C Varia 1. F-G series. C Varia 2. Two-point function, coefficients of F(N). C Varia 3. Table test. C Varia 4. Test of Tables, character-number facility. C Varia 5. Calculation of two-component Riemann tensor from metric. C Varia 6. Calculation of Riemann tensors from metric. C Varia 7. Lagrangian for SU(5) once broken to SU(3)*SU(2)*U(1). C Varia 8. Lagrangian for SU(5) twice broken to SU(3)*U(1). *end C Varia 1. F-G series. P. Sconzo, A. Le Schack and R. Tobey, The Astronomical Journal 70(1965)269. C Calculate up to and including F(25), G(25). C Running time: C CRDS 32 secs, without cache 50 sec. C HP PC 257 secs. (run from floppy) C Torch 47 secs. C Atari ST 41 secs. (run from ram disk) C Sun 3/60 15 secs. C Amiga 2000 52 secs. (run from ram disk) C Amiga 3000 11 secs. C Mac II 12 secs. C NeXT 3 secs. BLOCK Subs{} Id,mu**n~*Diff=Diff*mu**n + n*mup*mu**(n-1) Id,si**n~*Diff=Diff*si**n + n*sip*si**(n-1) Id,ep**n~*Diff=Diff*ep**n + n*epp*ep**(n-1) Id,Diff=0 Id,mup=-3*mu*si Al,epp=-si*(mu+2*ep) Al,sip=ep-2*si**2 ENDBLOCK F Diff S mu,ep,si,mup,epp,sip I K,N Z FF(0)=1 Z FG(0)=0 Keep FF,FG *next DO L1=1,25 Z FF('L1')=FF('L1'-1)*Diff - mu*FG('L1'-1) Z FG('L1')=FF('L1'-1) + FG('L1'-1)*Diff Subs{} Keep FF('L1'),FG('L1') *next ENDDO *end C Varia 2. Two-point function, coefficients of F(N). P stat C COEFFICIENTS OF F(N) FOR USE WITH THE TWO-POINT FUNCTION. N 13,R0 X C(N)=1./N X EX(N,Y)=DS(J,1,16,(N**J*Y**J),(J**-1)) + 1 Z F1=DS(J,1,16,(X**J*C(1+J))) Z F2=DS(J,1,16,(X**J*C(2+J))) Z F3=DS(J,1,16,(X**J*C(3+J))) Z F4=DS(J,1,16,(X**J*C(4+J))) Z F5=DS(J,1,16,(X**J*C(5+J))) Z F6=DS(J,1,16,(X**J*C(6+J))) Z F7=DS(J,1,16,(X**J*C(7+J))) Z F8=DS(J,1,16,(X**J*C(8+J))) Id X**N~=1-DS(J,1,N,(DB(N,J)*Z**J),(-1)) *yep Id Z**N~ = EX(N,Y) *end C Varia 3. Table test. T A(K1)=(A1_A2**2),A3,"F,"Z T B(K1)=0,1,-1,2,-2 Z XX=0.1*F2(A(1),A(2)) +0.2*F3(A(3),A(4)) +C1*DC(1,2,3) + 2*C2*DC(1,2,-3) +3*C3*DC(B(2),B(2),B(5)) + 4*C4*DC(B(2),B(2),B(4)) +5*C5*DC(B(1),B(2),B(3),B(1)) + 6*C6*DC(B(2),B(3),B(2),B(3)) +7*C7*DC(B(2),B(3),B(2),B(1)) Id,F2(X~,Y~)=B1*X+B2*Y *begin B D1,D2,D3,D4 S A1=c,A2=c,A3=c,A4=c T A(K)=Conjg(A1+A2),-Conjg(A3+A4),Integ(5+7),-Integ(5+7) Z X=F1(A(1),A(2),-A(1),-A(2),A(3),A(4),-A(3),-A(4)) Id,F1(B1~,B2~,B3~,B4~,B5~,B6~,B7~,B8~)= F2(B5,B6,B7,B8)+11*D1*B1+12*D2*B2+13*D3*B3+14*D4*B4 *next T T0(K1)=A7,-4 T T1(K1)=4,2,T0,5 T T2(K1)=A1,A2,A3,A4,-A5 Z xx=F1(B1,-T2(T1(-T1(3,2))),B2) Id,F1(C1~,C2~,C3~)=11*C1*D1+12*C2*D2+13*C3*D3 *begin S A1=c,A2=c,A3=c,A4=c,B1,B2,B3,B4,B5,B6,FA1,FA2,FA3 B BR,BR1,BR2,BR3,BR4 D TIC(K)=C1,C2,C3,C4,C5,C6,C7,C8 T TE(K1)=A1,A2 T TC(K1,B1,B2,B3,B4,TE)=A1,A2,(BR3*(B1-B2)+BR4*(B3-B4)) T TB(K1,K2,B1,B2,B3,B4,TE)=A1,TC T TA(K1,K2,K3,B1,B2,B3,B4,TE)=((B1+B2)*BR1),((B1-B2)*BR2) ,((B3+B4)*BR3),((B3-B4)*BR4),TE Z XX=DS(J1,4,8,(F1(A1,A2,A3,A4,-J1,3)*BR**J1*TIC(J1))) Id,F1(B1~,B2~,B3~,B4~,B5~,B6~)= F3(Conjg(B1+B2),-Conjg(B1+B2), TA(-Integ(B5+B6),2,3,Conjg(B3+B4),-Conjg(B3+B4), Integ(B5-B6),-Integ(B5-B6),TB)) Id,F3(B1~,B2~,B3~)=FA1*B1+FA2*B2+FA3*B3 *end C Varia 4. Test of Tables, character-number facility. P brackets T TT(n)=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 T ALF(N)="A,"B,"C,"D,"E,"F,"G,"H,"I,"J,"K,"L,"M,"N,"O,"P,"Q, "R,"S,"T,"U,"V,"W,"X,"Y,"Z, "a,"b,"c,"d,"e,"f,"g,"h,"i,"j,"k,"l,"m,"n,"o,"p,"q, "r,"s,"t,"u,"v,"w,"x,"y,"z Z xx=DS{J1,1,52,(f1(ALF(J1)))} Id,f1(a1~)=f2(TT(a1))*f0(a1) Id,f2(n1~)=a2**n1 *end C Varia 5. Calculation of two-component Riemann tensor from metric. C Calculation of components of Rieman tensor from C a given form for the metric tensor g(mu,nu). C That form was: C C a k l 0 C k b m 0 C g(mu,nu) = l m c 0 C 0 0 0 e P lists P stats S Det,a,b,c,e,k,l,m V ap,bp,cp,ep,kp,lp,mp X zero(n,j) = 1 - DK(n,j) BLOCK GGX{x,n,y} D gg'x'('n') = a'y',k'y',l'y',0, k'y',b'y',m'y',0, l'y',m'y',c'y',0, 0,0,0,e'y' ENDBLOCK C***** The metric tensor g(mu,nu) : GGX{,n} C***** The first derivative of g(mu,nu), i.e. d/dx(n) g(mu,nu) : GGX{d,{n1,n},p(n)} C***** The second derivative d^2/dx(n)/dx(j) g(mu,nu) : GGX{dd,{n1,n,j},{pp(n,j)}} D ggi(n) = (b*c - m**2),(l*m - k*c),(k*m - l*b),0, (l*m - k*c),(a*c - l^2),(k*l - a*m),0, (k*m - l*b),(k*l - a*m),(a*b - k^2),0, 0,0,0,(2*k*l*m + a*b*c - a*m^2 - c*k^2 - b*l^2)/e X tg(j,n) = gg(j*4+n+1) X tgi(j,n)=ggi(j*4+n+1)*e X tgd(n,j,j1) = ggd(n*4+j+1,j1) X tgdd(n,j,j1,j2) = DT(j2-j1)*ggdd(n*4+j+1,j1,j2) + DT(j1-j2-1)*ggdd(n*4+j+1,j2,j1) C***** The Christoffel symbol: X chr(n1,n2,n3) = 0.5*tgd(n3,n1,n2) + 0.5*tgd(n3,n2,n1) - 0.5*tgd(n1,n2,n3) C***** The derivative of the Christoffel symbol: X chd(n1,n2,n3,n4) = 0.5*tgdd(n3,n1,n2,n4) + 0.5*tgdd(n3,n2,n1,n4) - 0.5*tgdd(n1,n2,n3,n4) C***** Gamma in terms of the Christoffel symbol: X ga(n1,n2,n3) = DS{n4,0,3,{tgi(n3,n4)*chr(n1,n2,n4) } } C***** The Riemann tensor: X Rt4(n1,n2,n3,n4) = Det*chd(n2,n4,n1,n3) - Det*chd(n2,n3,n1,n4) + DS{n5,0,3,{ chr(n2,n3,n5)*ga(n1,n4,n5) - chr(n2,n4,n5)*ga(n1,n3,n5) } } C***** This the the two-index Riemann tensor: X Rt2(n1,n2) = DS{n3,0,3,{zero(n3,n1)* DS{n4,0,3,{zero(n4,n2)*tgi(n3,n4)*Rt4(n3,n1,n4,n2)} } } } *fix B e,Det,a C***** Now calculate some component, here Rt2(0,0) : Z R00 = Rt2(0,0) *begin B e,Det,a Z R01 = Rt2(0,1) *end C Varia 6. Calculation of Riemann tensors from metric. C Calculation of components of Rieman tensors from C a given form for the metric tensor g(mu,nu). C That form was: C C a k l 0 C k b m 0 C g(mu,nu) = l m c 0 C 0 0 0 e P lists P stats S Det,a,b,c,e,k,l,m V ap,bp,cp,ep,kp,lp,mp X zero(n,j) = 1 - DK(n,j) C The metric tensor is given further down. The inverse was calculated C by hand and follows here as a one dimensional array: D ggi(n) = (b*c - m**2),(l*m - k*c),(k*m - l*b),0, (l*m - k*c),(a*c - l^2),(k*l - a*m),0, (k*m - l*b),(k*l - a*m),(a*b - k^2),0, 0,0,0,(2*k*l*m + a*b*c - a*m^2 - c*k^2 - b*l^2)/e C This is the two-dimensional form of ggi: X tgi(j,n)=ggi(j*4+n+1)*e X R5(n1,n2,n3,n4) = zero(n1,n2)*zero(n3,n4)* { DT(n4-n3)*R6(n1,n2,n3,n4) - DT(n3-n4)*R6(n1,n2,n4,n3) } X R4(n1,n2,n3,n4) = DT(n4-n2)*R5(n1,n2,n3,n4) - DT(n2-n4-1)*{ R5(n1,n4,n2,n3) + R5(n1,n3,n4,n2) } X R3(n1,n2,n3,n4) = DT(n3-n1)*R4(n1,n2,n3,n4) + DT(n1-n3-1)*R4(n3,n4,n1,n2) X R2(n1,n2,n3,n4) = DT(n4-n3)*R3(n1,n2,n3,n4) - DT(n3-n4)*R3(n1,n2,n4,n3) X R1(n1,n2,n3,n4) = zero(n1,n2)*zero(n3,n4)* { DT(n2-n1)*R2(n1,n2,n3,n4) - DT(n1-n2)*R2(n2,n1,n3,n4) } *fix BLOCK GGX{x,n,y} D gg'x'('n') = a'y',k'y',l'y',0, k'y',b'y',m'y',0, l'y',m'y',c'y',0, 0,0,0,e'y' ENDBLOCK C***** The metric tensor g(mu,nu) : GGX{,n} C***** The first derivative of g(mu,nu), i.e. d/dx(n) g(mu,nu) : GGX{d,{n1,n},p(n)} C***** The second derivative d^2/dx(n)/dx(j) g(mu,nu) : GGX{dd,{n1,n,j},{pp(n,j)}} C***** Two component forms: X tg(j,n) = gg(j*4+n+1) X tgd(n,j,j1) = ggd(n*4+j+1,j1) X tgdd(n,j,j1,j2) = DT(j2-j1)*ggdd(n*4+j+1,j1,j2) + DT(j1-j2-1)*ggdd(n*4+j+1,j2,j1) C***** The Christoffel symbol: X chr(n1,n2,n3) = 0.5*tgd(n3,n1,n2) + 0.5*tgd(n3,n2,n1) - 0.5*tgd(n1,n2,n3) C***** The derivative of the Christoffel symbol: X chd(n1,n2,n3,n4) = 0.5*tgdd(n3,n1,n2,n4) + 0.5*tgdd(n3,n2,n1,n4) - 0.5*tgdd(n1,n2,n3,n4) C***** Gamma in terms of the Christoffel symbol: X ga(n1,n2,n3) = DS{n4,0,3,{tgi(n3,n4)*chr(n1,n2,n4) } } C***** The Riemann tensor: X Rt4(n1,n2,n3,n4) = Det*chd(n2,n4,n1,n3) - Det*chd(n2,n3,n1,n4) + DS{n5,0,3,{ chr(n2,n3,n5)*ga(n1,n4,n5) - chr(n2,n4,n5)*ga(n1,n3,n5) } } C***** Now compute the components of the Riemann tensor: BLOCK R{n,n1,n2,n3,n4} Z Rt('n') = Rt4('n1','n2','n3','n4') ENDBLOCK R{18,0,1,0,1} R{19,0,1,0,2} R{23,0,1,1,2} R{35,0,2,0,2} R{39,0,2,1,2} R{20,0,1,0,3} R{24,0,1,1,3} R{28,0,1,2,3} R{36,0,2,0,3} R{40,0,2,1,3} R{44,0,2,2,3} R{52,0,3,0,3} R{56,0,3,1,3} R{60,0,3,2,3} R{103,1,2,1,2} R{104,1,2,1,3} R{108,1,2,2,3} R{120,1,3,1,3} R{124,1,3,2,3} R{198,2,3,2,3} Keep Rt P noutput *next B e,Det,a C***** This the the two-index Riemann tensor: X Rt2(n1,n2) = DS{n3,0,3,{zero(n3,n1)* DS{n4,0,3,{zero(n4,n2)*tgi(n3,n4)*R1(n3,n1,n4,n2)} } } } C***** Now calculate some component, here Rt2(0,0) : Z R00 = Rt2(0,0) *yep C***** Use the components of the four-index tensor as computed before: Id,R6(n1~,n2~,n3~,n4~) = Rt(64*n1+16*n2+4*n3+n4+1) *end C Varia 7. Lagrangian for SU(5) once broken to SU(3)*SU(2)*U(1). P error C PROGRAM WRITTEN BY MARTIN GREEN, AUGUST 1981. P stat Oldnew i=I Common A,DIF,DIFH,CDIFH,DIFHH,F1,F2,DIFZ,DIFZB,Zb,GAUGE,H,HH,F1B,F0,MZ ,HSH,HHHH,HH2,LH1,LH2,LH3,LH4,LH5,LH6,LH7,LH8,LH9 F TA *fix C RT12=SQRT(1/2) ETC C GG = GAUGE COUPLING CONSTANT C UNIT = 3 BY 3 UNIT MATRIX C UNI=2*2 UNIT MATRIX C SUMMATION CONVENTIONS C LG(MU)=LAMBDA(A)*GL(A,MU) C TB(MU)=TAU(A)*B(A,MU) C LDIFF(GL)=LAMBDA(A)*DIFF(GL(A)) C LDIFF(B)=TAU(A)*DIFF(B(A)) B GG S GG,UNIT,RT12,RT13,RT15,UNI I MU1,MU2,MU3,MU4,I1=3,I2=3,I3=3,I4=3 V B,B0,GL,XM,XP F DIFF,LDIFF,LG,MX=c,TB Oldnew MXC=PX C DIFFERENTIAL OF A(MU) Z DIF(MU1,MU2,I1,I2)=-I*RT12*( +DIFF(MU1,XM,MU2)*D(I1,1)*D(I2,2) +DIFF(MU1,XP,MU2)*D(I1,2)*D(I2,1) +(RT12*LDIFF(MU1,GL,MU2)+UNIT*2*RT12*RT13*RT15*DIFF(MU1,B0,MU2)) *D(I1,1)*D(I2,1) +(RT12*LDIFF(MU1,B,MU2)-UNI*3*RT12*RT13*RT15*DIFF(MU1,B0,MU2)) *D(I1,2)*D(I2,2)) Id RT12**2=1/2 *next C A(MU) Z A(MU1,I1,I2)=DIF(MU2,MU1,I1,I2) Id DIFF(MU1~,XM,MU2~)=MX(MU2) Al DIFF(MU1~,XP,MU2~)=PX(MU2) Al LDIFF(MU1~,GL,MU2~)=LG(MU2) Al LDIFF(MU1~,B,MU2~)=TB(MU2) Id DIFF(MU1~,B0~,MU2~)=B0(MU2) *next C SUMMED COLOUR IN XX IS XP.XM ETC B GG,I S FF,MMX,HA,HB,HB0,PHI=c,HXM=c,XX,HXX,XHX,HXHX Oldnew HXMC=HXP,PHIC=PHIG F HT,TA,EHBB,HL,HMX=c,LA,FHAGL Oldnew HMXC=HPX C SUMMATION CONVENTIONS C HM*HP*XMDXP=XM(MU1,I1)*HP(I1)*XP(MU1,I2)*HM(I2) I.E. P.M ETC S HM=c Oldnew HMC=HP X HH1(I1,I2)=HMX*D(I1,1)*D(I2,2) C HIGGS 24 Z HH(I1,I2)=-I*HH1(I1,I2)+I*Conjg(HH1(I2,I1)) +(HL*RT12+UNIT*(2*HB0*RT12*RT13*RT15+4*RT12*FF/GG/5))*D(I1,1)*D(I2,1) +(HT*RT12-UNI*(3*HB0*RT12*RT13*RT15+6*RT12*FF/GG/5))*D(I1,2)*D(I2,2) C HIGGS 5 Z H(I1)=I*HM*D(I1,1)+I*PHI*D(I1,2) *next X DIFFH(I1)=I*DIFF(MU1,HM)*D(I1,1)+I*DIFF(MU1,PHI)*D(I1,2) Z DIFH(I1)=DIFFH(I1)+GG*A(MU1,I1,I2)*H(I2) Z DIFHH(I1,I2)=GG*A(MU1,I1,I3)*HH(I3,I2)-HH(I1,I3)*A(MU1,I3,I2)*GG -I*DIFF(MU1,HXM)*D(I1,1)*D(I2,2)+DIFF(MU1,HXP)*D(I1,2)*D(I2,1)*I +(DIFF(MU1,HL)*RT12+UNIT*UNIT* DIFF(MU1,HB0)*2*RT12*RT13*RT15) *D(I1,1)*D(I2,1) +(DIFF(MU1,HT)*RT12-UNI*UNI*3*DIFF(MU1,HB0)*RT12*RT13*RT15) *D(I1,2)*D(I2,2) Id UNIT**N~=UNIT**N/UNIT Al UNI**N~=UNI**N/UNI Al,Multi,RT12**2=1/2 Al RT13**2=1/3 Al RT15**2=1/5 Id HL*LG(MU1)=LG(MU1)*HL+2*I*FHAGL*LA Al HT*TB(MU1)=TB(MU1)*HT+2*I*EHBB*TA Id HL=HA*LA Al HT=HB*TA Al LG(MU1)=GL(MU1)*LA Al TB(MU1)=B(MU1)*TA Al DIFF(MU1,HL)=DIFF(MU1,HA)*LA Al DIFF(MU1,HT)=DIFF(MU1,HB)*TA *next B GG Z CDIFH(I1)=Conjg(DIFH(I1)) *next B GG,I,FF Z Z=-CDIFH(I1)*DIFH(I1) -DIFHH(I1,I2)*DIFHH(I2,I1)/2 -FF *(DIFF(XP,HXM)+DIFF(XM,HXP)) C PART OF GAUGE FIXING TERM Id UNIT**2=3 Al UNI**2=2 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 Id UNIT=1 Al UNI=1 Al,Ainbe,LA*LA=2 Al,Ainbe,TA*TA=2 Id LA=0 Al TA=0 *yep Id MX(MU1)*HPX*MX(MU1)*HPX=HXX**2 Al MX(MU1)*HPX*HMX*PX(MU1)=HXHX*XX Al PX(MU1)*HMX*PX(MU1)*HMX=XHX**2 Al PX(MU1)*HMX*HPX*MX(MU1)=XHX*HXX Al HMX*PX(MU1)*MX(MU1)*HPX=XX*HXHX Al HMX*PX(MU1)*HMX*PX(MU1)=XHX**2 Al HPX*MX(MU1)*PX(MU1)*HMX=HXX*XHX Al HPX*MX(MU1)*HPX*MX(MU1)=HXX**2 *yep Id MX(MU1~)=XM(MU1) Al PX(MU1~)=XP(MU1) Al HMX=HXM Al HPX=HXP Id,Commu,DIFF Print STAT P output C HIGGS KINETIC TERM *next F ZXM=c,ZXP=c,ZA=c,ZB=c,ZB0=c Oldnew ZXMC=ZXMG,ZXPC=ZXPG,ZAC=ZAG,ZBC=ZBG,ZB0C=ZB0G C DIFFERENTIAL OF F.P. GHOST MULTIPLET Z DIFZ(I1,I2)= D(I1,1)*D(I2,2)*DIFF(MU1,ZXM) +D(I1,2)*D(I2,1)*DIFF(MU1,ZXP) +D(I1,1)*D(I2,1)*(RT12*LA*DIFF(MU1,ZA)+UNIT*2*RT12*RT13*RT15*DIFF(MU1 ,ZB0)) +D(I1,2)*D(I2,2)*(RT12*TA*DIFF(MU1,ZB)-UNI*3*RT12*RT13*RT15*DIFF(MU1, ZB0)) *next Z DIFZB(I1,I2)=Conjg(DIFZ(I2,I1)) Z HH(I1,I2)=HH(I1,I2) Id HMX=HXM Al HPX=HXP *next C GHOST MULTIPLET Z GAUGE(I1,I2)=DIFZ(I1,I2) Z Zb(I1,I2)=DIFZB(I1,I2) Id DIFF(MU1,ZB0~)=ZB0 *next B GG,I F FZAHA,FZAGL,EZBHB,EZBB C SUMMATION CONVENTIONS C FZAHA=F(A,B,C)*ZA(B)*HA(C) C EZBB=Epf(A,B,C)*ZB(B)*B(C) C ETC Z F0(I1,I2)=GAUGE(I1,I3)*A(MU1,I3,I2)-A(MU1,I1,I3)*GAUGE(I3,I2) Z F2(I1,I2)=-I*GG*RT12*(GAUGE(I1,I3)*HH(I3,I2)-HH(I1,I3)*GAUGE(I3,I2)) Id LA*ZA*HL=HL*LA*ZA+2*I*FZAHA*LA Al TA*ZB*HT=HT*TA*ZB+2*I*EZBHB*TA Al LA*ZA*LG(MU1)=LG(MU1)*LA*ZA+2*I*LA*FZAGL(MU1) Al TA*ZB*TB(MU1)=TB(MU1)*TA*ZB+2*I*TA*EZBB(MU1) Al,Multi,RT12**2=1/2 Al UNIT=1 Al UNI=1 Id HL=HA*LA Al HT=HB*TA Al LG(MU1)=LA*GL(MU1) Al TB(MU1)=TA*B(MU1) *next B GG,I,FF Z MZ(I1,I2)=I*FF* (F2(1,2)*D(I1,1)*D(I2,2)-F2(2,1)*D(I1,2)*D(I2,1)) *next B GG,I,FF Z LFP1=-DIFZB(I1,I2)*DIFZ(I2,I1) Z LFP2=DIFZB(I1,I2)*F0(I2,I1)*GG Z LFP3=Zb(I1,I2)*MZ(I2,I1) *yep B GG,I,FF Id,Ainbe,LA*LA=2 Al,Ainbe,TA*TA=2 Al,UNIT**2=3 Al UNI**2=2 Al MX(MU1)=XM(MU1) Al PX(MU1)=XP(MU1) Id LA=0 Al TA=0 Al UNIT=1 Al UNI=1 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 P output C FADEEV POPOV GHOST LAGRANGIAN *next B GG,I,FF Z HSH=Conjg(H(I1))*H(I1) Z HHHH=HH(I1,I2)*HH(I2,I1) Id UNIT**2=3 Al UNI**2=2 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 Al HL*HL=2*HA*HA Al HT*HT=2*HB*HB Id UNIT=1 Al UNI=1 Al HL=0 Al HT=0 *next B GG,I,FF Z HH2(I1,I2)=HH(I1,I3)*HH(I3,I2) Id UNIT**N~=UNIT**N/UNIT Al UNI**N~=UNI**N/UNI Al,RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 *next S MM1,MM2 B MM1,MM2,GG,I,FF Z LH1=-MM1**2*HSH Z LH2=-MM2**2/2*HHHH Id GG**-2=0 *next S MM3,MM4 B MM3,GG,I,FF C LH3 COLOUR IS HP.LA*HA.HM C LH3 COLOUR IS PHIG.TA*HB.PHI Z LH3=-GG*MM3*Conjg(H(I1))*HH(I1,I2)*H(I2) Id UNIT=1 Al UNI=1 Al HL=LA*HA Al HT=TA*HB Al,Multi,RT12**2=1/2 Al GG**-2=0 *next B MM4,GG,I,FF Z LH4=-GG*MM4*HH(I1,I2)*HH(I2,I3)*HH(I3,I1) Id UNIT**3=3 Al UNI**3=2 Al HL*HL*HL=0 Al HT*HT*HT=0 Id UNIT=1 Al UNI=1 Al GG**-2=0 Al HL*HL=2*HA*HA Al HT*HT=2*HB*HB Al,Multi,RT12**2=1/2 Al,Multi,RT13**2=1/3 Al,Multi,RT15**2=1/5 Id HL=0 Al HT=0 *next S LL5,LL6,LL7,LL8,LL9 B LL5,LL6,LL7,GG,I,FF C LH5 COLOUR IS POWERS OF HP.HM AND PHIG.PHI C LH6 COLOUR IS HP.HM AND PHIG.PHI AND HXP.HXM C LH7 COLOUR IS POWERS OF HXP.HXM Z LH5=-LL5*GG*GG*HSH*HSH Z LH6=-LL6*GG*GG*HSH*HHHH Z LH7=-LL7*GG*GG*HHHH*HHHH Id GG**-2=0 Al RT12**2=1/2 Al RT13**2=1/3 Al RT15**2=1/5 *next B LL8,GG,I,FF C LH8 QUARTIC COLOUR IS HP.LA.LA.HM OR HP.HXM.HXP.HM OR HP.LA.HXM.PHI C OR HP.HXM.TA.PHI OR PHIG.TA.TA.PHI OR PHIG.HXP.HXM.PHI OR C PHIG.HXP.LA.HM OR PHIG.TA.HXP.HM C LH8 CUBIC COLOUR IS HP.LA.HM OR HP.HXM.PHI OR PHIG.TA.PHI OR PHIG.HXP. Z LH8=-LL8*Conjg(H(I1))*HH2(I1,I2)*H(I2)*GG*GG Id UNIT=1 Al UNI=1 Al HL=LA*HA Al HT=TA*HB Id,Multi,RT12**2=1/2 Al GG**-2=0 Al,Commu,LA Al,Commu,TA *next B LL9,GG,I,FF F HL4,HT4 C LH9 COLOUR IS TR(HXP.HXM.HXP.HXM) = HXP(A,J)*HYM(A,I)*HXP(B,I)*HXM(B,J Z LH9=-LL9*GG*GG*HH2(I1,I2)*HH2(I2,I1) Id UNIT**2=3 Al UNI**2=2 Al GG**-2=0 Al HL*HL*HL*HL=HL4 Al HT*HT*HT*HT=HT4 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 Id UNIT=1 Al UNI=1 Al HL*HL*HL=0 Al HT*HT*HT=0 Id,Ainbe,HL*HL=2*HA*HA Al,Ainbe,HT*HT=2*HB*HB Id HL=0 Al HT=0 *next S LL10,LL11,LL12,LL21,LL23 B GG,I,HP,HM,PHIG,PHI,HA,HB0,HB,HXP,HXM,MMX Z LHA=LH1+LH2+LH3+LH4+LH5+LH6+LH7+LH8+LH9 -MMX**2*HXP*HXM C PART OF GAUGE FIXING TERM Id MM2**2=6*RT12/5*FF*MM4-48/5*FF**2*LL7-56/25*FF**2*LL9 Id MM4=-FF*LL11*RT12/15+4*FF*LL12*RT12/15 Al LL7=-LL11/32-LL12/48+5*LL10/96 Al LL9=LL12/8+LL11/8 Al MM1**2=6*FF*MM3*RT12/5-12*FF**2*LL6/5-18*FF**2*LL8/25+FF**2*LL21 Id MM3=2*FF*LL8*RT12/5+RT12*FF*LL23-RT12*FF*LL21 Id,Multi,RT12**2=1/2 P output C HIGGS POTENTIAL *begin Common A,E,DIF C RT12=SQRT(1/2) ETC C GG = GAUGE COUPLING CONSTANT C SUMMATION CONVENTIONS C UNIT = 3 BY 3 UNIT MATRIX C UNI= 2 BY 2 MATRIX C LG(MU)=LAMBDA(A)*GL(A,MU) C TB(MU)=TAU(A)*B(A,MU) C LDIFF(GL)=LAMBDA(A)*DIFF(GL(A)) C TDIFF(B)=TAU(A)*DIFF(B(MU)) C FGGDG(MU,NU,RO,SI)=F(A,B,C)*GL(A,MU)*GL(B,NU)*D(RO)*GL(C,SI) C EBBDB(MU,NU,RO,SI)=Epf(A,B,C)*B(A,MU)*B(B,NU)*D(RO)*B(C,SI) C FGGL(MU,NU)=F(A,B,C)*GL(A,MU)*GL(B,NU)*LAMBDA(C) C EBBT(MU,NU)=Epf(A,B,C)*B(A,MU)*B(B,NU)*TAU(C) C F2G4(MU,NU,RO,SI)=F(A,B,E)*F(C,D,E)*GL(A,MU)*GL(B,NU)*GL(C,RO)*GL(D,SI C E2B4(MU,NU,RO,SI)=Epf(A,B,E)*Epf(C,D,E)*B(A,MU)*B(B,NU)*B(C,RO)*B(D,SI C E2B4(MU,NU,MU,NU)=B(I,MU)*B(I,MU)*B(J,NU)*B(J,NU)-B(I,MU)*B(I,NU)*B(J, C B(J,NU) C XXXX=XP(A,I,MU)*XM(A,J,NU)*XP(B,J,NU)*XM(B,I,MU) C XP.XP*XM.XM=XP(A,I,MU)*XM(A,J,NU)*XP(B,J,MU)*XM(B,I,NU) C (XP.XM)**2=XP(A,I,MU)*XM(A,J,MU)*XP(B,J,NU)*XM(B,I,NU) B GG S GG,UNIT,RT12,RT13,RT15,UNI I MU1,MU2,MU3,MU4,I1=3,I2=3,I3=3,I4=3 V GL,B,B0,XM,XP F XXXX,DIFF,LDIFF,TDIFF,LG,TB,FGGDG,EBBDB,FGGL,EBBT,F2G4,E2B4,MX=c Oldnew MXC=PX Z DIF(MU1,MU2,I1,I2)=-I*RT12*( +DIFF(MU1,XM,MU2)*D(I1,1)*D(I2,2) +DIFF(MU1,XP,MU2)*D(I1,2)*D(I2,1) +(RT12*LDIFF(MU1,GL,MU2)+UNIT*2*RT12*RT13*RT15*DIFF(MU1,B0,MU2)) *D(I1,1)*D(I2,1) +(RT12*TDIFF(MU1,B,MU2)-UNI*3*RT12*RT13*RT15*DIFF(MU1,B0,MU2)) *D(I1,2)*D(I2,2)) Id RT12**2=1/2 *next Z A(MU1,I1,I2)=DIF(MU2,MU1,I1,I2) Id DIFF(MU1~,XM,MU2~)=MX(MU2) Al DIFF(MU1~,XP,MU2~)=PX(MU2) Al LDIFF(MU1~,GL,MU2~)=LG(MU2) Al TDIFF(MU1~,B,MU2~)=TB(MU2) Id DIFF(MU1~,B0~,MU2~)=B0(MU2) *next B GG Z E(I1,I3)=GG*(A(MU1,I1,I2)*A(MU2,I2,I3)-A(MU2,I1,I2)*A(MU1,I2,I3)) *yep Id,Multi,RT12**2=1/2 Al LG(MU1)*LG(MU2)=LG(MU2)*LG(MU1)+2*I*FGGL(MU1,MU2) Al TB(MU1)*TB(MU2)=TB(MU2)*TB(MU1)+2*I*EBBT(MU1,MU2) Al UNIT**N~=UNIT**N/UNIT Al UNI**N~=UNI**N/UNI *next B GG Z ZG0=DIF(MU1,MU2,I1,I2)*DIF(MU1,MU2,I2,I1) Z ZG00=-DIF(MU1,MU1,I1,I2)*DIF(MU2,MU2,I2,I1) C ZG00=0 WHEN THE GAUGE FIXING TERM IS ADDED Z ZG1=2*E(I1,I2)*DIF(MU1,MU2,I2,I1) Z ZG2=E(I1,I2)*E(I2,I1)/2 *yep Id UNIT**N~=UNIT**N/UNIT Al UNI**N~=UNI**N/UNI Al RT12**2=1/2 Al RT13**2=1/3 Al RT15**2=1/5 Sum MU1,MU2 Id,Ainbe,LG(MU1~)*LG(MU2~)=2*GL(MU1)*GL(MU2) Al,Ainbe,TB(MU1~)*TB(MU2~)=2*B(MU1)*B(MU2) Al LDIFF(MU1~,GL,MU2~)*LDIFF(MU3~,GL,MU4~)=2*DIFF(MU1,GL,MU2)*DIFF(MU3, GL,MU4) Al TDIFF(MU1~,B,MU2~)*TDIFF(MU3~,B,MU4~)=2*DIFF(MU1,B,MU2)*DIFF(MU3,B, MU4) Al FGGL(MU1~,MU2~)*LDIFF(MU3~,GL,MU4~)=2*FGGDG(MU1,MU2,MU3,MU4) Al EBBT(MU1~,MU2~)*TDIFF(MU3~,B,MU4~)=2*EBBDB(MU1,MU2,MU3,MU4) Al FGGL(MU1~,MU2~)*FGGL(MU3~,MU4~)=2*F2G4(MU1,MU2,MU3,MU4) Al EBBT(MU1~,MU2~)*EBBT(MU3~,MU4~)=2*E2B4(MU1,MU2,MU3,MU4) Id FGGL(MU1~,MU2~)=0 Al EBBT(MU1~,MU2~)=0 Al LG(MU1~)=0 Al TB(MU1~)=0 Al LDIFF(MU1~,GL,MU2~)=0 Al TDIFF(MU1~,B,MU2~)=0 Al UNIT=3 Al UNI=2 *yep B GG,B0DB0,BDB,GLDGL,XPDXM,XMDXM,XPDXP Id PX(MU1~)*MX(MU2~)*PX(MU2~)*MX(MU1~)=XXXX Id MX(MU1~)=XM(MU1) Al PX(MU1~)=XP(MU1) Id,Commu,DIFF C -1/4*F(MU,NU,A)*F(MU,NU,A) C ZG0+ZG1+ZG2=-1/4*F(MU,NU)**2 + PART OF GAUGE FIXING *begin B I,GG,RT12,RT13,RT15 C THERE IS IMPLICIT LA IN G(1,GL) AND TA IN G(1,B) S GG,RT12,RT13,RT15,T I I1=5,I2=5,I3=5 V GL,B,B0,XM,XP,K F CH F C=c,Cc=c,L=c,UPB=c,DNB=c,ELB=c,UDB=c,ENB=c Oldnew CC=CG,Cc=CC,CcC=CCG Oldnew LC=R,UPBC=UP,DNBC=DN,ELBC=EL,UDBC=UD,ENBC=EN X ASLSH(I1,I2)=-I*RT12*(G(1,XM)*(D(I1,1)+D(I1,2))*(D(I2,4)+D(I2,5)) +G(1,XP)*(D(I1,4)+D(I1,5))*(D(I2,1)+D(I2,2))) -I/2*((G(1,GL)+2*RT13*RT15*G(1,B0))*D(I1,1)*D(I2,1) +(-2*G(1,GL)+2*RT13*RT15*G(1,B0))*D(I1,2)*D(I2,2) +(G(1,B)-3*RT13*RT15*G(1,B0))*D(I1,4)*D(I2,4) +(-2*G(1,B)-3*RT13*RT15*G(1,B0))*D(I1,5)*D(I2,5)) X DSLSH(T,I1,I2)=I*G(1,K)*D(I1,I2)+T*GG*ASLSH(I1,I2) X MM(I1,I2,L,CC,C)=RT12*( C(L,UP )*(D(I1,1)*D(I2,2)-D(I1,2)*D(I2,1))*Epf(1,2,3) +CC(L,UD)*(D(I1,1)*D(I2,4)-D(I1,4)*D(I2,1)) +C(L,EL )*(D(I1,4)*D(I2,5)-D(I1,5)*D(I2,4))*Epf(1,2)) X M(I1,I2)=MM(I1,I2,L,CC,C) X MB(I1,I2)=Conjg(MM(I2,I1,L,CC,C)) X P(I1)=CC(R,DN)*D(I1,1)+C(R,EN)*D(I1,4) X PB(I1)=Conjg(P(I1)) Z LGRN1= -PB(I1)*DSLSH(1,I1,I2)*P(I2) Z LGRN2= -MB(I1,I2)*DSLSH(2,I2,I3)*M(I3,I1) *yep Id,Multi,RT12**2=1/2 Al Epf(1,2,3)*Epf(1,2,3)=-1 Al Epf(1,2)*Epf(1,2)=-1 Al CG(R~,DN~)*G(1,K )*C(L~,EL~)= Conjg(EL)*L*G(1,K)*R*Conjg(DN) Id CG(R~,DN~)*G(1,K~)*C(L~,EL~)=-Conjg(EL)*L*G(1,K)*R*Conjg(DN) Id CC(L~,EL~)=L*EL Al CCG(R~,ELB~)=ELB*R Al C(L~,EL~)=L*CH*EL Al CG(R~,ELB~)=ELB*CH*R *yep Id,Adiso,L*G(1,K)*R=G(1,K) Id L*G(1,B~)*R=G(1,B)*R Al R*G(1,B~)*L=G(1,B)*L P output C FERMION KINETIC TERMS C AND FERMION INTERACTIONS WITH GAUGE FIELD *yep Id L=G6(1)/2 Al R=G7(1)/2 *begin S HM=c,PHI=c Oldnew HMC=HP,PHIC=PHIG I I1=5,I2=5 Z H(I1)=I*HM*D(I1,1)+I*PHI*(D(I1,4)+D(I1,5)) *next C EN*Epf(1,2)*PHIG=Epf(I1,I2)*EN(I1)*PHIG(I2) C ENB*Epf(1,2)*PHI=Epf(I1,I2)*PHI(I1)*ENB(I2) S RT12,L2 B L2,I,RT12,HM,HP,PHI,PHIG F CH F C=c,Cc=c,L=c,UPB=c,DNB=c,ELB=c,UDB=c,ENB=c Oldnew CC=CG,Cc=CC,CcC=CCG Oldnew LC=R,UPBC=UP,DNBC=DN,ELBC=EL,UDBC=UD,ENBC=EN X MM(I1,I2,L,CC,C)=RT12*( -C(L,UP)*(D(I1,1)*D(I2,3)-D(I1,3)*D(I2,1))*Epf(3,2,1) +CC(L,UD)*(D(I1,1)*D(I2,4)-D(I1,4)*D(I2,1)) +C(L,EL )*(D(I1,4)*D(I2,5)-D(I1,5)*D(I2,4))*Epf(1,2)) X P(I1)=CC(R,DN)*(D(I1,1)+D(I1,3))+C(R,EN)*D(I1,4) X PB(I1)=Conjg(P(I1)) X M(I1,I2)=MM(I1,I2,L,CC,C) X MB(I1,I2)=Conjg(MM(I2,I1,L,CC,C)) Z Z=-L2*(H(I1)*MB(I1,I2)*P(I2)+PB(I1)*M(I1,I2)*Conjg(H(I2))) *yep Al CG(R~,UP~)*C(L~,EL~)=Conjg(EL)*L*R*Conjg(UP) Id CC(L~,EL~)=L*EL Al CCG(R~,ELB~)=ELB*R Al C(L~,EL~)=L*CH*EL Al CG(R~,ELB~)=ELB*CH*R Id R*R=R Al L*L=L P output C FERMION HIGGS COUPLING 2 *yep Id L=G6(1)/2 Al R=G7(1)/2 *begin S HM=c,PHI=c Oldnew HMC=HP,PHIC=PHIG I I1=5,I2=5,I3=5,I4=5,I5=5 Z H(I1)=I*HM*D(I1,1)+I*PHI*D(I1,4) *next S RT12,L1 B L1,I,RT12,HM,HP,PHI,PHIG F CH F C=c,Cc=c,L=c,UPB=c,UDB=c,ELB=c Oldnew CC=CG,Cc=CC,CcC=CCG Oldnew LC=R,UPBC=UP,UDBC=UD,ELBC=EL X MM(I1,I2,L,CC,C)=RT12*( C(L,UP )*(D(I1,1)*D(I2,2)-D(I1,2)*D(I2,1)) +C(L,UP )*(D(I1,2)*D(I2,3)-D(I1,3)*D(I2,2)) +CC(L,UD )*(D(I1,2)*D(I2,4)-D(I1,4)*D(I2,2))*Epf(3,2,1)*Epf(2,1) /2 +CC(L,UD )*(D(I1,3)*D(I2,5)-D(I1,5)*D(I2,3)) +C(L,EL )*(D(I1,4)*D(I2,5)-D(I1,5)*D(I2,4))) X M(I1,I2)=MM(I1,I2,L,CC,C) X MC(I1,I2)=MM(I1,I2,R,C,CC) X MB(I1,I2)=Conjg(MM(I2,I1,L,CC,C)) X MCB(I1,I2)=Conjg(MM(I2,I1,R,C,CC)) Z Z=-L1*Epf(I1,I2,I3,I4,I5)* (MCB(I1,I2)*M(I3,I4)*H(I5)+MB(I1,I2)*MC(I3,I4)*Conjg(H(I5))) *yep Id Epf(1,2,3,4,5)=1 Al CG(R~,UP~)*C(L~,EL~)=Conjg(EL)*L*R*Conjg(UP) Al CCG(R~,UP~)*C(L~,EL)=ELB*L*R*CH*Conjg(UP) Al CG(R~,ELB)*CC(L~,UP~)=Conjg(UP)*CH*L*R*EL Id CC(L~,EL~)=L*EL Al CCG(R~,ELB~)=ELB*R Al C(L~,EL~)=L*CH*EL Al CG(R~,ELB~)=ELB*CH*R Id,Multi,RT12**2=1/2 Id Epf(1,2,3)*Epf(1,2)=Epf(1,2)*Epf(1,2,3) Id R*R=R Al L*L=L P output C FERMION HIGGS COUPLING 1 *yep Id L=G6(1)/2 Al R=G7(1)/2 *end C Varia 8. Lagrangian for SU(5) twice broken to SU(3)*U(1). C PROGRAM WRITTEN BY MARTIN GREEN, AUGUST 1981. P stat Common A,DIF,DIFH,CDIFH,DIFHH,F1,F2,DIFZ,DIFZB,ZB,GAUGE ,H,HH,F1B,F0,MZ,HSH,HHHH,HH2 ,LH1,LH2,LH3,LH4,LH5,LH6,LH7,LH8,LH9 C RT12=SQRT(1/2) ETC C GG = GAUGE COUPLING CONSTANT C UNIT = 3 BY 3 UNIT MATRIX C SUMMATION CONVENTIONS C LG(MU)=LAMBDA(A)*GL(A,MU) C LDIFF(GL)=LAMBDA(A)*DIFF(GL(A)) P noutp Oldnew i=I B GG S GG,UNIT,RT12,RT13,RT15 I MU1,MU2,MU3,MU4,I1=3,I2=3,I3=3,I4=3 V Z,PH,GL,WP,WM,XM,XP,YM,YP F DIFF,LDIFF,LG,MX=c,MY=c Oldnew MXC=PX,MYC=PY C DIFFERENTIAL OF A(MU) Z DIF(MU1,MU2,I1,I2)=-I*RT12*( DIFF(MU1,WP,MU2)*D(I1,2)*D(I2,3)+DIFF(MU1,WM,MU2)*D(I1,3)*D(I2,2) +DIFF(MU1,XM,MU2)*D(I1,1)*D(I2,2)+DIFF(MU1,YM,MU2)*D(I1,1)*D(I2,3) +DIFF(MU1,XP,MU2)*D(I1,2)*D(I2,1)+DIFF(MU1,YP,MU2)*D(I1,3)*D(I2,1) +(RT12*LDIFF(MU1,GL,MU2)+UNIT*DIFF(MU1,Z,MU2)*RT15/2-UNIT*DIFF(MU1,PH, MU2)*RT13/2)*D(I1,1)*D(I2,1)+(DIFF(MU1,Z,MU2)*RT15/2+3*DIFF(MU1,PH,MU 2)*RT13/2)*D(I1,2)*D(I2,2)-2*DIFF(MU1,Z,MU2)*RT15*D(I1,3)*D(I2,3)) Id RT12**2=1/2 *next C A(MU) Z A(MU1,I1,I2)=DIF(MU2,MU1,I1,I2) Id DIFF(MU1~,XM,MU2~)=MX(MU2) Al DIFF(MU1~,XP,MU2~)=PX(MU2) Al DIFF(MU1~,YM,MU2~)=MY(MU2) Al DIFF(MU1~,YP,MU2~)=PY(MU2) Al LDIFF(MU1~,GL,MU2~)=LG(MU2) Id DIFF(MU1~,Z~,MU2~)=Z(MU2) *next C SUMMATION CONVENTIONS C SUMMED COLOUR IS OF THE FORM PX.MY OR PY.MX ETC C SUMMED COLOUR IN XX IS XP.XM ETC B GG,I S MMW,MMY,MMX S C1,S1,C2,S2 F HM1=c Oldnew HM1C=HP1 S HB0,HB3 S XX,YY,HXX,HYY,XHX,YHY,HXHX,HYHY S H1Y,H1H1,YH1,H1HY,HYH1 S HA,HZ,HPH,HWP=c,FF S HXM=c,HYM=c Oldnew HXMC=HXP,HYMC=HYP F HL,HMX=c,HMY=c,LA,FHAGL Oldnew HWPC=HWM,HMXC=HPX,HMYC=HPY C SUMMATION CONVENTIONS C HM*HP*YMDYP=YM(MU1,I1)*HP(I1)*YP(MU1,I2)*HM(I2) I.E. P.M ETC S HM=c,PHIP=c,F,H0,PHI0 Oldnew HMC=HP,PHIPC=PHIM X HH1(I1,I2)=HMX*D(I1,1)*D(I2,2)+(C1*HMY+S1*HM1)*D(I1,1)*D(I2,3) +(C2*HWP-S2*PHIP)*D(I1,2)*D(I2,3) C HIGGS 24 Z HH(I1,I2)=-I*HH1(I1,I2)+I*Conjg(HH1(I2,I1)) +(HL*RT12+UNIT*(2*HB0*RT12*RT13*RT15+4*RT12*FF/GG/5))*D(I1,1)*D(I2,1) +(HB3*RT12-3*HB0*RT12*RT13*RT15-6*RT12*FF/GG/5)*D(I1,2)*D(I2,2) -(HB3*RT12+3*HB0*RT12*RT13*RT15+6*RT12*FF/GG/5)*D(I1,3)*D(I2,3) +EPS/GG*(D(I1,2)*D(I2,2)-D(I1,3)*D(I2,3))*2*RT12 C HIGGS 5 Z H(I1)=I*(C1*HM-S1*HYM)*D(I1,1)+I*(C2*PHIP+S2*HWP)*D(I1,2) +(H0+2*F/GG-I*PHI0)*RT12*D(I1,3) *next X DIFFH(I1)=I*(C1*DIFF(MU1,HM)-S1*DIFF(MU1,HYM))*D(I1,1) +I*(C2*DIFF(MU1,PHIP)+S2*DIFF(MU1,HWP))*D(I1,2) +(DIFF(MU1,H0)*RT12-I*DIFF(MU1,PHI0)*RT12)*D(I1,3) Z DIFH(I1)=DIFFH(I1)+GG*A(MU1,I1,I2)*H(I2) Z DIFHH(I1,I2)=GG*A(MU1,I1,I3)*HH(I3,I2)-HH(I1,I3)*A(MU1,I3,I2)*GG -I*DIFF(MU1,HXM)*D(I1,1)*D(I2,2)+DIFF(MU1,HXP)*D(I1,2)*D(I2,1)*I -I*(C1*DIFF(MU1,HYM)+S1*DIFF(MU1,HM))*D(I1,1)*D(I2,3) +I*(C1*DIFF(MU1,HYP)+S1*DIFF(MU1,HP))*D(I1,3)*D(I2,1) -I*(C2*DIFF(MU1,HWP)-S2*DIFF(MU1,PHIP))*D(I1,2)*D(I2,3) +I*(C2*DIFF(MU1,HWM)-S2*DIFF(MU1,PHIM))*D(I1,3)*D(I2,2) +(DIFF(MU1,HL)*RT12+UNIT*UNIT* DIFF(MU1,HB0)*2*RT12*RT13*RT15) *D(I1,1)*D(I2,1) +(DIFF(MU1,HB3)*RT12-3*DIFF(MU1,HB0)*RT12*RT13*RT15)*D(I1,2)*D(I2,2) -(DIFF(MU1,HB3)*RT12+3*DIFF(MU1,HB0)*RT12*RT13*RT15)*D(I1,3)*D(I2,3) Id UNIT**N~=UNIT**N/UNIT Al,Multi,RT12**2=1/2 Al RT13**2=1/3 Al RT15**2=1/5 Id HL*LG(MU1)=LG(MU1)*HL+2*I*FHAGL*LA Id HL=HA*LA Al LG(MU1)=GL(MU1)*LA Al DIFF(MU1,HL)=DIFF(MU1,HA)*LA *next B GG Z CDIFH(I1)=Conjg(DIFH(I1)) Id WP(MU1)=GL(MU1) Id WM(MU1)=WP(MU1) Id GL(MU1)=WM(MU1) *next B GG,I,F,EPS,FFEPS,MMW,MMY Z Z=-CDIFH(I1)*DIFH(I1) -DIFHH(I1,I2)*DIFHH(I2,I1)/2 -4*F*RT12*RT15*DIFF(Z,PHI0) -(FF-EPS)*(DIFF(XP,HXM)+DIFF(XM,HXP)) -MMY*(DIFF(YP,HYM)+DIFF(YM,HYP)) -MMW*(DIFF(WM,PHIP)+DIFF(WP,PHIM)) C PART OF GAUGE FIXING TERM Id UNIT**2=3 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 Id UNIT=1 Al,Ainbe,LA*LA=2 Id LA=0 Al S1**2=1-C1*C1 Al S2**2=1-C2*C2 Al S2*F=-2*EPS*C2 Al S1*FF=-EPS*S1-F*C1 Al S1*F=(FF+EPS)*C1-MMY Al S2*EPS=F*C2/2-MMW/2 *yep C SUMMATION CONVENTIONS Id MX(MU1)*HPX*MX(MU1)*HPX=HXX**2 Al MX(MU1)*HPX*HMX*PX(MU1)=HXHX*XX Al PX(MU1)*HMX*PX(MU1)*HMX=XHX**2 Al PX(MU1)*HMX*HPX*MX(MU1)=XHX*HXX Al HMX*PX(MU1)*MX(MU1)*HPX=XX*HXHX Al HMX*PX(MU1)*HMX*PX(MU1)=XHX**2 Al HPX*MX(MU1)*PX(MU1)*HMX=HXX*XHX Al HPX*MX(MU1)*HPX*MX(MU1)=HXX**2 Al MY(MU1)*HPY*MY(MU1)*HPY=HYY**2 Al MY(MU1)*HP1*MY(MU1)*HP1=H1Y**2 Al MY(MU1)*HP1*MY(MU1)*HPY=HYY*H1Y Al MY(MU1)*HPY*MY(MU1)*HP1=HYY*H1Y Al MY(MU1)*HPY*HMY*PY(MU1)=HYHY*YY Al MY(MU1)*HPY*HM1*PY(MU1)=HYH1*YY Al MY(MU1)*HP1*HMY*PY(MU1)=H1HY*YY Al MY(MU1)*HP1*HM1*PY(MU1)=H1H1*YY Al PY(MU1)*HMY*PY(MU1)*HMY=YHY**2 Al PY(MU1)*HM1*PY(MU1)*HMY=YHY*YH1 Al PY(MU1)*HMY*PY(MU1)*HM1=YHY*YH1 Al PY(MU1)*HM1*PY(MU1)*HM1=YH1**2 Al PY(MU1)*HMY*HPY*MY(MU1)=YHY*HYY Al PY(MU1)*HM1*HPY*MY(MU1)=YH1*HYY Al PY(MU1)*HMY*HP1*MY(MU1)=YHY*H1Y Al PY(MU1)*HM1*HP1*MY(MU1)=YH1*H1Y Al HMY*PY(MU1)*MY(MU1)*HPY=YY*HYHY Al HM1*PY(MU1)*MY(MU1)*HP1=YY*H1H1 Al HM1*PY(MU1)*MY(MU1)*HPY=YY*HYH1 Al HMY*PY(MU1)*MY(MU1)*HP1=YY*H1HY Al HMY*PY(MU1)*HMY*PY(MU1)=YHY**2 Al HM1*PY(MU1)*HMY*PY(MU1)=YHY*YH1 Al HMY*PY(MU1)*HM1*PY(MU1)=YHY*YH1 Al HM1*PY(MU1)*HM1*PY(MU1)=YH1**2 Al HPY*MY(MU1)*PY(MU1)*HMY=HYY*YHY Al HPY*MY(MU1)*PY(MU1)*HM1=HYY*YH1 Al HP1*MY(MU1)*PY(MU1)*HM1=H1Y*YH1 Al HP1*MY(MU1)*PY(MU1)*HMY=H1Y*YHY Al HPY*MY(MU1)*HPY*MY(MU1)=HYY**2 Al HP1*MY(MU1)*HPY*MY(MU1)=HYY*H1Y Al HPY*MY(MU1)*HP1*MY(MU1)=HYY*H1Y Al HP1*MY(MU1)*HP1*MY(MU1)=H1Y**2 *yep Id MX(MU1~)=XM(MU1) Al PX(MU1~)=XP(MU1) Al HMX=HXM Al HPX=HXP Al MY(MU1~)=YM(MU1) Al PY(MU1~)=YP(MU1) Al HMY=HYM Al HPY=HYP Al HM1=HM Al HP1=HP Al S1=-F/MMY Al S2=-2*EPS/MMW Al C1=(FF+EPS)/MMY Al C2=F/MMW Id,Commu,DIFF Id FF=FFEPS-EPS *yep B GG,I,F,FF C THROWING AWAY VERY NEGLIGABLE TERMS Id,Count,0,F,-1,EPS,-2,MMW,-1,H0,1,PHI0,1,PHIP,1,PHIM,1 ,WM,1,WP,1,Z,1 Id FFEPS=FF Al MMY**N~=FF**N Al MMW**N~=F**N Al GG**1=GG*GG1 Id,Count,-2,GG,-1,GG1,-1,F,-1,EPS,-2 Id GG1=1 C HIGGS KINETIC TERM *next P noutput F ZXM=c,ZXP=c,ZYM=c,ZYP=c,ZWM=c,ZWP=c,ZA=c,ZPH=c,ZZ=c Oldnew ZXMC=ZXMG,ZYMC=ZYMG,ZYPC=ZYPG,ZWMC=ZWMG,ZWPC=ZWPG,ZAC=ZAG,ZPHC=ZPHG Oldnew ZZC=ZZG,ZXPC=ZXPG C DIFFERENTIAL OF F.P. GHOST MULTIPLET Z DIFZ(I1,I2)= D(I1,1)*D(I2,2)*DIFF(MU1,ZXM)+D(I1,1)*D(I2,3)*DIFF(MU1,ZYM) +D(I1,2)*D(I2,1)*DIFF(MU1,ZXP)+D(I1,3)*D(I2,1)*DIFF(MU1,ZYP) +D(I1,2)*D(I2,3)*DIFF(MU1,ZWP)+D(I1,3)*D(I2,2)*DIFF(MU1,ZWM) +D(I1,1)*D(I2,1)*(RT12*LA*DIFF(MU1,ZA)+UNIT*(-DIFF(MU1,ZPH)*RT13+DIFF (MU1,ZZ)*RT15)/2) +D(I1,2)*D(I2,2)*(3*DIFF(MU1,ZPH)*RT13+DIFF(MU1,ZZ)*RT15)/2 -D(I1,3)*D(I2,3)*2*RT15*DIFF(MU1,ZZ) *next Z DIFZB(I1,I2)=Conjg(DIFZ(I2,I1)) Z HH(I1,I2)=HH(I1,I2) Id HMX=HXM Al HPX=HXP Al HMY=HYM Al HPY=HYP Al HM1=HM Al HP1=HP *next C GHOST MULTIPLET Z GAUGE(I1,I2)=DIFZ(I1,I2) Z ZB(I1,I2)=DIFZB(I1,I2) Id DIFF(MU1,ZZ~)=ZZ *next B GG,I F FZAHA,FZAGL C SUMMATION CONVENTIONS C FZAHA=F(A,B,C)*ZA(B)*HA(C) ETC C INFINITESIMAL GAUGE TRANSFORMATIONS OF FIELDS Z F0(I1,I2)=GAUGE(I1,I3)*A(MU1,I3,I2)-A(MU1,I1,I3)*GAUGE(I3,I2) Z F1(I1)=-I*GG*RT12*H(I2)*GAUGE(I1,I2) Z F1B(I1)=I*GG*RT12*Conjg(H(I2))*GAUGE(I2,I1) Z F2(I1,I2)=-I*GG*RT12*(GAUGE(I1,I3)*HH(I3,I2)-HH(I1,I3)*GAUGE(I3,I2)) Id LA*ZA*HL=HL*LA*ZA+2*I*FZAHA*LA Al LA*ZA*LG(MU1)=LG(MU1)*LA*ZA+2*I*LA*FZAGL(MU1) Al,Multi,RT12**2=1/2 Al UNIT=1 Id HL=HA*LA Al LG(MU1)=LA*GL(MU1) *next B GG,I,F,FF,EPS C INFINITESIMAL GAUGE TRANSFORMATIONS OF GAUGE FIXING TERM Z MZ(I1,I2)=I*GG*RT12*(4*RT12*EPS/GG *(F2(2,3)*D(I1,2)*D(I2,3)-F2(3,2)*D(I1,3)*D(I2,2)) +2*RT12*(FF-EPS)/GG *(F2(1,2)*D(I1,1)*D(I2,2)-F2(2,1)*D(I1,2)*D(I2,1)) +2*RT12*(FF+EPS)/GG *(F2(1,3)*D(I1,1)*D(I2,3)-F2(3,1)*D(I1,3)*D(I2,1)) +2*RT12*F/GG *(-F1(1)*D(I1,1)*D(I2,3)+F1B(1)*D(I1,3)*D(I2,1) -F1(2)*D(I1,2)*D(I2,3)+F1B(2)*D(I1,3)*D(I2,2) +(F1(3)-F1B(3))/5*(UNIT*D(I1,1)*D(I2,1)+D(I1,2)*D(I2,2)-4*D(I1,3)*D(I 2,3)))) *next B GG,I,F,FF Z LFP1=-DIFZB(I1,I2)*DIFZ(I2,I1) Z LFP2=DIFZB(I1,I2)*F0(I2,I1)*GG Z LFP3=ZB(I1,I2)*MZ(I2,I1) *yep B MMW,MMY,GG,I,F,FFEPS,EPS Id,Ainbe,LA*LA=2 Al,UNIT**2=3 Al MX(MU1)=XM(MU1) Al PX(MU1)=XP(MU1) Al MY(MU1)=YM(MU1) Al PY(MU1)=YP(MU1) Id LA=0 Al UNIT=1 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 Al S1=-F/MMY Al S2=-2*EPS/MMW Al C1=(FF+EPS)/MMY Al C2=F/MMW Id FF=FFEPS-EPS *yep B GG,I,F,FF C THROWING AWAY VERY NEGLIGABLE TERMS Id,Count,0,F,-1,EPS,-2,MMW,-1,H0,1,PHI0,1,PHIP,1,PHIM,1 ,ZWMG,1,ZWM,1,ZZG,1,ZZ,1,ZWPG,1,ZWP,1 Id FFEPS=FF Al MMY**N~=FF**N Al MMW**N~=F**N Al GG**1=GG*GG1 Id,Count,-2,GG,-1,GG1,-1,F,-1,EPS,-2 Id GG1=1 C FADEEV POPOV GHOST LAGRANGIAN *next P noutp B GG,I,F,FF,EPS Z HSH=Conjg(H(I1))*H(I1) Z HHHH=HH(I1,I2)*HH(I2,I1) Id UNIT**2=3 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 Al HL*HL=2*HA*HA Id UNIT=1 Al HL=0 *next B GG,I,FF,EPS Z HH2(I1,I2)=HH(I1,I3)*HH(I3,I2) Id UNIT**N~=UNIT**N/UNIT Al,RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 *next S MM1,MM2 B MM1,MM2,GG,I,F,FF,EPS Z LH1=-MM1**2*HSH Z LH2=-MM2**2/2*HHHH Id GG**-2=0 *next S MM3,MM4 B MM3,GG,I,F,FF,EPS C LH3 COLOUR IS HP.LA*HA.HM Z LH3=-GG*MM3*Conjg(H(I1))*HH(I1,I2)*H(I2) Id UNIT=1 Al HL=LA*HA Al,Multi,RT12**2=1/2 Al GG**-2=0 *next B MM4,GG,I,F,FF,EPS Z LH4=-GG*MM4*HH(I1,I2)*HH(I2,I3)*HH(I3,I1) Id UNIT**3=3 Al HL*HL*HL=0 Id UNIT=1 Al GG**-2=0 Al HL*HL=2*HA*HA Al,Multi,RT12**2=1/2 Al,Multi,RT13**2=1/3 Al,Multi,RT15**2=1/5 Id HL=0 *next S LL5,LL6,LL7,LL8,LL9 B LL5,LL6,LL7,GG,I,F,FF,EPS C LH5 COLOUR IS POWERS OF HP.HM C LH6 COLOUR IS HP.HM AND X.X OR Y.Y C LH7 COLOUR IS POWERS OF X.X AND Y.Y Z LH5=-LL5*GG*GG*HSH*HSH Z LH6=-LL6*GG*GG*HSH*HHHH Z LH7=-LL7*GG*GG*HHHH*HHHH Id GG**-2=0 Al RT12**2=1/2 Al RT13**2=1/3 Al RT15**2=1/5 *next B LL8,GG,I,F,FF,EPS C SUMMED COLOUR IS HP.HXM , HXP.HM AND SAME FOR Y C ALSO COLOUR HP.LA.LA.HM AND HP.LA.HM Z LH8=-LL8*Conjg(H(I1))*HH2(I1,I2)*H(I2)*GG*GG Id UNIT=1 Al HL=LA*HA Id,Multi,RT12**2=1/2 Al GG**-2=0 Al,Commu,LA *next B LL9,GG,I,FF,EPS F HL4 C SUMMED COLOUR IS OF THE FORM HXP,HYM OR HYP.HXM OR (HXP.HXM)**2 OR SAM Z LH9=-LL9*GG*GG*HH2(I1,I2)*HH2(I2,I1) Id UNIT**2=3 Al GG**-2=0 Al HL*HL*HL*HL=HL4 Al RT13**2=1/3 Al RT15**2=1/5 Al,Multi,RT12**2=1/2 Id UNIT=1 Al HL*HL*HL=0 Id,Ainbe,HL*HL=2*HA*HA Id HL=0 *next S FFEPS B GG,I,HP,HM,PHIP,PHIM,H0,PHI0,HA,HB0,HB3,HYP,HYM,HXP,HXM,HWP,HWM,MMW ,MMX,MMY ,FF,F Z LHA=LH1+LH2+LH3+LH4+LH5+LH6+LH7+LH8+LH9 -4*F*F/5*PHI0**2-MMW**2*PHIP*PHIM-MMY**2*HYP*HYM-MMX**2*HXP*HXM C PART OF GAUGE FIXING TERM C REPLACING HIGGS PARAMETERS IN TERMS OF V.E.V.,S Id MM1**2=6*RT12/5*FF*MM3-12/5*LL6*FF**2-18/25*FF**2*LL8-4*LL5*F*F -4*LL6*EPS**2-2*LL8*EPS**2-12/5*EPS*FF*LL8+2*RT12*MM3*EPS Al MM2**2=6*RT12/5*FF*MM4-48/5*FF**2*LL7-56/25*FF**2*LL9-4*F*F*LL6 -6*EPS*MM4*RT12+32/5*LL9*EPS*(EPS+FF)+6/5*F*F*LL8 -6/5*LL8*F*F -72/5*EPS**2*LL9 -16*LL7*EPS**2 Id MM3=-6*MM4*EPS*(FF+EPS)/F/F+LL8*(12/5*FF+4*EPS)*RT12 +64/5*LL9*EPS*FF*(FF+EPS)*RT12/F/F Id,Multi,RT12**2=1/2 Id S1=-F/MMY Al S2=-2*EPS/MMW Al C1=(FF+EPS)/MMY Al C2=F/MMW *yep C THROWING AWAY VERY NEGLIGABLE TERMS Id,Count,0,F,-1,EPS,-2,MMW,-1 ,H0,1,PHI0,1,PHIP,1,PHIM,1 *yep S LL,LL10,LL11,LL12,LL13,LL14,LL15 C REPLACING HIGGS PARAMETERS BY MASSES OF PHYSICAL HIGGS FIELDS Id MM4=-RT12*FF*LL11/15+4*RT12*LL12*FF/15 Al LL7=-LL11/32-LL12/48+5*LL10/96 Al LL9=LL12/8+LL11/8 Al LL8=LL13/2-FF*EPS/F/F*LL11 Al LL6=LL11*EPS*FF/F/F/4+LL14*RT13*RT15*5/16*LL10 Id MMW**N~=F**N Al RT12**2=1/2 Al RT13**2=1/3 Al RT15**2=1/5 Al MMX=FF Al MMY**N~=FF**N *yep S F10,F11,F12,F13,F14,F15 C DIAGONALISING NEUTRAL HIGGS FIELDS Id HB3=HB3+2*EPS*H0/F Al HB0=HB0-F*LL14*H0/FF/2 Al LL5=LL15/8+FF**2*EPS**2/F**4*LL11/2+LL14*LL10/32*LL14 *yep Id GG**1=GG*GG1 C THROWING AWAY VERY NEGLIGABLE TERMS Id Count,-2,GG,-1,GG1,-1,F,-1,EPS,-2 Id GG1=1 Id EPS=LL*F*F/FF P outp C HIGGS POTENTIAL *begin Common A,E,DIF C RT12=SQRT(1/2) ETC C GG = GAUGE COUPLING CONSTANT C UNIT = 3 BY 3 UNIT MATRIX C SUMMATION CONVENTIONS C LG(MU)=LAMBDA(A)*GL(A,MU) C LDIFF(GL)=LAMBDA(A)*DIFF(GL(A)) C FGGDG(MU,NU,RO,SI)=F(A,B,C)*GL(A,MU)*GL(B,NU)*D(RO)*GL(C,SI) C FGGL(MU,NU)=F(A,B,C)*GL(A,MU)*GL(B,NU)*LAMBDA(C) C F2G4(MU,NU,RO,SI)=F(A,B,E)*F(C,D,E)*GL(A,MU)*GL(B,NU)*GL(C,RO)*GL(D,SI C XYYX=XP(A,MU)*YM(A,NU)*YP(B,NU)*XM(B,MU) ETC C P.PM.M=P(A,MU)*P(B,MU)*M(A,NU)*M(B,NU) C (P.M)**2=(P(A,MU)*M(A,MU))**2 P noutp B GG S GG,UNIT,RT12,RT13,RT15 I MU1,MU2,MU3,MU4,I1=3,I2=3,I3=3,I4=3 V Z,PH,GL,WP,WM,XM,XP,YM,YP F XXXX,XYYX,YYYY,DIFF,LDIFF,LG,FGGDG,FGGL,F2G4,MX=c,MY=c Oldnew MXC=PX,MYC=PY Z DIF(MU1,MU2,I1,I2)=-I*RT12*( DIFF(MU1,WP,MU2)*D(I1,2)*D(I2,3)+DIFF(MU1,WM,MU2)*D(I1,3)*D(I2,2) +DIFF(MU1,XM,MU2)*D(I1,1)*D(I2,2)+DIFF(MU1,YM,MU2)*D(I1,1)*D(I2,3) +DIFF(MU1,XP,MU2)*D(I1,2)*D(I2,1)+DIFF(MU1,YP,MU2)*D(I1,3)*D(I2,1) +(RT12*LDIFF(MU1,GL,MU2)+UNIT*DIFF(MU1,Z,MU2)*RT15/2-UNIT*DIFF(MU1,PH, MU2)*RT13/2)*D(I1,1)*D(I2,1)+(DIFF(MU1,Z,MU2)*RT15/2+3*DIFF(MU1,PH,MU 2)*RT13/2)*D(I1,2)*D(I2,2)-2*DIFF(MU1,Z,MU2)*RT15*D(I1,3)*D(I2,3)) Id RT12**2=1/2 *next P noutp Z A(MU1,I1,I2)=DIF(MU2,MU1,I1,I2) Id DIFF(MU1~,XM,MU2~)=MX(MU2) Al DIFF(MU1~,XP,MU2~)=PX(MU2) Al DIFF(MU1~,YM,MU2~)=MY(MU2) Al DIFF(MU1~,YP,MU2~)=PY(MU2) Al LDIFF(MU1~,GL,MU2~)=LG(MU2) Id DIFF(MU1~,Z~,MU2~)=Z(MU2) *next P noutp B GG Z E(I1,I3)=GG*(A(MU1,I1,I2)*A(MU2,I2,I3)-A(MU2,I1,I2)*A(MU1,I2,I3)) *yep Id,Multi,RT12**2=1/2 Al LG(MU1)*LG(MU2)=LG(MU2)*LG(MU1)+2*I*FGGL(MU1,MU2) Al UNIT**N~=UNIT**N/UNIT *next B GG Z ZG0=DIF(MU1,MU2,I1,I2)*DIF(MU1,MU2,I2,I1) Z ZG00=-DIF(MU1,MU1,I1,I2)*DIF(MU2,MU2,I2,I1) C ZG00=0 WHEN THE GAUGE FIXING TERM IS ADDED Z ZG1=2*E(I1,I2)*DIF(MU1,MU2,I2,I1) Z ZG2=E(I1,I2)*E(I2,I1)/2 *yep Id UNIT**N~=UNIT**N/UNIT Al RT12**2=1/2 Al RT13**2=1/3 Al RT15**2=1/5 Sum MU1,MU2 Id,Ainbe,LG(MU1~)*LG(MU2~)=2*GL(MU1)*GL(MU2) Al LDIFF(MU1~,GL,MU2~)*LDIFF(MU3~,GL,MU4~)=2*DIFF(MU1,GL,MU2)*DIFF(MU3, GL,MU4) Al FGGL(MU1~,MU2~)*LDIFF(MU3~,GL,MU4~)=2*FGGDG(MU1,MU2,MU3,MU4) Al FGGL(MU1~,MU2~)*FGGL(MU3~,MU4~)=2*F2G4(MU1,MU2,MU3,MU4) Id FGGL(MU1~,MU2~)=0 Al LG(MU1~)=0 Al LDIFF(MU1~,GL,MU2~)=0 Al UNIT=3 *yep B GG,PHDPH,ZDZ,GLDGL,WPDWM,XPDXM,YPDYM,XMDXM,YMDYM,XMDYM,XPDXP,YPDYP ,XPDYP,XPDYM,YPDXM Id PX(MU1~)*MX(MU2~)*PX(MU2~)*MX(MU1~)=XXXX Al PX(MU1~)*MY(MU2~)*PY(MU2~)*MX(MU1~)=XYYX Al PY(MU1~)*MY(MU2~)*PY(MU2~)*MY(MU1~)=YYYY Al PY(MU1~)*MX(MU2~)*PX(MU2~)*MY(MU1~)=XYYX Id MX(MU1~)=XM(MU1) Al PX(MU1~)=XP(MU1) Al MY(MU1~)=YM(MU1) Al PY(MU1~)=YP(MU1) Id,Commu,DIFF C -1/4*F(MU,NU,A)*F(MU,NU,A) C ZG0+ZG1+ZG2=-1/4*F(MU,NU)**2+PART OF GAUGE FIXING *begin B I,GG,RT12,RT13,RT15 C THERE IS IMPLICIT LA IN G(1,GL) S GG,RT12,RT13,RT15,T I I1=5,I2=5,I3=5 V WP,WM,XM,XP,YM,YP,GL,PH,Z,K F UQB=c Oldnew UQBC=UQ F CH=c,TR F C=c,Cc=c,L=c,UPB=c,DNB=c,ELB=c,NUB=c Oldnew CC=CG,Cc=CC,CcC=CCG,CHC=CHG Oldnew LC=R,UPBC=UP,DNBC=DN,ELBC=EL,NUBC=NU X ASLSH(I1,I2)=-I*RT12*(G(1,WP)*D(I1,4)*D(I2,5)+G(1,WM)*D(I1,5)*D(I2,4) +(RT12*G(1,GL)+RT15/2*G(1,Z)-RT13/2*G(1,PH))*D(I1,1)*D(I2,1) +(-2* RT12*G(1,GL)+RT15/2*G(1,Z)-RT13/2*G(1,PH))*D(I1,2)*D(I2,2) +(RT15/2*G(1,Z)+3*RT13/2*G(1,PH))*D(I1,4)*D(I2,4) -2*RT15*G(1,Z)*D(I1,5)*D(I2,5) +G(1,XM)*(D(I1,1)+D(I1,2))*D(I2,4)+G(1,XP)*D(I1,4)*(D(I2,1)+D(I2,2)) +G(1,YM)*(D(I1,1)+D(I1,2))*D(I2,5)+G(1,YP)*D(I1,5)*(D(I2,1)+D(I2,2))) X DSLSH(T,I1,I2)=I*G(1,K)*D(I1,I2)+T*GG*ASLSH(I1,I2) X MM(I1,I2,L,CC,C)=RT12*( C(L,UQ )*(D(I1,1)*D(I2,2)-D(I1,2)*D(I2,1))*Epf(1,2,3) +CC(L,UP)*(D(I1,1)*D(I2,4)-D(I1,4)*D(I2,1)) +CC(L,DN)*(D(I1,1)*D(I2,5)-D(I1,5)*D(I2,1)) +C(L,EL )*(D(I1,4)*D(I2,5)-D(I1,5)*D(I2,4))) X M(I1,I2)=MM(I1,I2,L,CC,C) X MB(I1,I2)=Conjg(MM(I2,I1,L,CC,C)) X P(I1)=CC(R,DN)*D(I1,1)+C(R,EL)*D(I1,4)-C(R,NU)*D(I1,5) X PB(I1)=Conjg(P(I1)) Z LAGRN= -PB(I1)*DSLSH(1,I1,I2)*P(I2) -MB(I1,I2)*DSLSH(2,I2,I3)*M(I3,I1) *yep Id,Multi,RT12**2=1/2 Al Epf(1,2,3)*Epf(1,2,3)=-1 Al CG(R~,NU~)*G(1,K )*C(L~,EL~)= Conjg(EL)*L*G(1,K)*R*Conjg(NU) Id CG(R~,NU~)*G(1,K~)*C(L~,EL~)=-Conjg(EL)*L*G(1,K)*R*Conjg(NU) Id CC(L~,EL~)=L*EL Al CCG(R~,ELB~)=ELB*R Al C(L~,EL~)=L*CH*TR*Conjg(EL) Al CG(R~,ELB~)=Conjg(ELB)*TR*CHG*R P outp *yep F UU=c,UUT=c,U7=c Oldnew UUTC=UUS,UUC=UUG,U7C=U7G C T=TRANSPOSE , S=STAR , G=DAGGER=INVERSE Id UP=UUG*UP Al UPB=UPB*UU Al UQ*TR*CHG*R=UP*TR*CHG*U7*UU*R Al L*CH*TR*UQB=L*UUG*U7G*CH*TR*UPB Al R*UQ=R*UUT*U7*UP Al UQB*L=UPB*U7G*UUS*L Id,Ainbe,UU*UUG=1 Al,Ainbe,UUS*UUT=1 Al,Adiso,U7*U7G=1 *yep Id L*G(1,Z~)*R=L*G(1,Z) Al R*G(1,Z~)*L=R*G(1,Z) Id R*G(1,K)=(1-L)*G(1,K) Al R*G(1,PH)=(1-L)*G(1,PH) Al R*G(1,GL)=(1-L)*G(1,GL) Id NUB*L=0 Al L*G(1,Z)=G(1,Z)*(1+G5(1))/2 Al R*G(1,Z)=G(1,Z)*(1-G5(1))/2 Al ELB*CH*R*G(1,XP)=ELB*CH*(1-L)*G(1,XP) Al R*G(1,XM)*CH*EL=(1-L)*G(1,XM)*CH*EL P stat C FERMION KINETIC TERMS C AND FERMION INTERACTIONS WITH GAUGE FIELD *begin S HM=c,PHIP=c,F,H0,PHI0,RT12 Oldnew HMC=HP,PHIPC=PHIM I I1=5,I2=5 Z H(I1)=I*HM*D(I1,1)+I*PHIP*D(I1,4)+RT12*(H0+2*F/GG-I*PHI0)*D(I1,5) P noutp *next C UPB*CH*DN*HM*Epf(1,2,3)=Epf(I1,I2,I3)*UPB(I1)*CH*DN(I2)*HM(I3) ETC S L2,M2,GGM2M B L2,M2,F,HM,HP,PHIP,PHIM,H0,PHI0,GGM2M F UQB=c Oldnew UQBC=UQ F CH=c,TR F C=c,Cc=c,L=c,UPB=c,DNB=c,ELB=c,NUB=c Oldnew CC=CG,Cc=CC,CcC=CCG,CHC=CHG Oldnew LC=R,UPBC=UP,DNBC=DN,ELBC=EL,NUBC=NU X MM(I1,I2,L,CC,C)=RT12*( -C(L,UQ)*(D(I1,1)*D(I2,3)-D(I1,3)*D(I2,1))*Epf(3,2,1) +CC(L,UP)*(D(I1,1)*D(I2,4)-D(I1,4)*D(I2,1)) +CC(L,DN)*(D(I1,1)*D(I2,5)-D(I1,5)*D(I2,1)) +C(L,EL )*(D(I1,4)*D(I2,5)-D(I1,5)*D(I2,4))) X P(I1)=CC(R,DN)*(D(I1,1)+D(I1,3))+C(R,EL)*D(I1,4)-C(R,NU)*D(I1,5) X PB(I1)=Conjg(P(I1)) X M(I1,I2)=MM(I1,I2,L,CC,C) X MB(I1,I2)=Conjg(MM(I2,I1,L,CC,C)) Z Z=-L2*(H(I1)*MB(I1,I2)*P(I2)+PB(I1)*M(I1,I2)*Conjg(H(I2))) Id L2=GG*M2/F Al CG(R~,UP~)*C(L~,EL~)=Conjg(EL)*L*R*Conjg(UP) Id CC(L~,EL~)=L*EL Al CCG(R~,ELB~)=ELB*R Al C(L~,EL~)=L*CH*TR*Conjg(EL) Al CG(R~,ELB~)=Conjg(ELB)*TR*CHG*R Al M2*F**-1=GGM2M/GG Id,Multi,RT12**2=1/2 P outp *yep F UU=c,UUT=c,U7=c Oldnew UUTC=UUS,UUC=UUG,U7C=U7G C T=TRANSPOSE , S=STAR , G=DAGGER=INVERSE Id UP=UUG*UP Al UPB=UPB*UU Al UQ*TR*CHG*R=UP*TR*CHG*U7*UU*R Al L*CH*TR*UQB=L*UUG*U7G*CH*TR*UPB Id R*R=R Al L*L=L Id L*M2=G6(1)/2*M2 Al R*M2=G7(1)/2*M2 Al L*H0=G6(1)/2*H0 Al R*H0=G7(1)/2*H0 Al L*PHI0=G6(1)/2*PHI0 Al R*PHI0=G7(1)/2*PHI0 Id Trick,1 Id Gi(1)=1 P outp C FERMION HIGGS COUPLING 2 *yep S FFEPS,EPS,MMW,MMY,HYM,HYP,HWP,HWM B FFEPS,EPS,F,MMW,MMY,M2,GGM2M Id HM=FFEPS/MMY*HM+F*HYM/MMY Al HP=FFEPS/MMY*HP+F*HYP/MMY Al PHIP=F*PHIP/MMW-2*EPS/MMW*HWP Al PHIM=F*PHIM/MMW-2*EPS/MMW*HWM P noutp *begin Common Z S HM=c,PHIP=c,F,H0,PHI0,RT12 Oldnew HMC=HP,PHIPC=PHIM I I1=5,I2=5,I3=5,I4=5,I5=5 Z H(I1)=I*HM*D(I1,1)+I*PHIP*D(I1,4)+RT12*(H0+2*F/GG-I*PHI0)*D(I1,5) P noutp *next F L1,M1 B F,HM,HP,PHIP,PHIM,H0,PHI0,GG F UQB=c Oldnew UQBC=UQ F CH=c,TR F C=c,Cc=c,L=c,UPB=c,DNB=c,ELB=c Oldnew CC=CG,Cc=CC,CcC=CCG,CHC=CHG Oldnew LC=R,UPBC=UP,DNBC=DN,ELBC=EL X MM(I1,I2,L,CC,C)=RT12*( C(L,UQ )*(D(I1,1)*D(I2,2)-D(I1,2)*D(I2,1)) +C(L,UQ )*(D(I1,2)*D(I2,3)-D(I1,3)*D(I2,2)) +CC(L,UP )*(D(I1,2)*D(I2,4)-D(I1,4)*D(I2,2))*Epf(3,2,1) +CC(L,UP )*(D(I1,3)*D(I2,4)-D(I1,4)*D(I2,3)) +CC(L,DN )*(D(I1,3)*D(I2,5)-D(I1,5)*D(I2,3)) +C(L,EL )*(D(I1,4)*D(I2,5)-D(I1,5)*D(I2,4))) X M(I1,I2)=MM(I1,I2,L,CC,C) X MCT(I1,I2)=Conjg(MM(I2,I1,R,C,CC)) Z Z=-Epf(I1,I2,I3,I4,I5)*MCT(I1,I2)*L1*M(I3,I4)*H(I5) *yep Id Epf(1,2,3,4,5)=1 Id CG(R~,UP~)*L1~*C(L~,EL~)=Conjg(EL)*L*L1*R*Conjg(UP) Al CG(R~,DNB)*L1~*CC(L~,UP~)*Epf(1,2,3)=-UP*TR*CHG*L*L1*R*DN*Epf(1,2,3) Id CC(L~,EL~)=L*EL Al CCG(R~,ELB~)=ELB*R Al C(L~,EL~)=L*CH*TR*Conjg(EL) Al CG(R~,ELB~)=Conjg(ELB)*TR*CHG*R Id,Multi,RT12**2=1/2 P outp *yep F UU=c,UUT=c,U7=c Oldnew UUTC=UUS,UUC=UUG,U7C=U7G C T=TRANSPOSE , S=STAR , G=DAGGER=INVERSE Id L1=UUT*L1*U7*UU Al UQB*L=UPB*L*U7G*UUS Al UP*TR*CHG*L=UP*TR*CHG*L*UUS Al L*CH*TR*UQB=UUG*U7G*L*CH*TR*UPB Al L*UP=UUG*L*UP Id,Ainbe,L*L=L Id UU*UUG=1 Al UUS*UUT=1 Id U7*U7G=1 Id U7G*L1*U7=L1 P noutp *next P outp B F,HM,HP,PHIP,PHIM,H0,PHI0,GGM1M Z Z=Z+Conjg(Z) Id UPB*L1*L=UPB*(1-G5(1))/2*L1 Al R*L1*UP=(1+G5(1))/2*L1*UP Id L1=-GG*M1*RT12/4/F Id RT12**2=1/2 P outp C FERMION HIGGS COUPLING 1 *yep S FFEPS,EPS,MMW,MMY,HYM,HYP,HWP,HWM B FFEPS,EPS,F,MMW,MMY,GGM1M C INCLUDING EXCEEDINGLY SMALL TERMS Id HM=FFEPS/MMY*HM+F*HYM/MMY Al HP=FFEPS/MMY*HP+F*HYP/MMY Al PHIP=F*PHIP/MMW-2*EPS/MMW*HWP Al PHIM=F*PHIM/MMW-2*EPS/MMW*HWM *end