$\underline{\text { Calculating the } e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \text {cross section using Schoonschip }}$

In electron-positron colliders, one of the fundamental processes is $e^{+} e^{-} \rightarrow f^{+} f^{-}$, where f is a spin $1 / 2$ fermion. The prototype Feynman diagram for these processes is $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$, illustrated below

This diagram can be expressed as a complex amplitude of the form

$$
\begin{equation*}
\mathcal{M}=\frac{e^{2} \bar{u}\left(\vec{p}_{3}\right) \gamma_{\mu} v\left(\vec{p}_{4}\right) \bar{v}\left(\vec{p}_{2}\right) \gamma_{\mu} u\left(\vec{p}_{1}\right)}{\left(p_{1}+p_{2}\right)^{2}} \tag{1}
\end{equation*}
$$

where $\left(p_{1}+p_{2}\right)^{2}=-s$ and the invariant s is the square of the center of mass energy. If we imagine and $e^{+} e^{-}$collider with beam energies large compared with any mass, $\sqrt{s}=2 p$, where p is the beam momentum.

The Schoonschip code for the evaluation of $|\mathcal{M}|^{2}$ in the center of mass frame is
Date: Mon Aug 62001 17:59:53. Memory: start 00020008, length 476860.

```
    A me,mf,cos,p,pp,Ee,Ef,s
    V p1,p2,p3,p4
    I mu,nu,i1,i2
    F M=u
    Z T=M(mu)*Conjg(M(nu))
L 2 Id,M(mu~)=Ubg(i1,mf,p3)*G(i1,mu)*Ug(i1,-mf,p4)*
        Ubg(i2,-me,p2)*G(i2,mu)*Ug(i2,me,p1)/s
L 3 Id,Spin,i1,i2
L 4 Id,Trick,Trace,i1,i2
> P out
            *yep
T = + 64*me^2*mf^2*s^-2 - 32*me^2*s^-2*p3Dp4 - 32*mf^2*s^-2*p1Dp2
    + 32*s^-2*p1Dp3*p2Dp4 + 32*s^-2*p1Dp4*p2Dp3 + 0.
C p1(mu~)=(0,0,p,iEe)
C p2(mu~)=(0,0,-p,iEe)
C p3(mu~)=(pp*sin,0,pp*cos,iEf)
C p4(mu~)=(-pp*sin,0,-pp*cos,iEf)
L 1 Id,p1Dp=-p^2-Ee^2
L 2 Id,p3Dp4=-pp^2-Ef^2
L 3 Id,p1Dp3=p*pp*cos-Ee*Ef
L 4 Id,p2Dp4=p*pp*cos-Ee*Ef
```

```
L 5 Id,p1Dp4=-p*pp*cos-Ee*Ef
L 6 Id,p2Dp3=-p*pp*cos-Ee*Ef
C Ignore masses
L 7 Id,me=0
L 7 Al,mf=0
L 8 Id,Ee=p
L 8 Al,Ef=p
L 9 Id,pp=p
    B s,p
> P out
    *end
```

and the output file is
Schoonschip, 68000 version of June 27, 1991. Public version.
Date: Mon Aug 62001 18:58:13. Memory: start 00020008, length 476860.

Command line: e+e-2mu+mu-.e e+e-2mu+mu-.txt

A me,mf, cos,p,pp,Ee,Ef,s
V p1,p2,p3,p4
I mu,nu,i1,i2
F $\mathrm{M}=\mathrm{u}$
Z $\mathrm{T}=\mathrm{M}(\mathrm{mu}) * \operatorname{Conjg}(\mathrm{M}(\mathrm{nu}))$
L $\left.2 \operatorname{Id}, \mathrm{M}(\mathrm{mu})^{\sim}\right)=\mathrm{Ubg}(\mathrm{i} 1, \mathrm{mf}, \mathrm{p} 3) * \mathrm{G}(\mathrm{i} 1, \mathrm{mu}) * \mathrm{Ug}(\mathrm{i} 1,-\mathrm{mf}, \mathrm{p} 4) *$ $\mathrm{Ubg}(\mathrm{i} 2,-\mathrm{me}, \mathrm{p} 2) * \mathrm{G}(\mathrm{i} 2, \mathrm{mu}) * \mathrm{Ug}(\mathrm{i} 2, \mathrm{me}, \mathrm{p} 1) / \mathrm{s}$
L 3 Id,Spin,i1,i2
L 4 Id,Trick,Trace,i1,i2
> P out
*yep
$\mathrm{T}=+64 * \mathrm{me}^{\wedge} 2 * \mathrm{mf}^{\wedge} 2 * \mathrm{~s}^{\wedge}-2-32 * \mathrm{me}^{\wedge} 2 * \mathrm{~s}^{\wedge}-2 * \mathrm{p} 3 \mathrm{Dp} 4-32 * \mathrm{mf}{ }^{\wedge} 2 * \mathrm{~s}^{\wedge}-2 * \mathrm{p} 1 \mathrm{Dp} 2$
$+32 * s^{\wedge}-2 * p 1 D p 3 * p 2 D p 4+32 * s^{\wedge}-2 * p 1 D p 4 * p 2 D p 3+0$.

C p1 $\left(m u^{\sim}\right)=(0,0, p, i E e)$
C p2 (mu $\left.{ }^{\sim}\right)=(0,0,-p, i E e)$
C p3(mu $)=(p p * \sin , 0, p p * \cos , i E f)$
C p4 (mu~) $=(-\mathrm{pp} * \sin , 0,-\mathrm{pp} * \cos , i E f)$
L 1 Id,p1Dp=-p^2-Ee^2
L 2 Id,p3Dp4=-pp^2-Ef^2
L 3 Id,p1Dp3=p*pp*cos-Ee*Ef
L 4 Id,p2Dp4=p*pp*cos-Ee*Ef
L 5 Id,p1Dp4=-p*pp*cos-Ee*Ef
L 6 Id,p2Dp3=-p*pp*cos-Ee*Ef
C Ignore masses
L 7 Id,me=0
L $7 \mathrm{Al}, \mathrm{mf}=0$

```
L }8\mathrm{ Id,Ee=p
L 8 Al,Ef=p
L }9\mathrm{ Id,pp=p
B s,p
> P out
*end
T = + s^-2*p^4
    * ( 64 + 64* cos^2 ) + 0.
```

End run. Time 0 sec .
Including the coupling $e^{4}=(4 \pi \alpha)^{2}$, the average over initial electron spins $1 / 4$ and the fact that $s=4 p^{2},|\mathcal{M}|^{2}$ is

$$
\begin{equation*}
|\mathcal{M}|^{2}=16 \pi^{2} \alpha^{2}\left(1+\cos ^{2}(\theta)\right) . \tag{2}
\end{equation*}
$$

In this case, the differential phase space is

$$
\begin{equation*}
d P S=\frac{d \Omega}{2(4 \pi)^{2}}, \tag{3}
\end{equation*}
$$

and the flux factor is

$$
\begin{equation*}
4 E_{e}^{2}\left|\vec{v}_{1}-\vec{v}_{2}\right|=4 E_{e}^{2}\left(\frac{p}{E_{e}}+\frac{p}{E_{e}}\right)=8 p E_{e} \rightarrow 8 p^{2}=2 s . \tag{4}
\end{equation*}
$$

Thus, $d \sigma_{\mu \bar{\mu}} / d \Omega$ is

$$
\begin{equation*}
\frac{d \sigma_{\mu \bar{\mu}}}{d \Omega}=\frac{\alpha^{2}\left(1+\cos ^{2}(\theta)\right)}{4 s} . \tag{5}
\end{equation*}
$$

The total cross section is

$$
\begin{equation*}
\sigma_{\mu \bar{\mu}}=\frac{4 \pi \alpha^{2}}{3 s} . \tag{6}
\end{equation*}
$$

In the Spear collider, the center of mass energy \sqrt{s} was 3.1 GeV , which is much larger than $m_{\mu}=105.66 \mathrm{MeV}$. This energy is also much larger than the light quarks u, d and s. The u, d and s electric charges are $2 / 3,-1 / 3$ and $-1 / 3$ and each quark comes in three colors. Hence, the effective coupling for light quark production is

$$
\begin{equation*}
3\left(\frac{2^{2}}{3^{2}}+\frac{(-1)^{2}}{3^{2}}+\frac{(-1)^{2}}{3^{2}}\right) \alpha^{2}=2 \alpha^{2}, \tag{7}
\end{equation*}
$$

Thus, we would expect to see a region where $q \bar{q}$ production was twice as large as $\mu \bar{\mu}$, or

$$
\begin{equation*}
R=\frac{\sigma_{q \bar{q}}}{\sigma_{\mu \bar{\mu}}}=2 . \tag{8}
\end{equation*}
$$

The experimental data for R in the light quark region is shown below. At lower energies, the data shows the ρ, ω and ϕ vector mesons. Above about 1.1 GeV , there is a flat R value at $R=2.0$. This was the first strong evidence for the quark hypothesis.

Figure 1: The R value for $\sqrt{s} \leq 3.0 \mathrm{GeV}$ is shown.

