Resonance terms in $R(\sqrt{s})$

In examining the graph of the R value for $e^+e^- \rightarrow hadrons$, which shows a region from about 1 GeV to 3 Gev that is consistent with light quark production, there is region at lower energy with several peaks. These peaks occur because of vector boson production. The ρ , ω and ϕ vector bosons

Figure 1: The R value for $\sqrt{s} \leq 3.0 \text{ GeV}$ is shown.

have the same parity and charge conjugation quantum numbers as the (virtual) photon produced in e^+e^- annihilation and therefore couple to it. For arbitrary center of mass energy \sqrt{s} , this coupling can produce a virtual vector boson with very small probability. However, when \sqrt{s} is near the vector boson's physical mass there is a high probability and a huge spike in the cross section. All these vector mesons decay by virtue of the strong interaction. What is seen in the detector at these values of \sqrt{s} is the decay products of the vector meson that have the invariant mass of the vector meson. These decay products predominantly consist of two or three pions or a pair of kaons.

Figure 2: The effect of the ρ , ω and ϕ resonances on the $R(\sqrt{s})$ ratio is shown.

In addition to their dominant hadronic decay modes, all three vector bosons have a small decay width Γ_{e+e-} into e^+e^- . The strength of the photon-vector boson coupling, f_V , is determined from measuring Γ_{e+e-} and using the relation

$$\Gamma_{e+e-} = \frac{4\pi\alpha^2 m_V}{3f_v^2} \,. \tag{1}$$

In a similar way, the hadronic decay strength g_V can be obtained from its total width Γ_V . For the ρ meson, which decays almost exclusively into $\pi^+\pi^-$, Γ_ρ is

$$\Gamma_{\rho} = \frac{g_{\rho}^2 (m_{\rho}^2 - 4m_{\pi}^2)^{3/2}}{48\pi \, m_{\rho}^2} = 149.1 \,\mathrm{MeV} \,. \tag{2}$$

Figure [2] shows the theoretical prediction for this resonance region. The primary decay modes are $\rho \to \pi^+ \pi^-, \omega \to \pi^+ \pi^- \pi^0$ and $\phi \to K \bar{K}$. In addition, both the ω and the ϕ have measurable $\pi^+ \pi^-$ decay modes. This means that the ρ , ω and ϕ have $\pi^+ \pi^-$ decay amplitudes that interfere with one another. The square of the scattering amplitude has the form

$$|\mathcal{M}|^{2} = |M_{\rho}(\pi^{+}\pi^{-}) + M_{\omega}(\pi^{+}\pi^{-}) + M_{\phi}(\pi^{+}\pi^{-})|^{2} + |M_{\omega}(\pi^{+}\pi^{-}\pi^{0})|^{2} + |M_{\phi}(K\bar{K})|^{2}, \qquad (3)$$

and each contribution is multiplied by the appropriate phase space factor. A typical vector boson amplitude looks like

$$M_{\rho}(\pi^{+}\pi^{-}) = \frac{e^2 m_{\rho}^2}{f_{\rho} s} \frac{\bar{v}(p_2) \gamma_{\mu} u(p_1) H_{\mu}(k_1, k_2, \cdots)}{s - m_{\rho}^2 + im_{\rho} \Gamma_{\rho}}, \qquad (4)$$

where $H_{\mu}(k_1, k_2, \cdots)$ contains the kinematics of final state. The appearance of the factors like

$$\frac{1}{(s-m_{\rho}^2)^2 + m_{\rho}^2 \Gamma_{\rho}},\tag{5}$$

in the squared amplitude produces the peak when s is in the vicinity of m_{ρ}^2 .