In examining the graph of the R value for $e^{+} e^{-} \rightarrow$ hadrons, which shows a region from about 1 GeV to 3 Gev that is consistent with light quark production, there is region at lower energy with several peaks. These peaks occur because of vector boson production. The ρ, ω and ϕ vector bosons

Figure 1: The R value for $\sqrt{s} \leq 3.0 \mathrm{GeV}$ is shown.
have the same parity and charge conjugation quantum numbers as the (virtual) photon produced in $e^{+} e^{-}$annihilation and therefore couple to it. For arbitrary center of mass energy \sqrt{s}, this coupling can produce a virtual vector boson with very small probability. However, when \sqrt{s} is near the vector boson's physical mass there is a high probability and a huge spike in the cross section. All these vector mesons decay by virtue of the strong interaction. What is seen in the detector at these values of \sqrt{s} is the decay products of the vector meson that have the invariant mass of the vector meson. These decay products predominantly consist of two or three pions or a pair of kaons.

Figure 2: The effect of the ρ, ω and ϕ resonances on the $R(\sqrt{s})$ ratio is shown.

In addition to their dominant hadronic decay modes, all three vector bosons have a small decay width Γ_{e+e-} into $e^{+} e^{-}$. The strength of the photon-vector boson coupling, f_{V}, is determined from measuring Γ_{e+e-} and using the relation

$$
\begin{equation*}
\Gamma_{e+e-}=\frac{4 \pi \alpha^{2} m_{V}}{3 f_{v}^{2}} \tag{1}
\end{equation*}
$$

In a similar way, the hadronic decay strength g_{V} can be obtained from its total width Γ_{V}. For the ρ meson, which decays almost exclusively into $\pi^{+} \pi^{-}, \Gamma_{\rho}$ is

$$
\begin{equation*}
\Gamma_{\rho}=\frac{g_{\rho}^{2}\left(m_{\rho}^{2}-4 m_{\pi}^{2}\right)^{3 / 2}}{48 \pi m_{\rho}^{2}}=149.1 \mathrm{MeV} \tag{2}
\end{equation*}
$$

Figure [2] shows the theoretical prediction for this resonance region. The primary decay modes are $\rho \rightarrow \pi^{+} \pi^{-}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\phi \rightarrow K \bar{K}$. In addition, both the ω and the ϕ have measurable $\pi^{+} \pi^{-}$ decay modes. This means that the ρ, ω and ϕ have $\pi^{+} \pi^{-}$decay amplitudes that interfere with one another. The square of the scattering amplitude has the form

$$
\begin{equation*}
|\mathcal{M}|^{2}=\left|M_{\rho}\left(\pi^{+} \pi^{-}\right)+M_{\omega}\left(\pi^{+} \pi^{-}\right)+M_{\phi}\left(\pi^{+} \pi^{-}\right)\right|^{2}+\left|M_{\omega}\left(\pi^{+} \pi^{-} \pi^{0}\right)\right|^{2}+\left|M_{\phi}(K \bar{K})\right|^{2}, \tag{3}
\end{equation*}
$$

and each contribution is multiplied by the appropriate phase space factor. A typical vector boson amplitude looks like

$$
\begin{equation*}
M_{\rho}\left(\pi^{+} \pi^{-}\right)=\frac{e^{2} m_{\rho}^{2}}{f_{\rho} s} \frac{\bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right) H_{\mu}\left(k_{1}, k_{2}, \cdots\right)}{s-m_{\rho}^{2}+i m_{\rho} \Gamma_{\rho}}, \tag{4}
\end{equation*}
$$

where $H_{\mu}\left(k_{1}, k_{2}, \cdots\right)$ contains the kinematics of final state. The appearance of the factors like

$$
\begin{equation*}
\frac{1}{\left(s-m_{\rho}^{2}\right)^{2}+m_{\rho}^{2} \Gamma_{\rho}}, \tag{5}
\end{equation*}
$$

in the squared amplitude produces the peak when s is in the vicinity of m_{ρ}^{2}.

