
1 of 38

Deep Space Network

208

Telemetry Data Decoding

Document Owner:

Signature Provided 01/09/2013

 Approved by:

Signature Provided 01/09/2013

Andrew O’Dea Date

DSN TT&C System Engineer

 Timothy. T. Pham Date

DSN Communications Systems Chief Engineer

 Released by:

Signature Provided 01/09/2013

 DSN Document Release Date

DSN No. 810-005-208, Rev. B
Issue Date: January 10, 2013
JPL D-19379

Jet Propulsion Laboratory
California Institute of Technology

Users must ensure that they are using the current version in DSN Telecommunications Link Design Handbook

website: http://eis.jpl.nasa.gov/deepspace/dsndocs/810-005/

© <2013> California Institute of Technology.
U.S. Government sponsorship acknowledged.

http://eis.jpl.nasa.gov/deepspace/dsndocs/810-005/

810-005

208, Rev. B

2

Review Acknowledgment

By signing below, the signatories acknowledge that they have reviewed this document and provided
comments, if any, to the signatories on the Cover Page.

Signature Provided

12/06/2012

Jeff Berner
DSN Project Chief Engineer

Date

810-005

208, Rev. B

3

Document Change Log

Rev Issue Date Prepared By Affected
Paragraphs

Change Summary

Initial 11/30/2000 Robert Sniffin All Initial Release

Chg 1 03/31/2004 Robert Sniffin Figures 3, 17

Corrects third generator polynomial
hexadecimal representation in Figure 3.
Removes implication in Figure 17 that
Turbo code performance can be

extrapolated below FER=10–5

A 05/18/2009 Robert Sniffin All

Deletes obsolete code types. Provides
additional information on supported
codes. Adds LDPC codes as a proposed
capability

B 01/10/2013
Christine Chang

Robert Sniffin

Table 1

Table 3

Table 5

Figure 21

Corrected the specification of the
connection vectors for the (7, ½)
convolutional code in Table 1.

Added decoder throughput for the 26
GHz signal path in Table 1.

Changed codeblock length from 17949
(rate 1/2) to 17848 (per CCSDS 131.0-
B-1 "CCSDS TM Sync and Channel
Coding") in Table 3.

Changed codeblock length from 76772
(rate 1/3) to 26772 (per CCSDS 131.0-
B-1 "CCSDS TM Sync and Channel
Coding") in Table 3.

Removed distinction of Turbo decoding
in Table 5.

Added Turbo rate 1/2 codes in Figure
21.

810-005

208, Rev. B

4

Contents

Paragraph Page

1 Introduction .. 6

1.1 Purpose ... 6

1.2 Scope .. 6

2 General Information ... 6

2.1 Telemetry Waveforms .. 6

2.2 Symbol Transition Density .. 8

2.3 BPSK, QPSK and SQPSK ... 9

2.4 Symbol Quantization ... 9

2.5 Forward Error Correcting Codes .. 10

2.5.1 Convolutional Codes .. 11

2.5.2 Frame Synchronization .. 15

2.5.2.1 Bit Domain Frame Synchronization .. 15

2.5.2.2 Symbol Domain Frame Synchronization 17

2.5.3 Randomization and De-randomization ... 19

2.5.4 Reed-Solomon Code .. 20

2.5.4.1 Reed-Solomon Encoder ... 20

2.5.4.2 Concatenated Convolutional and Reed–Solomon Code 20

2.5.4.3 Interleaving .. 20

2.5.5 Virtual Fill .. 23

2.5.6 Turbo Codes ... 25

2.5.6.1 Turbo Code Encoder.. 26

2.5.6.2 Turbo Code Decoder ... 28

2.5.7 Code Performance .. 29

2.6 Time Tagging ... 31

2.7 Data Formatting ... 32

2.8 Supported Telemetry Configurations ... 31

3 Proposed Capability ... 34

3.1 Low-Density Parity-check (LDPC) Codes ... 36

 References .. 36

810-005

208, Rev. B

5

Illustrations

Figure Page

Figure 1. Telemetry Modulation Waveforms .. 8
Figure 2. Quantization Effects on Decoder Performance ... 10
Figure 3. k=7, r=1/2 Convolutional Encoder Connection Vector Schematics 12
Figure 4. CCSDS Recommended 32-bit Attached Synchronization Marker 15
Figure 5. Attached Synchronization Markers for Turbo Codes .. 18
Figure 6. CCSDS Pseudo-Randomizer/De-randomizer .. 19
Figure 7. Berlekamp Architecture Reed-Solomon (255, 223) Encoder .. 21
Figure 8. Effect of Interleaving on RS Performance ... 22
Figure 9. Reed–Solomon Symbol Arrangement for Interleave Factor (I) of 5 24
Figure 10. Illustration of Virtual Fill .. 25
Figure 11. CCSDS Turbo Encoder ... 27
Figure 12. Turbo Code Structure in the Physical Channel .. 27
Figure 13. Cyclic Redundancy Check Generator .. 28
Figure 14. Relative Performance of Supported Codes .. 30
Figure 15. Measured Performance of DSN Turbo Decoder Showing Improvement with Code

Rate and Error Floor Effects (Block Size = 8920 Bits) .. 31
Figure 16. Example of Telemetry Data Flow Using Virtual Channels. .. 33
Figure 17. Spacecraft and Ground Configuration for BPSK Reed-Solomon, Convolutional, and

Concatenated Coding. .. 34
Figure 18. Spacecraft and Ground Configuration for BPSK Turbo Coding 34
Figure 19. Spacecraft and Ground Configuration for QPSK/SQPSK Convolutional and

Concatenated Coding. .. 35
Figure 20. Spacecraft and Ground Configuration for QPSK/SQPSK Turbo Coding 35
Figure 21. LDPC and Turbo Code Comparative Performance 37

Tables

Table Page

Table 1. Convolutional Decoder Characteristics .. 13
Table 2. Bit Domain Frame Synchronization Parameters ... 15
Table 3. Turbo Code Information Block and Codeblock Lengths .. 26
Table 4. DSN Turbo Decoder Characteristics .. 29
Table 5. DSN Time Tagging ... 32
Table 6. Codeblock Lengths for LDPC Code Rates ... 37

810-005

208, Rev. B

6

1 Introduction

1.1 Purpose

This module describes the capabilities and performance of the telemetry decoding

and frame synchronization equipment used by the Deep Space Network (DSN) in order to assist

the telecommunications engineer in designing compatible spacecraft equipment.

1.2 Scope

The detailed discussion in this module is limited to the performance of equipment

that is currently installed at the Deep Space Communications Complexes (DSCCs) and performs

data extraction in real time. Additional factors that affect telemetry performance such as

imperfect residual or suppressed carrier synchronization (radio loss), imperfect subcarrier and

symbol synchronization, and waveform distortion are discussed in module 207.

2 General Information

Extracting data from spacecraft return link telemetry includes those processes that

convert radio frequency energy into one or more bit or symbol streams (discussed in module 207)

and those processes that convert the received symbol stream to a replica of the data collected

onboard the spacecraft that are discussed in this module. Throughout this module, the term bit is

used to represent the smallest unit of user data and the term symbol is applied to what is

transmitted through the communications channel.

2.1 Telemetry Waveforms

All modern spacecraft utilize pulse code modulation (PCM) to transfer binary data

between the spacecraft and the mission operations. The data are phase-modulated onto an RF

carrier (PCM/PM) or used to switch the phase of a subcarrier by plus or minus 90-degrees. The

subcarrier is then phase modulated on the carrier for transmission via the space link. This

modulation scheme is referred to as PCM/PSK/PM. Phase modulation is used because it has a

constant envelope that enables non-linear amplifiers to be used. Non-linear amplifiers tend to be

more efficient than the linear amplifiers that would be necessary if the envelope (amplitude) were

used to carry information. Phase modulation is also immune to most interference that corrupts

signal amplitude.

Although these techniques are referred to as pulse code modulation, they do not

use pulses in the conventional sense. They use non-return to zero waveforms that can be

envisioned as a pulse starting as a transition from a zero voltage to some other voltage and not

returning to zero until something happens. That “something” determines the characteristics and

810-005

208, Rev. B

7

name of the waveform. The simplest case is referred to as non-return to zero-level (NRZ-L)

where the cause of the waveform returning to zero is the bit stream level changing from a one to

a zero. Thus, the modulation waveform matches the data waveform. This is the most common

modulation waveform used but suffers from the problem that it is impossible to tell which of the

two levels is a one and which is a zero. It also has the problem that a long string of zeros or ones

will prevent phase transitions from occurring that are necessary to keep the receiver symbol

synchronizer in-lock.

The first of these problems can be solved by a technique called differential

encoding. There are two differential encoding waveforms referred to as non-return to zero-mark

(NRZ-M) and non-return to zero-space (NRZ-S). In the first case, the modulating waveform

changes whenever the input is a “one” bit (or “mark” from teletypewriter terminology) and

remains the same whenever the input is a “zero” bit (or “space” again, from teletypewriter

terminology). The second is the opposite. The waveform changes whenever a “zero” bit occurs

and remains the same whenever a “one” bit occurs. These waveforms enable the data polarity to

be determined even if the detected waveform is inverted. However, a failure to properly detect a

bit will always result in second error as the waveform restores itself. This causes an increase in

error rate and these waveforms are not normally used for deep space communication where there

is another method of determining waveform polarity (see the discussion of synchronization

markers) and anything that unnecessarily increases error rate is unacceptable. Similar to NRZ-L,

a long string of zeros when using NRZ-M or ones when using NRZ-S will suppress the phase

transitions necessary to keep the receiver symbol synchronizer in lock

There are three other PCM modulating waveforms that have been used for

spacecraft communication and solve the phase transition problem. These are bi-phase waveforms

where every bit interval contains at least one phase transition. There is one bi-phase waveform

corresponding to each NRZ waveform and they are referred to as Bi--L, Bi--M, and Bi--S. Bi-

-L is also referred to as Manchester or Split-phase encoding. The result of including a transition

in every bit interval is to convert the transmitted spectrum to double-sideband having a total

bandwidth twice that of the NRZ waveforms with the peak of each sideband at the bit rate and no

energy at the center frequency. This leaves room for a residual carrier that can be detected with

minimum interference from the data it carries. However, the increased bandwidth requirements

of bi-phase modulation has normally limited its application to forward links where bandwidth

requirements are less, the frequency of phase transitions permit a very simple (and low mass)

symbol synchronizer onboard the spacecraft, and a residual carrier is useful for metric data

measurements.

Figure 1 depicts the six telemetry waveforms discussed above. An inverted NRZ-

M waveform is also included to illustrate its immunity to inversion. It is important to remember

that these waveforms are not part of the telemetry encoding and decoding schemes that are used

to improve telemetry performance. As mentioned above, differential encoding somewhat reduces

telemetry performance. The DSN can receive any of these waveforms but uses hardware

algorithms to convert them to NRZ-L either as part of the decoding process or before delivery to

the customer.

810-005

208, Rev. B

8

Figure 1. Telemetry Modulation Waveforms

2.2 Symbol Transition Density

The DSN derives symbol timing by observing successive phase transitions in the

detected NRZ waveform and refining this estimate from additional phase transitions. This

process requires that the received waveform have an adequate symbol transition density despite

the nature of NRZ waveforms to produce long periods without transitions when delivering

certain bit sequences. Transition density is defined as twice the probability that a symbol will be

a one multiplied by the probability that it will be a zero. As, for truly random data both of these

probabilities are 0.5, the transition density can have a value between 0 and 0.5. The DSN

recommends that the transition density be between 0.25 and 0.5 (See Module 207) with the

additional constraint that NRZ waveform has at least one phase transition every 64 symbol

periods. It is the responsibility of the telecommunications designer to ensure that sufficient phase

transitions are present in the transmitted data to maintain symbol synchronization. Several

techniques for increasing the transition density are discussed below.

810-005

208, Rev. B

9

2.3 BPSK, QPSK and SQPSK

The binary NRZ waveform is used to shift the phase of the transmitted carrier or

subcarrier in equal amounts from its rest phase. If the amount of phase shift is 90 degrees, the

carrier or subcarrier is fully suppressed and the modulation is referred to Binary Phase Shift

Keying (BPSK). BPSK results in a 180-degree phase reversal at each NRZ waveform transition.

When PCM/PSK/PM is being used, the phase transitions are normally synchronized with

subcarrier zero-crossings. No such synchronization is attempted between the carrier and the data

for PCM/PM.

The capacity of the communications channel can be doubled by splitting the data

stream into two parts consisting of alternate symbols from the input data stream. These two parts

are used to BPSK modulate carriers that are in phase quadrature with each other and the two

modulated carriers are summed for transmission. This technique is referred to as Quadrature

Phase Shift Keying (QPSK). Like BPSK, QPSK can produce 180-degree phase reversals when

the two modulated carriers change phase at the same time. A 90-degree phase change will occur

when only one of the two carriers changes phase.

Phase reversals of 180 degrees can be completely eliminated by employing

Staggered QPSK (SQPSK), also referred to as Offset QPSK (QPSK). In SQPSK, one of the two

waveforms is delayed by 1/2 symbol period so that simultaneous phase transitions never occur

and the greatest phase change in the transmitted waveform will be 90 degrees. SQPSK results in

less degradation than QPSK in a bandwidth-limited channel.

The Consultative Committee for Space Data Systems (CCSDS) recommends that

when a single data stream is being transferred, the stream be separated so that alternate symbols

are transmitted on the two quadrature channels. The DSN supports this modulation format for all

frequency bands and all supported data rates. The DSN also supports a modulation scheme for

use in the near-Earth 26 GHz allocation at data rates in excess of 10 Mbps where the data stream

is split into alternate bit streams, each bit stream is convolutionally coded, and the two symbol

streams are delivered to the QPSK modulators. Upon reception, the two streams are separately

decoded and then combined to recover the original data stream.

2.4 Symbol Quantization

Convolutional and Turbo codes, discussed below under Forward Error Correcting

Codes, use decoding algorithms that are able to take into consideration not only that a symbol has

been detected to be a one or a zero but also that a symbol is more likely to be a one than a zero.

The DSN receivers produce symbol values (referred to as soft symbols) that are quantized as 8-bit

values however the standard convolutional decoder only accepts 3-bit quantization. A mapping is

provided at the input of the convolutional decoder to convert the 8-bit values to 3-bits. Figure 2

shows the effects of symbol quantization on convolutional decoder performance. This figure is

included to illustrate the need to perform any conversion between NRZ-L and differential

encoding prior to convolutional encoding and after convolutional decoding as the DSN does not

include a decoder for differential NRZ waveforms nor a method of converting from differential

810-005

208, Rev. B

10

waveforms to NRZ-L without simultaneously converting them to one-bit quantization (hard

symbols) which would result in a significant performance loss.

Figure 2. Quantization Effects on Decoder Performance

2.5 Forward Error Correcting Codes

Almost all spacecraft employ forward error correcting (FEC) codes to make more

efficient use of the communications channel. Forward error correcting codes add additional

symbols to the transmitted data stream that the decoder can use to improve its estimate of the

encoded bit stream. The exceptions to FEC use would likely be extremely high data rate

transmissions where adequate signal power is available to make the gain achieved by coding

unnecessary and any bandwidth needed for the symbols added by coding is unavailable.

The DSN supports two convolutional codes, the Consultative Committee for

Space Data Systems (CCSDS) standard Reed-Solomon code, and the CCSDS Turbo codes.

Convolutional codes are used because they achieve significant coding gain with simple, highly

reliable encoders and their decoders are of reasonable complexity. They also provide low latency

and are useful when conditions may prevent a block of symbols from being received. The Reed-

Solomon code provides excellent performance with minimum bandwidth expansion in a high

signal-to-noise environment. It is most often used as an outer code in combination with a

810-005

208, Rev. B

11

convolutional inner code but may be used by itself under appropriate signal conditions. Turbo

codes provide near-Shannon-limit error-correction performance with reasonable encoding and

decoding complexity. The DSN presently includes an additional convolutional decoder that is

used for the Cassini spacecraft support but it will be removed from service at the end of that

mission.

2.5.1 Convolutional Codes

Convolutional codes are specified by their constraint length (K) and rate (r).

Constraint length is the number of sequential input bits required to define the output symbols at

any point in time. Rate is the number of data bits with respect to the number of coded symbols

expressed as a fraction. In general, the performance of a convolutional code increases directly

with k and inversely with r, but codes must be selected carefully because the channel bandwidth

also varies inversely with r and decoder complexity increases exponentially with k.

The most common convolutional code is the CCSDS k=7, r= 1/2 (7, 1/2) code.

This code falls into a category referred to as transparent codes meaning that if the input to the

encoder or decoder is inverted, the output will be inverted. Thus, the phase ambiguity associated

with BPSK modulation does not need to be resolved until the coding gain is achieved. A

convolutional encoder consists of a k-stage shift register with the outputs of selected stages

connected by r exclusive-OR connection vectors. The r outputs (in this case 2) are transmitted

alternately through the communications channel. The recommended code inverts the output of

one of the two connection vectors which ensures that sufficient transitions will be available to

keep the receiver symbol synchronizer in lock. A diagram of the CCSDS (7, 1/2) code is shown in

Figure 3. Figure 3 also shows a variation of this code used on some legacy deep space missions.

The only difference between the two codes is the order in which symbols from the two

connection vector outputs are transmitted. The DSN can decode either variation with or without

the alternate symbols being inverted. The capabilities of the DSN convolutional decoder are

summarized in Table 1.

810-005

208, Rev. B

12

Figure 3. k=7, r=1/2 Convolutional Encoder Connection Vector Schematics

810-005

208, Rev. B

13

Table 1. Convolutional Decoder Characteristics

Parameter Value

Constraint length 7

Code rate 1/2

Connection vectors*
C1 = 1111001, C2 =1011011 or

C1= 1011011, C2 = 1111001

Alternate symbol inversion** Selectable

Input quantization** 3 bits (8 levels)

S, X, and Ka 32 GHz Symbol

(Input) rate
 4 s/s to 13.2 Ms/s (max.)

S, X, and Ka 32 GHz Bit

(Output) rate
6.6 Mb/s (max.)

Node synchronization**
Symbol Error Rate or

Metric Normalization Rate

Node sync acquisition**
≤ 5000 bit times for Eb/N0 ≥ 0.5 dB

(99% probability)

Performance vs. theoretical**

(for 3-bit quantization)
≤ 0.05 dB

Ka 26 GHz Symbol (Input) Rate

The (7, ½) Viterbi decoder input rate is

limited to 240 Ms/s. Two Viterbi decoders

can be used in parallel for

QPSK/OQPSK to allow coded data up to

300 Ms/s (The 300 Ms/s limit comes

from the demodulator, not the

decoder.).***

Modulation is limited to 150 Ms/s (BPSK)

or 300 Ms/s (QPSK/OQPSK).

Ka 26 GHz Bit (Output) Rate

Output bit rate is limited to:

 75 Mb/s for Viterbi-encoded BPSK

 150 Mb/s for uncoded BPSK

 120 Mb/s for single Viterbi-encoded
QPSK/OQPSK

 150 Mb/s for dual Viterbi-encoded
QPSK/OQPSK

 300 Mb/s for uncoded QPSK/OQPSK

Note:

* DSN currently only supports the first configuration (CCSDS convolutional encoder) for Ka

26 GHz

810-005

208, Rev. B

14

** Except for Ka 26 GHz reception.

*** The limitation of the upper range of the input rate is on how fast an instance of the

convolutional decoder can decode. The implementation of the (7, ½) Viterbi decoder runs

at a maximum symbol rate of 240 Ms/s. For higher symbol rates, the spacecraft needs to

use QPSK/OQPSK and run two separate Viterbi encoders, one on "I" and one on "Q"

channel. Each of these Viterbi decoders handles half of the symbols. For example at 300

Ms/s OQPSK, two Viterbi decoders would be running in parallel, with each decoder handling

150 Ms/s.

A convolutional decoder must establish node synchronization in order to correctly

decode the incoming symbols. That is, which symbol of each received symbol pair represents the

first symbol that was transmitted. For an r= 1/2, transparent code, there are only two possibilities.

The DSN decoder provides two methods for doing this, symbol error rate (SER) node

synchronization and metric normalization rate (MNR) control.

The first method relies on the fact that when the decoder is operating properly the

probability of the decoder falsely decoding a bit is at least two orders of magnitude less than the

probability of a channel symbol error. The output can therefore be re-encoded and the resultant

symbols compared with a delayed copy of the received symbols (to account for decoder delay).

The number of differences between these two symbol streams will be an almost true count of the

number of symbol errors received by the decoder. The maximum number of symbol errors and

the interval over which these symbol errors are counted may be set over the range of 1 to 65535

at decoder initialization. Engineering research suggests that the decoder should obtain proper

node sync alignment when the maximum number of symbol errors is set to 420 and the number

of decoded bits in which this count is reached is set to 2000 provided the symbol SNR is greater

than or equal to –2.5 dB. This same technique of re-encoding the output bits and comparing them

to a suitably delayed version of the input symbol stream is used to provide an estimate of the

Eb/N0 with an accuracy of 0.1 dB provided that symbol errors are occurring. Under signal level

conditions greater than Eb/N0 = 12dB (where there are few symbol errors), the estimate of Eb/N0

becomes unreliable.

The second method relies on the fact that decoders based on the Viterbi algorithm

maintain state metrics that need to be normalized periodically to prevent register overflow. If

normalizations are occurring more frequently than a preset interval, the decoder will switch to the

alternate node sync and attempt reacquisition. Both the permitted number of normalizations and

the interval (as a number of decoded bits) over which this permitted number is accumulated may

be set during encoder initialization. The maximum number of normalizations may be set over the

range from 4 to 2036, modulo 8 (4, 12, 20, …, 2036) and the interval used to detect this

threshold may be set to the greater of 256 or 1 to 65535, modulo 256 bits. Engineering research

suggests that the decoder should obtain proper node sync alignment with the maximum number

of normalizations set to 180 and the interval set to 2048 bits provided the symbol SNR is greater

than or equal to –2.5 dB.

810-005

208, Rev. B

15

For extremely low signal-to-noise ratios or if the received symbol stream is

invalid, there is a possibility that the decoder will choose the wrong node sync position. If this is

detected, the decoder can be commanded to attempt resynchronization but there is no guarantee

that the resynchronization will result in the alternate node sync being chosen.

The output stage of the convolutional decoder can be set to perform the

conversion to NRZ-L should another telemetry waveform have been employed on the RF

channel. The decoder can be operated in a pass-through mode (no decoding) so the waveform

conversion capability can be used for data that are not convolutionally coded.

The convolutional decoder presently used for the Cassini spacecraft support is

capable of decoding constraint lengths up to k=15 and rates to r=1/6. As noted earlier, this

decoder will be removed at the end of the Cassini project.

2.5.2 Frame Synchronization

Frame synchronization must be established before processing any block code such

as Reed-Solomon or Turbo codes or before formatting the data for delivery. Synchronization is

accomplished by preceding each codeblock or transfer frame with a fixed-length Attached

Synchronization Marker (ASM). This known bit pattern can be recognized to determine the start

of the codeblocks or transfer frames. It also can be used to resolve the phase ambiguity associated

with BPSK or QPSK (SQPSK or OQPSK) modulation. The DSN contains two frame

synchronizers. The first of these operates in the bit domain and is used with convolutionally

coded, Reed-Solomon coded, or uncoded data. The second operates in the symbol domain and is

used with Turbo coded data.

2.5.2.1 Bit Domain Frame Synchronization

The Consultative Committee for Space Data Systems has adopted the 32-bit ASM

shown in Figure 4 for synchronization in the bit domain. The pattern is represented in

hexadecimal as 1ACFFC1D but any pattern having a length of 8 to 64 bits such as the Inter-range

Instrumentation Group (IRIG) patterns can be accommodated.

Figure 4. CCSDS Recommended 32-bit Attached Synchronization Marker

The DSN bit-domain frame synchronizer operation is defined by four operating

modes: Search, Verify, Lock, and Flywheel. Parameters that affect the operation of the

synchronizer are discussed in the following paragraphs and summarized in Table 2.

Table 2. Bit Domain Frame Synchronization Parameters

810-005

208, Rev. B

16

Parameter Value

Frame length 8 – 65536 bits in multiples of 8

ASM length 8 – 64 bits

ASM search direction Forward, Reverse, or Both

Bit-slip window 0 to 3 bits

In-lock bit error tolerance

(permissible ASM bit errors while achieving lock)
0 to 31 bits

Number of verify frames 0 to 31

Automatic polarity correction Enable or Disable

Out-of-lock bit error tolerance

(permissible ASM bit errors while in-lock)
 0 to 31 bits

Maximum flywheel frames 0 to 31

Maximum time to achieve lock
4 frames provided BER ≤ 10–2

(99.6% probability)

In the Search mode, the synchronizer assembles all received bits into blocks of the

specified length while it attempts to find a pattern in the data that differs from the known ASM

by less than a specified number of bit errors. The specified number of bit errors from the

synchronization marker is called the In-lock Bit Error Tolerance (IL_BET) and can have a value

from 0 to 31. It does this for the ASM as specified, the inverse of the ASM as specified and, if

requested, both the normal and inverse of the ASM with the bit order reversed. When a suitable

pattern is found, the block being assembled is flagged as a short block ending with the assumed

sync marker and the subsequent received bits are collected into a new data block of the specified

length for delivery to the next step in the telemetry processing process. At this point, the

synchronizer advances to the Verify mode. Should an inverse of the ASM have been detected, the

polarity of all bits is inverted at they are assembled in the data block. Thus, the ambiguity

associated with BPSK modulation is automatically resolved.

In the Verify mode, the synchronizer starts looking for an acceptable ASM a few

bit periods (referred to as the bit-slip window) before the specified length of the data block. An

“acceptable” marker is one that has no more than IL_BET bit errors from the one previously

detected. Should it find the pattern, it increments a counter towards declaring synchronization to

be in-lock. Should it not find the pattern, it places the bits that it expected to be a sync maker at

the front of the next data block and reverts to the Search mode until a suitable marker is found.

The synchronizer remains in the Verify mode until the required number of sequential frames has

been found at which time the synchronizer advances to the Lock mode. This number of frames

that must be successfully detected before declaring lock can be set over the range of 0 to 31 with

zero meaning that the Verify mode is skipped.

810-005

208, Rev. B

17

In the Lock mode, the synchronizer continues to examine the data stream for an

acceptable ASM within the bit slip window using a bit error tolerance referred to as the Out-of-

lock Bit Error Tolerance (OOL_BET) that can be set independently of IL_BET over the range of

0 to 31. The synchronizer remains in the Lock mode until no acceptable ASM is detected.

Should this occur, the synchronizer places itself in the Flywheel mode.

In the Flywheel mode, the synchronizer discards the received bits that occurred

where the ASM was anticipated and continues to place the remaining received bits into blocks of

the specified frame size. It will continue this process until from 0 to 31 ASMs have been missed

at which point it will switch to the Search mode. Should a frame with less than IL_BET errors be

recognized at the appropriate place and before the maximum number of flywheel frames has

occurred, the synchronizer will return to the Lock mode.

2.5.2.2 Symbol Domain Frame Synchronization

The symbol domain bit synchronizer is part of the DSN Turbo decoder and

includes automatic polarity correction to resolve the BPSK phase ambiguity. Although the

operation is essentially similar to the bit domain frame synchronizer, the parameters have been

optimized through simulations and are not available for user modification.

Synchronization in the symbol domain requires longer synchronization markers

because the lack of coding gain before synchronization can result in enough symbol errors

occurring during a 32-bit sequence to prevent reliable recognition. In addition, the performance

gain that is achieved by increasing the code rate comes at the expense of a further reduction of

symbol signal to noise ratio resulting in a further increase in symbol errors. To accommodate

these factors, the CCSDS has recommended synchronization markers having a length of 32

symbols divided by the code rate, r. The recommended CCSDS synchronization markers for

Turbo codes are illustrated in Figure 5.

810-005

208, Rev. B

18

Figure 5. Attached Synchronization Markers for Turbo Codes

810-005

208, Rev. B

19

2.5.3 Randomization and De-randomization

The transition density of data may not be adequate for the receiver to maintain

symbol synchronization if the data have not been convolutionally coded or when convolutional

coding is used without alternate symbol inversion. This is especially true with NRZ-L uncoded

data or when Reed-Solomon coding is used by itself as a sequence of consecutive ones or zeros

for some period will provide no transitions.

The required transition density can be achieved for all data streams by modulo-

two adding a standard pseudo-random, 255-bit sequence to the stream as it is formed into

codeblocks or transfer frames for transmission and then modulo-two adding the same sequence to

the received data in the received codeblocks. The code is arranged so that the first bit of the code

is added to the first bit in the codeblock or transfer frame and the code is repeated as many times

as necessary until the codeblock or transfer frame is completed. The DSN provides the capability

to de-randomize uncoded, convolutionally coded, and Reed-Solomon coded data using the

CCSDS pseudo-randomizer illustrated in Figure 6.

Figure 6. CCSDS Pseudo-Randomizer/De-randomizer

810-005

208, Rev. B

20

2.5.4 Reed-Solomon Code

Reed-Solomon (RS) codes are linear block codes for hard-coded (one-bit

digitized) data streams. They are often used in combination with a convolutional inner code that

is applied between the point at which the RS coding is complete and the communications channel

and then removed prior to RS decoding. In high signal-to-noise environments the RS and

convolutional codes can be used independently. The code is systematic, meaning that the input

bits appear, unchanged, in the output stream followed by parity information that is used by the

decoder to correct errors. This property can be useful in forensic analysis of corrupted data. The

codes, themselves, are also transparent however, the DSN implementation will always resolve

the BPSK phase ambiguity prior to RS decoding. This is important because use of virtual fill,

described below, renders the code non-transparent.

The RS code adopted by the DSN is one of the two RS codes recommended by

the CCSDS and is referred to as the RS (255,223) code. The code divides the input bits into 8-bit

sequences to form symbols that are concatenated into a 255 symbol codeword. The RS encoder

creates parity symbols from these information symbols that enable the decoder to correct any

combination of E or fewer symbol errors in each codeword. The value E is referred to as the

code redundancy and, for the supported code, has a value of 16. The output of the encoder

consists of the 255 information symbols followed by 32 (2E) parity symbols. A complete

description of this code is contained in references 3 and 4.

2.5.4.1 Reed-Solomon Encoder

The most common architecture for an RS encoder is named the Berlekamp

Architecture, after its inventor. This architecture, in combination with appropriate selection of

the RS code generator polynomial, enables parity symbols to be calculated using bit-serial

multipliers constructed with a matrix of exclusive OR gates. Figure 7 shows the design of a

Berlekamp encoder for producing the DSN/CCSDS standard RS code that includes support for

interleaving and virtual fill as discussed below.

2.5.4.2 Concatenated Convolutional and Reed–Solomon Code

Errors in convolutionally coded channels tend to occur in bursts that result when

noise causes the decoder to momentarily follow the wrong path through the decoding trellis. The

combination of an outer Reed–Solomon (RS) code with an inner convolutional code provides

good burst-error correction with minimal bandwidth expansion.

2.5.4.3 Interleaving

The burst errors associated with Viterbi decoding can be as long as several

constraint lengths and equivalent to several consecutive RS symbols. Thus, several closely

spaced error bursts can exceed an RS decoder's error correction capability. Interleaving is a

technique that spreads the effects of burst errors across several RS codewords. The effect of

interleaving RS coding performance is illustrated in Figure 8.

810-005

208, Rev. B

21

Figure 7. Berlekamp Architecture Reed-Solomon (255, 223) Encoder

F
ig

u
re

 7
.
R

ee
d

–
S

o
lo

m
o
n
 E

n
co

d
er

 f
o
r

R
S

 (
2
2
3
,
2
5
5
)

C
o
d
e

810-005

208, Rev. B

22

Figure 8. Effect of Interleaving on RS Performance

810-005

208, Rev. B

23

Interleaving is accomplished by storing partially completed parity symbols in 31,

8I-bit shift registers for parity symbols (I – 1) through 32I and one 8(I – 1)-bit shift register,

where I is the interleave factor so that the parity symbols from any codeblock are not transmitted

consecutively. The first 8 bits of input data are collected to form an RS symbol as these bits are

being delivered to the convolutional encoder or the information channel. When the symbol is

complete, it is transferred into the parity computer that computes the first bit of partial parity

“instantaneously” so an output of the parity registers is available for modulo two addition (XOR)

with the first bit of the next input symbol. This output will either be the result of the parity

calculation if I = 1 or a zero if I > 1. As the remaining 7-bits of the second symbol are being

collected, seven additional bits of partial parity are calculated from the first symbol and pushed

into the parity registers resulting in additional bits being supplied for modulo two addition as the

input bits are formed into symbols. This process continues until 223I symbols have been

processed When I symbols have been processed, the output of the parity registers ceases to be the

zeroes and each output bit includes the partial parity computed at all prior 8I intervals.

When 223I input symbols have been processed but before the last symbol is

transferred to the parity calculation matrix, the input bit stream is set to all zeroes, guaranteeing

that there will be no further changes to the collected parity symbols, and the output of the parity

register array is connected to the convolutional encoder or the information channel. The last

symbol is then processed resulting in the first parity symbol being delivered to the convolutional

encoder or the information channel and the remaining symbols are clocked from the array while

the array is filled with zeroes in preparation for processing the next codeblock.

Since the input data are passed directly to the convolutional encoder or

information channel as the parity symbols are being calculated, the code remains systematic

independent of the interleave factor. The 32 parity symbols from the 223I blocks of

information symbols are dispersed across the entire 32I parity symbol portion of the codeblock at

I-symbol intervals. Figure 9 illustrates the symbol arrangement for an interleave factor of 5.

When the data are received, they are written into an array from which the parity

symbols associated with each of the I RS codewords can be separated. DSN supports

interleaving for values of I between 1 (no interleaving) and 8.

2.5.5 Virtual Fill

The maximum amount of input data that can be transmitted in a codeblock varies

from 1784 bits (with no interleaving) to 14,272 bits (with an interleaving depth of 8). If a

transfer frame has less data than 1784I bits (where I is the interleave factor), the codeblock can

be completed by inserting virtual fill (all-zero RS symbols) between the ASM and the start of the

input data. The amount of virtual fill (in units of 8-bits) must be fixed for a tracking pass and is

inserted into the parity generator by the encoder and into the received symbol stream before it is

decoded however these extra symbols are not transmitted. It is the fact that zeroes are inserted

into the received data stream by the decoder that renders the code non-transparent because,

810-005

208, Rev. B

24

Figure 9. Reed–Solomon Symbol Arrangement for Interleave Factor (I) of 5

F
ig

u
re

 9
.
R

ee
d

–
S

o
lo

m
o
n
 S

y
m

b
o
l

A
rr

an
g
em

en
t

fo
r

In
te

rl
ea

v
e

F
ac

to
r

(/
)

o
f

5

810-005

208, Rev. B

25

should an inversion have occurred, it would be necessary to insert ones instead of zeroes and this

cannot be known. The efficiency of RS coding will decrease as the amount of virtual fill

increases as the number of parity symbols remains fixed while the number of data symbols

decreases. An illustration of virtual fill is shown in Figure 10.

VIRTUAL FILL
(TO COMPLETE
CODEBLOCK)

TRANSFER FRAME
(UNCODED)

RS PARITY
SYMBOLS

LOGICAL CODEBLOCK

TRANSFER FRAME
(UNCODED)

RS PARITY
SYMBOLS

TRANSMITTED CODEBLOCK

ASM

ASM

RS Encoder

Communications
Channel

VIRTUAL FILL
(INSERTED BY

DECODER)

TRANSFER FRAME
(UNCODED)

RS PARITY
SYMBOLS

LOGICAL CODEBLOCK

ASMRS Decoder

ASM

ASM

ASM

Figure 10. Illustration of Virtual Fill

2.5.6 Turbo Codes

Turbo codes provide error correction performance within approximately 0.8 dB of

the theoretical limit at a BER of 10–6. This performance is achieved using encoders and decoders

of reasonable complexity but at the expense of increased latency. A turbo code is a systematic

block code where two sets of parity symbols from independent recursive convolutional encoders

are provided. The encoders employ trellis termination so that the codeblock both begins and ends

in a known state.

The use of recursive convolutional encoders is one feature of turbo codes. The

second is the presence of an interleaver at the input of one of the convolutional encoders that

changes the order of the information bits before they are encoded. It is the presence of the

interleaver that establishes the minimum latency as equaling the block size as an entire block of

data must be assembled before the parity generation process can begin. Although the information

bits appear, unchanged, in the encoded output, they do not appear contiguously as is the case with

Reed Solomon codes.

810-005

208, Rev. B

26

The DSN provides support for the turbo code specified in CCSDS

Recommendation 131.0-B-1 for information block lengths (k) of 1784, 3568, 7136, 8920 bits and

nominal code rates (r) of 1/2, 1/3, 1/4, and 1/6. The recommendation also permits an information

block length of 16,384 bits however the encoder for this block length has not been completely

specified and it is not supported by the DSN, The four supported block lengths are the same as

would be required for Reed-Solomon encoding using an interleave factor (I) of 1, 2, 4, or 5.

2.5.6.1 Turbo Code Encoder

Figure 11 illustrates the design of a CCSDS compliant turbo encoder. In actual

practice, either the entire encoder or the information block buffer and interleaver (with

appropriate changes to the input switching) must be duplicated to ensure a constant flow of

symbols in the information channel. An actual implementation would also include the capability

to preface each codeblock with the synchronization marker described above.

A block of information bits is entered into the information block buffer and the

interleaver that stores them in accordance with the permutation algorithm defined by the

recommendation. When the buffer and interleaver are full, the information is clocked into the

encoders and the resultant symbols are transferred to the information channel in the order shown

on the figure. When the last information bit has been transferred into each encoder, the switches

at their inputs are placed in position 2 and the encoders permitted to run for four additional clock

cycles. This causes four zeros to be entered into the encoders terminating the trellis. The encoder

continues to output nonzero encoded symbols during trellis termination producing four extra

symbols from the feedback line in addition to the k information bits.

The presence of the trellis termination symbols results in the channel code rates

being slightly smaller than the nominal code rates. The information block and codeblock lengths

for the 5 supported turbo codes are shown in Table 3. The structure of the turbo encoded data in

the physical channel is illustrated in Figure 12.

Table 3. Turbo Code Information Block and Codeblock Lengths

Information block

length, k, bits

Corresponding

Reed-Solomon

Interleave depth, I

Codeblock length

Rate 1/2 Rate 1/3 Rate 1/4 Rate 1/6

1784 1 3576 5364 7152 10728

3568 2 7144 10716 14288 21432

7136 4 14280 21420 28560 42840

8920 5 17848 26772 35696 53544

16384* N/A 32776 49164 65552 98328

* Note: This information block length is not supported by the DSN.

810-005

208, Rev. B

27

Figure 11. CCSDS Turbo Encoder

Information and Parity

(k / r symbols)

Termination Sequence (4/ r symbols)

Synchronization Marker (32/ r symbols)

k = information block size (1784, 3568, 7136, 8920, or 16384 bits)

r = code rate (1/2, 1/3, 1/4, or 1/6)

Figure 12. Turbo Code Structure in the Physical Channel

810-005

208, Rev. B

28

2.5.6.2 Turbo Code Decoder

Upon recognizing the end of the synchronization marker, the turbo decoder uses a

demultiplexer to separate the information symbols from the two sets of parity symbols and direct

the information symbols and each of the parity streams into separate decoders. Each decoder

makes a Maximum A posteriori Probability (MAP) estimate for each bit from the uncoded

information symbols (in normal or permuted form, as appropriate) and the parity symbols

generated by its corresponding encoder. The decoders exchange their MAP estimates via the

appropriate permutation matrix to be used by the opposite decoder as a priori estimates for a

second iteration. The exchange of MAP estimates continues for a specified number of times or

until a satisfactory convergence is reached. Engineering research recommends 10 iterations and

values as low as 6 have been successfully used in high data rate applications. The final output is a

hard-quantized version of the likelihood estimates from either one of the decoders.

Unlike a Reed-Solomon decoder, there comes a point where a further increase in

the Eb/N0 does not significantly increase a turbo decoder’s performance. This region is referred to

as the turbo decoder error floor and, for the recommended codes, occurs at a BER of less than

10–7. For operation near this region it is recommended that the data content of each information

block be reduced to allow for a cyclic redundancy check (CRC) as an independent check on the

decoding process to be inserted at the end of the codeblock. The DSN supports the 16-bit CRC

specified in CCSDS Recommendation 132.0-B-1. A diagram of the CRC generator is shown in

Figure 13. When CRC checking is enabled, the DSN decoder flags frames that are not

successfully decoded but delivers all bits to the user.

Figure 13. Cyclic Redundancy Check Generator

In addition to the latency required to create turbo-encoded data onboard the

spacecraft, the DSN requires time to perform the iterative decoding process. The DSN turbo

decoder is actually a set of parallel decoder modules where each module is filled with symbols

while previously filled modules are either iterating or delivering their decoded results. The

810-005

208, Rev. B

29

decoder provides control over the number of iterations performed and a dimensionless

convergence confidence threshold normally set at 100. The decoding process is considered

complete if the confidence level at the end of an iteration exceeds the selected confidence

threshold or if the specified maximum number of iterations is reached. The characteristics of the

DSN Turbo Decoder are summarized in Table 4.

Table 4. DSN Turbo Decoder Characteristics

Parameter Value

Code Supported CCSDS

Information Block Lengths (K) 1784, 3568, 7136, 8920

Code Rates (r) 1/2, 1/3, 1/4, 1/6

ASM patterns CCSDS compliant

Maximum Input Symbol Rates

Rate 1/2, 3.2 Msps

Rate 1/3, 4.8 Msps

Rate 1/4, 6.4 Msps

Rate 1/6, 6.0 Msps

Number of Iterations 1 to 20 (nominal = 10)

Stopping Rule Threshold
0 (no confidence) to 32767

Nominal value = 100

Cyclic Redundancy Check CCSDS 16-bit, Optional

2.5.7 Code Performance

The performance of a digital communications channel is expressed in the form of

an error rate that is a function of the bit energy to noise spectral density ratio Eb/N000 . The two

most common error rates used are the bit error rate (BER) and the frame error rate (FER). The

FER, while being often the more significant of the two measures for judging performance, does

not lend itself to comparison between code types because of its dependency on the code and the

characteristics of the communications channel. On the other hand, BER is easily modeled for the

additive white Gaussian noise (AWGN) channel which is a reasonable approximation for the

deep space communications channel. Figure 14 provides a comparison of the BER performance

for the codes supported by the DSN. Figure 15 shows the measured performance of the DSN

Turbo Decoder for the same 8920 bit block size as Figure 14 but showing both the effects of

increased code rate and the error floor.

810-005

208, Rev. B

30

Figure 14. Relative Performance of Supported Codes

810-005

208, Rev. B

31

Figure 15. Measured Performance of DSN Turbo Decoder Showing Improvement

with Code Rate and Error Floor Effects (Block Size = 8920 Bits)

2.6 Time Tagging

The DSN annotates every frame of data delivered to the user with its Earth-

received time. The time may be specified as the beginning or end of each data frame depending

on spacecraft data processing requirements. The time is calculated by determining the exact time

the synchronization marker is recognized and adding a time delay measured when the equipment

was installed to move the reference point to the input of the antenna’s low noise amplifier. The

normal precision of the time tag is 1 ms however additional precision can be provided by

agreement between the DSN and users. Time tagging capability is summarized in Table 5.

810-005

208, Rev. B

32

Table 5. DSN Time Tagging

Parameter Value

Normal Delivered Accuracy Nearest ms

Station Reference Test input port before LNA

Reference as Delivered
Leading edge of first bit of frame or

trailing edge of last bit in frame

Accuracy
±5 usec (for symbol rates > 2000 sps

and carrier loop SNR  20 dB)

2.7 Data Formatting

The result of the previously described processing is a series of fixed-length frames

of telemetry data. The content of these frames may represent a single stream of telemetry data or

a portion of several streams of telemetry data referred to as virtual channels, Virtual channels

allocate the physical channel on a frame by frame basis identified by a virtual channel identifier.

The DSN separates the frames based on the virtual channel identifier and creates independent

streams of telemetry data. The use of virtual channels enables portions of the data stream to be

delivered to different locations or with different latencies. Two types of telemetry frames are

supported. Version I Frames, originally specified in CCSDS Recommendation 102.0-B, have the

capability to support up to eight virtual channels numbered from 0 to 7. Version II Frames,

originally specified in CCSDS Recommendation 701.0-B, have the capability to support up to

sixty-four virtual channels. The DSN can combine from 1 to 16 of these channels into virtual

data streams and the same virtual channel may appear in multiple virtual data streams. The

number of virtual data streams that can be created for any one project is limited to 16.

Figure 16 provides an example of telemetry data flow when virtual channels are

used. As shown in the figure, the contents of a virtual channel may be created by combining

packets from multiple sources. The packets from each source are identified by a header that

contains an Application Process ID (APID) and a packet length. This enables the user to separate

the packets from each source. Since the virtual channel identifier and packet header fields within

the transfer frames are not protected from errors, it is recommended that virtual channels not be

used unless frames are known to be decoded correctly as can be determined if Reed-Solomon

coding or a CRC field is used.

The DSN annotates each frame delivered to a user with received time and

accountability information for each channel being delivered as opposed to the physical channel.

The structure and detailed content of the data blocks as delivered is beyond the scope of this

document but several standard formats are available and deviations to these formats can be

negotiated as part of the establishment of detailed mission requirements.

810-005

208, Rev. B

33

Figure 16. Example of Telemetry Data Flow Using Virtual Channels

2.8 Supported Telemetry Configurations

Figures 17 through 20 illustrate the telemetry coding configurations for spacecraft

and ground equipment that are supported by the DSN. The order in which the steps in the coding

and decoding process are performed are those recommended by the CCSDS and are fixed by

hardware design.

810-005

208, Rev. B

34

Figure 17. Spacecraft and Ground Configuration for BPSK Reed-Solomon,

Convolutional, and Concatenated Coding

Figure 18. Spacecraft and Ground Configuration for BPSK Turbo Coding

810-005

208, Rev. B

35

Figure 19. Spacecraft and Ground Configuration for QPSK/SQPSK Convolutional

and Concatenated Coding

Figure 20. Spacecraft and Ground Configuration for QPSK/SQPSK Turbo Coding

810-005

208, Rev. B

36

3 Proposed Capability

The following paragraphs discuss capabilities that have not yet been implemented

by the DSN but have adequate maturity to be considered for spacecraft mission and equipment

design. Telecommunications engineers are advised that any capabilities discussed in this section

cannot be committed to except by negotiation with the DSN System Engineering and

Commitments Office.

3.1 Low-Density Parity-check (LDPC) Codes

Low-Density Parity-Check (LDPC) codes have been developed that provide near-

theoretical limit performance at high code rates to complement the similar performance provided

by Turbo codes at low code rates. They promise to be especially useful in applications where the

bandwidth required to use a Turbo code is not available or would complicate spacecraft

equipment design. LDPC codes have an additional benefit that their decoder structure is more

appropriate for high-speed hardware implementation and, on the average, requires fewer

computations per decoded bit.

LDPC codes were originally invented by R. Gallager in 1961 but were largely

forgotten for 30 years. The discovery of an iterative decoding algorithm, now referred to as Belief

Propagation (BP) decoding, in the mid 1990s coupled with advances in digital processing

technology revived interest in the coding technique. LDPC codes are similar to turbo codes in

that they are binary block codes with large code blocks of hundreds to thousands of bits. The

codes selected for deep space applications are members of a class of LDPC codes referred to as

quasi-cyclic. This class of codes has an advantage that encoder implementation can be

accomplished with shift registers.

The particular codes selected for deep space application are described in the

CCSDS Experimental Specification 131.1-0-2. They are systematic and non transparent requiring

that phase ambiguities be resolved using the frame markers that are required for codeblock

synchronization. Although these codes theoretically have error floors, they are typically at least

two decades below those of Turbo codes so the CRC that is recommended with Turbo codes is

unnecessary with LDPC codes. The codes cannot guarantee sufficient bit transitions to keep

receiver symbol synchronizers in lock so the pseudo-randomizer described in section 2.5.3 of this

document is required unless the system designer verifies that sufficient symbol transition density

is assured by other means. Codeblock lengths for the supported code rates are provided in Table

6.

Figure 21 is included to show how LDPC codes compliment Turbo codes. The

figure is in the symbol domain to make the effects of code rate more apparent and to prevent the

curves from over-writing each other if they were presented in the bit domain in a single figure.

810-005

208, Rev. B

37

Table 6. Codeblock Lengths for LDPC Code Rates

Information

Block Length, k

Codeblock Length, n

Rate = 1/2 Rate = 2/3 Rate = 4/5

1024 2048 1536 1280

4096 8192 6144 5120

16384 32768 24576 20480

Figure 21. LDPC and Turbo Code Comparative Performance

810-005

208, Rev. B

38

References

1 FR. G. Gallager, “Low Density Parity Check Codes,” IRE Transactions on

Information Theory, vol. IT-8, pp. 21–28, 1962.

2 CCSDS 102.0-B-5-S, Telemetry Channel Coding, Blue Book. Issue 5, November

2000.

3 CCSDS 130.0-G-1, Informational Report, TM Synchronization and Channel

Coding – Summary of Concept and Rationale, June 2006

4 CCSDS 131.0-B-1, Recommendation, TM Synchronization and Channel Coding

5 CCSDS 131.1-O-2, Experimental Specification, Low Density Parity Check Codes

for Use in Near-Earth and Deep Space Applications, September, 2007

6 CCSDS 701.0-B-2, Recommendation, Advanced Orbiting Systems, Networks and

Data Links: Architectural Specification

