approximate more closely to filters with ‘ideal’ cut-off characteristics.

In principle, therefore, the output fluctuation of any filter in response to a white-
noise input can be calculated once the maximum gain of the filter and its noise 
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bandwidth are known. The latter is usually obtained from a catalogue of noise 
bandwidths such as that given in Appendix 4.

Finally, it should be noted that noise bandwidth is conventionally expressed in 
hertz and not radians/second.

A2.6 Signal-to-noise-ratio improvement by
filtering

We envisage the situation shown in Fig. A2.7, where a signal, s(t), appears 
against a background of white noise having noise bandwidth BI and spectral 
density WN.

The signal-to-noise ratio, measured on a mean-square basis, is simply

SNRI = 
s2 t 
WNBI

A signal-conditioning filter is now used to attenuate all noise components except 
those lying within the frequency band occupied by the signal. The filter 
bandwidth is sufficiently wide to transmit the signal without distortion, but 
significantly smaller than the ‘input’ noise bandwidth BI. In this case, the signal-
to-noise ratio at the filter output is given to a good approximation by

SNR0 
s2 t 

WNB0

where B0 is the noise bandwidth of the filter. Note that the gain modulus of the 
filter, HMAX, does not appear in the expression for signal-to-noise ratio.

Dividing the two signal-to-noise ratios we obtain the signal-to-noise ratio 
improvement factor

SNR0/SNRI = BI /B0

This is the classic improvement factor for the recovery of signals from white 
noise by filtering.

Fig. A2.7 Spectrum of signal and noise shown with the transmission 
characteristics of a noise reduction filter
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A2.7 Low-frequency noise
‘Practical’ noise spectra almost invariably display a steady rise in spectral density 
as lower and lower frequencies are taken into account. This is the so-called 
flicker-noise region where the spectral density follows a law

W(f) = W0/f
x

Here, W0 is a constant and x takes values, typically, in the range 0.8 to 1.4. The 
term ‘1/f noise’ is also used to describe spectra of this general type.

Flicker-noise is associated with a wide range of physical processes. Although its 
origins are obscure, its spectral characteristics are usually well-defined for a 
given experimental set-up.

Fig. A2.8 Spectral model for broadband noise with a low-frequency noise 
component

Fig. A2.8 gives an example where flicker noise has added a low-frequency ‘tail’ 
to a broadband noise spectrum. This is typical of the noise-spectrum 
characteristics of a low-noise voltage amplifier where the ‘corner frequency’, fc, 
marks the transition between the low-frequency and white-noise regions. We can 
use the corner frequency to provide the following description of the overall 
spectrum:

W(f) = WN [1 + fc/f x],     f < BN

where WN is the constant spectral density in the white-noise zone and BN is the 
overall noise bandwidth.

The widespread incidence of flicker-noise accounts for the equally widespread 
use of a.c. excitation in experimental work, the object being to bring the signal of 
interest into the spectral region above the corner frequency. If a clear separation 
is not achieved, then it may sometimes be necessary to calculate the total 
fluctuation from the frequency interval f1 to f2 shown in Fig. A2.8 which includes 
the corner frequency. For the purpose of calculation it is usual to assume that 
x = 1. To do otherwise implies that the spectrum of low-frequency noise has been 
characterised very carefully.

Our spectral model gives a total mean-square fluctuation:

f1

f2 WN [1 + fc/f] df = WN (f1  f2) + WN fc 1n (f2/f1)

We thus find that the white-noise component gives rise to a mean-square 
fluctuation proportional to the measurement bandwidth, (f2  f1), while the 
flicker-noise contribution depends on the frequency ratio. We conclude from this 
that the flicker-noise fluctuation measured per octave or per decade is constant 
over all frequencies.
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A2.8 More about narrowband noise
The term ‘narrowband noise’ is generally used to describe noise that has zero 
spectral density in the vicinity of f = 0. It was remarked in Section A2.5 that 
narrowband noise can often be modelled by supposing that white noise has been 
transmitted by a filter with appropriate frequency-response characteristics. In the 
example shown in Fig. A2.9, the filter is highly selective and the output noise has 
a bandwidth much less than the centre frequency, f0. Under these circumstances 
we find that the noise has the appearance of a noisy sinewave since all 
components except those in the immediate vicinity of f0 have been suppressed by 
the filter.

Fig. A2.9 Generation of narrowband noise

We shall find that the structure of narrowband noise lends itself to a time-domain 
description which proves to be very useful when considering the response of 
synchronous detectors to noise inputs. To provide a time-domain model we 
suppose that we start with a ‘clean’ sinewave at frequency f0 and then impose 
random variations on its instantaneous amplitude and phase. The result is a 
voltage:

n(t) = R(t) cos [0t +(t)]

R(t) and (t) are random modulations that vary very slowly in comparison with 
cos0t. (t) is a simple phase modulation while Fig. A2.9 shows that we can 
interpret R(t) as the envelope* of the noise. Because R(t) is a relatively slow 
variation, we find that there is no dramatic change in the envelope over several 
cycles at frequency f0.

We now expand n(t) into its constituent components to obtain:

n(t) = R(t) cos (t) cos0t  R(t) sin (t) sin0t

and then define:

ni(t) = R(t) cos (t)

nq(t) = R(t) sin (t)

Thus:

n(t) = ni(t) cos¥t  nq(t) sin0t

where

[ni
2 (t) + nq

2(t)]1/2 = R(t)

and

nq(t)/ni(t) = tan(t)

                                                     
* An ideal rectifier, incorporating an output low-pass filter, would deliver an output voltage which 
varied in response to the envelope function, R(t).
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We can clarify some of the steps taken so far by supposing that the filter is 
precisely tuned to a signal, cos0t, which appears in the filter output together 
with the narrowband noise. In this case, it appears that the noise has a component 
ni(t) that lies in-phase with the signal and a component nq(t) in quadrature with 
the signal. This suggest a phasor representation for the noise as shown in Fig. 
A2.10.

Fig. A2.10 Phasor representation of narrowband noise

Relationships between n(t), ni(t) and nq(t) and their spectra are derived in most 
books on communication theory; for example, Taub and Schilling1, and Haykin2, 
but  for our purposes  it will be sufficient to note the following properties:

(i) Mean value: We are, dealing with noise at the output of a bandpass filter 
which implies that n(t), and hence ni(t) and nq(t), have zero mean value, that 
is:

n(t)  ni (t)  nq (t)  0

(ii) Mean-square value: The phasor diagram shown in Fig. A2.10 is a ‘snapshot’ 
taken at a particular instant. The fact that ni and nq have zero mean values 
implies that the noise phasor spends an equal amount of time  on average 
in all four quadrants. This symmetry suggests that ni and nq have equal mean 
square values and it can be shown that this is indeed the case:

ni
2(t)  nq

2(t)

In general, the noise processes ni(t) and nq(t) are uncorrelated. Hence, the total 
mean-square fluctuation of the narrowband noise, n(t), is:

n2(t)  ni
2(t) cos20t  nq

2(t) sin20t  1

2
ni

2(t)  1

2
nq

2(t)

We thus obtain:

n2(t)  ni
2(t)  nq

2(t)

(iii) Spectral density of ni(t) and nq(t): If we denote the spectrum of the narrow-
band noise by Wn(f), then the spectra of ni(t) and nq(t) are identical, obtained 
through the transformation1,2:

Wi(f) = Wq(f) = Wn(f  f0) + Wn(f + f0)

where f0 is the ‘centre frequency’ of the narrowband noise process.

Wi(f) and Wq(f) generally have the form of low-pass spectra. In the special case 
where Wn(f) is symmetrical about f = f0, we obtain:



Appendix 2–12

Wi(f) = Wq(f) = 2Wn (f + f0)

Fig. A2.11 (a) Band-limited white noise; (b) spectrum of nI(t) and nq(t)

For example, suppose the narrowband noise has the form of band-limited white 
noise as shown in Fig. A2.11. We have:

Wn f 
WN,      f0 BI /2  f  f0 BI /2

 0,         elsewhere





In this case, Wi(f) and Wq(f) take the form:

Wi(f) = Wq(f)
 2WN ,     f  BI/2

 0,           elsewhere





Integrating Wi(f), Wq(f) and Wn(f ) over all frequencies we confirm the results 
given earlier, namely:

ni
2(t)  nq

2(t)  n2(t)

where, in this case:

n2(t) WNBI

A2.9 References
1 TAUB, H., and SCHILLING, D.L. (1971): Principles of communication 

systems’ (New York, McGraw Hill)

2 HAYKIN, S. (1978): ‘Communications systems’ (New York, John Wiley & 
Sons)
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APPENDIX 3

Synchronous detection and noise

A3.1 Signal-to-noise-ratio improvement
Let us consider the response of a synchronous detector to an amplitude-
modulated signal perturbed by random noise, giving an input of the form:

vin t  m t cos0t  n t 
We have seen that the operation of synchronous detectors does not necessarily 
depend on the elimination of unwanted noise components by filtering in advance 
of detection. However, it was shown in Appendix 2 that the structure of narrow-
band noise is particularly convenient when it comes to performing calculations in 
the time domain. We shall therefore assume that the input noise is band-limited 
as shown in Fig. A3.1 with a bandwidth BI much greater than the signal 
bandwidth 2BM. 

Fig. A3.1 Spectra of: (a) input noise and (b) amplitude-modulated signal

If we further assume that the noise spectrum is centered on the signal frequency, 
we can use the results of Appendix A2.8 and write:

n t  ni t cos0t  nq t sin0t

The input voltage to the synchronous detector now has the form:

vin t  m t  ni t  cos0t  nq t sin0t

Following the arguments developed in Appendix A2.8, we identify ni t  and nq t 
as the components of the noise lying, respectively, in phase and in quadrature 
with the signal.

A reference voltage, synchronous with the signal of interest, is now introduced at 
the synchronous detector and the phase is adjusted to bring signal and reference 
in phase. The reference voltage is:
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vR t  2VR cos0t

giving multiplication products:

vin t vR t  VR

2
m t  ni t  1cos20t  VR

2
nq t sin20t

At this stage we shall assume that the output low-pass filter is used only to 
eliminate components centered on frequency 02 without modifying the low-

frequency output of the multiplier. We obtain an output voltage:

v0 t  VR

2
m t  ni t  

giving an output signal-to-noise ratio:

SNR0  m 2 t / ni
2 t 

This important result shows that the output signal-to-noise ratio is given in terms 
of the noise components that lie in-phase with reference voltage. We thus 
conclude that the quadrature noise components nq t  are rejected at the point of 

detection and so make no contribution to the low-frequency output.

The input signal-to-noise ratio is:

SNRI  m2 t cos20t / n2 t  1

2
m 2 t/ n2 t 

From Section A2.8 we have:

ni
2 t  n2 t WNBI

Hence:

SNR0

SNRI

 2

A signal-to-noise improvement factor of 2 is thus inherent in the operation of the 
synchronous detector.

Fig. A3.2 (a), (b) Spectra of output noise and recovered modulation signal 
in a synchronous detector; (c) frequency response of noise-
reduction filter in final output
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The spectra of the recovered modulation signal and the output noise are shown in 
Fig. A3.2 for the case whereVR  2 . We now suppose that the bandwidth of the 
low-pass filter is greatly reduced in order to eliminate noise components from the 
final output. The output noise bandwidth is accordingly set to a value B0 as 
indicated in Fig. A3.2 where B0 is sufficiently wide to transmit the recovered 
modulation signal without distortion.

When B0 << BI we can approximate the mean-square value of the noise following 
the low-pass filter by:

N0  2WNB0

and so obtain the output signal-to-noise ratio:

SNR0 
m 2 t 

2WNB0

compared with the input signal-to-noise ratio:

SNRI 
m 2 t 
2WNBI

The signal-to-noise improvement factor is therefore:

SNR0

SNRI

 BI / B0

The "classic" signal-to-noise improvement factor derived in Appendix 2 for 
linear filters is thus applicable to synchronous detectors. The noise bandwidth of 
the detector is determined simply by B0, the noise bandwidth of the low-pass 
filter.

Fig. A3.3 Synchronous detector with arbitrary input noise spectrum

An alternative approach which helps to put these results into perspective involves 
the idea of a transmission "window" which was first introduced in Section 2.4. 
We have seen that the only asynchronous components which survive to perturb 
the final output of a synchronous detector are those which are confined to a 
transmission window centred on the reference frequency, having a noise 
bandwidth equal to twice the noise bandwidth of the low-pass filter. Using the 
spectral model shown in Fig. A3.3 for an arbitrary noise spectrum, the mean-
square fluctuation associated with the components within the transmission 
windows is, approximately:

N0  2B0WN
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However, from the results given above, it is evident that the synchronous detector 
responds only to the components of the noise that lie in-phase with the reference. 
Of the total mean-square fluctuation appearing within the transmission window 
we can ascribe one half to noise components lying in phase with the reference 
and one half to noise components in quadrature with the reference. If we now 
suppose that a synchronous detector has a full-scale sensitivity SF and a full-scale 
output VF, the noise appearing in the final output will have a mean-square value:

vN
2  1

2
VF / SF 2 N0  VF / SF 2 B0WN

The factor 1/2 accounts for the loss of the quadrature noise components at the 
point of detection. Although the synchronous detector transmission window has a 
noise bandwidth 02B , the rejection of the quadrature noise components results in 

an effective noise bandwidth of 0B .

Note that if a two-phase lock-in amplifier is used with a noisy input, the residual 
noise outputs from the two phase-sensitive detectors will originate respectively 
from the in-phase and quadrature components of the noise. The fluctuations 
observed at the two outputs will, in general, be uncorrelated but otherwise have 
similar statistical properties.

A3.2 Noise measurements
Lock-in amplifiers are often used in a noise-measurement mode where the 
reference frequency and low-pass filter are selected to define a narrow 
measurement bandwidth centered on a spectral region of interest. A "noise 
measurement" unit is then used to measure the r.m.s. noise output from the low-
pass filter. The result is a measure of the "spot" spectral density in the immediate 
vicinity of the reference frequency. This is clearly an application for a 
fundamental-only responding lock-in system: otherwise noise "leakage" from 
harmonic transmission windows could seriously affect the outcome of a 
measurement.

The noise bandwidth of a two-section RC low-pass filter is:

B0 1/ 8T0 
where T0 is the selected time constant. If the noise has an r.m.s. spectral density 
VN at the reference frequency, the noise appearing in the final output will have an 
r.m.s.value:

Vr.m.s 
VNVF

2SF

1

4T0










1/ 2

If Vr.m.s is measured with a noise measurement unit, the noise voltage spectral 
density referred to input is:

VN  2ANVr.m.sSF 2T0 1/ 2
/VF

where AN is a scaling factor specified for the noise measurement unit.

Lock-in amplifiers give a unique mode of measurement whereby the noise can be 
measured in the presence of a synchronous signal without errors due to 
intermodulation. In practice, this means that noise-measurement units are almost 
invariably a.c. coupled to ensure that d.c. components due to detected signal do 
not affect the measurement of the r.m.s. value of the noise output.
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APPENDIX 4

Signal conditioning filters

A4.1 Low-pass Filters
A4.1.1First-order

0 1/ RC 1/T0

H j  1/ 12 /0
2 1/ 2

  0
1 /tan  

Noise bandwidth:

BN 0 / 4 1/ 4T0 ,   Hz 
A4.1.2Second order

00 /1/1 TRC 



Appendix 4–2

   2
0

2 /1/1  jH

  0
1 /tan2  

Noise bandwidth:

BN 0 /8 1/ 8T0 ,   Hz 

A4.2 High-pass Filters
A4.2.1First order

00 /1/1 TRC 

 
  2/12

0
2

0

/1

/






jH

   /tan 0
1

A4.2.2Second order
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00 /1/1 TRC 

   2
0

2

2
0

/1

/







jH

   2tan10 /

A4.3 Active tuned filters
A4.3.1Band pass

H j  j0 /Q

0
2  j0 /Q2

3dB bandwidth: Q/0

Noise bandwidth (for Q  1

2
) :

BN 0 / 4Q ,   Hz 
Approximations, Q  5,  0  :

1.  <<0 /Q :

H j  1/ 1 4Q22 /0
2 1/ 2

  0
1 /2tan    Q

2.  >>0 /Q :

H j    /0

Q12 /0
2
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A4.3.2Low-pass

H j   0
2 /Q

0
2  j0 /Q2

3dB bandwidth: Q/0

Noise bandwidth (for Q  1

2
) :

BN 0 / 4Q ,    Hz 
Approximations, Q  5,  0  :

1.  <<0 /Q

H j  1/ 1 4Q22 /0
2 1/ 2

   tan1 2Q /0   /2

2.  >>0 /Q

H j   1

Q12 /0
2
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A4.4 Active notch filter

H j   0
2 /2

0
2  j0 /Q2

Notch width at 3dB points:

Q/0

Attenuation at 0  :

> 70 dB (typical)
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APPENDIX 5

Amplifier selection and noise matching

A5.1 Introduction
If operational problems are encountered with a lock-in recovery system there is a 
strong likelihood that they can be traced to the critical interface between the 
signal source and the equipment used for detection. If every effort is made to 
optimize performance in the "front end" area, then lock-in recovery becomes a 
relatively straightforward business. So often, however, the interface is given very 
cursory treatment and scant attention is paid either to the choice of a suitable 
preamplifier or to the layout of the equipment and cable runs. As a result the 
signal-to-noise ratio encountered at source cannot be maintained through the 
point of detection, so measurement becomes a time-consuming and painstaking 
task.

The basic problems to be tacked in this Appendix are as follows. First of all, how 
to decide on the type of amplifier to be used in a given application so as to ensure 
that the signal is handled in the most effective and predictable way. Secondly, 
how to ensure that the input signal-to-noise ratio is not unduly degraded in the 
process of amplification, recognizing that even a "low-noise" amplifier can 
generate a significant amount of noise in some circumstances.

It will be assumed throughout that the principal noise limitations arise from 
thermal noise and shot noise. For an extension to more complicated noise models, 
reference should be made to a paper by Faulkner1. Note that design aspects of 
low-noise amplifiers is a topic excluded from the present treatment.

A5.2 What kind of amplifier?
We have assumed throughout our earlier discussions that the signal of interest 
appears in the form of an electrical signal, usually at the output of an electrical 
transducer. From now on we must regard this as a signal source and we shall find 
it convenient to represent it in the form of a circuit model. This is a necessary step 
if we are to consider the effect of making external connections.

The exact model may be more or less complex, but in many practical situations it 
is sufficient to use the Thevenin or Norton forms shown in Fig. A5.1 These basic 
forms remind us that signals always appear from a source of finite inpedance Zs. 
In Fig. A5.1(a) the source is represented as a signal voltage generator vs and the 
additional noise voltage generator vNs accounts for all the noise generated within 
the experiment and within the transducer itself. In Fig. A5.1(b) the signal appears 
in the form of a current is which is perturbed by a noise current represented here 
as the generator iNs.
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Fig. A5.1 Signal source equivalent circuits

In either case, the purpose of a preamplifier is to provide an output voltage which 
is proportional to the output of the signal source. The choice of an appropriately 
"low-noise" amplifier will ensure that the signal-to-noise ratio encountered at 
source is not significantly degraded in the process. It must be remembered that, 
while we are free to choose from a range of amplifiers or to make external 
connections to the signal source, the characteristics of the source must be 
assumed to be fixed. The problem is to choose an amplifier to suit the source, not 
the other way around!

In general, it is possible to define the characteristics of an amplifier to ensure that 
the final output depends on vs or is alone, rather than on some combination of vs or 
is with Zs. For example, with a voltage source such as Fig. A5.1(a) it is sufficient 
to use an amplifier in which the input inpedance has magnitude Zin >> Zs . This 

will normally be specified as a voltage amplifier having a well-defined voltage 
gain over the frequency range of interest.

In the case of the current source of Fig. A5.1(b) we require an amplifier with a 
very low input inpedance compared with Zs in order to measure the output current 
independently of Zs. Such an amplifier would normally deliver an output voltage 
which is proportional to is and so is often referred to as a transimpedance
amplifier. A common way to achieve a transimpedance amplifier is to use a 
voltage amplifier with a low impedance ZL shunted across its input terminals as 
shown in Fig. A5.2. Those familiar with operating photomultiplier tubes will 
recognize this arrangement where ZL is replaced by RL, the anode load resistor. 
One reason for the popularity of this configuration is that RL converts a hitherto 
"unseen" current into a more readily observable voltage variation, isRL, which is 
subsequently amplified to give an output AvisRL. Dividing output by input we 
obtain a transimpedance AvRL although the overall operation is very rarely 
thought of in this light. Thus, increasing the load resistor is almost invariably 
looked upon as a means of increasing the signal voltage rather than as a means of 
obtaining a larger transimpedance.

Fig. A5.2 Transimpedance amplifier. Cs represents stray reactance in the 
input circuit. |Zin| >> |Zs|
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As we shall see, the noise performance of this arrangement deteriorates at low 
values of RL. Furthermore, there are severe operational difficulties when using 
high values of RL due to stray reactance and microphony. In practice, these 
difficulties can be largely avoided by the use of purpose-built current amplifiers 
in which high values of transimpedance consistent with low input inpedance are 
obtained through the use of parallel feedback.

For a given noise performance with high-impedance sources such as 
photomultipliers, current amplifiers can give much improved handling 
characteristics in terms of gain stability and relative freedom from "cable" 
effects. These characteristics are reviewed in Section A5.4, with special reference 
to photometric measurements.

Fig. A5.3 (a) Application for a differential amplifier; (b) equivalent circuit 
of source. ZA = Z2 // Z3; ZB = Z1 // Z4

Finally, let us look at another type of voltage source exemplified by the bridge 
circuit shown in Fig. A5.3. Here, the signal of interest appears as the difference in 
potential between two points in the bridge where neither point is at ground 
potential. This gives us a typical application for a differential voltage amplifier 
connected as in Fig. A5.3(a). The usual arrangement is that the impedance of 
each amplifier input is much larger than the source inpedance presented by the 
bridge. This can be found by applying Thevenin's theorem to obtain the source 
equivalent circuit shown in Fig. A5.3(b). When the output inpedances ZA and ZB

are identical the bridge is said to behave as a balanced source (not to be confused 
with a balanced bridge). In an unbalanced source there may be a large difference 
between the impedances of the two arms; however, the output inpedances are 
usually affected only slightly by the small adjustments which are made to the 
bridge at its null point.

A differential amplifier has three input terminals: A, B and ground. A voltage 
applied between terminals A and B is called a series or differential mode voltage. 
The mean voltage of A and B with respect to ground is called the common-mode 
voltage. A prime specification of a differential amplifier is its common-mode 
rejection ratio (c.m.r.r.) which gives the ratio of the series-mode gain to the 
common-mode gain. C.M.R.R. thus measures the ability of a differential 
amplifier to reject a voltage applied equally to its inputs. For example, for an 
amplifier with a series mode or differential gain of 100 (40 dB) and a c.m.r.r. of 
105 (100 dB), a 1V common-mode voltage would produce an output of 
1 V100105 1 mV.

C.M.R.R. is usually specified at a midband frequency, say 1 kHz, and will be in 
excess of 120 dB for a good-quality amplifier. Rejection falls with increasing 
frequency and a front-panel adjustment is often provided to maximize rejection at 
a frequency of interest.
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Fig. A5.4 (a) Differential with single-ended source; (b) alternative 
configuration using a single cable and an amplifier switched to 
"A-diff" mode

Differential amplifiers have an important role to play in suppressing ground loops 
in measurement systems. For this reason they are often specified for use with 
single-ended voltage sources as shown in Fig. A5.4(a). This arrangement is 
discussed further in Appendix 6. To facilitate connections with BNC 
terminations, some amplifiers incorporate a switch position labelled "A-diff" 
whereby the connections illustrated in Fig. A5.4(b) are made automatically. If the 
differential amplifier has identical input impedances on inputs A and B the inputs 
are said to be balanced. Other amplifiers offer a pseudo-differential or 
unbalanced input where a single input connector is wired as shown in Fig. 
A5.4(b) but the two input impedances are not the same. In this case, the common-
mode rejection ratio is not so spectacular (usually around 80 dB), but it is 
possible to achieve moderate differential performance for ground-loop 
suppression consistent with extremely low noise. "True" differential amplifiers 
are generally 3 dB more noisy than their single-ended counterparts and are 
normally used where ultra-low-noise performance is not required. In practice, the 
increased immunity of a true differential stage to common-mode inputs may 
outweigh its additional noise contribution, and this is usually the preferred 
configuration for "general purpose" amplifiers.

A5.3 Noise in voltage amplifiers
A5.3.1Introduction

Fig. A5.5 Voltage source with amplifier

We begin with Fig. A5.5, which shows a voltage amplifier connected to a signal 
source. The entire source noise is accounted for by the random voltage generator 
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vNs which has spectral density  0fW in the vicinity of the signal frequency 0f . 
The source signal-to-noise ratio measured in a small bandwidth f centered on 

0f is therefore

SNRI 
vs

2

W f0 f

We shall now assume that the signal originates in a linear passive device and that 
the source inpedance is resistive with value Rs over the frequency range of 
interest. In this important case the limitation at source is due to thermal noise so 
that the best possible value of source signal-to-noise ratio is

SNRI  vs
2 / 4kTRsf 

where k is Boltzmann's constant and T the equilibrium temperature.

The output of the amplifier would, ideally, be an amplified version of the total 
input from the signal source. In practice, we must allow for noise generated 
within the amplifier which gives rise to an additional output fluctuation with 

mean-square value vA
2 . The output signal-to-noise ratio is therefore less than 

SNRI, and is given by:

SNR0 
Av

2 vs
2

vA
2  Av

2 4kTRsf

where Av is the gain of the amplifier at the signal frequency.

We now define the noise figure of the amplifying system

F  best possible SNR0

actual SNR0

This ratio will always be greater than unity for any real combination of voltage 
source and amplifier. In the present example, the noise figure takes the form:

F 1 vA
2

Av
2 4kTRsf

Let us now turn to the noise model shown in Fig. A5.6(a) which will enable us to 
predict the behaviour of the amplifier under a wide range of operating conditions. 

Fig. A5.6 (a) Noise model for a voltage amplifier (b) Typical spectral 
densities of the noise generators vNA and iNA
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Here, the total noise of the amplifier is attributed to a pair of random-noise 
generators connected at its input. As is usual in such models, the amplifier itself, 
including the input impedance ZI, is assumed to be noise-free. In this 
representation, it is clear that the signal is in competition with the amplifier noise 
generators vNA and iNA. in addition to the noise associated with the source. A 
fully documented voltage amplifier will have vNA and iNA specified in terms of 
their r.m.s. spectral densities over the entire frequency range of the amplifier. 
Fig A.5.6(b) gives an example which is typical of modern amplifiers using a 
j.f.e.t. input stage.

An alternative presentation which proves to be extremely useful in practicc is 

derived as follows. We note that the mean-square fluctuations vNA
2 and iNA

2

appearing in a bandwidth f centred on any frequency of interest can always be 

associated with equivalent noise resistances RNv and RNi defined by

RNv 
vNA

2

4kTf

RNi  4kTf /iNA
2

From Fig. A5.6(b) we see that RNv and RNi will take more or less constant values 
over several decades of frequency, deviating at the extremes of the operating 
range of the amplifier. 

In the case of j.f.e.t. amplifiers the current noise originates almost entirely with 
the passive resistor which is used to define the amplifier input resistance. As a
result, we find a virtual one-to-one correspondence in manufacturer's catalogues 
between the midband value of RNi and input resistance RI. The noise of the 
amplifier measured with the input open-circuit is thus, for the most part, due to 
the thermal noise amplified from its input termination resistor. At the other end of 
the scale, the short-circuit noise gives a measure of the noise-voltage generator 
VNA but here the results depend very much on the selection of input transistors 
and on the circuit configuration. A common feature is that the voltage noise 
exhibits a flicker-noise dependence at frequencies below the flicker-noise corner 
frequency (see Appendix 2).

The corner frequency is usually below 1kHz, and is usually specified by 
manufacturers. In this case we can account for the variation in spectral density 
and find the appropriate value of RNv by using the approximate relationship:

RNv 
vNA

2

4kTf
1 fc / f 

Where vNA
2 /f is the midband spectral density of the noise voltage generator and 

fc is the corner frequency.

A5.3.2Noise-figure calculations

We shall use our amplifier noise model to calculate the output signal-to-noise 
ratio when the source is limited by the thermal noise of the source resistor.

To do this it is helpful to transform the input circuit of Fig. A5.6(a) to obtain the 
modified noise equivalent circuit of Fig.A5.7. This shows clearly how the 
contribution of iNA depends on the source resistance Rs. We shall assume that 
vNA and iNA are independent noise sources (that is they exhibit no correlation) 

and that they give rise to mean-square fluctuations vNA
2 and iNA

2 in a frequency 
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interval f centred on the signal frequency. The signal then appears in association 

with a total fluctuation

vT
2  4kTRsf  vNA

2  Rs
2 iNA

2

and the signal-to-noise ratio measured at the amplifier output becomes

SNR0  vs
2 /[4kTRsf  vNA

2  Rs
2iNA

2 ]

Fig. A5.7 Transformed noise-equivalent circuit

An ideal amplifier would give an output signal-to-noise ratio equal to the value 

measured at source, vs
2 / 4kTRsf . The actual value is therefore worse by a factor

F  best possible SNR0

actual SNR0

1 vNA
2  Rs

2iNA
2

4kTRsf

With our particular amplifier noise model, the expression for noise figure can be 
put into much simpler form using the equivalent noise resistances defined in the 
previous section. The result is

F 1 RNv / Rs  Rs / RNi

which shows more clearly the dependence of F on the source resistance Rs. Also, 
F is subject to the frequency dependence of RNv and RNi.

If noise figure is plotted versus source resistance, using values of RNv and RNi

appropriate to the frequency range of interest, the result is the parabolic curve of 
Fig. A5.8 which exhibits a minimum value for a value of source resistance given 
by Rs  RNv RNi .

Fig. A5.8 Dependence of noise figure on source resistance.
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The rise in noise figure for values of Rs less than RNv is a reminder that we cannot 
expect an amplifier to generate less noise than the thermal noise of an arbitrarily 
small source resistance. The noise figure similarly increases as Rs exceeds RNi: 
from the remarks made in the previous section this would normally correspond to 
operating a voltage amplifier from a source resistance which is greater than the 
amplifier input resistance.

It is evident from Fig. A5.8 that the noise-figure graph has a very broad minimum 
when RNi >> RNv . Under this condition we obtain a noise figure of 3 dB (F = 2) 

when Rs = RNv or when Rs = RNi, and a value of F 1 for Rs  RNv RNi .

Although it is instructive to observe how the noise figure of a given amplifier 
varies with source resistance, in practice we are usually faced with a fixed value 
of source resistance. We must then choose an amplifier from a wide range of 
competing devices which gives an acceptable noise figure. Any amplifier which 
achieves this end with a noise figure of less than 3 dB can be said to be "low 
noise" within the context of a given experiment, and an amplifier which is 
capable of giving this performance over a wide range of source resistance is said 
to have a high figure of merit, M, defined by

M  RNi / RNv

Modern j.f.e.t. amplifiers have figures of merit in the range 100 to 1000 and they 
can be roughly classified according to the lowest value of source resistance which 
can be handled with an acceptable noise figure. Thus, an amplifier catalogued as 
"low noise" would normally be useful for source resistances as low as 1 k
(voltage noise of 4 nV/ Hz at midband) while "ultra low-noise" units extend the 
useful range to 40 or 50 (voltage noise of 800 pV/ Hz at midband).

A5.3.3Minimum noise figure and optimum source resistance

The value of source resistance which minimizes the noise figure is known as the 
optimum source resistance:

Ropt  RNv RNi

The minimum noise figure obtained with Rs  Ropt is:

FMIN 12 RNv / RNi 12 / M

For practical purposes we can say that a noise figure of 1 dB (F = 1.26) is 
indistinguishable from the best possible figure of 0 dB. Since figures of merit of 
100 and greater are obtainable, the minimum noise figure is easily achieved when 
Rs falls in the correct range. More to the point, however, we see that noise figures 
indistinguishable from the ideal can be obtained from a wide range of source 
resistances - even when Rs differs from Ropt by an order of magnitude - as shown 
in the first example below.

Example 1

A low level signal is to be measured from a source of 10 k resistance at a 
frequency of 5 kHz. An amplifier is available with the following specification:

r.m.s. noise voltage density (f  1 kHz):

4 nV / Hz,    RNv 1 k

r.m.s. noise current density 

14 fA / Hz,    RNi 100 M

What is the noise figure that can be achieved with this combination?



Appendix 5–9

The noise figure is given by:

F 1 RNv / Rs  Rs / RNi

5101.01 

= 1.1 (0.4 dB)

Let us now calculate the minimum noise figure which can be obtained using this 
amplifier in the same frequency range but with the optimum value of source 
resistance. This is

FMIN 12 RNv / RNi

         = 1.006 (0.27 dB)

which is obtained at a value of source resistance given by 

Ropt  RNv RNi

        316 k

If the signal is sufficiently strong that a degradation of 3 dB in signal-to-noise 
ratio can be tolerated, this same amplifier will be suitable for sources with 
resistances in the range 1 k to 100 M .

Example 2

A signal of 100 nV r.m.s. is to be measured from a source of resistance 100 in 
a bandwidth of 1 kHz using the same amplifier as in example 1.

In this case the system will have a noise figure

610101 F

     = 11 (10.4 dB)

The r.m.s. noise voltage associated with a source resistance of x k at laboratory 
temperature is (Appendix 2):

4 x  nV / Hz

Hence the input signal-to-noise ratio is

SNRI 
(100109)2

16.1018 0.1 f
,    f 1 kHz

          = 6.25 (8 dB)

which will be reduced to 6.25/11 when the signal is amplified.

There is a clear case for seeking an amplifier with better noise performance

Suppose now, however, that the signal appears at a level of 1 V r.m.s. The input 
signal-to-noise ratio is now increased to

SNRI  625 (28 dB)

In this case an amplifier noise figure of 10 dB or so would reduce the output 
signal-to-noise ratio to about 18 dB, which might be considered quite adequate if 
the signal is to be measured in a recovery system. A decision to select an "ultra 
low-noise" amplifier with RNv 100  or less may then be uneconomical 
provided that 1 V r.m.s. represents the minimum value of the signal for all time. 
If, at a later stage, the signal amplitude is likely to be reduced beyond this value, 
then the question of amplifier noise will undoubtedly be raised again.
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Finally it should be noted that these examples are for operation at a fixed 
frequency, using the values of RNv and RNi appropriate to that frequency. If 
operation over a wider frequency range is envisaged, then more information is 
required. Fortunately, this is usually available, as discussed in the following 
section.

A5.3.4Noise-figure contours

Since noise figure depends upon frequency in a fairly complicated way, most 
manufacturers elect to present their data graphically in the form of noise-figure 
contours.

Figure A5.9 shows a single contour, the 3 dB contour, drawn against axes 
labelled with source resistance and frequency on logarithmic scales. The shape of 
the contour is derived as follows: first of all, the regions (i) and (ii). These define 
the lower and upper limits of Rs required to give a noise figure of 3 dB at 
midband. They thus coincide with the midband values of RNv and RNi . The rise in 
the lower contour in region (iii) results from the rise in RNv at low frequencies due 
to flicker-noise effects in the amplifier, and shows that the value of Rs required to 
maintain a 3 dB noise figure becomes progressively larger as the operating 
frequency is reduced.

Fig. A5.9 The 3 dB noise-figure contour for a low-noise voltage amplifier

The sloping characteristic in region (iv) indicates that RNi is, in fact, reduced at 
high frequencies and that Rs must be reduced in proportion if the noise figure is 
to be held at the midband value of 3 dB. This is one area where the contours are 
particularly useful since the high-frequency cut-off depends on the "noise 
capacitance" of the amplifier which may not otherwise be specified. We can be 
sure, however, that if the amplifier input is heavily loaded with cable capacitance, 
the turn-over in the upper contour will shift to lower frequencies as indicated by 
the broken line appropriate to "system" operation.
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The area enclosed by the 3 dB contour is often called the "optimum performance" 
region. Its vertical extent is maximized by selecting an amplifier with a high 
figure of merit, but this should be consistent with a low value of RNv if optimum 
performance is required from low source resistances. In many voltage-amplifier 
applications where the source resistance is less than 1 M, the loss of 
performance in region (iv) is not normally significant. However, the turn-over 
frequency can be as low as 1 kHz for amplifiers with extremely high input 
resistance, of the order of 1 G.

A complete set of contours for a general-purpose low-noise voltage amplifier is 
shown in Fig. A5.10 exactly in the form which might be encountered in a 
manufacturer's catalogue. The contours provide the means for a researcher to 
compare competing amplifiers and find the one which offers the best noise 
performance for a particular combination of source resistance and operating 
frequency.

Fig. A5.10 Typical noise-figure contours

Alternatively, if an amplifier is available and there is sufficient latitude in, say, 
the choice of experimental frequency, it may be possible to arrange to operate 
within the optimum performance region of the amplifier. For example, if an 
optical detector provides a signal from a source resistance of 10 k and the 
amplifier contours are those given by Fig. A5.10, we find that changing the 
optical chopping frequency from 10 Hz to 100 Hz brings an improvement in 
noise figure from 3 dB to less than 1 dB even though both frequencies lie below 
the flicker-noise corner frequency of the amplifier.

A5.3.5Cryogenic sources

The noise figure data supplied by manufacturers almost invariably refer to the 
source and amplifier at normal laboratory temperatures. Let us now return to our 
original definition of noise figure and rework the results for the more general case 
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where the source is at a different temperature to the amplifier. We shall assume 
that vNA and iNA are specified at laboratory temperature TL, say 290 K, and 
represent the source temperature by Ts. The noise figure is now:

F 1 vNA
2  iNA

2 Rs
2

4kTsRsf

Using the equivalent noise resistances calculated at TL we obtain:

F 1 RNv / Rs  Rs / RNi  TL /TS

which indicates an inevitable deterioration in noise figure if Ts is less than TL.

If we denote the noise figure obtainable with the source at laboratory temperature 
by FL, then 

RNv / Rs  Rs / RNi  FL 1

and the general expression for the noise figure becomes:

F 1 FL 1 TL /TS

The next step is to identify the quantity FL 1 TL with the noise temperature, 

Te, of the amplifier. The cryogenic noise figure is then

F 1Te /Ts

Thus, we find that to give a noise figure of 2 (3 dB) with a cryogenic source, the 
noise temperature of the amplifier must equal the temperature of the source.

Unfortunately, low-frequency voltage amplifiers are rarely specified directly in 
terms of noise temperature. The following examples show the sort of calculation 
which must usually be undertaken.

Example 1

An amplifier has a noise figure of 2 dB when operated with an optical detector at 
room temperature (FL = 1.58). What is the achievable noise figure when 
operating with a detector of the same resistance at a temperature of 77 K? 

We have

FL 1.58

so the noise figure obtainable at a source temperature of 77 K is:

F 1 (1.581) 290 / 77

 3.18 (5 dB)

Example 2

For a given value of source resistance, what noise figure must be achieved with a 
source at laboratory temperature to ensure a cryogenic noise figure of 3 dB for 
sources at (a) 77 K and (b) 4 K?

The amplifier should be capable of operating at a noise temperature of 77 K in 
the first case and 4 K in the second. The maximum acceptable noise figure with 
the source at laboratory temperature is then

FL 1Te /290

This gives (a) FL = 1.26 (1 dB) and (b) FL = 1.014 (0.06 dB).

In this situation it is clear that the "optimum performance" region - which is 
bounded by the 3dB noise-figure contour for operation with sources at laboratory 
temperature - is now considerably reduced in area and effectively replaced by a 
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smaller region bounded by the 1 dB or even the 0.05 dB contour. This places 
restrictions on the choice of operating frequency and defines a much tighter 
bound on the value of source resistance required to maintain an acceptable noise 
figure. We can conclude that extremely low noise figures have rather more than 
academic interest when cryogenic sources are involved. If the source resistance 
differs widely from the optimum value appropriate to a given amplifier, it will be 
necessary to introduce a stage of noise "matching" using a signal transformer.

A5.3.6Transformer noise matching

The voltage noise resistance RNv of even an "ultra low-noise" amplifier may, in 
many cases, be too high to give an acceptable noise figure from sources either of 
low resistance or at low temperature. In such cases it may be necessary to resort 
to noise "matching" whereby the source resistance is transformed to a new value 
which is much closer to the optimum sources resistance of a given amplifier. It 
should be noted that noise matching is achieved in the interest of maximizing the 
signal-to-noise ratio at the output of an amplifier, and is quite distinct from any 
attempt made to maximize either the signal voltage or the signal power through 
impedance matching.

As a first step we can disregard any attempt to "transform" the source resistance 
by the addition of resistors between the source and the amplifier. Series resistors 
merely add to RNv when performing noise calculations, and parallel resistors 
cause a reduction in RNi and will always degrade the signal-to-noise ratio. Far 
from "reducing signal and noise equally" an input attenuator will always 
introduce noise at the expense of the signal. 

The usual approach is to introduce a transformer of turns ratio nT as shown in 
Fig. A5.11. We shall assume for the moment that the transformer is ideal with no 
loss, wide bandwidth and infinite self-inductance. The transformer reflects a 
voltage nTvs into its secondary circuit and a resistance nT

2 Rs. The signal-to-noise 
ratio at the transformer output is thus unchanged and remains at its "best 
possible" value while the amplifier "sees" a source of resistance nT

2 Rs. By suitable 
choice of nT, therefore, we can arrange for the noise matching condition:

nT
2 Rs  Ropt

and so ensure that the overall system operates at its minimum noise figure.

Practical transformers can bring about a significant improvement in system 
performance, but, nevertheless, fall short of the ideal in almost every respect. 
Among the factors which must be taken into account are a reduced response 
when the transformer is operated outside its recommended frequency range and 
the effect of noise generated within the transformer itself. The latter includes the 
effects of vibration and the susceptibility of the transformer to pick-up, 
particularly at line-related frequencies.

Fig. A5.11 Noise matching using a transformer
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The useful frequency range of a transformer depends jointly on the source 
resistance and, in those with multiple tappings, on the selected turns ratio. The 
usual behaviour is a restriction on bandwidth when either Rs or nT is increased; 
the information is most usefully presented in graphical form.

In commercial transformers the pick-up problem is reduced by packaging the 
transformer in a heavily screened box, while the effects of vibration and 
microphony are suppressed by the use of shock-absorbing mounting materials. 
This leaves the resistance of the windings as the main source of internally 
generated noise since the thermal noise of the primary coil plus the noise 
reflected from the secondary effectively add to the applied signal.

The noise resistance of a transformer is given in terms of the primary and 
secondary coil resistances R1 and R2 by:

RT  R1  R2 / nT
2

It is thus possible to define a noise figure for a transformer and - as in the case of 
amplifiers - to present noise figure as a function of source resistance and 
operating frequency. Most useful of all, however, are the noise-figure contours 
plotted directly for a given combination of transformer and amplifier that are 
made available by some manufacturers.

A5.4Noise in current amplifiers
Our interest in this section is with current amplifiers obtained by applying 
parallel feedback to a high-gain, low-noise voltage amplifier. A typical 
arrangement is shown in Fig. A5.12(a) in which the current amplifier is 
connected to a high-impedance transducer modelled as an ideal current source.

Fig. A5.12 (a) Using a current amplifier; (b) noise equivalent circuit

The current signal is appears in association with a d.c. bias current IDC and the 
current amplifier fulfils an essential requirement in that it provides a low-
impedance path to ground for this component. Amplifiers with this property are 
said to be able to "sink" a d.c. current (which may be many orders of magnitude 
greater than the signal current).

The dominant sources of noise are due to the shot noise of the current source and 
thermal noise in the feedback resistor RF, which are included in the noise 
equivalent circuit of Fig. A5.12(b). If the amplifier is not to degrade the signal-to-
noise ratio encountered at source, then the shot-noise contribution must exceed 
the thermal-noise contribution. Following the arguments developed in Section 
A2.4, we obtain the condition: 

                                                     
 Although strictly a transimpedance amplifier, the arrangement in Fig. A5.12(a) is usually 
catalogued as a current amplifier when the transimpedance is substantially real and constant over 
the operating frequency range. The transimpedance is given in this case directly by the feedback 
resistor, RF.
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IDC 
2kT

qRF

,    (2kT / q  50 mV at T  290 K)

This defines a lower limit on IDC to maintain an acceptable noise performance. At 
large values of IDC we find a further limitation; this is given by the maximum 
value of bias current which can be sunk without driving the amplifier into 
saturation. We obtain:

IDC  VOUT MAX
/ RF

and so arrive at the allowed range of IDC:

50 mV / RF  IDC  VOUT MAX
/ RF

Even if (VOUT)MAX were little more than 50 mV, there would always be a value 
of RF which gave the required current sinking and which contributed noise not 
greater than the input current shot noise. In practice (VOUT)MAX is usually of the 
order ± 10 V. Thus, for any given value of RF, the smallest and largest currents 
which can be accepted by the amplifier without, on the one hand, suffering 
significant noise degradation, and, on the other hand, exceeding the amplifier's 
current sinking capability, may be in the ratio 50 mV:10 V or 1:200.

One reason which is often cited for choosing "true" current amplifiers is their 
relative immunity to "cable" effects. This refers to the effects of pick-up, 
capacitive loading and microphony which can result when a high-impedance 
source is terminated by a large load resistor and connections are made via long 
cable lengths. When a current amplifier is used, the additional impedance 
introduced by such a cable is shunted by the relatively low input impedance of 
the amplifier given by:

ZI  RF / A( j)

where A(j) is the open-loop voltage gain of the amplifier. It should be noted that 
when A(j) has a single-lag response:

A( j)  A0 / 1 j /1 
with 1 equal to the open-loop bandwidth, the input impedance has an inductive 

component and takes the general form:

ZI  R jL

where

R RF / A0

and 

L  RF /1A0

Although current amplifiers are particularly immune to the effect of stray 
capacitance on the input cable, this capacitance can have an adverse affect on 
noise performance at sufficiently high frequencies. To see this, we must take into 
account the input voltage noise generator of the amplifier vNA which gives rise to 
an input noise current:

iNv  vNA2fCs

Cs represents the total capacitance of the source and the amplifier input. Its effect 
is illustrated graphically in Fig. A5.13 for the case where vNA has a midband 

value of 4 nV/ Hz . The graph shows the value of Cs that causes an increase of 
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3 dB in the amplifier noise contribution as a function of feedback resistor RF and 
frequency.

Fig. A5.13 Maximum allowed value of Cs for optimum noise performance of 
a current amplifier

A5.5 References and further reading
1 FAULKNER, E.A. (1975): "The principles of impedance optimisation and 

noise matching", J. Phys. E: Sci. Instrum., 8, pp. 533-540.

2 Technical Note 101 (1077): "The use of current preamplifiers", (EG&G 
Brookdeal, Bracknell, England).

3 Technical |Note 243 (1976): "Noise in amplifiers", (EG&G Princeton 
Applied Research Corp., Princeton, NJ).

4 "Noise figure contours" (1969), (EG&G Princeton Applied Research Corp., 
Princeton, NJ).
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APPENDIX 6

Interference and ground loop suppression

A6.1 Introduction
Although consideration has been given to sources of fundamental noise in 
experiments and to the noise contribution of amplifiers, it is noise injected by 
pick-up from external sources that is usually the most troublesome in practice. In 
this Appendix we shall therefore be dealing with some of the problems that are 
met when small signals are handled in a typical laboratory environment.

A useful starting point is to list the principal mechanisms by which interference 
couples to experiments:

(i) capacitive pick-up;

(ii) inductive pick-up;

(iii) electromagnetic interference (e.m.i.);

(iv) high-frequency interference superimposed on mains supplies;

(v) ground loops.

Problems associated with ground loops will be left until a later stage. Otherwise, 
means of overcoming the first four sources of interference are generally well 
known and have been thoroughly documented1,2. These can be summarized as 
follows:

(a) Use screened cables to reduce capacitive "hum" pick-up between signal and 
power lines to suppress crosstalk between adjacent signal cables. Reinforce 
this approach by ensuring that low-level signal cables are routed separately 
from mains cords and digital highways. Reduce point-to-point capacitive 
pick-up within an experiment by the use of metal enclosures or fine mesh 
screens. 

(b) Arrange for a large separation of signal lines from sources of power-
frequency magnetic fields such as transformers and electric motors. Reduce 
the susceptibility of circuits to stray magnetic fields by eliminating large 
circuit loops.

Transmit signals via screened twisted pairs where spurious voltages induced 
in successive small loops tend to cancel. These would normally be essential 
first steps before resorting to expensive solutions involving high-permeability 
screening. Note that lock-in amplifier construction, toroidal transformers 
having low external fields are almost always used in order to reduce "hum" 
pick-up within the instrument case.

(c) When laying out experiments it should be remembered that loops of wire act 
as antennas at radio frequencies and that the nature and quality of a signal 
ground is considerably obscured when the length of the ground path becomes 
comparable with a wavelength at the interference frequency3.

The effect of electromagnetic interference in a long cable run can be suppressed 
by techniques that raise the r.f. impedance of the cable. For example, it is worth 
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investigating the effects of coiling the cable to form an r.f. choke. Other 
transmission-line techniques involve the use of transmission-line transformers 
and coaxializers. The most simple form consists of a few turns of screened cable 
wound on a ferrite toroid as illustrated in Fig. A6.1. This arrangement has the 
practical advantage of maintaining d.c. continuity throughout the length of the 
cable and is sometimes known as a longitudinal choke1. The tight coupling 
introduced by the winding results in a considerable attentuation of r.f. common-
mode voltage but presents a low impedance to signal current. This technique can 
also be applied successfully when a differential signal is transmitted over a 
screened twisted pair4.

Fig. A6.1 (a) A longitudinal choke; (b) equivalent circuit

In general, the only satisfactory approach to suppressing electromagnetic 
interference is to systematically trace the interference source and to identify the 
path by which it couples to the experiment. In severe environments it may be 
necessary to erect a mesh screen forming a Faraday cage either around the 
experiment or around the offending source when this is most convenient. The 
screen should be earthed at one point only, using the most direct route possible.

(d) In many cases, the source of high-frequency interference can be traced to the 
coupling of large transients to the powerlines from pulsed lasers, thyristor 
controllers, laboratory ovens and other ancillary equipment used in 
experimental work. The solution here may be to use plug-in r.f. filters on the 
mains inputs of sensitive instruments to prevent transient interference 
appearing on instrument power supplies.

Let us now turn to the last item in our original list: ground loops. The fact is that 
even when detailed attention has been paid to screening and laying out cable 
runs, experiments can still be plagued with interference. The reason is that 
screened connections have finite inpedance, and so are able to support spurious 
voltage drops. These can give rise to severe measurement difficulties unless 
careful attention is paid to experiment design. Lock-in amplifier-based 
experiments are particularly prone to earthing problems. The result can be a large 
component of synchronous voltage appearing at the signal input that could be 
much larger than the "true" synchronous signal of interest. This aspect is 
discussed further in Section A6.4.

A6.2 Ground loops: single-ended amplifiers
Fig. A6.2 shows the connection of a transducer voltage source to a single-ended 
amplifier via a screened cable. The cable screen is securely referenced to the 
amplifier earthing point and is thus effective in shielding the sensitive inner 
conductor against capacitive pick-up from external sources.
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Fig. A6.2 Connection of a "floating" source and grounded amplifier

Unfortunately, it is not always possible to maintain the screen at the same 
potential along its entire length. When this cannot be achieved, the effectiveness 
of the screen is reduced because variations in screen potential become 
capacitively coupled to the inner conductor. Also, in some circumstances the 
voltage developed across the cable screen is able to add directly to the signal 
voltage. 

Fig. A6.3 Ground loop established when items of "grounded" equipment 
are interconnected

Consider, for example, the connections shown in Fig. A6.3(a). Here, the signal 
source is located inside a screening enclosure. Following "good practice" for 
optimum screening, the signal-source common and the cable screen have been 
connected to a single earth point to ensure that no signal currents or earth currents 
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flow through the enclosure. The main problem in this, or any similar, 
arrangement, is to define a true "wet earth" for screen connections. The use of 
chassis symbols with separate labels for "experiment" and "amplifier" reminds us 
that in an extensive laboratory installation it is not unusual to find a.c. potential 
differences of several hundred millivolts between adjacent chasses. Any attempt 
to connect these via a cable screen of finite impedance then results in a ground 
loop as indicated in Fig. A6.3(b). this loop is sensitive to any potential difference 
between the two chasses and is additionally susceptible to inductive coupling to 
stray magnetic fields. Both these effects are accounted for by the inclusion of a 
ground loop generator in Fig. A6.3(b) which develops a voltage drop vg across 
the cable screen. Because the amplifier senses the potential difference between 
the screen and the inner conductor of the connecting cable, the so-called common 
mode voltage, vg is effectively added to the signal.

This spurious input may dominate the measurement of the signal unless 
appropriate steps are taken. In principle, the common-mode signal can be 
eliminated by bringing the source and amplifier chasses to the same potential, but 
attempts to achieve this are rarely successful in practice. Even when units are 
brought into close proximity and bolted to a metal plate it is not unusual to find 
large potential differences between "earth" points only a few inches apart. A far 
better approach is therefore to investigate ways of "floating" either the source or 
the amplifier with a view to breaking the ground loop completely.

In the case of this source this might be achieved by using insulating bolts and 
washers to prevent direct contact between the transducer case and the 
experimental chassis. Where this is not feasible, a battery-powered preamplifier 
provides a reliable (and safe) way of isolating the amplifier input. An alternative 
and usually more convenient approach is to use a semi-floating amplifier in 
which a "float" resistor, typically in the range 50  to 1 , is used to provide a 
degree of isolation which approaches actual breaking of the ground loop. 
Fig. A6.4 shows how the float resistor is inserted between the cable screen and 
the amplifier chassis; as a result, most of the ground loop voltage is dropped 
across the float resistor, leaving a relatively small fraction across the cable 
screen. In effect, the common-mode signal vg is reduced by the ratio of the screen 
resistance (typically a few tens of milliohms) to the float resistance. Note that the 
reduction of the spurious voltage across the screen also results in a corresponding 
reduction in interference capacitively coupled from the screen to the inner 
conductor of the connecting cable.

Fig. A6.4 Introduction of an amplifier "float" resistor, resulting in a much 
reduced common-mode votlage vg
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A6.3 Ground loops: differential amplifiers
The ground-loop suppression afforded by a semi-floating single-ended amplifier 
is impressive, but yet may be insufficient in some circumstances. When, for 
reasons of safety or practicability, it is not possible to use a floating source, 
residual connection problems can usually be overcome by using a differential 
amplifier as shown in Fig. A6.5. As before, an amplifier float resistor is used to 
bring about a large reduction in the spurious cable screen voltages which now 
appear as equal common-mode voltages across the amplifier inputs. As explained 
in Appendix 5, the extremely high common-mode rejection of the amplifier will 
then ensure suppression of ground-loop interference at power frequencies.

In order to maximize suppression it is essential to provide identical routes 
between source and amplifier for both cables to ensure that there is no differential 
pick-up in the two screens. This problem can be overcome by arranging to 
transmit differential signals over twisted pairs in a common screen, an approach 
favoured by instrumentation engineers. The symmetry of a twisted-pair 
connection also tends to equalize capacitive pick-up between the screen and the 
two conductors, and is additionally effective in reducing inductive pick-up.

The common-mode rejection ratio of a differential amplifier falls at high 
frequencies. Common-mode pick-up at radio frequencies should therefore be 
reduced as far as possible using screening and the coaxilizer techniques referred 
to earlier. Even at moderate interference frequencies, spurious phase shifts caused 
by the distributed cable capacitances acting with unequal resistances in the two 
paths may cause incomplete cancellation of common-mode voltages. An 
improvement will usually be obtained when a fully balanced source such as an 
a.c. bridge is used with a "true" differential amplifier with balanced inputs 
(Appendix 5) and matched cable lengths.

Fig. A6.5 Using a differential amplifier to overcome grounding problems

A6.4 Ground loops and lock-in recovery
Careless connection of signal and reference cables to a lock-in amplifier can lead 
to ground-loop problems over and above those described so far.

In most signal-recovery experiments, an oscillator is used as both an excitation 
and reference source, while the signal is taken from a "single-ended" transducer 
output. Fig. A6.6 gives an example where the oscillator and transducer output are 
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strapped to the chassis of the experiment with direct connections made to the 
reference and signal inputs of a lock-in amplifier. The impedance ZE represents 
the load provided by the excitation circuit to the experiment. To take a specific 
example, the oscillator could provide the drive to a vibration or "shaker" table, 
while the signal output is derived from a vibration transducer mounted on the 
device under test. In this case, the drive current could be several orders of 
magnitude greater than the current flowing in either the reference or signal 
circuits.

Fig. A6.6 Indiscriminate connections in a lock-in amplifier-based 
experiment causing a synchronous loop

Problems will arise in practice with the arrangement shown because the return 
path from ZE to the excitation oscillator is shunted by a second path formed by 
the screen connections on the reference and signal connection cables. A fraction 
of the drive current is thus able to circulate in this path and generate a 
synchronous voltage drop across the signal screen in series with the signal 
voltage of interest. Although the amplifier "float" resistance RA will attenuate the 
voltage considerably, the spurious voltage could well be greater than the signal 
voltage. The fact that spurious voltage is also synchronous with the applied 
reference would severely restrict the range over which measurements could 
usefully be performed.

Note that if the drive load were omitted completely, the signal screen would 
continue to provide a return path for a fraction of the current flowing in the 
reference circuit. Fortunately, the reference current is limited by the input

Fig A6.7 Improved experimental layout
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resistance of the reference circuit. However, the spurious, synchronous, voltage 
set up in the signal input is often troublesome in low-level applications. A 
floating differential input can provide the solution in most cases. This leads us to 
the improved arrangement illustrated in Fig. A6.7, which also shows how to 
overcome the effect of the drive current. Here, the drive circuit is completely 
isolated from the sensitive signal circuit and contact is made to the experimental 
chassis at a single point. It is certainly possible that this, or some equivalent, 
arrangement could be arrived at by trial and error. It would be far better, 
however, to give some preliminary thought to ground loop problems; the 
alternative is almost invariable an unco-ordinated attempt to achieve "on-line" 
solutions when a large investment has already been made in mounting equipment 
and fixing cable runs.

A6.5 References
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