
Effective: March 3, 2003

p/n 88-017137-01 B

6K Series
Programmer’s Guide

Automation

ii 6K Series Programmer’s Guide

North America and Asia:
Compumotor Division of Parker Hannifin

5500 Business Park Drive

Rohnert Park, CA 94928

Telephone: (800) 358-9070 or (707) 584-7558

Fax: (707) 584-3793

e-mail: cmr_help@parker.com

Internet: http://www.compumotor.com

Europe (non-German speaking):
Parker Digiplan

21 Balena Close

Poole, Dorset

England BH17 7DX

Telephone: +44 (0)1202 69 9000

Fax: +44 (0)1202 69 5750

Germany, Austria, Switzerland:
HAUSER Elektronik GmbH

Postfach: 77607-1720

Robert-Bosch-Str. 22

D-77656 Offenburg

Telephone: +49 (0)781 509-0

Fax: +49 (0)781 509-176

Technical Assistance Contact your local automation technology center (ATC) or distributor, or ...

Automation
E-mail: cmr_help@parker.com

Technical Support

6K Series products and the information in this user guide are the proprietary property of Parker Hannifin Corporation or its licensers, and may

not be copied, disclosed, or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this user guide and software and

hardware mentioned therein at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any kind or nature

whatsoever, including but not limited to lost profits arising from or in any way connected with the use of the equipment or this user guide.

© 1998-2003 Parker Hannifin Corporation

All Rights Reserved

Motion Planner and Servo Tuner are trademarks of Parker Hannifin Corporation.

Microsoft and MS-DOS are registered trademarks, and Windows, Visual Basic, and Visual C++ are trademarks of Microsoft Corporation.

User Information

WARNING
6K Series products are used to control electrical and mechanical

components of motion control systems. You should test your motion

system for safety under all potential conditions. Failure to do so can result

in damage to equipment and/or serious injury to personnel.

! !

IMPORTANTIMPORTANT

 Change Summary iii

Change Summary

Revision B Changes

March 3, 2003
This document, 88-020680-01B, supercedes 88-020680-1A. Changes associated with 6K Series Programmer’s Guide
revisions, and document clarifications and corrections are as follows:

Topic Description
Memory Allocation Correction: Updated the memory allocation table. See

page 11.
COMEXS Added a table to help illustrate stop conditions. See

page 16.
Variables Clarifications: Can store message strings of 50

characters of less. Also, enhancements in the OS for
string variables as of revision 5.1.0. See page 18.
Better explanation for assigning and using binary
variables. See page 22.

Error Handling Added description of error bit 22. See pages 30 and 31.
System Performance Clarification: Added explanation of “SYSTEM UPDATE

OVERRUN, USE SYSPER4” error message. See page
34.

Memory Allocation Changed cautionary message about issuing MEMORY
command. See page 45.

Drive Type Selection Added DSTALL to the list of Servo Only Commands.
See page 46.

Drive Stall Detection Added description of DSTALL command. See page 47.
Step Pulse Correction: Maximum pulse width misstated as 16µs.

Corrected to 8µs. See page 47.
Velocity Scaling Correction: Added PVF command to commands that are

multiplied by the SCLD command value. See page 50.
Distance Scaling Correction: Added PVF command to commands that

are multiplied by the SCLD command value. See page
51.

iv 6K Series Programmer’s Guide

Topic Description
End-of-Travel Limits Correction: Added ERROR command to the list of

related commands. See page 57.
Homing Correction: Misstated that HOMLVL defines the active

level of the home limit input. Corrected to LIMLVL. See
page 59.

Homing Using
Channel Z

Correction: Home profile attributes for Figure O
misstated that Backup to Home is disabled (HOMBAC0).
Corrected to enabled (HOMBAC1). See page 63.

Stall Detection &
Kill-on-Stall

Correction: Added note that the encoder count
reference must be enabled (ENCCNT1). See page 64.

Encoder Setup
Example

Correction: Added ENCCNT1111 to code example. See
page 65.

Encoder Failure
Detection

Enhancement: Added note to use EFAIL command
only with differential encoders. See page 66.

Programmable
Inputs and Outputs

Correction: Reference to analog outputs. Added PLC
scan mode to table of programmed events. Clarified
the results of “Kill on I/O Disconnect” mode with
KIOEN0. See page 75.

Expansion I/O Bricks Correction: Added ANIRNG and TIO commands to
table. See page 78.

Input Status Correction: The description for the status
assignment/comparison operator for trigger inputs and
digital inputs on expansion I/O has changed. See page
80.

Stop Input Enhancement: Clarified how COMEXS2 functions on
receiving a stop input. See page 83.

Output Active Level Enhancement: Added a table describing onboard
output settings, states, factory defaults, external power
supplies, and statuses. Expanded discussion about
outputs on expansion I/O bricks. See page 91.

PLC Scan Mode Correction: Clarified discussion about the PLC Scan
Mode and scan time. See page 104.

To implement a PLC
program

Clarification: Added HALT, BREAK, TIMST, and
TIMSTP commands to list of allowed commands. See
page 104.

Technical Notes
about PLC
Programs

Enhancement: Controller status bit 3 is set when a
PLC program is executed during scan mode. See page
105.

Programming
Example

Clarification: Corrected when the “Pause Scan” begins
in the graphic. See page 106.

 Change Summary v

Topic Description
Linear Interpolation Correction: Removed references to PSCLA and

PSCLV. See page 123. Also removed first two lines of
code from code sample. See 123.

Path Definition Correction: Correct total memory 300,000; default
allocation (program,compiled)
MEMORY150000,150000; maximum allocation for
compiled profiles MEMORY1000,299000. See page
124.

Path Final Velocity Enhancement: Added discussion about line or arc
segment termination with a final segment velocity
(PVF). See page 126.

Conditional Path
Execution

Enhancement: Added discussion about end-points for
lines or arcs. See page 127.

Compiled Motion
Profiling

Correction: Correct total memory 300,000; default
allocation (program,compiled)
MEMORY150000,150000; maximum allocation for
compiled profiles MEMORY1000,299000. See page
136.

Status Commands Correction: Added the TASF, TAS, and AS commands.
See page 137.

Rules for Using
Velocity in Preset
Compiled Motion

Enhancement: Replaces the section titled Lst Motion
Segment Must End At Zero Velocity. See page 138.

Dwells and Direction
Changes

Correction: Removed from sample code use of
incremental position mode MA0. See page 141.

On-the-Fly Motion Correction: Removed from sample code the disable
scaling SCALE0. See page 151.

OTF Error
Conditions

Enhancement: Clarified discussion about On-the-Fly
error conditions. See page 152.

How to Set up a
Registration Move

Clarification: Cannot configure the master trigger input.
Removed See page 155.

Registration-Sample
Application 2

Clarification: Removed from the sample code the
reference to deceleration (AD.5). See page 158.

GOWHEN Syntax Correction: Added LIM to list of right operands in the
Relation Expression Syntax. See page 160.

Following Status Clarification: Bit number 26 identifies if the the
Following move profile is being limited by the FMAXS
or FMAXV commands. See page 167.

Ratio Following
Setup Parameters

Clarification: Master source axis number—If the master
source is “8” (VARI), this represents the integer
variable (VARI) number. Master source selection—
Added source 8 VARI variable to the list. See page
168.

vi 6K Series Programmer’s Guide

Topic Description
Following an Integer
Variable

Enhancement: Added discussion of an axis using to
follow an integer variable. See page 172.

Repeatability of the
Trigger Inputs and
Sensors

Correction: Repeatability is dependant on trigger input
position capture and your sensor accuracy. See page
194.

Multi-Tasking
Application Example

Correction: Corrections to solution. See page 219.

Status Commands Enhancements: TASF—Added bit 29 GOWHEN error,
and bit 31 Executing Profile.
TASXF—Added bit 7 Drive Stall Active.
TFSF— Added bit 26 Following profile is limited
(FMAXA/FMAXV)
TERF— Added bit 5 Stop or Kill Issued, 19 Option
Card Fault, and 22 Etherner Failure.
Other status commands—TSCF and TNT.
See page 226.

List of all Status
Commands

Enhancement: Added TANO, TNT, and TSC to list of
commands. See page 230.

Error Messages Enhancement: Added error messages for MASTER,
SLAVE DISTANCE MISMATCH; OUTPUT BIT USED
AS OUTFNC; and SYSTEM UPDATE OVERRUN, USE
SYSPER4. See page 232.

Breakpoints Enhancement: Added discussion on use of program
breakpoints (BP). See page 238.

Table of Contents
Revision B Changes..iii

February, 2000 .. iii
OVERVIEW

About This Manual ...i
Organization of This Manual .. i
Programming Examples ... ii
Reference Documentation .. ii
Assumptions of Technical Experience.. ii

Before You Begin ...iii
Motion Planner — programming support software...................iii
Technical Support ...iv

CHAPTER 1. PROGRAMMING FUNDAMENTALS
Motion Planner Programming Environment2
Command Syntax...3

Introduction .. 3
Description of Syntax Letters and Symbols.................................. 5
General Guidelines for Syntax ... 6
Command Value Substitutions.. 7
Assignment and Comparison Operators 7
Programmable Inputs and Outputs Bit Patterns.......................... 9

Creating Programs ...9
Program Example... 10
Use the Wizards in Motion Planner ... 10

Storing Programs ...11
Memory Allocation ... 11
Checking Memory Status.. 12

Executing Programs (options)..13
Creating and Executing a Setup Program13
Program Security ...14
Controlling Execution of Programs and the Command Buffer 15

COMEXC (Continuous Command Execution)........................... 15
COMEXL (Save Command Buffer on Limit).............................. 15
COMEXR (Effect of Pause/Continue Input) 16
COMEXS (Save Command Buffer on Stop) 16

Restricted Commands During Motion17
Variables..18

Converting Between Binary and Numeric Variables................. 18
Using Numeric (VAR and VARI) Variables 19
Using Binary Variables .. 22

Program Flow Control ...23
Unconditional Looping and Branching 23
Conditional Looping and Branching ... 25

Program Interrupts (ON Conditions)..29
Error Handling...30

Enabling Error Checking ... 30
Defining the Error Program... 30
Canceling the Branch to the Error Program............................. 31
Error Program Set-up Example ... 32

Non-Volatile Memory..33
System Performance ..34

CHAPTER 2. COMMUNICATION
Communication Options ..36
Motion Planner Communication Features................................36
Serial Communication ...37

Controlling Multiple Serial Ports .. 37
RS-232C Daisy-Chaining ... 38

Daisy-Chaining and RP240s...41
RS-485 Multi-Drop..41

CHAPTER 3. BASIC OPERATIONS SETUP
Before You Begin.. 44

Setup Parameters Discussed in this Chapter..............................44
Using a Setup Program...45
Resetting the Controller ..45

Memory Allocation.. 45
Drive Setup.. 46

Drive Type Selection ...46
Drive Fault Input...46
Drive Stall Detection (stepper axes only)47
Drive Resolution (stepper axes only)..47
Step Pulse (stepper axes only) ..47
Disable Drive On Kill (servo axes only).....................................48

Scaling... 48
Units of Measure without Scaling...48
What is Scaling?..49
When Should I Define Scaling Factors?.....................................49
Acceleration & Deceleration Scaling (SCLA)............................50
Velocity Scaling (SCLV) ...50
Distance Scaling (SCLD and SCLMAS)......................................51

Positioning Modes ... 53
But first, a word about basic motion…53
Preset and Continuous Modes ..54
Preset Positioning Mode...55
Continuous Positioning Mode...56

End-of-Travel Limits ... 57
Homing (Using the Home Inputs).. 59
Encoder-Based Stepper Operation (stepper axes only) 64

Encoder Resolution ...64
Stall Detection & Kill-on-Stall..64
Encoder Set Up Example ..65
Encoder Polarity ...65
Encoder Count/Capture Referencing..66
Encoder Failure Detection..66
Commanded Direction Polarity..66

Servo Setup (servo axes only).. 67
Basic Tuning Process..68
Encoder Polarity ...70
Commanded Direction Polarity..71
DAC Output Limits..72
Servo Control Signal Offset ..72
Servo Setup Example...72

Target Zone Mode (move completion criteria—servo axes only) 74
Programmable Inputs and Outputs (onboard and external inputs
& outputs)... 75

Programmable I/O Bit Patterns..76
Onboard Programmable I/O...76
Expansion I/O Bricks ..78
Input Functions ...79
Output Functions...90

CHAPTER 4. PRODUCT CONTROL OPERATIONS
Variable Arrays (teaching variable data) 94

Basics of Teach-Data Applications...94
Summary of Related 6K Series Commands96
Teach-Data Application Example...96

Safety Features .. 100

Options Overview ..101
Stand-Alone Interface Options ...101
Programmable Logic Controller ..101
Host Computer Interface ..101

Programmable I/O Devices ..102
Programmable I/O Functions...102
Thumbwheels ..103
PLCs..103
PLC Scan Mode ..104

RP240 Remote Operator Panel...107
Configuration..107
Operator Interface Features...108
Using the Default Menus ..109

Joystick Control, Analog Inputs ...114
Joystick Control ..114
Analog Input Interface..117

Host Computer Interface ..118
CHAPTER 5. CUSTOM PROFILING

S-Curve Profiling ...120
S-Curve Programming Requirements.......................................120
Determining the S-Curve Characteristics120
Programming Example...121
Calculating Jerk..122

Linear Interpolation..123
Contouring (Circular Interpolation)124

Path Definition..124
Participating Axes...125
Path Acceleration, Deceleration, and Velocity126
Conditional Path Execution..127
Segment End-point Coordinates...128
Line Segments ...129
Arc Segments...129
Segment Boundary ..131
Using the C Axis (products with ≥4 axes)131
Using the P Axis (products with ≥4 axes)132
Outputs Along the Path...132
Paths Built Using 6K Series Commands132
Compiling the Path ...133
Executing the Path ..133
Possible Programming Errors..133
Programming Examples ...134

Compiled Motion Profiling ..136
Compiled Following Profiles..139
Dwells and Direction Changes...141
Compiled Motion Versus On-The-Fly Motion..........................142
Related Commands ...142
Compiled Motion — Sample Application 1143
Compiled Motion — Sample Application 2145
Compiled Motion — Sample Application 3147
Compiled Motion — Sample Application 4148

On-the-Fly Motion (pre-emptive GOs)151
OTF Error Conditions ..152
On-The-Fly Motion — Sample Application..............................153

Registration ..155
How to Set up a Registration Move..155
Registration Move Accuracy(see also Registration Move
Status below) ..155
Preventing Unwanted Registration Moves (methods)..............156
Registration Move Status & Error Handling156
Registration — Sample Application 1157
Registration — Sample Application 2158
Registration — Sample Application 3159

Synchronizing Motion (GOWHEN and TRGFN operations)159
Conditional “GO”s (GOWHEN) ..159
Trigger Functions (TRGFN) ...162

CHAPTER 6. FOLLOWING
Ratio Following – Introduction ..166

What can be a master? ...166
Following Status (TFSF, TFS & FS Commands)167

Implementing Ratio Following ..168

Ratio Following Setup Parameters .. 168
Follower vs. Master Move Profiles .. 173
Performing Phase Shifts... 176
Geared Advance Following.. 178
Summary of Ratio Following Commands 179
Electronic Gearbox Application for Ratio Following 180
Trackball Application for Ratio Following Motion................. 181

Master Cycle Concept..183
Master Cycle Commands ... 183
Summary of Master Cycle and Wait Commands 186
Continuous Cut-to-Length Application.................................... 187

Technical Considerations for Following189
Performance Considerations.. 189
Master Position Prediction .. 190
Master Position Filtering ... 190
Following Error.. 191
Maximum Velocity and Acceleration (Stepper Axes Only)...... 192
Factors Affecting Following Accuracy 192
Preset vs. Continuous Following Moves.................................. 194
Master and Follower Distance Calculations 195
Using Other Features with Following 197

Troubleshooting for Following (also see Chapter 8)199
Error Messages .. 199

Following Commands..200
CHAPTER 7. MULTI-TASKING

Introduction to Multi-Tasking..204
Using Multi-Tasking to Run Programs.................................... 204
Interaction Between Tasks ... 208
Axes & Tasks .. 210
How a “Kill” Works While Multi-Tasking 212

Using 6K Resources While Multi-Tasking213
Associating Axes with Tasks... 213
Sharing Common Resources Between Multiple Tasks............. 214
Locking Resources to a Specific Task 214
How Multi-tasking and the % Prefix Affect Commands and
Responses.. 215
Input and Output Functions and Multi-tasking 216

Multi-Tasking Performance Issues...217
When is a Task Active?... 217
Task Swapping.. 218
Task Execution Speed... 218

Multi-Tasking Application Example......................................219
One machine multi-tasking application 219

CHAPTER 8 TROUBLESHOOTING
Troubleshooting Basics..222
Solutions to Common Problems...222
Program Debug Tools ..225

Status Commands ... 226
Error Messages .. 232
Trace Mode... 236
Single-Step Mode.. 237
Breakpoints... 238
Simulating I/O Activation... 238
Simulating Analog Input Channel Voltages............................. 240
Motion Planner’s Panel Gallery .. 240

Technical Support ..241
Operating System Upgrades...241
Product Return Procedure ..241

INDEX... 242

OVERVIEW

About This Manual
This manual is designed to help you implement the 6K Series Product’s features in your
application. Detailed feature descriptions are provided, including application scenarios and
programming examples. For details on each 6K command, see the 6K Series Command
Reference.

Organization of This Manual
Chapter Information

Chapter 1.
Programming Fundamentals

Discussion of essential programming guidelines and standard
programming features such as branching, variables, interrupts, error
handling, etc.

Chapter 2.
Communication

Communication considerations, such as using Motion Planner, alert
event handling, communication server and fast status control,
RS-232 daisy-chains and RS-485 multi-drops, etc.

Chapter 3.
Basic Operation Setup

General operation setup conditions, such as number of axes, scaling
factors, feedback device setup, programmable input and output
functions, end-of-travel limits, homing, etc.

Chapter 4.
Product Control Options

Considerations for implementing various product control methods,
such as programmable I/O, a joystick, an RP240, custom GUI, etc.

Chapter 5.
Custom Profiling

Descriptions of custom profiling features such as S-Curves, linear
and circular interpolation, compiled profiles, on-the-fly motion
profiling, registration, and synchronized motion.

Chapter 6.
Following

Feature descriptions and application examples for using Following
features.

Chapter 7.
Multi-Tasking

Feature descriptions and application examples for using multi-
tasking in your application.

Chapter 8.
Troubleshooting

Methods for isolating and resolving hardware and software
problems.

ii 6K Series Programmer’s Guide

Programming Examples
Programming examples are provided in this document to demonstrate how the 6K product's
features can be implemented. These examples are somewhat generalized, due to the diverse
nature of the family of 6K Series products and their application; consequently, some
attributes, such as the number of axes used or the I/O bit pattern referenced, can differ from
those available with your particular 6K product.

HINT: From the Help menu in Motion Planner and from our web site
(www.compumotor.com), you can access the online version of the 6K Series Command
Reference. You can copy the programming examples from this online document and paste
them into Motion Planner’s Program Editor. Then you can edit the code for your application
requirements and download the program to the product.

Reference Documentation
This document is intended to accompany the printed and online documents listed below, as
part of the 6K product user documentation set.

 Reference Document Description
 6K Series Hardware Installation

Guide
Hardware-related information specific to the 6K
Series product:
•Product hardware specifications
•Installation instructions
•Troubleshooting procedures
•Servo tuning instructions

 6K Series Command Reference Provides detailed descriptions of all 6K Series
Programming Language commands. In addition, it
includes quick-reference tables.

 Com6srvr User’s Guide for
Gemini& 6K Series Products

Provides information about the Com6srvr, and
detailed descriptions of its properties and methods.

ONLINE ACCESS

Online versions of this
Programmer's Guide and
the Command Reference
are available on the
included compact disc.

INTERNET ACCESS

You can also view and
print these documents
our website at
www.compumotor.com

 Motion Planner Online Help Online instructional aids:
•Step-by-step programming coaches
•Conceptual overviews
•Specifications on each 6K Series command

Assumptions of Technical Experience
To effectively use the information in this manual, you should have a fundamental
understanding of the following:

• Electronics concepts such as voltage, switches, current, etc.
• Motion control concepts such as motion profiles, torque, velocity, distance, force, etc.
• Programming skills in a high-level language such as C, BASIC, or Pascal is helpful
• Ethernet communication protocol (if using the Ethernet port)
• If you are new to the 6K Series Programming Language, read Chapter 1 thoroughly.

 Overview iii

Before You Begin
Before you begin to implement the 6K controller's features in your application you should
complete the items listed below.

• Complete all the installation and test procedures provided in your 6K Series Hardware
Installation Guide.

• If you are controlling any servo axes, complete the servo tuning procedures. Be sure to
use Motion Planner’s built-in tuning utility to easily tune the axis and integrate the
gains into your motion program. Tuning instructions are provide on page 67, with
conceptual material provided in an appendix to the 6K Series Hardware Installation
Guide.

• Keep the 6K Series Command Reference close at hand to answer questions about
specific 6K Series commands (the contents are also available online from the Motion
Planner interface). If you are new to the 6K Series Programming Language, read
Chapter 1 (Programming Fundamentals) thoroughly.

Motion Planner — programming support software
Motion Planner is a Windows-based graphical interface that assists you with programming
and tuning your 6K Series product. Motion Planner is provided in your ship kit. The Motion
Planner interface allows you to:

• Create, edit, download, and upload programs (or code modules).
• Tune your servo system.
• Test & debug programs and controller operation with customizable displays.
• Organize all of your programs and resource files for your programming project.

PERFORMANCE SUPPORT. To help you program with speed and efficiency, Motion
Planner provides these "performance support" features:

• Ergonomic Interface: In addition to the menus and toolbar buttons, the main part of the
interface is designed with tabbed windows to give you easy access to all the tools you
need. With one click, you can switch between editor, terminal emulator, files organizer,
and online help system. In addition, each tabbed window has its own set of utility buttons
and right mouse click menu commands for easy access to common tasks specific to what
you’re working on.

• Programming Help with Wizards: Wizards are available to speed up your
programming tasks and minimize your need to learn the details of the programming
language. Wizards are included for such tasks as overall program structure, setup
programming, error programming, compiled motion, multi-tasking setup, servo tuning,
etc.

• Smart Editor: The smart editor is the focal point for your programming tasks: The smart
editor watches over your shoulder and provides syntax checking on the fly (as you type).
To get detailed information on the command you're using, just press the F1 key. At any
point, you can check the entire program file for logic flow and syntax errors.

iv 6K Series Programmer’s Guide

Technical Support
For solutions to your questions about implementing 6K product software features, first look in
this manual. Other aspects of the product (command descriptions, hardware specs, I/O
connections, graphical user interfaces, etc.) are discussed in the respective manuals or Online
Help systems listed above in Reference Documentation (see page ii).

If you cannot find the answer in this documentation, contact your local Automation
Technology Center (ATC) or distributor for assistance.

If you need to talk to our in-house application engineers, please contact us at the numbers
listed on the inside cover of this manual. (The phone numbers are also provided when you
issue the HELP command to the 6K controller.)

1C H A P T E R O N E

Programming
Fundamentals

IN THIS CHAPTER
This chapter is a guide to general 6K programming tasks. It is divided into these main topics:

• Motion Planner programming environment 2 • Restricted commands during motion 17
• Command syntax.. 3 • Using Variables .. 18
• Creating programs.. 9 • Program flow control.. 23
• Storing programs.. 10 • Program interrupts .. 29
• Executing programs ... 13 • Error handling... 30
• Creating and executing a set-up program 13 • Non-volatile memory.. 33
• Program Security.. 14 • System performance considerations.............................. 34
• Controlling execution – programs & command buffer......... 15

2 6K Series Programmer’s Guide

Motion Planner Programming Environment
Every 6K Series controller is shipped with Motion Planner, a Windows-based programming tool
designed to simplify your programming efforts. The Motion Planner interface allows you to:

• Create, edit, download, and upload programs (or code modules).
• Tune your system to optimize performance.
• Test & debug programs and controller operation with customizable displays.
• Organize all of your programs and resource files for your programming project.

PROGRAMMING SUPPORT. To help you program with speed and efficiency, Motion
Planner provides these “performance support” features:

• Smart Editor: The smart editor is the focal point for your programming tasks: The smart
editor watches over your shoulder and provides syntax checking on the fly (as you type).
To get detailed information on the command you're using, just press the F1 key. At any
point, you can check the entire program file for logic flow and syntax errors.

• Programming Help with Wizards: While you are working in the Editor, you can use the
wizards to speed up your programming tasks and minimize your need to learn the details
of the programming language. Wizards are available for general program structure, general
system setup (including servo tuning), error programming, and a host of other
programming tasks.

Contents of
the online help
system.

This is an example of a user program. Note that the user program
window has it own offering of wizards and file control buttons.

Double-click the
icon to view the
program in a
separate window.

Main Program Editor Window:
These are program icons placed by the “Standard Application”
program structure wizard. The 1st time you open an icon
(double-click), you will be guided through the respective wizard.
The next time you open the icon, you can edit the code
generated from the wizard.

• Setup program
• Main program (can be assigned as power-up program)
• User programs

Click this tab to
view the
terminal window

 Chapter 1. Programming Fundamentals 3

Command Syntax

Introduction
The 6K programming language accommodates a wide range of needs by providing basic
motion control building blocks, as well as sophisticated motion and program flow constructs.

The language comprises simple ASCII mnemonic commands, with each command separated
by a command delimiter (carriage return, colon, or line feed). The command delimiter signals
the 6K product that a command is ready for processing.

Upon receiving a command followed by a command delimiter, the 6K controller places the
command in its internal command buffer, or queue. Here the command is executed in the
order in which it is received. To make the command execute immediately, place an
exclamation point (!) in front of it (e.g., The TAS command will be executed after all
commands ahead of it in the command buffer are executed; but !TAS will execute before any
other commands in the command buffer).

; ***
; This is a program that executes a trapezoidal motion
; profile on axes 1 and 2
; ***

DEL motion ; (a precaution) Delete program called "motion"
DEF motion ; Begin definition of program called "motion"
DRIVE11 ; Enable drives on axes 1 and 2
MC00 ; Set position mode to preset on both axes
A20,10 ; Set accel on axis 1 to 20 units/sec/sec, and
 ; Set accel on axis 2 to 10 units/sec/sec
V8,5 ; Set velocity on axis 1 to 8 units/sec, and
 ; Set velocity on axis 2 to 5 units/sec
D100000,75000 ; Set distance to 100,000 counts on axis 1, and
 ; Set distance to 75,000 counts on axis 2
GO11 ; Execute motion on axes 1 and 2
END ; End definition of program called "motion"

; ***
; This is a program that executes a trapezoidal motion
; profile on axes 1 and 2
; ***
DEL motion ; (a precaution) Delete program called

"motion"
DEF motion ; Begin definition of program called "motion"
DRIVE11 ; Enable drives on axes 1 and 2
MC00 ; Set position mode to preset on both axes
A20,10 ; Set accel on axis 1 to 20 units/sec/sec, and
 ; Set accel on axis 2 to 10 units/sec/sec
V8,5 ; Set velocity on axis 1 to 8 units/sec, and
 ; Set velocity on axis 2 to 5 units/sec
D100000,75000 ; Set distance to 100,000 counts on axis 1,

and
; Set distance to 75 000 counts on axis 2

Sample program, as viewed in an editor:

These are command line comments, comprising a semi-colon and text.
The comments are separated from the command by a tab.
A carriage return is placed at the end of each command line.

DEL motion
Text field
Command name

Command name

DRIVE 11
Binary data field
(corresponds to
axes 1 & 2, from
left to right)

4 6K Series Programmer’s Guide

Spaces and tabs within a command are processed as neutral characters. Comments can be
specified with the semicolon (;) character — all characters following the semicolon and
before the command delimiter are considered program comments.

Some commands contain one or more data fields in which you enter numeric or binary values
or text:

• Numeric data fields. For example, A20,10 is an acceleration (A) command that sets the
acceleration for axes 1 and 2 to 20 units/sec2 and 10 units/sec2, respectively.

• Binary fields. For example, DRIVE1011 is a drive enable (DRIVE) command that
enables axes 1, 3 and 4 and disables axis 2.

• Text fields. For example, STARTPpowrup is a startup program assignment (STARTP)
command that assigns the program called “powrup” as the startup program to be
executed automatically when the 6K product is power up or reset.

• To check what the data field settings are for a particular command, simply type in the
command without the data fields. The 6K will display the command settings. For
example, after executing the A20,10 noted above, you could type in the A command by
itself and the 6K controller would respond with A20,10.

• Shortcuts. Most 6K language commands supply axis-related data, and have one field
per axis, separated by commas. Each command field correlates, left to right, to the
physical axis. For example, to specify a velocity of 10 on axes 6 and 8, the command
“V , , , , ,10, ,10” would be used. As can be seen from the example, the
required number of commas can be awkward, and could be a potential source of
typographical error. The 6K products allow an axis specifier to be placed in front of a
command with axis fields to identify the starting axis number for the fields in that
command. For example, the above V command could be given as “6V10, ,10”. If the
velocity were to be given to axis 6 only, the command would simply be “6V10”.An
axis identifier placed in front of a data command without parameters (e.g. 6V) will
report the value for that axis only.

 Chapter 1. Programming Fundamentals 5

Description of Syntax Letters and Symbols
The command descriptions provided within the 6K Series Command Reference use alphabetic letters and ASCII symbols
within the Syntax description to represent different parameter requirements (see INEN example below).

INEN Input Enable
 Type Inputs; Program Debug Tools

Syntax <!>INEN<d><d><d>...<d>
Units d = Ø, 1, E, or X
Range Ø = off, 1 = on, E = enable, X = don't change
Default E
Response INEN: *INENEEEE_EEEE_EEEE_EEEE_E

See Also [IN], INFNC, INLVL, INPLC, INSTW, TIN, TIO

Product Rev
6K 5.0

Letter/Symbol Description

a Represents an axis specifier, numeric value from 1 to 8.

B Represents the number of the product's I/O brick. External I/O bricks are represented by numbers 1 through n (to connect
external I/O bricks, see your product's Installation Guide). On-board I/O are address at brick location zero (Ø). If the brick
identifier is omitted from the command, the controller assumes the command is supposed to affect the onboard I/O.

b *......... Represents the values 1, 0, X or x; does not require field separator between values.

c Represents a character (A to Z, or a to z)

d Represents the values 1, 0, X or x, E or e ; does not require field separator between values. E or e enables a specific
command field. X or x leaves the specific command field unchanged or ignored. In the ANIEN command, the “d” symbol
can also represent a real numeric value.

i Represents a numeric value that cannot contain a decimal point (integer values only). The numeric range varies by
command. Field separator required.

r Represents a numeric value that can contain a decimal point, but is not required to have a decimal point. The numeric
range varies by command. Field separator required.

t Represents a string of alpha numeric characters from 1 to 6 characters in length. The string must start with a alpha
character.

! Represents an immediate command. Changes a buffered command to an immediate command. Immediate commands
are processed immediately, even before previously entered buffered commands.

% (Multitasking Only) Represents a task identifier. To address the command to a specific task, prefix the command with “i%”,
where “i” is the task number. For example, the 4%CUT command uses task 4 to execute the program called “CUT”.

, (comma) Represents a field separator. Commands with the symbol r or i in their Syntax description require field
separators. Commands with the symbol b or d in their Syntax description do not require field separators (but they can be
included). See General Guidelines table below.

@ Represents a global specifier, where only one field need be entered. Applicable to all commands with multiple command
fields. (e.g., @V1 sets velocity on all axes to 1 rps).

< > Indicates that the item contained within the < > is optional, not required by that command.
NOTE: Do not confuse with <cr>, <sp>, and <lf>, which refer to the ASCII characters corresponding to a carriage
return, space, and line feed, respectively.

 [] Indicates that the command between the [] must be used in conjunction with another command, and cannot be used
by itself.

* The ASCII character b can also be used within a command to precede a binary number. When the b is used in this context, it is not to be
replaced with a 0, 1, X, or x. Examples are assignments such as VARB1=b10001, and comparisons such as IF(3IN=b1001X1).

Order of Precedence for Command Prefix Characters (from left to right):

1st: Immediate
2nd: Task number
3rd: Apply to all axes or I/O bricks
3rd: Axis number
3rd: I/O brick number

<!><%><@><a>

6 6K Series Programmer’s Guide

General Guidelines for Syntax
Guideline Topic Guideline Examples
Neutral Characters

• Space (<sp>)
• Tab (<tab>)

Using neutral characters anywhere within a
command will not affect the command.

(In the examples on the right, a space is
represented by <sp>, a tab is <tab>), and a
carriage return is <cr>)

Set velocity on axis 1 to 10 rps and axis 2 to 25 rps:
 V<sp>10,<sp>25,,<cr>

Add a comment to the command:
 V 10, 25,,<tab> ;set accel <cr>

Command Delimiters:
• Carriage rtn (<cr>)
• Line feed (<lf>)
• Colon (:)

All commands must be separated by a
command delimiter. A carriage return is the
most commonly used delimiter. To use a line
in a live terminal emulator session, press
ctrl/J. The colon (:) delimiter allows you to
place multiple commands on one line of code,
but only if you add it in the program editor (not
during a live terminal emulator session).

Set acceleration on axis 2 to 10 rev/sec/sec:
 A,10,,<cr>
 A,10,,<lf>
 A,10,,: V,25,, : D,25000,, : @GO<cr>

Case Sensitivity There is no case sensitivity. Use upper or
lower case letters within commands.

Initiate motion on axes 1, 3 and 4:
 GO1011
 go1011

Comment Delimiter (;) All text between a comment delimiter and a
command delimiter is considered program
comments.

Add a comment to the command:
 V10<tab> ;set velocity

Field Separator (,) Commands with the symbol r or i in their
Syntax description require field separators.

Set velocity on axes 1 - 4 to 10 rps, 25 rps, 5 rps
and 10 rps, respectively:
 V10,25,5,10

 Commands with the symbol b or d in their
Syntax description do not require field
separators (but they can be included).

Initiate motion on axes 1, 3 and 4:
 GO1011
 GO1,0,1,1

 Axes not participating in the command need
not be specified; however, field separators
that are normally required must be specified
(unless the axis prefix is used).

Set velocity on axes 4 and 6 to 5 rps:
 V,,,5,,5

Alternative is to use the axis prefix:
 4V5,,5

Global Command
Identifier (@)

When you wish to set the command value
equal on all axes, add the @ symbol at the
beginning of the command (enter only the
value for one command field).

Set velocity on all axes to 10 rps:
 @V10

 The @ symbol is also useful for checking
the status of all axes, or all inputs or
outputs on all I/O bricks.

Check the status of all digital outputs (onboard, and
on external I/O bricks):
 @OUT

Bit Select Operator (.) The bit select operator allows you to affect
one binary bit without having to enter all the
preceding bits in the command.

Syntax for setup commands:
[command name].[bit #]-[binary value]

Syntax for conditional expressions:
[command name].[bit #]=[binary value]

Enable error-checking bit 9:
 ERROR.9-1

IF statement based on value of axis status bit 12
for axis 1:
 IF(1AS.12=b1)

Left-to-right Math All mathematical operations assume
left-to-right precedence.

VAR1=5+3*2
 Result: Variable 1 is assigned the value of
 16 (8*2), not 11 (5+6).

Binary and hexadecimal
values

When making assignments with or
comparisons against binary or hexadecimal
values, you must precede the binary value
with the letter “b” or “B”, and the hex value
with “h” or “H”. In the binary syntax, an “x”
simply means the status of that bit is ignored.

Binary: IF(IN=b1x01)

Hexadecimal: IF(IN=h7F)

Multi-tasking Task
Identifier (%)

Use the % command prefix to identify the
command with a specific task.

Launch the “move1” program in Task 1:
1%move1

Check the error status for Task 3:
3%TER

Check the system status for Task 3:
3%TSS

NOTE: The command line is limited to 100 characters (excluding spaces).

 Chapter 1. Programming Fundamentals 7

Command Value Substitutions
Many commands can substitute one or more of its command field values with one of these
substitution items (demonstrated in the programming example below):

VARPlaces current value of the numeric variable in the corresponding command field.
VARBUses the value of the binary variable to establish all the command fields.
VARIPlaces current value of the integer variable in the corresponding command field.
READInformation is requested at the time the command is executed.
DREADReads the RP240's numeric keypad into the corresponding command field.
DREADF...Reads the RP240's function keypad into the corresponding command field.
TWPlaces the current value set on the thumbwheels in the corresponding command field.
DATPlaces the current value of the data program (DATP) in the corresponding command field.

Programming Example: (NOTE: The substitution item must be enclosed in parentheses.)

VAR1=15 ; Set variable 1 to 15
A5,(VAR1),4,4 ; Set acceleration to 5,15,4,4 for axes 1-4, respectively
VARB1=b1101XX1 ; Set binary variable 1 to 1101XX1 (bits 5 & 6 not affected)
GO(VARB1) ; Initiate motion on axes 1, 2 & 4 (value of binary
 ; variable 1 makes it equivalent to the GO1101 command)
OUT(VARB1) ; Turn on outputs 1, 2, 4, and 7
VARS1="Enter Velocity" ; Set string variable 1 to the message "Enter Velocity"
V2,(READ1) ; Set the velocity to 2 on axis 1. Read in the velocity for
 ; axis 2, output variable string 1 as the prompting message
 ; 1. Operator sees "ENTER VELOCITY" displayed on the

screen.
 ; 2. Operator enters velocity prefixed by !' (e.g., !'20).
HOMV2,1,(TW1) ; Set homing velocity to 2 and 1 on axes 1 and 2,

respectively.
 ; Read in the home velocity for axis 3 from thumbwheel set 1
HOMV2,1,(DAT1) ; Set homing velocity to 2 and 1 on axes 1 and 2,

respectively.
 ; Read home velocity for axis 3 from data program 1.
VARI1=2*3 ; Set integer variable 1 to 6 (2 multiplied by 3)
D(VARI2),,(VARI3) ; Set the distance of axis 1 equal to the value of
 ; integer variable 2, and the distance of axis 3 equal to
 ; the value of integer variable 3.

RULE OF THUMB
Not all of the commands allow command field substitutions. In general, commands with a
binary command field (in the command syntax) will accept the VARB substitution.
Commands with a real or integer command field (<r> or <i> in the command syntax) will
accept VAR, VARI, READ, DREAD, DREADF, TW or DAT.

Assignment and Comparison Operators
Comparison and assignment operators are used in command arguments for various functions
such as variable assignments, conditional branches, wait statements, conditional GOs, etc.
Some examples are listed below:

• Assign to numeric variable 6 the value of the encoder position on axis 3 (uses the
PE operator): VAR6=3PE

• Wait until onboard inputs 3 & 6 become active (uses the IN operator):
WAIT(IN=bxx1xx1)

• Continue until the value of numeric variable 2 is less than 36: UNTIL(VAR2<36)
• IF condition based on if a target zone timeout occurs on axis 2 (uses the AS axis

status operator, where status bit 25 is set if a target zone timeout occurs):
IF(2AS.25=b1)

The available comparison and assignment operators are listed below. For full descriptions, see
the 6K Series Command Reference (be sure to refer only to the commands in brackets—e.g., A
is the acceleration setup command, but [A] is the acceleration assignment/comparison
operator).

8 6K Series Programmer’s Guide

* denotes operators that
have a correlated status
display command.
(e.g., To see a full-text
description of each axis
status bit accessed with
the AS operator, send
the TASF command to
the 6K controller.)
See page 226.

AAcceleration
AD.................Deceleration
ANIVoltage at the analog inputs on an expansion I/O brick (see page 76 for bit patterns) *
ANOVoltage at the analog outputs on an expansion I/O brick (see page 76 for bit patterns) *
AS.................Axis status *
ASXExtended axis status (additional axis status items) *
DDistance
DACDigital-to-analog converter (output voltage) value *
DATData program number
DKEYValue of RP240 Key
DPTRData pointer location *
DREADData from the numeric keypad on the RP240
DREADFData from the function keypad on the RP240
ER.................Error status *
FB.................Position of current selected feedback sources *
FS.................Following status *
IN................. Input status (input bit patterns, see page 76) *
INO “Other” input status (ENABLE input reported with bit 6) *
LIMLimit status (end-of-travel limits and home limits) *
MOVAxis moving status
NMCYCurrent master cycle number *
OUTOutput status (output bit patterns, see page 76) *
PANIPosition of analog input, at 205 counts/volts unless otherwise scaled (servo axes) *
PC.................Commanded position *
PCCCaptured commanded position *
PCECaptured encoder position *
PCMECaptured master encoder position *
PCMSCaptured master cycle position *
PERPosition error (servo axes only) *
PMECurrent master encoder position *
PMASCurrent master cycle position *
PE.................Position of master encoder *
PSHFNet position shift since constant Following ratio *
PSLVCurrent commanded position of the slave axis *
READRead a numeric value to a numeric variable (VAR)
SC.................Controller status *
SCANRuntime of the last scanned PLC program *
SEGNumber of segments available in Compiled Profile memory *
SS.................System status *
SWAPCurrent active status of tasks *
TASKNumber of the controlling task *
TIMTimer value *
TRIGTrigger interrupt status *
TW.................Thumbwheel data read
US.................User status *
VVelocity (programmed)
VARNumeric variable substitution
VARI Integer variable substitution
VARBBinary variable substitution
VELVelocity (commanded by the controller) *
VELAVelocity (actual, as measured by a position feedback device) *
VMASCurrent velocity of the master axis *

Bit Select Operator The bit select operator (.) makes it easier to base a command argument on the condition of one
specific status bit. For example, if you wish to base an IF statement on the condition that a
user fault input is activated (error status bit 7 is a binary status bit that is “1” if a user fault
occurred and “Ø” if it has not occurred), you could use this command: IF(ER=bxxxxxx1).
Using a bit select operator, you could instead use this command: IF(ER.7=b1).

NOTE: You can use a bit select operator to set a particular status bit (e.g., to turn on onboard
programmable output 5, you would type the OUT.5-1 command; to enable error-checking bit 4
to check for drive faults, you would type the ERROR.4-1 command). You can also check
specific status bits (e.g., to check axis 2’s axis status bit 25 to see if a target zone timeout

 Chapter 1. Programming Fundamentals 9

occurred, type the 2TAS.25 command and observe the response).

Binary and Hex
Values

When making assignments with or comparisons against binary or hexadecimal values, you must
precede the binary value with the letter “b” or “B”, and the hex value with “h” or “H”.
Examples: IF(IN=b1xØ1) and IF(IN=h7F). In the binary syntax, an “x” simply means
the status of that bit is ignored. Refer also to Using Binary Variables (page 22).

Related Operator
Symbols

Command arguments include special operator symbols (e.g., +, /, &, ', >=, etc.) to perform
bitwise, mathematical, relational, logical, and other special functions. These operators are
described in detail, along with programming examples, at the beginning of the Command
Descriptions section of the 6K Series Command Reference.

Programmable Inputs and Outputs Bit Patterns
I/O pin outs,
specifications, and
circuit drawings are
provided in each 6K
Series Hardware
Installation Guide.

The 6K product has programmable inputs and outputs. The total number of onboard inputs and
outputs (trigger inputs, limit inputs, digital outputs) depends on the product. The total number
of expansion inputs and outputs (analog inputs, digital inputs and digital outputs) depends on
your configuration of expansion I/O bricks connected to the “EXPANSION I/O” connector.

These programmable I/O are represented by binary bit patterns, and it is the bit pattern that you
reference when programming and checking the status of specific inputs and outputs. The bit
pattern is referenced in commands like WAIT(IN.4=b1), which means wait until onboard
programmable input 4 (TRG-2B) becomes active. To ascertain your product’s I/O offering and
bit patterns, see Chapter 3 (page 76).

Creating Programs

Debugging Programs:
Refer to page 225 for
methods to isolate and
resolve programming
problems.

A program is a series of commands. These commands are executed in the order in which they
are programmed. Immediate commands (commands that begin with an exclamation point [!])
cannot be stored in a program. Only buffered commands can be used in a program. Refer to
the program example below.

A subroutine is defined the same as a program, but it is executed with an unconditional branch
command, such as GOSUB, GOTO, or JUMP, from another program (see page 23 for details
about unconditional branching). Subroutines can be nested up to 16 levels deep. NOTE: The
6K family does not support recursive calling of subroutines.

Compiled profiles & PLC programs are defined like programs, using the DEF and END
commands, but are compiled with the PCOMP command and executed with the PRUN
command (PLC programs are usually launched in PLC Scan Mode with the SCANP
command). Compiled profiles and PLC programs also affect a different part of the product's
memory, called compiled memory. A compiled profile could be a multi-axis contour (a series
of arcs and lines), an individual axis profile (a series of GOBUF commands), or a compound
profile (combination of multi-axis contours and individual axis profiles). A compiled PLC
program is a pre-compiled program that mimics PLC functionality by scanning through the I/O
faster than in normal program execution. For information on contouring, see page 124; for
information on compiled individual axis profiles, see page 136; and for information on PLC
programs, see page 104.

10 6K Series Programmer’s Guide

Program Example
The illustration below identifies the elements that comprise the general structure of a program.

; ***
; This is a program that executes a trapezoidal motion
; profile on axes 1 and 2
; ***
DEL motion ; (a precaution) Delete program called "motion"

DEF motion ; Begin definition of program called "motion"

DRIVE11 ; Enable drives on axes 1 and 2
MC00 ; Set position mode to preset on both axes
A20,10 ; Set accel on axis 1 to 20 units/sec/sec, and
 ; Set accel on axis 2 to 10 units/sec/sec
V8,5 ; Set velocity on axis 1 to 8 units/sec, and
 ; Set velocity on axis 2 to 5 units/sec
D100000,75000 ; Set distance to 100,000 counts on axis 1, and
 ; Set distance to 75,000 counts on axis 2
GO11 ; Execute motion on axes 1 and 2

END ; End definition of program called "motion"

Use the Wizards in Motion Planner
Motion Planner provides wizards that make it easy to create your program. Below is a partial
list of the wizards available.

• Application Wizards (for program structure guidance)
− Standard Application
− Multitasking Application

• Program Wizards
− Setup Program
− Main Program
− User Program
− Error Program

• Setup Wizards
− Drive
− Feedback
− Scaling
− Limit
− Servo Tuner
− On-board I/O
− Expansion I/O
− Jogging
− Joystick
− Variable

• Action Wizards
− Motion
− Home
− Output
− If
− Loop
− Wait
− Assignment
− Target Zone
− Registration

These are command line comments, comprising a semi-colon and text.
The comments are separated from the command by a tab.
A carriage return is placed at the end of each command line.

Use DEF to
begin
defining the
program.

Contents of the
program.

Use DEL to
delete the
program (a
precaution).

Use END to
finish defining
the program.

 Chapter 1. Programming Fundamentals 11

Storing Programs
After a program or compiled program/profile is defined (DEF) or downloaded to the 6K
controller, it is automatically stored in non-volatile memory (battery-backed RAM).
Information on controlling memory allocation is provided below (Memory Allocation, see
page 11).

Memory Allocation
Your controller's memory has two partitions: one for storing programs and one for storing
compiled profiles & PLC programs. The allocation of memory to these two areas is
controlled with the MEMORY command.

“Programs” vs. ”Compiled Profiles & PLC Programs”
Programs are defined with the DEF and END commands, as demonstrated in the Program

Example on page 10.

Compiled Profiles & PLC Programs are defined like programs, using the DEF and END
commands, but are compiled with the PCOMP command and executed with the
PRUN command (PLC programs are usually executed in PLC Scan Mode with the
SCANP). A compiled profile could be a multi-axis contour (a series of arcs and
lines), an individual axis profile (a series of GOBUF commands), or a compound
profile (combination of multi-axis contours and individual axis profiles). A PLC
program is a pre-compiled program that mimics PLC functionality by scanning
through the I/O faster than in normal program execution.

Programs intended to be compiled are stored in program memory. After they are
compiled with the PCOMP command, they remain in program memory and the
segments (see diagram below) from the compiled program are stored in compiled
memory. The TDIR report indicates which programs are compiled as compiled
profiles (“COMPILED AS A PATH”) and which programs are compiled as PLC
programs (“COMPILED AS A PLC PROGRAM”).

For information on contouring, see page 124; for information on compiled individual
axis profiles, see page 136; and for information on PLC programs, see page 104.

MEMORY
command

syntax
(example)

������������	������
��������		�
����
����������	��������	����������������������
�����������������
�������
���
�����
�����������������
��������
��
�
������� ����������!������
��
��	������
����
������
����
��"

��������		�
����
����
�����������������
�����������������
��
����
���
�����
��������
!��##�
����
������
����
��������

����

�����

����

���

��

��
�����
�" �����	��������
"

�������

��

������

�����

����

����

����

����

����

����

����

����

�$���

�
���������"

�����
�
��

���

�

���

���

���

���

�������
�������

� �������������	���
���
�������������	������	�
�� �������������	�
��	�����
���������������������������	���

���������	�
��	���������������
�������������������
����������	�
��	�������������

12 6K Series Programmer’s Guide

The table below identifies memory allocation defaults and limits for all 6K Series products.
When specifying the memory allocation, use only even numbers. The minimum storage
capacity for one partition area (program or compiled) is 1,000 bytes.

Feature All Other Products
Total memory (bytes) 300,000
Default allocation (program,compiled) 150000,150000
Maximum allocation for programs 299000,1000
Maximum allocation for compiled profiles
& PLC programs

1000,299000

Maximum No. of programs 400
Maximum No. of labels 600
Maximum No. of compiled profiles & PLC programs 300
Maximum No. of compiled profile segments 2069
Maximum No. of numeric variables (VAR) 225
Maximum No. of integer variables (VARI) 225
Maximum No. of binary variables (VARB) 125
Maximum No. of string variables (VARS) 25

When teaching variable data to a data program (DATP), be aware that the memory required
for each data statement of four data points (43 bytes) is taken from the memory allocation for
program storage (see Variable Arrays in Chapter 3, page 94, for details).

CAUTION
Using a memory allocation command (e.g., MEMORY200000,100000) will erase all existing
programs and compiled profile segments & PLC programs. However, issuing the MEMORY
command without parameters (i.e., type MEMORY <cr> to request the status of how the
memory is allocated) will not affect existing programs or compiled segments/programs.

Checking Memory Status
To find out what programs reside in your controller's memory, and how much of the available
memory is allocated for programs and compiled profile segments, issue the TDIR command
(see example response below). Entering the TMEM command or the MEMORY command
(without parameters) will also report the available memory for programs and compiled profile
segments.

Sample response to
TDIR command

*1 - SETUP USES 345 BYTES
*2 - PIKPRT USES 333 BYTES
*149322 OF 150000 BYTES (98%) PROGRAM MEMORY REMAINING
*1973 OF 1973 SEGMENTS (100%) COMPILED MEMORY REMAINING

Two system status bits (reported with the TSS and SS commands) are available to check when
compiled profile segment storage is 75% full or 100% full. System status bit 29 is set when
segment storage reaches 75% of capacity; bit 30 indicates when segment storage is 100% full.

 Chapter 1. Programming Fundamentals 13

Executing Programs (options)
Following is a list of the primary options for executing programs stored in your controller:

Method Description See Also
Execute from a terminal
emulator

Type in the name of the program and press enter; or write a
program to prompt the operator to select a program from the
terminal.

Execute as a subroutine
from a “main” program

Use a branch (GOTO, GOSUB, or JUMP) from the main program to
execute another stored program.

Page 23

Execute automatically
when the controller is
powered up

Assign a specific program as a startup program with the STARTP
command. When you RESET or cycle power to the controller, the
startup program is automatically executed.

Page 13

Execute from a PLC
program

Write a PLC program that executes a program (using EXE or PEXE)
based on a specific condition (e.g., input state). Use the SCANP
command to launch the PLC program in the PLC Scan Mode.

Page 104

Execute a specific
program with BCD
weighted inputs

Define programmable inputs to function as BCD select inputs, each
with a BCD weight. A specific program (identified by its number) is
executed based on the combination of active BCD inputs. Related
commands: INSELP and INFNCi-B or LIMFNCi-B.

Page 82

Execute a specific
program with a
dedicated input

Define a programmable input to execute a specific program (by
number). Related commands: INSELP and INFNCi-iP or
LIMFNCi-P.

Page 88

“Call” from a high-level
program

Using a programming language such as BASIC or C, write a
program that enables the computer to monitor processes and
orchestrate motion and I/O by executing stored programs (or
individual commands) in the controller.

Page 118

Execute from an RP240
(remote operator
interface)

Execute a stored program from the RUN menu in the RP240’s
standard menu system.

Page 111

Execute from your own
custom Windows
program

Use a programming language (e.g., Visual Basic, Visual C++, etc.)
and the 6K Communications Server (provided on the Motion
Planner CD) to create your own windows application to control the
6K product.

Creating and Executing a Setup Program
 The intent of the Setup program is to place the 6K controller in a ready state for subsequent
motion control. The setup program must be called from the “main” program for your
application; or you can designate (with STARTP) the setup program as the program to be is
automatically executed when the 6K product is powered up or when the RESET command is
executed. The setup program typically contains elements such as feedback device
configuration, tuning gain selections, programmable I/O definitions, scaling, homing
configuration, variable initialization, etc. (more detail on these “basic” features is provided in
Chapter 3, Basic Operation Setup).

The basic process of creating a setup program is:

1. Create a program to be used as the setup program.
2. Save the program and download it to the 6K product.
3. Execute the STARTP command to assign your new program as the “start-up” program

(e.g., STARTP setup assigns the program called “setup” as the start-up program).
The next time the controller is powered up or reset, the assigned STARTP program will
be executed.

Or call the setup program from the main program for your application.

14 6K Series Programmer’s Guide

Use Motion Planner’s Setup wizard to help you create the basic configuration program. By
simply responding to a series of dialog boxes, a program is created with a specific name (as if
you created it in the usual process with the DEF and END commands). You can further edit
this program in Motion Planner's Editor if you wish. Use the following procedure:

1. From the main Editor window, click the “Standard Application” wizard button (located
on the right-hand side of the screen under Application Wizards) and select “Setup” and
“Main” from the dialog. When you click “Finish”, Motion Planner places a Setup
program icon and a Main program icon in the Editor window.

2. Double-click the Setup program icon to launch the wizard. Complete the wizard dialogs
and click “Finish” to complete the wizard. (The next time you open the icon, you will
see a program editor with the code resulting from the setup wizard.) Setup elements
include:

• Product selection
• Drives
• Feedback (encoder, analog input)
• Scaling
• Hardware end-of-travel limits
• Servo tuning

3. Double-click the Main program icon to launch the wizard. Select this program as the
program to launch when the 6K controller is reset or powered up (this is equivalent to
the STARTP command function). In the dialog for selecting the Setup Program, select
the program developed in step 2 above.

4. Save the Editor files.

5. Download the files to the 6K controller.

Program Security
Issuing the INFNCi-Q or LIMFNCi-Q command enables the Program Security feature and
assigns the Program Access function to the specified programmable input. The “i” represents
the number of the programmable input to which you wish to assign the function (see page 76
programmable input bit patterns for your product).

The program security feature denies you access to the DEF, DEL, ERASE, MEMORY, INFNC,
and LIMFNC commands until you activate the program access input. Being denied access to
these commands effectively restricts altering the user memory allocation. If you try to use
these commands when program security is active (program access input is not activated), you
will receive the error message *ACCESS DENIED.

For example, once you issue the INFNC5-Q command, onboard input 5 is assigned the
program access function and access to the DEF, DEL, ERASE, MEMORY, INFNC, and
LIMFNC commands will be denied until you activate onboard input 5.

NOTE: To regain access to these commands without the use of the program access input, you
must issue the INEN command to disable the program security input, make the required user
memory changes, and then issue the INEN command to re-enable the input. For example, if
input 3 on I/O brick 2 is assigned as the Program Security input, use 2INEN.3=1 to disable
the input and leave it activated, make the necessary user memory changes, and then use
2INEN.3=E to re-enable the input.

 Chapter 1. Programming Fundamentals 15

Controlling Execution of Programs and the Command Buffer
The 6K controller command buffer is capable of storing 2000 characters waiting to be
processed. (This is separate from the memory allocated for program storage – see Memory
Allocation, page 11.) COMEXC affects command execution. Three additional commands,
COMEXL, COMEXR and COMEXS, affect the execution of programs and the command buffer.

COMEXC (Continuous Command Execution)
The COMEXC1 command enables the Continuous Command Execution Mode (default is
COMEXC0). This mode allows the program to continue to the next command before motion is
complete. This is useful for:

• Monitoring other processes while motion is occurring
• Performing calculations in advance of motion completion
• Pre-emptive GOs — executing a new profile with new attributes (distance,

accel/decel, velocity, positioning mode, and Following ratio) before motion is
complete: The motion profile underway is pre-empted with a new profile when a
new GO is issued. The new GO both constructs and launches the pre-empting
profile. Pre-emptive GOs are appropriate when the desired motion parameters are
not known until motion is already underway. For a detailed description, see On-
The-Fly Motion on page 151.

• Pre-process the next move while the current move is in progress (see CAUTION).
This reduces the processing time for the subsequent move to only a few
microseconds.

CAUTION: Avoid executing moves prematurely

With continuous command execution enabled (COMEXC1), if you wish motion to stop before
executing the subsequent move, place a WAIT(AS.1=bØ) statement before the
subsequent GO command. If you wish to ensure the load settles adequately before the next
move, use the WAIT(AS.24=b1) command instead (this requires you to define end-of-
move settling criteria — see Target Zone Mode on page 74 for details).

In the programming example below, by enabling the continuous command execution mode
(COMEXC1), the controller is able to turn on output 3 after the encoder moves 4000 units of its
125000-unit move. Normally, with COMEXC disabled (COMEXCØ), command processing
would be temporarily stopped at the GO1 command until motion is complete.

Programming Example (portion of program only)
COMEXC1 ;Enable continuous command execution mode
D125000 ;Set distance
V2 ;Set velocity
A10 ;Set acceleration
GO1 ;Initiate motion on axis 1
WAIT(1PE>4000) ;Wait for the encoder position to exceed 4000
OUTXX1 ;Turn on onboard programmable output 3
WAIT(AS.1=b0) ;Wait for motion to complete on axis 1 (AS bit 1 = zero)
OUTXX0 ;Turn off onboard programmable output 3

COMEXL (Save Command Buffer on Limit)

For more information
on end-of-travel limits,

see page 57.

The COMEXL command enables saving the command buffer and maintaining program
execution when a hardware or software end-of-travel limit is encountered. COMEXL is axis
specific (e.g., COMEXL1xx1xxx1 enables saving the buffer for axes 1, 4, and 8).

• COMEXL0: (This is the default setting.) When a limit is hit, every command in the
command buffer will be discarded and program execution will be terminated.

• COMEXL1: When a limit is hit, all remaining commands in the command buffer will
remain in the command buffer (excluding the command being executed at the time the
limit is hit).

16 6K Series Programmer’s Guide

COMEXR (Effect of Pause/Continue Input)
The COMEXR command affects whether a “Pause” input (i.e., an input configured as a
pause/continue input with the INFNCi-E command or the LIMFNCi-E command) will pause
only program execution or both program execution and motion.

COMEXRØ: (This is the default setting.) Upon receiving a pause input, only program execution
will be paused; any motion in progress will continue to its predetermined destination.
Releasing the pause input or issuing a !C command will resume program execution.

COMEXR1: Upon receiving a pause input, both motion and program execution will be paused;
the motion stop function is used to halt motion. After motion has come to a stop
(not during deceleration), you can release the pause input or issue a !C command
to resume motion and program execution.

Other Ways to Pause
• Issue the PS command before entering a series of buffered commands (to cause motion,

activate outputs, etc.), then issue the !C command to execute the commands.
• While program execution is in progress, issuing the !PS command stops program execution,

but any move currently in progress will be completed. Resume program execution with the !C
command.

COMEXS (Save Command Buffer on Stop)
The COMEXS command determines the impact on motion, program execution, and the
command buffer when the 6K receives a Stop command (S, !S, S1, or !S1) or an external
Stop input (an input assigned a stop function with INFNCi-D or LIMFNCi-D).

COMEXS0: Under factory default conditions (COMEXS0), when the 6K receives a stop
command (S, !S, S1, or !S1) or a stop input (INFNCi-D or LIMFNCi-D), the
following will happen:
• Motion decelerates to a stop, using the present AD and ADA deceleration values.

The motion profile cannot be resumed.
• If S, !S or Stop input:

 – All commands in the 6K’s command buffer are discarded.
 – Program execution is terminated and cannot be resumed.

• If S1, or !S1 (an axis number is included in the command):
 – All commands in the 6K’s command buffer are retained.
 – Program execution continues.

COMEXS1: Using the COMEXS1 mode, the 6K allows more flexibility in responding to stop
conditions, depending on the stop method (see table below).

Stop Method

 What Stops?
Motion Program

Resume Motion Profile.
(Allow resume with a
!C command or a
resume input *)

Resume Program.
(Allow resume with
a !C command or a
resume input *)

 Save Command Buffer.
(Save the commands
that were in the
command buffer when
the stop was
commanded)

 !S or S Yes Yes Yes Yes Yes
 !S1 or S1 Yes No No No Yes
 Stop input Yes Yes No Yes Yes
 Pause input *

(if COMEXR1)
 Yes Yes Yes Yes Yes

 Pause input *
(if COMEXR0)

 No Yes No Yes Yes

* A Pause input is an input configured with the INFNCi-E command or the LIMFNCi-E command. This is also
the Resume input that can be used to resume motion and program execution after motion is stopped.

COMEXS2: Using the COMEXS2 mode, the 6K responds as it does in the COMEXS0 mode, with the
exception that you can still use the program-select inputs to select programs (INSELP
value is retained). The program-select input functions are: BCD select (INFNCi-B or
LIMFNCi-B), and one-to-one select (INFNCi-P or LIMFNCi-P).

 Chapter 1. Programming Fundamentals 17

Restricted Commands During Motion
When motion is in progress on a given axis (or task), some commands cannot have their
parameters changed until motion is complete (see table below).

For the commands identified in the table, if the continuous command execution mode is
enabled (COMEXC1) and you try to enter new command parameters, you will receive the error
response MOTION IN PROGRESS. If the continuous command execution mode in disabled
(COMEXCØ), which is the default setting, you will receive the response MOTION IN
PROGRESS only if you precede the command with the immediate (!) modifier (e.g., !V2Ø);
if you enter a command without the immediate modifier (e.g., V2Ø), you will not receive an
error response and the new parameter will be ignored and the old parameter will remain in
effect.

Multi-Tasking
If you are using multi-tasking, the restriction on commands is applicable only for the task to
which the command is direct. For example, suppose axes 1 and 2 are associated with Task 1
(TSKAX1,2) and axes 3 and 4 are associate with Task 2 (TSKAX3,4). If motion is in progress
on axes 1 and 2, Task 1 is considered “in motion” and Task 1 cannot execute a command
from the list below. However, while motion is in progress in Task 1 and not Task 2, Task 2 can
execute these commands without encountering an error.

All of the commands in the table below, except for SCALE, are axis-dependent. That is, if
one axis is moving you can change the parameters on the other axes, provided they are not in
motion.

Command Description Command Description
CMDDIR.........Commanded Direction Polarity JOY............... Joystick Mode Enable
DRESDrive Resolution JOYA............. Joystick Acceleration
DRIVEDrive Shutdown JOYAA Average Joystick Acceleration
ENCPOL.........Encoder Polarity JOYAD Joystick Deceleration
ERESEncoder Resolution JOYADA Average Joystick Deceleration
FOLENFollowing Mode Enable JOYVH Joystick Velocity High
GOL Initiate Linear Interpolated Motion JOYVL Joystick Velocity Low
HOMGo Home LHAD............. Hard Limit Deceleration
HOMAHome Acceleration LHADA Average Hard Limit Deceleration
HOMAAAverage Home Acceleration LSAD............. Soft Limit Deceleration
HOMADHome Deceleration LSADA Average Soft Limit Deceleration
HOMADA.........Average Home Deceleration PSET............. Establish Absolute Position
HOMVHome Velocity SCALE Enable/Disable Scale Factors *
HOMVFHome Final Velocity SCLA............. Acceleration Scale Factor
JOGJog Mode Enable SCLD............. Distance Scale Factor
JOGAJog Acceleration SCLV............. Velocity Scale Factor
JOGAAAverage Jog Acceleration
JOGADJog Deceleration
JOGADA.........Average Jog Deceleration
JOGVHJog Velocity High
JOGVLJog Velocity Low

* If any axis is in motion, you will cause an error if you attempt to change this command's parameters.

18 6K Series Programmer’s Guide

Variables
6K Series controllers have four types of variables, each designated with a different command.
All four types are automatically stored in non-volatile memory.

Type Command Quantity Function
Numeric
(real)

VAR 225 Store real numeric data (range is ±999,999,999.99999999). Can be
used to perform mathematical (=, +, -, *, /, SQRT), trigonometric
(ATAN, COS, PI, SIN, TAN), and Boolean (&, |, ^, ~) operations.
Can also be used to store (“teach”) variable data in variable arrays
(called data programs) and later use the stored data as a source for
motion program parameters (see Variable Arrays on page 94 for
details).

Integer VARI 225 Store integer numeric data (range is ±2,147,483,647). Can be used
to perform mathematical (=, +, -, *, /) and Boolean (&, |, ^, ~)
operations.

Binary VARB 125 Store 32-bit binary or hexadecimal values. Can also store the binary
status bits from status registers. Frequently used registers are:
inputs (IN), outputs (OUT), limits (LIM), system (SS), Following (FS),
axis (AS & ASX), and error (ER). For example, the VARB2=IN.3
command assigns the binary state of input 12 to binary variable 2.
Also use to perform bitwise operations (&, |, ^, ~, >>, <<).

String VARS 25 Store message strings of 50 characters or less. These message
strings can be predefined error messages, user messages, etc.
The programming example in the Command Value Substitutions
(page 7) demonstrates the use of a string variable.

Enhancements as of OS revision 5.1.0:
• Copy one VARS variable to another VARS variable.
VARSn=VARSm can be used, as well as variable substitutions
for “n” and “m”.

• VARS message string was increased from 20 to 50 characters.

NOTE: Variables do not share the same memory (e.g., VAR1, VARI1, VARB1, and VARS1 can all exist
at the same time and operate separately).

Converting Between Binary and Numeric Variables
Using the Variable Type Conversion (VCVT) operator, you can convert numeric (VAR or
VARI) values to binary (VARB) values, and vice versa. The operation is a signed operation as
the binary value is interpreted as a two's complement number. Any don't cares (x) in a binary
value is interpreted as a zero (Ø).

If the mathematical statement's result is a numeric value, then VCVT converts binary values to
numeric values. If the statement's result is a binary value, then VCVT converts numeric values
to binary values.

Numeric to Binary Example Descr ip t ion/Response
VAR1=-5 Set numeric variable value = -5
VARB1=VCVT(VAR1) Convert the numeric value to a binary value
VARB1 *VARB1=1101_1111_1111_1111_1111_1111_1111_1111

Binary to Numeric Example Descr ip t ion/Response
VARB1=b0010_0110_0000_0000_0000_0000_0000_0000
 Set binary variable = +100.0
VAR1=VCVT(VARB1) Convert binary value to numeric
VAR1 *VAR1=+100.0

 Chapter 1. Programming Fundamentals 19

Using Numeric (VAR and VARI) Variables

NOTES
• The examples below show the use of real numeric variables (VAR). Integer variables can

be used in the same operations with these exceptions:
 - Values are truncated to nearest integer value
 - Operations using square root (SQRT) and trigonometric (ATAN, COS, PI, SIN, TAN)
 operators are not allowed

• Some numeric variable operations reduce precision. The following operations reduce the
precision of the return value: Division and Trigonometric functions yield 5 decimal places;
Square Root yields 3 decimal places; and Inverse Trigonometric functions yield 2 decimal
places.

Mathematical
Operations

The following examples demonstrate how to perform math operations with numeric variables.
Operator precedence occurs from left to right (e.g., VAR1=1+1+1∗3 sets VAR1 to 9, not 5).

Addition (+)

Example Response
VAR1=5+5+5+5+5+5+5
VAR1 *VAR1=35.0
VAR23=1000.565
VAR11=VAR1+VAR23
VAR11 *VAR11=+1035.565
VAR1=VAR1+5
VAR1 *VAR1=+40.0

Subtraction (-) Example Response
VAR3=20-10
VAR20=15.5
VAR3=VAR3-VAR20
VAR3 *VAR3=-5.5

Multiplication (*) Example Response
VAR3=10
VAR3=VAR3*20
VAR3 *VAR3=+200.0

Division (/) Example Response
VAR3=10
VAR20=15.5
VAR20 *+15.5
VAR3=VAR3/VAR20
VAR3 *+0.64516
VAR30=75
VAR30 *+75.0
VAR19=VAR30/VAR3
VAR19 *+116.25023

Square Root (SQRT) Example Response
VAR3=75
VAR20=25
VAR3=SQRT(VAR3)
VAR3 *+8.660
VAR20=SQRT(VAR20)+SQRT(9)
VAR20 *+8.0

20 6K Series Programmer’s Guide

Trigonometric
Operations

The examples below demonstrate how to perform trigonometric operations with numeric
variables.

Sine Example Response
RADIAN0
VAR1=SIN(0)
VAR1 *VAR1=+0.0
VAR1=SIN(30)
VAR1 *VAR1=+0.5
VAR1=SIN(45)
VAR1 *VAR1=+0.70711
VAR1=SIN(60)
VAR1 *VAR1=+0.86603
VAR1=SIN(90)
VAR1 *VAR1=+1.0
RADIAN1
VAR1=SIN(0)
VAR1 *VAR1=+0.0
VAR1=SIN(PI/6)
VAR1 *VAR1=+0.5
VAR1=SIN(PI/4)
VAR1 *VAR1=+0.70711
VAR1=SIN(PI/3)
VAR1 *VAR1=+0.86603
VAR1=SIN(PI/2)
VAR1 *VAR1=+1.0

Cosine Example Response
RADIAN0
VAR1=COS(0)
VAR1 *VAR1=+1.0
VAR1=COS(30)
VAR1 *VAR1=+0.86603
VAR1=COS(45)
VAR1 *VAR1=+0.70711
VAR1=COS(60)
VAR1 *VAR1=+0.5
VAR1=COS(90)
VAR1 *VAR1=+0.0
RADIAN1
VAR1=COS(0)
VAR1 *VAR1=+1.0
VAR1=COS(PI/6)
VAR1 *VAR1=+0.86603
VAR1=COS(PI/4)
VAR1 *VAR1=+0.70711
VAR1=COS(PI/3)
VAR1 *VAR1=+0.5
VAR1=COS(PI/2)
VAR1 *VAR1=+0.0

 Chapter 1. Programming Fundamentals 21

Tangent Example Response
RADIAN0
VAR1=TAN(0)
VAR1 *VAR1=+0.0
VAR1=TAN(30)
VAR1 *VAR1=+0.57735
VAR1=TAN(45)
VAR1 *VAR1=+1.0
VAR1=TAN(60)
VAR1 *VAR1=+1.73205
RADIAN1
VAR1=TAN(0)
VAR1 *VAR1=+0.0
VAR1=TAN(PI/6)
VAR1 *VAR1=+0.57735
VAR1=TAN(PI/4)
VAR1 *VAR1=+1.0
VAR1=TAN(PI/3)
VAR1 *VAR1=+1.73205

Inverse Tangent
(Arc Tangent)

Example Response
RADIAN0
VAR1=SQRT(2)
VAR1=ATAN(VAR1/2)
VAR1 *VAR1=+35.26
VAR1=ATAN(.57735)
VAR1 *VAR1=+30.0

Boolean Operations 6K Series products have the ability to perform Boolean operations with numeric variables. The
following examples illustrate this capability. Refer to the 6K Series Command Reference for
more information on each operator (&, |, ^, and ~).

Boolean And (&) Example Response
VAR1=5
VAR2=-1
VAR3=VAR1 & VAR2
VAR3 *VAR3=+0.0

Boolean Or (|) Example Response
VAR1=5
VAR2=-1
VAR3=VAR1 | VAR2
VAR3 *VAR3=+1.0

Boolean Exclusive
Or (^)

Example Response
VAR1=5
VAR2=-1
VAR3=VAR1 ^ VAR2
VAR3 *VAR3=+1.0

Boolean Not (~) Example Response
VAR1=5
VAR3=~(VAR1)
VAR3 *VAR3=+0.0
VAR1=-1
VAR3=~(VAR1)
VAR3 *VAR3=+1.0

22 6K Series Programmer’s Guide

Using Binary Variables
The following examples illustrate the 6K Series product's ability to perform bitwise functions
with binary variables.

Storing binary values. The 6K Series Language allows you to store binary numbers in the
binary variables (VARB) command. The binary variables start at the left with the least
significant bit, and increase to the right. For example, to set bit 1, 5, and 7 you would issue
the command VARB1=b1xxx1x1. Notice that the letter b is required. When assigning a
binary variable, any bit set to “x” remains “x” until set to “1” or “0”. Any bit that is
unspecified is set to “x”. To change, or check, one bit without affecting the others, use the bit-
select operator (e.g., use VARB1.3-1 to set only bit 3 of VARB1).

Example Response
VARB1=b1101XX1 *VARB1=1101_XX1X_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

Storing hexadecimal values. Hexadecimal values can also be stored in binary variables
(VARB). The hexadecimal value must be specified the same as the binary value—left is least
significant byte, right is most significant. For example, to set bit 1, 5, and 7 you would issue
the command VARB1=h15. Notice that the letter h is required. NOTE: When assigning a
hexadecimal value to a binary variable, all unspecified bits are set to zero.

Example Response
VARB1=h7FAD
VARB1 *VARB1=1110_1111_0101_1011_0000_0000_0000_0000

Bitwise And (&) Example Response
VARB1=b1101
VARB1 *VARB1=1101_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=VARB1 & bXXX1 1101
VARB1 *VARB1=XX01_XX0X_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1 & h1234 43E9
VARB1 *VARB1=0000_0000_1100_0000_0010_1000_0101_1000

Bitwise Or (|) Example Response
VARB1=h32FD
VARB1 *VARB1=1100_0100_1111_1011_0000_0000_0000_0000
VARB1=VARB1 | bXXX1 1101
VARB1 *VARB1=11X1_1101_1111_1X11_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1 | h1234 43E9
VARB1 *VARB1=1000_0100_1100_0110_1111_1111_0111_1001

Bitwise Exclusive
Or (^)

Example Response
VARB1=h32FD ^ bXXX1 1101
VARB1 *VARB1=XXX1_1001_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
VARB1=h0032 FDA1 ^ h1234 43E9
VARB1 *VARB1=1000_0100_0000_0110_1101_0111_0010_0001

Bitwise Not (~) Example Response
VARB1=~(h32FD)
VARB1 *VARB1=0011_1011_0000_0100_1111_1111_1111_1111
VARB1=~(b1010 XX11 0101)
VARB1 *VARB1=0101_XX00_1010_XXXX_XXXX_XXXX_XXXX_XXXX

Shift Left to Right
(>>)

Example Response
VARB1=h32FD >> h4
VARB1 *VARB1=0000_1100_0100_1111_1011_0000_0000_0000
VARB1=b1010 XX11 0101 >> b11
VARB1 *VARB1=0001_010X_X110_101X_XXXX_XXXX_XXXX_XXXX

Shift Right to Left
(<<)

Example Response
VARB1=h32FD << h4
VARB1 *VARB1=0100_1111_1011_0000_0000_0000_0000_0000
VARB1=b1010 XX11 0101 << b11
VARB1 *VARB1=0XX1_1010_1XXX_XXXX_XXXX_XXXX_XXXX_X000

 Chapter 1. Programming Fundamentals 23

Program Flow Control
Program flow refers to the order in which commands will be executed, and when or whether
they will be executed at all. In general, commands are executed in the order in which they are
received. However, certain commands can redirect the order in which commands will be
processed.

You can affect program flow with:

• Unconditional Loops and Branches
• Conditional Loops and Branches

Unconditional Looping and Branching
Unconditional
Looping

The Loop (L) command is an unconditional looping command. You can use this command to
repeat the execution of a group of commands for a predetermined number of iterations. You
can nest Loop commands up to 16 levels deep. The code sample (portion of a program) below
demonstrates a loop of 5 iterations.
MA0 ; Sets unit to Incremental mode
A50 ; Sets acceleration to 50
V5 ; Sets velocity to 5
L5 ; Loops 5 times
D2000 ; Sets distance to 2,000
GO1 ; Executes the move (Go)
T2 ; Delays 2 seconds after the move
LN ; Ends loop

Unconditional
Branching

When an unconditional branch is processed, the flow of program execution (“control”) passes
to the program or label specified in the branch command. Depending on the branch command
used, processing may or may not return to the original program (the “calling” program). There
are three ways to branch unconditionally:

GOSUB: The GOSUB command branches to the program name or label stated in the GOSUB
command. After the called program or label is executed, processing returns to the
calling program at the next command line after the GOSUB branch command.

GOTO: The GOTO command branches to the program name or label stated in the GOTO
command. After the called program or label is executed, processing does not return
to the calling program—instead, the program will end. This holds true unless the
subroutine in which the GOTO resides was called with a GOSUB by another
program; in this case, the END in the GOTO program will initiate a return to the
calling program. For example, if processing flows from a GOSUB in program A to
program B, and then a GOTO from program B to program C, when the END
command is processed in program C, processing returns to program A at the
command line after the GOSUB.

JUMP: The JUMP command branches to the program name or label stated in the JUMP
command. All nested IFs, WHILEs, and REPEATs, loops (L), and subroutines are
cleared; thus, the program or label that the JUMP initiates will not return control to
the calling program; instead, the called program will end.

If an invalid program or label name is entered, the branch command will be ignored and
processing will continue with the next line in the program.

6K Series products do not support recursive calling of subroutines.

Using labels: Labels, defined with the $ command, provide a method of branching to specific
locations within the same program. Labels can only be defined within a program and executed
with a GOTO, GOSUB, or JUMP command from within the same program (see Example B
below).

24 6K Series Programmer’s Guide

NOTE
Be careful about performing a GOTO within a loop or branch statement area (i.e., between
L & LN, between IF & NIF, between REPEAT & UNTIL, or between WHILE & NWHILE).
Branching to a different location within the same program will cause the next L, IF, REPEAT,
or WHILE statement encountered to be nested within the previous L, IF, REPEAT, or WHILE
statement area, unless an LN, NIF, UNTIL, or NWHILE command has already been
encountered.

** To avoid this nesting situation, use the JUMP command instead of the GOTO command.

Example A DESCRIPTION: The program cut1 is executed until it gets to the command GOSUB
prompt. From there it branches unconditionally to the subroutine (actually a program) called
prompt. The subroutine prompt queries the operator for the number of parts to process.
After the part number is entered (e.g., operator enters the !'12 command to process 12 parts),
the rest of the prompt subroutine is executed and control goes back to the cut1 program and
resumes program execution with the next command after the GOSUB, which is MAØØ.

DEL cut1 ; Delete a program before defining it
DEF cut1 ; Begin definition of program cut1
HOM11 ; Send axes 1 and 2 to the home position
WAIT(1AS=b0XXX1 AND 2AS=b0XXX1) ; Wait for axes 1 and 2 to come
 ; to a halt at home
GOSUB prompt ; Go to subroutine program called prompt
MA00 ; Place axes 1 and 2 in the incremental mode
A10,30 ; Set acceleration: axis 1 = 10, axis 2 = 30
AD5,12 ; Set deceleration: axis 1 = 5, axis 2 = 12
V5,8 ; Set velocity: axis 1 = 5, axis 2 = 8
D16000,100000 ; Set distance: axis 1 = 16,000; axis 2 = 100,000
OUT.3-1 ; Turn on onboard output number 3
T5 ; Wait for 5 seconds
L(VAR2) ; Begin loop (number of loops = value of VAR2)
 GO11 ; Initiate moves on axes 1 and 2
 T3 ; Wait for 3 seconds
LN ; End loop
OUT.3-0 ; Turn off onboard output number 3
END ; End definition of program cut1

DEF prompt ; Begin definition of program prompt
VARS1="Enter part count >" ; Place message in string variable 1
VAR2=READ1 ; Prompt operator with string variable 1,

; and read data into numeric variable 2
; NOTE: Type !' before the part count number.

END ; End definition of program prompt

Example B DESCRIPTION: This example demonstrates the use of labels ($).

DEL pick ; Delete a program before defining it
DEF pick ; Begin definition of program pick
GO1100 ; Initiate motion and axes 1 and 2
IF(VAR1=5) ; If variable 1 = 5, then execute commands
 ; between IF and ELSE. Otherwise, execute

; commands between ELSE and NIF
 GOTO pick1 ; Goto label pick1
 ELSE ; Else part of IF statement
 GOTO pick2 ; Goto label pick2
NIF ; End of IF statement
$ pick1 ; Define label for pick1
 GO0011 ; Initiate motion on axes 3 and 4
 BREAK ; Break out of current subroutine or program
$ pick2 ; Define label for pick2
 GO1001 ; Initiate motion on axes 1 and 4
END ; End definition of program pick

 Chapter 1. Programming Fundamentals 25

Conditional Looping and Branching
Conditional looping (REPEAT/UNTIL and WHILE/NWHILE) entails repeating a set of
commands until or while a certain condition exists. In conditional branching
(IF/ELSE/NIF), a specific set of commands is executed based on a certain condition. Both
rely on the fulfillment of a conditional expression, a condition specified in the UNTIL,
WHILE, or IF commands.

A wait command pauses command execution until a specific condition exists.

Flow Control
Expression
Examples

This section provides examples of expressions that can be used in conditional branching and
looping commands (UNTIL, WHILE, and IF) and the wait command. These expressions can
be constructed, in conjunction with relational and logical operators, with the following
operands:

• Numeric variables and binary variables • Timer value
• Inputs and outputs • Data read from the serial port
• Current motion parameters and status • Data read from the RP240
• Current commanded and actual position • Following conditions
• Error, axis, and system status • Multi-tasking conditions

Numeric and Binary
Variables

A numeric variable (VAR or VARI) can be used within an expression if it is compared against
another numeric variable, a value, or one of the comparison commands (see list on page 7).
When comparing a variable against another value, variable, or comparison command, the
relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Descr ip t ion
(VAR1<VAR2) True expression if variable 1 is less than variable 2
(VAR1>=2500) True expression if variable 1 is greater than or equal to 2500
(VAR1=1AD) True expression if variable 1 is equal to the decel of axis 1
(VAR1<VAR2 AND VAR4>1PE) True expression if variable 1 is less than variable 2 and variable 4 is

greater than the value of encoder 1

A binary variable (VARB) can be used within an expression, if the variable is compared against
another binary variable, or a value. When comparing a variable against another value or variable,
the relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Descr ip t ion
(VARB1<>VARB2) True expression if binary variable 1 is not equal to binary variable

2
(VARB1=b1101 X111) True expression if binary variable 1 is equal to 1101 X111
(VARB1<VARB2 AND VARB4>hF) True expression if binary variable 1 is less than binary variable 2

and binary variable 4 is greater than the hexadecimal value of F

Inputs and Outputs An input or output operand (ANI, ANO,IN, INO, LIM, OUT, TRIG) can be used within an
expression, if the operand is compared against a binary variable or a binary or hexadecimal
value. When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logical
operators (AND, OR, NOT) are used.

Expression Descr ip t ion
(IN.3=b1) True expression if onboard input 3 is equal to 1
(LIM>h3) True expression if limit status is greater than hexadecimal 3

Current Motion
Parameters and
Status

Motion parameters consist of A, AD, D, V, VEL, status MOV. The motion parameters can be
used within an expression, if the operand is compared against a numeric variable or value. The
motion status operand must be compared against a binary variable or a binary or hexadecimal
value. When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logical
operators (AND, OR, NOT) are used. (Following conditions are addressed below.)

26 6K Series Programmer’s Guide

Expression Descr ip t ion
(VAR1<1VEL) True expression if the value of variable 1 is less than the commanded velocity of

axis 1
(1AD=25000) True expression if axis 1 deceleration equals 25000
(MOV=b00) True expression if moving status equals ØØ (axes 1 & 2 are not moving)

Current Commanded
& Actual Position

The current commanded and actual positions (ANI, DAC, FB, PANI, PC, PCC, PCE, PCME,
PCMS, PE, PER, PE, PMAS, PME, PSHF, PSLV) can be used within an expression, if the
operand is compared against a numeric variable or value. When making the comparison, the
relational operators (=, >, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Descr ip t ion
(VAR1<1FB) True expression if the value of variable 1 is less than the actual position (position of

the assigned feedback device) of axis 1
(2PC=4000) True expression if axis 2 commanded position equals 4000
(VAR1<1PME) True expression if VAR1 is < master encoder position of axis 1
(2PE=25000) True expression if axis 2 encoder position equals 25000

Error, Axis, and
System Status

The error status, axis status, and system status operands (ER, AS, ASX, SS) can be used within
an expression, if the operand is compared against a binary variable or a binary or hexadecimal
value. When making the comparison, the relational operators (=, >, >=, <, <=, <>) and logical
operators (AND, OR, NOT) are used. Refer to page 226 for a list of status bit functions.

Expression Descr ip t ion
(ER.12=b1) True expression if error status bit 12 is equal to 1
(AS=h3FFD) True expression if axis status is equal to hexadecimal 3FFD

Timer Value The current timer value (TIM) can be used within an expression, if the operand is compared
against a numeric variable or value. When making the comparison, the relational operators (=,
>, >=, <, <=, <>) and logical operators (AND, OR, NOT) are used.

Expression Descr ip t ion
(VAR1<TIM) True expression if the value of variable 1 is less than the timer value

Data Read from the
Communications Port

The READ command can be used to input data from a serial port or the Ethernet port into a
numeric variable. After the data has been read into a numeric variable, that variable can be
used in an expression.

Example Descr ip t ion
VARS8="ENTER DATA" Define message (string variable 8)
VAR2=READ8 Send message (string variable 8) and then wait for immediate data to be

read (into numeric variable 2)
!'88.3 Immediate data input (must type !' before the numeric value)
IF (VAR2<=100) Evaluate expression to see if data read is < or equal to 100
.
NIF End of IF

Data Read from the
RP240

The DREAD and DREADF commands can be used to input data from the RP240 into a numeric
variable. DREAD reads a number from the RP240's numeric keypad. DREADF reads a number
representing a RP240 function key. After the data has been read into a numeric variable, that
variable can be used in an expression. The DKEY operator allows you to read the current state
of the RP240 keypad (each key has a unique numeric value).
DCLEAR0 ; Clear RP240 display
DWRITE"HIT F4" ; Send message to RP240 display
VAR3=DREADF ; Read data from a RP240 function key into
 ; numeric variable 3
IF (DKEY=24) ; Evaluate expression to see if function key F4 was hit
DCLEAR2 ; Clear RP240 display line 2
DWRITE"TRY AGAIN" ; Send message to RP240 display
NIF ; End of IF

 Chapter 1. Programming Fundamentals 27

RP240 Data Read
Immediate Mode

The DREADI1 command allows continual numeric or function key data entry from the RP240
(when used in conjunction with the DREAD and/or DREADF commands). In this immediate
mode, program execution is not paused (waiting for data entry) when a DREAD or DREADF
command is encountered. Refer to the DREAD and DREADF command descriptions for
programming examples.

NOTES
• While in the Data Read Immediate Mode, data is read into numeric variables only (VAR).
• This feature is not designed to be used in conjunction with the RP240's standard menus;

the RUN, JOG, and DJOG menus will disable the DREADI mode.
• Do not assign the same variable to read numeric data and function key data—pick only one.

Following Conditions These Following conditions are available for conditional expressions: Axis status bit 26
(AS.26), Error status bit 14 (ER.14), Following status (FS), NMCY, PCME, PCMS, PMAS,
PME, PSHF, PSLV, and VMAS.

Expression Descr ip t ion
(2AS.26=b1) True if a new motion profile on axis 2 is waiting for the GOWHEN condition to be true

or a TRGFNc1xxxxxxx trigger.
(1ER.14=b1) True if the GOWHEN condition on axis 1 is already true when the subsequent GO,

GOL, FSHFC, or FSHFD command is executed.
(3FS.7=b0) True if the master for follower axis 3 is in motion.
(2NMCY>200) True if the master for axis 2 has moved through 200 cycles.
(1PMAS>12) True if the master for axis 1 has traveled more than 12 units.
(1PSHF>1.5) True if follower axis 1 has shifted more than 1.5 units.
(3PSLV>24) True if follower axis 3's commanded position is more than 24 units.
(1VMAS<2) True if the velocity of the master for axis 1 is less than 2 units/sec.

Multi-Tasking
Conditions

These Multi-tasking conditions are available for conditional expressions: Status of which tasks
are current active (SWAP), identity of the task in which the command is executed (TASK).

Expression Descr ip t ion
(SWAP.3=b1) True if Task 3 is active.
(TASK=3) True if the task executing the conditional expression is Task 3.

Conditional Looping The 6K controller supports two conditional looping structures—REPEAT/UNTIL and
WHILE/NWHILE.

All commands between REPEAT and UNTIL are repeated until the expression contained
within the parenthesis of the UNTIL command is true. The example below illustrates how a
typical REPEAT/UNTIL conditional loop works. In this example, the REPEAT loop will
execute 1 time, at which point the expression stated within the UNTIL command will be
evaluated. If the expression is true, command processing will continue with the first
command following the UNTIL command. If the expression is false, the REPEAT loop will
be repeated.
VAR5=0 ; Initializes variable 5 to 0
DEL prog10 ; Delete a program before defining it
DEF prog10 ; Defines program prog10
INFNC1-A ; Assign onboard input 1 as g.p. input for use with IN
INFNC2-A ; Assign onboard input 2 as g.p. input for use with IN
INFNC3-A ; Assign onboard input 3 as g.p. input for use with IN
INFNC4-A ; Assign onboard input 4 as g.p. input for use with IN
OUTFNC1-A ; Assign onboard output 1 is a general-purpose output
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
D25000 ; Distance is 25,000
REPEAT ; Begins the REPEAT loop
 GO1 ; Executes the move (Go)
 VAR5=VAR5+1 ; Variable 5 counts up from 0
UNTIL(IN=b1110 OR VAR5>10) ; When inputs 1-4 are 1110, respectively, or

28 6K Series Programmer’s Guide

 ; VAR5 is greater than 10, the loop will stop.
OUT1 ; Turn on output 1 when finished with REPEAT loop
END ; End program definition
RUN prog10 ; Initiate program prog10

All commands between WHILE and NWHILE are repeated as long as the WHILE condition is
true. The following example illustrates how a typical WHILE/NWHILE conditional loop
works. In this example, the WHILE loop will execute if the expression is true. If the
expression is false, the WHILE loop will not execute.

VAR5=0 ; Initializes variable 5 to 0
DEL prog10 ; Delete a program before defining it
DEF prog10 ; Defines program prog10
INFNC1-A ; Assign onboard input 1 as g.p. input for use with IN
INFNC2-A ; Assign onboard input 2 as g.p. input for use with IN
INFNC3-A ; Assign onboard input 3 as g.p. input for use with IN
INFNC4-A ; Assign onboard input 4 as g.p. input for use with IN
OUTFNC1-A ; Assign onboard output 1 is a general-purpose output
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
D25000 ; Distance is 25,000
WHILE(IN=b1110 OR VAR5>10) ; While the inputs 1-4 are 1110, respectively

; or VAR5 is greater than 10, the loop will continue.
 GO1 ; Executes the move (Go)
 VAR5=VAR5+1 ; Variable 5 counts up from 0
NWHILE ; End WHILE command
OUT1 ; Turn on output 1 when finished with WHILE loop
END ; End program definition

; ***
; * To run prog10, execute the "RUN prog10" command *
; ***

Conditional
Branching

You can use the IF command for conditional branching. All commands between IF and
ELSE are executed if the expression contained within the parentheses of the IF command is
true. If the expression is false, the commands between ELSE and NIF are executed. If the
ELSE is not needed, it can be omitted. The commands between IF and NIF are executed if
the expression is true. Examples of these commands are as follows.
DEL prog10 ; Delete a program before defining it
DEF prog10 ; Defines program prog10
INFNC1-A ; Assign onboard input 1 as g.p. input for use with IN
INFNC2-A ; Assign onboard input 2 as g.p. input for use with IN
INFNC3-A ; Assign onboard input 3 as g.p. input for use with IN
INFNC4-A ; Assign onboard input 4 as g.p. input for use with IN
A50 ; Acceleration is 50
AD50 ; Deceleration is 50
V5 ; Sets velocity to 5
IF(VAR1>0) ; IF variable 1 is greater than zero
 D25000 ; Distance is 25,000
 ELSE ; Else
 D50000 ; Distance is 50,000
NIF ; End if command
IF(IN=b1110) ; If onboard inputs 1-4 are 1110, initiate axis 1 move
 GO1 ; Executes the move (Go)
NIF ; End IF command
END ; End program definition

; ***
; * To run prog10, execute the "RUN prog10" command *
; ***

 Chapter 1. Programming Fundamentals 29

Program Interrupts (ON Conditions)

Multi-Tasking
Each task has its own
ONP program and its
own set of ON
conditions.

While executing a program, the 6K controller can interrupt the program based on several
possible ON conditions: programmable input(s) status, user status, or the value of numeric
variables 1 or 2. These ON conditions are enabled with the ONCOND command, and are
defined with the commands listed below. After the ON conditions are enabled (with the
ONCOND command), an ON condition interrupt can occur at any point in program execution.
When an ON condition occurs, the controller performs a GOSUB to the program assigned as
the ON program and then passes control back to the original program and resumes command
execution at the command line from which the interruption occurred.

Within the ON program, the programmer is responsible for checking which ON condition
caused the branch (if multiple ON conditions are enabled with the ONCOND command).
Once a branch to the ON program occurs, the ON program will not be called again until after
it has finished executing. After returning from the ON program, the condition that caused the
branch must evaluate false before another branch to the ON program will be allowed.

SETUP FOR PROGRAM INTERRUPT (see programming example below)
1. Define a program to be used as the ON program to which the controller will GOSUB

when an ON condition evaluates true.
2. Use the ONP command to assign the program as the ON program.
3. Use the ONCOND command to enable the ON conditions that you are using. The syntax

for the ONCOND command is ONCOND, where the first is for the ONIN
condition, the second for ONUS, the third for ONVARA, and the fourth for ONVARB.

ON conditions:
ONIN Specify an input bit pattern that will cause a GOSUB to the program

assigned as the ON program (see programming example below).
ONUS Specify an user status bit pattern that will cause a GOSUB to the ON

program. The user status bits are defined with the INDUST command.
ONVARA Specify the range of numeric variable 1 (VAR1) that will cause a GOSUB

to the ON program. For example, ONVARAØ,2Ø establishes the condition
that if the value of VAR1 is ≤0 or ≥20, the ON program will be called.

ONVARB This is the same function as ONVARA, but for numeric variable 2 (VAR2)

Programming Example: Configures the controller to increment variable 1 when input 1 goes active. If
input 1 does go active, control will be passed (GOSUB) to the ON program (onjump), the commands
within the ON program will be executed, and control will then be passed back to the original program.
DEF onjump ; Begin definition of program onjump

VAR1=VAR1+1 ; Increment variable 1
END ; End definition of program onjump

VAR1=0 ; Initialize variable 1
ONIN1 ; When input 1 becomes active, branch to the ON program
ONP onjump ; Assign the onjump program as the ON program
ONCOND1000 ; Enable only the ONIN function. Disable the ONUS,
 ; ONVARA, and ONVARB functions, respectively

Situations in which ON
conditions will not
interrupt immediately

These are situations in which an ON condition does not immediately interrupt the program in
progress. However, the fact that the ON condition evaluated true is retained, and when the
condition listed below is no longer preventing the interrupt, the interrupt will occur.
• While motion is in progress due to GO, GOL, GOWHEN, HOM, JOY, JOG, or PRUN and the

continuous command execution mode is disabled (COMEXCØ).
• While a WAIT statement is in progress
• While a time delay (T) is in progress
• While a program is being defined (DEF)
• While a pause (PS) is in progress
• While a data read (DREAD, DREADI, DREADF, or READ) is in progress

30 6K Series Programmer’s Guide

Error Handling

USE MOTION PLANNER
Motion Planner’s editor
provides an error handling
wizard.

DEBUG TOOLS
For information on
program debug tools,
see page 225.

The 6K Series products have the ability to detect and recover the following error conditions:
Error bit 1Stepper axes only: Stall detected on any axis
Error bit 2Hardware end-of-travel limit encountered on any axis
Error bit 3Software end-of-travel limit encountered on any axis
Error bit 4Drive fault input activated any axis
Error bit 5Commanded kill or stop
Error bit 6Kill input activated
Error bit 7User fault input activated
Error bit 8Stop input activated
Error bit 9ENABLE input not grounded
Error bit 10Profile for a pre-emptive GO or a registration move is not possible
Error bit 11Servo Axes Only: Target zone settling timeout
Error bit 12Servo Axes Only: Allowable position error (SMPER) exceeded
Error bit 14GOWHEN condition already true when the subsequent GO, GOL, FSHFC, or FSHFD

command was executed
Error bit 16Bad command is detected
Error bit 17Encoder failure is detected, if EFAIL1 mode is enabled
Error bit 18Expansion I/O brick cable is disconnected or powered down
Error bit 22Ethernet failed due to hardware disconnect or COM6SRVR server failure.

Enabling Error Checking
To detect and respond to the error conditions noted above, the corresponding error-checking
bit(s) must be enabled with the ERROR command (see the ERROR Bit column in the table
below). If an error condition occurs and the associated error-checking bit has been enabled
with the ERROR command, the 6K controller will branch to the error program.

For example, if you wish the 6K controller to branch to the error program when a hardware
end-of-travel limit is encountered (error bit 2) or when a drive fault occurs (error bit 4), you
would issue the ERRORØ1Ø1 command to enable error-checking bits 2 and 4.

MULTI-TASKING
If you are operating multiple tasks, be aware that you must enable error conditions (ERROR) and
specify an error program (ERRORP) for each task (e.g., 2%ERROR.2-1 and 2%ERRORP FIX for
Task 2). Each task has its own error status register (reported with ER, TER, and TERF).
Regarding axis-related error conditions (e.g., drive fault, end-of-travel limit, etc.), only errors on
the task’s associated (TSKAX) axes will cause a branch to the task’s ERRORP program.

 Hint: Within the structure of your error program, you can use the IF and ER commands
to check which error caused the call to the ERRORP program and respond
accordingly.

Defining the Error Program
The purpose of the error program is to provide a programmed response to certain error
conditions (see list above) that can occur during the operation of your system. Programmed
responses typically include actions such as shutting down the drive(s), activating or de-
activating outputs, etc. Refer to the error program set-up example below.

Using the ERRORP command, you can assign any previously defined program as the error
program. For example, to assign a previously defined program named CRASH as the error
program, enter the ERRORP CRASH command. To un-assign a program from being the error
program, issue the ERRORP CLR command (e.g., as in this example, it does not delete the
CRASH program, but merely unlinks it from its assignment as the error program).

 Chapter 1. Programming Fundamentals 31

Canceling the Branch to the Error Program
If an error condition occurs and the associated error-checking bit has been enabled with the
ERROR command, the 6K controller will branch to the error program. The error program will
be continuously called/repeated until you cancel the branch to the error program. (This is true
for all cases except error condition number 9, ENABLE input activated, in which case the error
program is called only once.)

There are three options for canceling the branch to the error program:
• Disable the error-checking bit with the ERROR.n-Ø command, where "n" is the

number of the error-checking bit you wish to disable. For example, to disable error
checking for the kill input activation (bit 6), issue the ERROR.6-Ø command. To re-
enable the error-checking bit, issue the ERROR.n-1 command.

• Delete the program assigned as the ERRORP program (DEL <name of
program>).

• Satisfy the How to Remedy the Error requirement identified in the table below.

ERROR
Bit

Cause of the Error

Branch Type to Error
Program

How to Remedy the Error

1 Stepper axes only: Stall detected (Stall Detection
and Kill On Stall must be enabled first—see
ESTALL and ESK, respectively).

Gosub Issue a GO command.

2 Hard Limit Hit.
(hard limits must be enabled first—see LH)

If COMEXLØ, then Goto;
If COMEXL1, then Gosub

Change direction & issue GO command on the axis
that hit the limit; or issue LHØ.

3 Soft Limit Hit.
(soft limits must be enabled first—see LS)

If COMEXLØ, then Goto;
If COMEXL1, then Gosub

Change direction & issue GO command on the axis
that hit the limit; or issue LSØ.

4 Drive Fault (Detected only if you enable drive,

DRIVE1, and drive fault input, DRFEN, and set
correct drive fault level, DRFLVL; See page 46.)

Goto Clear the fault condition at the drive, & issue a
DRIVE1 command for the faulted axis.

5 Commanded Stop or Kill (whenever a K, !K,
<ctrl>K, K, or !S command is sent).

See note below entitled
“Commanded Kill or Stop”.

If !K, then Goto;
If !S & COMEXSØ, then
Goto;
If !S & COMEXS1, then
Gosub, but need !C

No fault condition is present—there is no error to
clear.
If you want the program to stop, you must issue
the !HALT command.

6 Kill Input Activated (see INFNCi-C or LIMFNCi-C) Goto Deactivate the kill input.
7 User Fault Input Activated

(see INFNCi-F or LIMFNCi-F).
Goto Deactivate the user fault input, or disable it by

assigning it a different function.
8 Stop input activated

(see INFNCi-D or LIMFNCi-C).
Goto Deactivate the stop input, or disable it by assigning

it a different function.
9 ENABLE input not grounded. (see “ESTOP” below) Goto Re-ground ENABLE input, and issue @DRIVE1.
10 Profile for pre-emptive GO or registration move not

possible at the time of attempted execution.
Gosub Issue another GO command.

11 Servo axes only: Target Zone Timeout (STRGTT
value has been exceeded).

Gosub Issue these commands in this order:
 STRGTEØ, DØ, GO, STRGTE1

12 Servo axes only: Exceeded Maximum Allowable
Position Error (set with the SMPER command).

Gosub Issue a DRIVE1 command to the axis that
exceeded the allowable position error. Verify that
feedback device is working properly.

14 GOWHEN condition was already true when the
subsequent GO, GOL, FGADV, FSHFC, or FSHFD
command was executed.

Goto Issue another GOWHEN command; or issue a !K
command and check the program logic (use the
TRACE and STEP features if necessary).

16 Bad command was detected. Gosub Issue the TCMDER command to I.D. the command.
17 Encoder failure detected (EFAIL1 must be

enabled before this error can be detected).
Gosub Reconnect the encoder while the axis is in the

EFAIL1 mode.
18 Cable to an expansion I/O brick is disconnected,

or power to the I/O brick is lost.
Goto Reconnect I/O brick cable. Issue the ERROR.18-0

command and then the ERROR.18-1 command.
22 Ethernet connection failed (hardware disconnect

or COM6SRVR communications server failure).
Gosub Clear the error bit (ERROR.22-0), re-establish the

Ethernet connection, and then issue ERROR.22-1.

NOTE: In addition to
canceling the branch to
the error program, you
must also remedy the
cause of the error;
otherwise, the error
program will be called
again when you resume
operation. Refer to the
How to Remedy the
Error column in the
table below for details.

32 6K Series Programmer’s Guide

Reserved Bits: Bits 13, 15, 19-21 and 23-32.
Branching Types: If the error condition calls for a GOSUB, then after the ERRORP program is executed, program control returns to the point
at which the error occurred. To prevent a return to the point at which the error occurred, use the HALT command to end program execution or
use the GOTO command to go to a different program. If the error condition calls for a GOTO, there is no way to return to the point at which the
error occurred.
Commanded Kill or Stop: When error bit 5 is enabled (ERROR.5-1), a Stop (S or !S) or a Kill (K, !K or <ctrl>K) command will cause the
controller to branch to the error program. Note, however, that this error condition does not set an error bit (ER), because there is no way to
clear the error condition upon leaving the error program. Therefore, you should use the IF(ER=b00000000000000000000000000000000)
statement in your error program to determine if the cause of the error was a commanded kill or stop (i.e., if no error bits are set).
If ESTOP (ENABLE input) also cuts power to drives: This note is for systems in which power to the drives (not the 6K) is cut if the
ENABLE input is opened. If you enable ERROR bit 9: When the ENABLE input is opened (and power is cut to the drives), the ERRORP program
is called. Because the drives have lost power, the 6K will detect drive faults, which in turn kills the ERRORP program. If the ENABLE input is
still ungrounded, the ERRORP program will again be called and then killed because of the drive fault condition (causing an endless loop). The
resolution is to place the @DRFEN0 command in the ERRORP program so that it can disable checking the drive fault input and thereby
circumvent the endless loop of calling the ERRORP program. Be sure to later re-enable drive fault checking with @DRFEN1 after the ENABLE
input is re-grounded.

Error Program Set-up Example
The following is an example of how to set up an error program. This particular example is for
handling the occurrence of a user fault.

Step 1 Create a program file (in Motion Planner’s Editor module) to set up the error program:

; **
; * Assign the user fault input function to onboard trigger input 1. *
; * The purpose of the user fault input is to detect the occurrence *
; * of a fault external to the 6K controller and the motor/drive. *
; * This input will generate an error condition. *
; **
INFNC1-F ; Define onboard trigger input 1 as a user fault input

; **
; * Define a program to respond to the user fault (call the program *
; * fault), and then assign that program as the error program. The *
; * purpose of the fault program is to display a message to inform *
; * the operator that the user fault input has been activated. *
; **
DEL fault ; Delete a program before defining it (a precaution)
DEF fault ; Begin definition of program fault
IF(ER.7=b1) ; Check if error bit 7 equals 1
 ; (which means the user fault input has been activated)
WRITE"FAULT INPUT\10\13" ; Send the message FAULT INPUT
T3 ; Wait 3 seconds
NIF ; End IF command
END ; End definition of program fault
ERRORP fault ; Assign the program called fault as the error program

; **
; * Enable the user fault error-checking bit by putting a “1” in *
; * the seventh bit of the ERROR command. After enabling this *
; * error-checking bit, the controller will branch to the error *
; * program whenever the user fault input is activated. *
; **
ERROR0000001 ; Branch to error program upon user fault input (As an
 ; alternative to the ERROR0000001 command, you could also
 ; enable bit 7 by issuing the ERROR.7-1 command.)

Step 2 Save the program file in the Editor module. Then, using the Terminal module, download the
program file to the 6K controller.

Step 3 Test the error handling:

 Chapter 1. Programming Fundamentals 33

1. While in the terminal emulator, enter these four commands:
L ; Loop command
WRITE"IN LOOP\10\13" ; Display the message "IN LOOP"
T2 ; Wait 2 seconds
LN ; End the loop ("IN LOOP" will be displayed
 ; once every 2 seconds)

2. While the loop (IN LOOP) is executing in the terminal emulator, enter the !INEN1
command. The !INEN1 command disables input 1 and forces it on for testing purposes.
This simulates the physical activation of input 1. (Since the error program is called
continuously until the branch to the error program is canceled, the message FAULT
INPUT will be repeatedly displayed once every 3 seconds.)

3. While the FAULT INPUT loop is executing in the terminal emulator, enter the !INENE
command. The !INENE command re-enables input 1. The message In loop will not
be displayed again, because the user fault input error is a GOTO branch (not a GOSUB
branch) to the error program.

Non-Volatile Memory
The items listed below are automatically stored in the 6K product’s non-volatile memory
(battery-backed RAM). Cycling power or issuing a RESET command will not affect these
settings.

• Power-up program (STARTP)
• Programs (defined with DEF & END)
• Compiled profiles and PLC programs (PCOMP). Compiled contours and PLC programs

are always saved in the Compiled portion of battery-backed RAM. However, compiled
individual axis profiles (GOBUF profiles) are removed from Compiled memory if you run
them with the PRUN command and later cycle power or reset the controller (you will
have to re-compile them with the PCOMP command).

• Memory allocation (MEMORY)
• Axis type definition (AXSDEF)
• Variables: VAR, VARI, VARB, and VARS
• Scaling: SCALE, SCLA, SCLD, SCLV, SCLMAS
• Commanded direction polarity (CMDDIR)
• Encoder polarity (ENCPOL)
• Device address for RS-232 or RS-485 serial communication (ADDR)
• Baud rate for RS-232 or RS-485 serial communication (BAUD)
• Ethernet IP address (NTADDR
• Ethernet network mask (NTMASK)
• RP240 check and serial port functionality (DRPCHK)
• RP240 password (DPASS)
• Servo gain sets (SGSET)

A checksum is calculated for the non-volatile memory area each time you power up or reset
your 6K controller. A bad checksum indicates that the user memory has been corrupted
(possibly due to electrical noise) or has been cleared (due to a spent battery). The controller
will clear all user memory when a bad checksum is calculated on power up or reset, and bit 22
will be set in the TSS command response.

34 6K Series Programmer’s Guide

System Performance
Several commands (listed below), when enabled, will slow command processing. This
degradation in performance will not be noticeable for most applications. But for some, it can
be necessary to disable one or all of these commands.

• SCALE (enable/disable scaling)
• INDUSE (enable/disable user status updates)
• INFNC (trigger and extended input functions; excluding functions “A” and “H”)
• LIMFNC (limit input functions; excluding functions “A”, “R”, “S”, and “T”)
• OUTFNC (digital output functions; excluding function “A”)
• ONCOND (enable/disable ON conditions)

Servo Update Performance Slowdown

If the 6K displays the “SYSTEM UPDATE OVERRUN, USE SYSPER4” error message, execute the
SYSPER4 command to change the 6K’s system update period. For details, see the SYSPER
command description in the Command Reference.

2C H A P T E R T W O

Communication

IN THIS CHAPTER
• Motion Planner™ communication features...36
• Serial Communication:

− Controlling multiple serial ports ..37
− RS-232C daisy-chaining..38
− RS-485 multi-drop ...41

36 6K Series Programmer’s Guide

Communication Options

Ethernet Port
• Refer to the configuration

procedures below .

RS-232/485 (“COM2” port).
• Set up for use with an RP240;

configurable for RS-485 or as
the primary RS-232 port.

USING MULTIPLE PORTS
You can communicate to either the Ethernet port or the RS-232
port (COM1) at any give time; the port that you communicate to
first is the only one that is recognized until you cycle power.
You can communicate to the Ethernet port or the RS-232 port
(COM1) while the 6K is also communicating with an RP240 via
the RS-232/485 port (COM2).

RS-232 (“COM1” port)
• Set up for use as the

primary RS-232 port;
configurable for RP240.

Motion Planner Communication Features
Motion Planner provides easy direct communication links to the product:

• Communicate directly from any Motion Planner utility (Editor, Terminal, and Panels).
• Communication setup parameters (Ethernet and serial communication).
• Download the 6K product’s soft operating system. The operating system is loaded at

the factory, but can use this feature to download upgrades.
• Download motion programs to the controller, and upload motion programs from the

controller.

Communications Server: Also available on the Motion Planner CD is a 32-bit OLE
automation server for adding 6K communication capability to your custom applications
created with programming languages such as Visual Basic or Visual C++. For details, see
Com6srvr User’s Guide for Gemini & 6K Series Products.

 Chapter 2. Communication 37

Serial Communication
In this section:

• Controlling Multiple Serial Ports
• RS-232 Daisy Chaining
• RS-485 Multi-Drop

Controlling Multiple Serial Ports
Every 6K Series product has two serial ports. The “RS-232” connector is referenced as the
“COM1” serial port, and the “RS-232/485” connector is referenced as the “COM2” serial port.

XON/XOFF
The XONOFF command was created to enable or disable XON/XOFF ASCII handshaking.
(XONOFF1 enables XON/XOFF, XONOFFØ disables XON/XOFF) Defaults: XONOFF1 for the
COM1 port, XONOFFØ for the COM2 port.

Controllers on a multi-drop do not support XON/XOFF; to ensure that XON/XOFF is disabled
for COM2, send the PORT2 command followed by the XONOFFØ command.

Configuring the
COM Port

To control the applicable port for setting up serial communication and transmitting ASCII text
strings, use the PORT command. PORT1 selects COM1 and PORT2 selects COM2.

• Serial communication setup commands (see list below) affect the COM port selected
with the last PORT command. For example, to configure the COM2 port for 6K
language commands only (e.g., to communicate to the 6K product over an RS-485
interface), execute the PORT2 command, then execute the DRPCHKØ command.

DRPCHK RP240 Check
E Enable Serial Communication
ECHO............. Enable Communication Echo
BOT Beginning of Transmission Characters
BAUD............. Serial Communication Baud Rate
EOT End of Transmission Characters
EOL End of Line Terminating Characters
ERRBAD Error Prompt
ERRDEF Program Definition Prompt
ERRLVL Error Detection Level
ERRORK Good Prompt
XONOFF Enable or disable XON/XOFF

• The PORT command also selects the COM port through which the WRITE and READ
commands transmit ASCII text strings. If an RP240 is connected, the DWRITE
command (and all other RP240 commands) will affect the RP240 regardless of the
PORT command setting. If no RP240 is detected, the commands are sent to the COM2
port. DWRITE text strings are always terminated with a carriage return.

Setup for 6K Language
or RP240

To configure the COM ports for use with 6K language commands or an RP240, use the
DRPCHK command. The DRPCHK command affects the COM port selected with the last PORT
command. The default for COM1 is DRPCHKØ; the default for COM2 is DRPCHK3. The
DRPCHK setting is automatically saved in non-volatile memory. NOTE: Only one COM port
can be set to DRPCHK2 or DRPCHK3 at any given time.

38 6K Series Programmer’s Guide

DRPCHKØ...... Use the COM port for 6K language commands only. This is the default
setting for COM1, and if using RS-485 half duplex on COM2. Power-up
messages appear on all ports set to DRPCHKØ.

DRPCHK1...... Check for the presence of an RP240 at power-up/reset. If an RP240 is
present, initialize the RP240. If an RP240 is not present, use the port only
for 6K language commands. NOTE: RP240 commands will be sent at
power-up and reset.

DRPCHK2...... Check for the presence of an RP240 every 5-6 seconds. If an RP240 is
plugged in, initialize the RP240.

DRPCHK3...... Check for the presence of an RP240 at power-up/reset. If an RP240 is
present, the initialize the RP240. If an RP240 is not present, use the COM
port for DWRITE commands only, and ignore received characters. This is
the default setting for COM2, unless you are using RS-485 multi-drop
communication (in that case the default changes to DRPCHKØ).

RS-485 compatible products: If you are using RS-485 communication in a multi-drop
(requires you to change an internal jumper to select half duplex), the default setting for COM2
is DRPCHKØ. If the internal jumper setting is left at full duplex, the default setting for COM2
is DRPCHK3.

Selecting a
Destination Port for
Transmitting from
the Controller

To define the port (COM port) through which the 6K product sends its responses, you have 3
options:

• Do nothing different. The response will be sent to the COM port through which the
request was made. If the command is in a stored program, the report will be sent to the
COM port selected by the most recent PORT command.

• Prefix the command with [. This causes the response to be sent to both COM ports.
(e.g., the [TFS command response will be sent through both COM ports)

• Prefix the command with]. This causes the response to be sent to the alternative COM
port. For example, if a report back (e.g.,]TAS) is requested from COM1, the response
is sent through COM2. If the command is in a stored program, the report will be sent
out the alternate port from the one selected by the most recent PORT command.

RS-232C Daisy-Chaining
Up to ninety-nine stand-alone 6K Series products can be daisy-chained. There are two
methods of daisy-chaining: one uses a computer or terminal as the controller in the chain; the
other uses one 6K product as the master controller. Refer to you product’s Installation Guide
for daisy-chain connections.

Follow these steps to implement daisy-chaining:

Step 1 To enable and disable communications on a particular controller unit in the chain, you must use
the Daisy-Chain Address (ADDR) command to establish a unique device address for each the
unit. The ADDR command automatically configures unit addresses for daisy chaining. This
command allows up to 99 units on a daisy chain to be uniquely addressed.

Sending ADDRi to the first unit in the daisy chain sets its address to be (i). The first unit in turn
transmits ADDR(i + 1) to the next unit to set its address to (i + 1). This continues down
the daisy chain until the last unit of (n) daisy-chained units has its address set to (i + n).

Note that a controller with the default device address of zero (0) will send an initial power-up
start message similar to the following:
 *PARKER 6K MOTION CONTROLLER
 *NO REMOTE PANEL

 Chapter 2. Communication 39

Step 2 Connect the daisy-chain with a terminal as the master (see diagram in the product’s Installation
Guide).

It is necessary to have the error level set to 1 for all units on the daisy-chain (ERRLVL1).
When the error level is not set to 1, the controller sends ERROK or ERRBAD prompts after
each command, which makes daisy-chaining impossible. Send the ERRLVL1 command to
each unit in the chain. (NOTE: To send a the ERRLVL1 command to one specific unit on the
chain, prefix the command with the appropriate unit's device address and an underline.)
Commands
1_ERRLVL1 ; Set error level to 1 for unit 1
2_ERRLVL1 ; Set error level to 1 for unit 2
3_ERRLVL1 ; Set error level to 1 for unit 3

After this has been accomplished, a carriage return sent from the terminal will not cause any
controller to send a prompt. Verify this. Instructions below (step 3) show how to set the error
level to 1 automatically on power-up by using the controller's power-up start program (highly
recommended).

After the error level for all units has been set to ERRLVL1, send a 6K series command to all
units on the daisy-chain by entering that command from the master terminal.

Commands
OUT1111 ; Turn on onboard outputs 1-4 on all units
A50,50 ; Set accel to 50 (all units, axes 1 & 2)

To send a 6K series command to one particular unit on the chain, prefix the command with
the appropriate unit's device address and an underline:

Commands
2_OUT0 ; Turn off onboard output 1 on unit 2
4_OUT0 ; Turn off onboard output 1 on unit 4

To receive data from a particular controller on the chain, you must prefix the command with
the appropriate unit's device address and an underline:

Commands
1_A ; Request acceleration information from unit 1
*A50,50 ; Response from unit 1

Use the E command to enable/disable RS-232C communications for an individual unit. If all
6K controller units on the daisy chain are enabled, commands without a device address
identifier will be executed by all units. Because of the daisy-chain's serial nature, the
commands will be executed approximately 1 ms per character later on each successive unit in
the chain (assuming 9600 baud).

Units with the RS-232C disabled (EØ) will not respond to any commands, except E1;
however, characters are still echoed to the next device in the daisy chain.

Commands
3_E0 ; Disable RS-232C on unit 3
VAR1=1 ; Set variable 1 to 1 on all other units
3_E1 ; Enable RS-232C on unit 3
3_VAR1=5 ; Set variable 1 to 5 on unit 3

Verify communication to all units by using the techniques described above.

Step 3 Now that communication is established, programming of the units can begin (alternatively,
units can be programmed individually by connecting the master terminal to one unit at a time).
To allow daisy-chaining between multiple controllers, the ERRLVL1 command must be used
to prevent units from sending error messages and command prompts. In every daisy-chained
unit, the ERRLVL1 command should be placed in the program that is defined as the STARTP
program:

40 6K Series Programmer’s Guide

Program
DEF chain ; Begin definition of program chain
ERRLVL1 ; Set error level to 1
GOTO main ; Go to program main
END ; End definition of program chain
STARTP chain ; Designates program chain as the power-up program

To define program main for unit 0:
Program
0_DEF main ; Begin definition of program main on unit 0
0_GO ; Start motion
0_END ; End definition of program main on unit 0

Step 4 After all programming is completed, program execution can be controlled by either a master
terminal, or by a 6K Series controller used as a master.

Daisy-Chaining
from a Computer or
Terminal

Controlling the daisy-chain from a master computer or terminal follows the examples above:

Commands
0_RUN main ; Run program main on unit 0
1_RUN main ; Run program main on unit 1
2_GO1 ; Start motion on unit 2 axis 1
3_2A ; Get A command response from unit 3 axis 2

Daisy-Chaining
from a Master 6K
Controller

Controlling the daisy-chain from a master 6K controller (the first unit on the daisy-chain)
requires the programs stored in the master controller to control program and command
execution on the slave controllers. The example below demonstrates the use of the WRITE
command to send commands to other units on the daisy chain.

NOTE
The last unit on the daisy-chain must have RS-232C echo disabled (ECHOØ command).

Master controller's main program:
Program
DEF main ; Program main
L ; Indefinite loop
 WHILE (IN.1 = b0) ; Wait for input 1 to go active
 NWHILE
 GOL ; Initiate linear interpolated move
 WHILE (IN.1 = b1) ; Wait for input 1 to go inactive
 NWHILE
 WRITE"2_D2000,4000" ; Send message "2_D2000,4000" down daisy chain
 WRITE"2_ACK" ; Send message "2_ACK" down the daisy chain
LN ; End of loop
END ; End of program main

Controller unit 2 ack program:
Program
DEF ack ; Program ack
GO11 ; Start motion on both axes
END ; End of program ack

 Chapter 2. Communication 41

Daisy-Chaining and RP240s
RP240s cannot be placed in the controller daisy chain; RP240s can only be connected to the
designated RP240 port on a controller. It is possible to use only one RP240 with a controller
daisy-chain to input data for multiple units on the chain. The example below (for the
controller master with an RP240 connected) reads data from the RP240 into variables 1
(data1) & 2 (data2), then sends the messages 3_Ddata1,data2<CR> and 3_GO<CR>.

Sample por t ion o f code:
L ; Indefinite loop
 VAR1=DREAD ; Read RP240 data into variable 1
 VAR2=DREAD ; Read RP240 data into variable 2
 EOT0,0,0,0 ; Turn off <CR>
 WRITE"3_D" ; Send message "3_D" down the daisy chain
 WRVAR1 ; Send variable 1 data down the daisy chain
 WRITE"," ; Send message "," down the daisy chain
 EOT13,0,0,0 ; Turn on <CR>
 WRVAR2 ; Send variable 2 data down the daisy chain
 WRITE"3_GO" ; Send message "3_GO" down the daisy chain
LN ; End of loop

RS-485 Multi-Drop
Up to 99 6K Series products can be multi-dropped. Refer to your product's Installation Guide
for multi-drop connections.

To establish device addresses, using the ADDR command:

The ADDR command allows you to establish up to 99 unique addresses. To use the ADDR
command, you must address each unit individually before it is connected on the multi
drop. For example, given that each product is shipped configured with address zero, you
could set up a 4-unit multi-drop with the commands below, and then connect them in a
multi drop:

1. Connect the unit that is to be unit 1 and transmit the Ø_ADDR1 command to it.
2. Connect the unit that is to be unit 2 and transmit the Ø_ADDR2 command to it.
3. Connect the unit that is to be unit 3 and transmit the Ø_ADDR3 command to it.
4. Connect the unit that is to be unit 4 and transmit the Ø_ADDR4 command to it.

If you need to replace a unit in the multi drop, send the Ø_ADDRi command to it, where
"i" is the address you wish the new unit to have.

To send a 6K command from the master unit to a specific unit in the multi-drop, prefix the
command with the unit address and an underscore (e.g., 3_OUTØ turns off output 1 on unit 3).
The master unit (if it is not a 6K product) can receive data from a multi-drop unit.

The ECHO command was enhanced with options 2 and 3. The purpose is to accommodate an
RS-485 multi-drop configuration in which a host computer communicates to the “master” 6K
controller over RS-232 (COM1 port) and the master 6K controller communicates over RS-485
(COM2 port) to the rest of the units on the multi-drop. For this configuration, the echo setup
should be configured by sending to the master the following commands executed in the order
shown. In this example, it is assumed that the master's device address is set to 1. Hence, each
command is prefixed with “1_” to address only the master unit.

1_PORT2 Subsequent command affects COM2, the RS-485 port
1_ECHO2 Echo characters back through the other port, COM1
1_PORT1 Subsequent command affects COM1, the RS-232 port
1_ECHO3 Echo characters back through both ports, COM1 and COM2

NOTE
Controllers on a multi-drop do not support XON/XOFF. To ensure that XON/XOFF is disabled
for COM2, send the PORT2 command followed by the XONOFFØ command.

3C H A P T E R T H R E E

Basic Operation
Setup

IN THIS CHAPTER
This chapter will enable you to understand and implement these basic operation
features:

• Before You Begin (setup programs, Motion Planner, resetting, etc.)................. 44
• Memory Allocation .. 45
• Drive Setup... 46
• Scaling.. 48
• Positioning Modes.. 52
• End-of-Travel Limits.. 57
• Homing... 59
• Encoder-Based Stepper Operation (stepper axes only) 64
• Servo Setup (servo axes only) .. 67
• Target Zone Mode (servo axes only).. 74
• Programmable Inputs and Outputs (incl. triggers and auxiliary outputs) 75
• Variable Arrays (teaching variable data)... 94

44 6K Series Programmer’s Guide

Before You Begin

������������
������������
������������
������������

 WARNING

�����������
�����������
������������
������������

The 6K Product is used to control your system's electrical and mechanical components.
Therefore, you should test your system for safety under all potential conditions. Failure to do
so can result in damage to equipment and/or serious injury to personnel.

Setup Parameters Discussed in this Chapter
Below is a list of the setup parameters discussed in this chapter. You can check the status of each parameter setting by
entering the respective setup command without any command fields (e.g., typing LIMFNC <cr> displays the current
function and state of each limit input). Some setup parameters are also reported with the TSTAT and TASF status
commands (these and other status commands are described on page 226).

Setup Parameter Command See Pg Setup Parameter Command See Pg

Memory (status with TDIR & TMEM)MEMORY.............12 & 45
Drive Setup..46

Drive type (servo/stepper) selection......AXSDEF
Drive fault input - enable........................DRFEN
Drive fault input - active levelDRFLVL
Drive resolution (stepper only)DRES
Step pulse width (stepper only)PULSE
Drive disable on kill (servo only)............KDRIVE
Drive stall detectionDSTALL

Scaling...48
Enable scaling factorSCALE
Acceleration scaling factor.....................SCLA
Distance scaling factorSCLD
Velocity scaling factor............................SCLV

Positioning Mode...52
Continuous or presetMC
Preset: absolute or incremental.............MA

Encoder Based Stepper Operation (stepper only)64
Encoder resolution.................................ERES
Encoder capture/counting enable..........ENCCNT
Encoder polarity.....................................ENCPOL
Encoder failure detection.......................EFAIL
Commanded direction polarity...............CMDDIR
Stall detection..ESTALL
Kill when stall is detectedESK
Stall deadband.......................................ESDB

Servo Setup (servo axes only) ..67
Tuning parameters(see page Error!
Bookmark not defined.)
Feedback source selection....................SFB, ANIFB
Feedback source resolutionERES, ANIRNG
Encoder failure detection.......................EFAIL
Maximum position errorSMPER
Encoder feedback polarityENCPOL
Commanded direction polarity...............CMDDIR
DAC output limit, maximum...................DACLIM
Servo control signal offsetSOFFS

Target Zone end-of-move settling criteria (servo axes).........74
Target zone mode enableSTRGTE
Target distance zone.............................STRGTD
Target velocity zoneSTRGTV
Target settling timeout period................STRGTT

 Programmable Input Functions .. 75
Define input functions INFNC & LIMFNC
Input active level INLVL & LIMLVL
Input debounce INDEB
Trigger interrupt - special functions TRGFN
Trigger interrupt - lockout time.............. TRGLOT
Virtual Inputs... IN

Programmable Output Functions.. 75
Define output functions......................... OUTFNC
Output active level OUTLVL

End-of-travel limits.. 57
Limit function assignments LIMFNC & INFNC
Hardware – enabled LH
Hardware – deceleration....................... LHAD
Hardware – s-curve decel..................... LHADA
Hardware – active level of input............ LIMLVL
Software – enabled............................... LS
Software – deceleration LSAD
Software – s-curve decel LSADA
Software – negative direction limit LSNEG
Software – positive direction limit LSPOS

Homing ... 59
Limit function assignments LIMFNC & INFNC
Acceleration .. HOMA
S-curve acceleration HOMAA
Deceleration.. HOMAD
S-curve deceleration............................. HOMADA
Backup to home.................................... HOMBAC
Final approach direction HOMDF
Stopping edge of switch........................ HOMEDG
Home switch active level LIMLVL
Velocity .. HOMV
Velocity of final approach...................... HOMVF
Home to Z channel input....................... HOMZ

Variable Arrays (teaching variable data) 94
Initialize numeric variable for data VAR or VARI
Define data program and program size DATSIZ
Set data pointer & establish increment . DATPTR
Reset data pointer to specific location.. DATRST

 Chapter 3. Basic Operation Setup 45

Using a Setup Program
The features described in this chapter are configured with certain 6K Series commands,
commonly referred to as “setup commands.” We recommend placing these commands (except
MEMORY) into a special “setup program” that is executed to prepare the 6K Series product for
subsequent controller operations. Further details about setup programming are provided in the
Creating and Executing a Setup Program section, page 13.

USE THE SETUP WIZARD IN MOTION PLANNER
The easiest way to create your setup program is to use the Setup Wizard in Motion
Planner’s editor.

Resetting the Controller
There are two primary ways to reset the 6K controller (listed below).

• Cycle power.
• Execute the RESET command.

When the controller is reset, most of the previously entered command parameters are returned
to their original factory default values. All programs and variables, as well as certain
command values, are retained in non-volatile memory (see page 33). If a start-up program is
assigned with the STARTP command, resetting the controller will automatically execute that
program. If you are using an RP240, the RESET function is available if you use the default
menu system (see page 114).

Memory Allocation
For details about memory allocation, see Storing Programs on page 11.

CAUTION
Issuing a new MEMORY command (e.g., MEMORY200000,100000) will erase all existing
programs and compiled contouring path segments residing in the 6K product’s memory. To
determine the status of memory allocation, use the TMEM command.

Do not place the MEMORY command in the program assigned as the startup (STARTP)
program. Doing so would erase all programs and segments upon cycling power or issuing
the RESET command.

46 6K Series Programmer’s Guide

Drive Setup

Drive Type Selection
6K products can control any combination of stepper and servo axes. To tell the 6K which type
of drive you are using and a particular axis, use the AXSDEF command. Stepper drives receive
their positioning information via step and direction signals. Servo drives receive their
positioning commands via a ±10 volt signal.

NOTE: If a drive is attached at the time you issue the AXSDEF command, the drive must be
disabled (DRIVE0).

 Make your drive type
selection before configuring
other parameters that are
relative to the drive type.

The value of AXSDEF disables command fields that are not appropriate for that type of drive.
For example, an axis configured as a stepper cannot be affected by a Servo Proportional Gain
(SGP) command. The report back of non-applicable commands contains “-” in the field for
that axis.

AXSDEF0 — Stepper Only Commands:
DRES FMAXA
ENCCNT FMAXV
ESDB PULSE
ESK
ESTALL

AXSDEF1 — Servo Only Commands:
ANIFB DSTALL KDRIVE PER
SFB SGP SGI SGV
SGVF SGAF SGILIM SOFFS
SMPER SGSET SGENB STRGTD
STRGTE STRGTT STRGTV TFB
TGAIN TPER TSGSET TSTLT

Drive Fault Input
Enable the Drive
Fault Input

Use the DRFEN command to enable or disable checking the state of the drive fault input for
each axis. The default condition is that the drive fault input is not checked (DRFEN0); therefore,
a drive fault would not be detectable. Even with DRFEN enabled (DRFEN1), the controller will
not respond to a drive fault condition until the respective axis is enabled with the DRIVE1
command. The drive fault input must be enabled (DRFEN1) before you can use these functions
(remember that the default power-up state is disabled):

• AS, TAS, and TASF (axis status) bit 14 reports if a drive fault occurred.
• ERROR bit 4 enables checking for the occurrence of a drive fault, and when is does, to

branch to the ERRORP program.
• ER, TER, and TERF (error status) bit 4 reports if a drive fault occurred (if ERROR bit 4 is

enabled).
• An output assigned the “Fault Indicator” function (OUTFNCi-F) will turn on when a

drive fault occurs or a user fault input (INFNCi-F or LIMFNCi-F) is activated.

Regardless of the state of the DRFEN command, the extended axis status bit 4 (reported with
ASX, TASX, and TASXF) will accurately report the hardware state of the drive fault input.

Set the Drive Fault
Input Active Level

The drive fault level (DRFLVL) should be set to “active high” or “active low” for each axis.
The default setting is “active high” (DRFLVL1). The drive fault input schematic is shown in
your 6K Series product installation guide. Use the table below as a guide.

Compumotor Product Drive Fault Level

GEMINI, APEX, Dynaserv, LN, OEM Series, S, TQ, ZETAActive High (DRFLVL1)
SV, BLH, L, LE, PDS, PK130 ..Active Low (DRFLVLØ)

NOTE: If you are using a drive that does not have a drive fault output, set the drive fault
level to active low (DRFLVLØ).

NOTE
Once the drive fault level has been configured, you must enable the drive fault input with the
DRFEN1 command before the input is usable.

 Chapter 3. Basic Operation Setup 47

Checking Drive Fault Input Status (see table below): Axis status bit 14 (TASF, TAS or AS
commands) indicates the drive fault input status, but only while the drive is enabled
(DRIVE1) and the drive fault input is enabled (DRFEN1). If you need to monitor the drive
fault input status regardless of the state of DRIVE and DRFEN, use the extended axis status bit
4 (TASXF, TASX, or ASX commands).

Drive Fault Level
(DRFLVL)

Status of device
driving the Fault input

Axis Status of Bit 14 (or)
Extended Axis Status Bit 4

DRFLVL1 (active high)

OFF or not connected (not sinking current)
ON (sinking current)

1 (drive fault has occurred)
Ø

DRFLVLØ (active low)

OFF or not connected (not sinking current)
ON (sinking current)

Ø
1 (drive fault has occurred)

When a drive fault occurs, motion will be stopped on all axes (stopped at the LHAD & LHADA
deceleration values) and program execution will be terminated.

Drive Stall Detection (stepper axes only)
The DSTALL command determines if the Stall Input on pin 4 of the DRIVE connector will be
checked as Drive Stall indicator.

The state of the Stall Input can be monitored at all times with Extended Axis Status bit 7
(reported with TASX, TASF, and the ASX assignment/comparison operand); if left unconnected,
the input is low, and status bit 7 will be set (reports a “1”). If this input is enabled as a drive
stall indicator with the DSTALL1 command, a low input will be interpreted as a Drive Stall.

When a Drive Stall is detected, the 6K responds as follows: (this response is the same as that
for Encoder Stall Detection, which is enabled with the ESTALL command)

• The stall is reported with Axis Status bit 12 (reported with TAS, TASF, and AS).
• If ERROR error-checking bit 1 is enabled (ERROR.1-1):

 - The stall is reported with Error Status bit 1 (reported with TER, TERF, and ER).
 - The 6K branches to the assigned ERRORP program.

• If the Kill-on-Stall feature is enabled (ESK1), the 6K immediately stops pulses from
being sent to the affected axis.

Drive Resolution (stepper axes only)
The drive resolution controls the number of steps the 6K controller considers as a full
revolution for the motor drive. The controller's resolution is set with the DRES command
(default is 4,000 steps/rev). Refer to the user documentation that accompanied your drive if
you need to change its resolution.

IMPORTANT!

If the controller's resolution (set with the DRES command) does not match the drive's
resolution, the motor will not move according to the programmed distance and velocity.

Step Pulse (stepper axes only)
The step output pulse width can be varied using the PULSE command. The pulse width can be
0.3 µs to 8 µs (default is 0.3 µs). The pulse width is the amount of time the step output signal
is active (see illustration below). The step output pulse width should be configured to meet the
minimum step input pulse width requirement of the motor drive you are using.

48 6K Series Programmer’s Guide

Step -

Step +

Pulse Width

0.4 Volts

4 Volts

0.4 Volts

4 Volts

The pulse width does not vary as the motion profile is executed. The same pulse width is used
during acceleration, constant velocity, and deceleration.

When the pulse width is changed from the default value of 0.3 µs, the maximum velocity
range is reduced. The amount of reduction is directly proportional to the change in pulse
width (see table below).

Pulse Width (PULSE) Setting Actual Pulse Width Maximum Velocity

DEFAULT → 0.3 µs 0.244 µs 2.048 MHz

0.5 µs 0.484 µs 1.024 MHz
1.0 µs 0.976 µs 512 KHz
2.0 µs 1.953 µs 256 KHz
4.0 µs 3.906 µs 128 KHz
8.0 µs 7.812 µs 64 KHz

Disable Drive On Kill (servo axes only)
Normally, when you issue a Kill command (K, !K, or <ctrl>K) or activate an input
configured as a kill input (see INFNCi-C or LIMFNCi-C command), motion is stopped at
the hard limit (LHAD/LHADA) deceleration setting and the drives are left in the enabled state
(DRIVE1).

However, your application can require you to disable (shut down or de-energize) the drives in
a Kill situation to, for example, prevent damage to the motors or other system mechanical
components. If so, set the controller to the Disable Drive on Kill mode with the KDRIVE1
command. In this mode, a kill command or kill input will shut down the drives immediately,
letting the motors free wheel (without control from the drives) to a stop.

Scaling

Units of Measure without Scaling
Scaling is disabled (SCALEØ) as the factory default condition:

• Stepper axes: When scaling is disabled, all distance values entered are in commanded
counts (sometimes referred to as motor steps), and all acceleration, deceleration and
velocity values entered are internally multiplied by the DRES command value.

• Servo axes: Units of Measure (per feedback source)
Motion Attribute Encoder ANI

 Accel/Decel Revs/sec/sec * volts/sec/sec
 Velocity Revs/sec * volts/sec
 Distance Counts (steps) ** Counts (steps) **

* All accel/decel & velocity values are multiplied by the ERES value.
** Distance is measured in the counts received from the feedback device.

Contouring & Linear Interpolated Motion: Path acceleration, velocity, and distance are based
on the resolution (DRES for steppers, ERES for servos) of axis 1. If multi-tasking is used, path
motion units are based on the resolution of the first (lowest number) axis associated with the
task (TSKAX).

 Chapter 3. Basic Operation Setup 49

What is Scaling?
Scaling allows you to program acceleration, deceleration, velocity, and position values in
units of measure that are appropriate for your application. The SCALE command is used to
enable or disable scaling (SCALE1 to enable, SCALEØ to disable). The motion type(s) you are
using in your application determines which scale factor commands you need to configure:

Type of Motion

Accel/Decel
Scaling

Velocity
Scaling

Distance
Scaling

Standard Point-to-Point Motion SCLA SCLV SCLD

Following SCLA SCLV SCLD for follower distances
SCLMAS for master distances

Contouring, Linear Interpolation SCLD (used for all path motion scaling)

When Should I Define Scaling Factors?

NOTE
All scaling parameters
are saved in battery-
backed RAM

Scaling calculations are performed when a program is defined or downloaded. Consequently,
you must enable scaling (SCALE1) and define the scaling factors (SCLD, SCLA, SCLV,
SCLMAS) prior to defining (DEF), uploading (TPROG), or running (RUN) the program.

RECOMMENDATION: Place the scaling commands at the beginning of your program file,
before the location of any defined programs. This ensures that the motion parameters in
subsequent programs in your program file are scaled correctly. When you use Motion Planner’s
Setup Generator wizard, the scaling commands are automatically placed in the appropriate
location in your program file.

ALTERNATIVE: Scaling factors could be defined via a terminal emulator just before
defining or downloading a program. Because scaling command values are saved in battery-
backed RAM (remembered after you cycle power or issue a RESET command), all subsequent
program definitions and downloads will be scaled correctly.

NOTES
• Scaling commands are not allowed in a program. If there are scaling commands in a

program, the controller will report an error message (“COMMAND NOT ALLOWED IN
PROGRAM”) when the program is downloaded.

• If you intend to upload a program with scaled motion parameters, be sure to use
Motion Planner. Motion Planner automatically uploads the scaling parameters and
places them at the beginning of the program file containing the uploaded program from
the controller. This ensures correct scaling when the program file is later downloaded.

Servo Axes
Scaling can be used with encoder or analog input feedback sources. When the scaling
commands (SCLA, SCLD, etc.) are executed, they are specific only to the current
feedback source selected with the last SFB command.
If your application requires switching between feedback sources for the same axis, then
for each feedback source, you must select the feedback source with the appropriate SFB
command and issue the scaling factors specific to operating with that feedback source.
For example, if you have two axes and will be switching between encoder and ANI
feedback, you should include code similar to the following in your setup program:
 SFB1,1 ; Select encoder feedback (subsequent scaling
 ; parameters are specific to encoder feedback)
 SCLA4000,4000 ; Program accel/decel in revs/sec/sec
 SCLV4000,4000 ; Program velocity in revs/sec
 SCLD4000,4000 ; Program distances in revs
 SFB2,2 ; Select ANI feedback (subsequent scaling
 ; parameters are specific to ANI feedback)
 SCLA205,205 ; Program accel/decel in volts/sec/sec
 SCLV205,205 ; Program velocity in volts/sec
 SCLD205,205 ; Program distances in volts

50 6K Series Programmer’s Guide

Acceleration & Deceleration Scaling (SCLA)
Stepper Axes: If scaling is enabled (SCALE1), all accel/decel values entered are internally

multiplied by the acceleration scaling factor to convert user units/sec/sec to
commanded counts/sec/sec. The scaled values are always in reference in
commanded counts, regardless of the existence of an encoder.

Servo Axes: If scaling is enabled (SCALE1), all accel/decel values entered are internally
multiplied by the acceleration scaling factor to convert user units/sec/sec to
encoder or analog input counts/sec/sec.

All accel/decel commands for point-to-point motion (e.g., A, AA, AD, HOMA, HOMAD, JOGA,
etc.) are multiplied by the SCLA command value. NOTE: All accel/decel commands for
linear interpolated and contouring motion (e.g., PA, PAD, etc.) are multiplied by the SCLD
command value.

SCLA value
(steps/unit2)

Decimal
 Places

As the accel/decel scaling factor (SCLA) changes, the
resolution of the accel and decel values and the
number of positions to the right of the decimal point
also change (see table at right). An accel/decel value
with greater resolution than allowed will be truncated
(e.g., if scaling is set to SCLA10, the A9.9999
command would be truncated to A9.9).

1 - 9
10 - 99
100 - 999
1000 - 9999
10000 - 99999
100000 - 999999

 0
 1
 2
 3
 4
 5

Use the following equations to determine the range of acceleration and deceleration values for
your product.

Axis Type Minimum Accel or Decel (resolution) Maximum Accel or Decel
Stepper

SCLA
DRES 0.001∗

SCLA
DRES 999.9999∗

Servo
Encoder feedback:

SCLA
ERES 0.001∗

ANI feedback:
SCLA
0.205

Encoder feedback:
SCLA

ERES 999.9999∗

ANI feedback:
SCLA

5204799.979

Velocity Scaling (SCLV)
Stepper Axes: If scaling is enabled (SCALE1), all velocity values entered are internally

multiplied by the velocity scaling factor to convert user units/sec to
commanded counts/sec. The scaled values are always in reference to
commanded counts (sometimes referred to as “motor steps”).

Servo Axes: If scaling is enabled (SCALE1), all velocity values entered are internally
multiplied by the velocity scaling factor to convert user units/sec to encoder or
analog input counts/sec.

All velocity commands for point-to-point motion (e.g., V, HOMV, HOMVF, JOGVH, JOGVL,
etc.) are multiplied by the SCLV command value. NOTE: The velocity commands for linear
interpolated and contouring motion (PV and PVF) are multiplied by the SCLD command value.

As the velocity scaling factor (SCLV) changes, the velocity command's range and its decimal
places also change (see table below). A velocity value with greater resolution than allowed
will be truncated. For example, if scaling is set to SCLV10, the V9.9999 command would
be truncated to V9.9.

If the analog input
voltage range is
changed, the
equations will
change. See ANIRNG
command for details.

 Chapter 3. Basic Operation Setup 51

SCLV Value
(counts/unit)

Velocity Resolution
(units/sec)

Decimal Places

1 - 9
10 - 99
100 - 999
1000 - 9999
10000 - 99999
100000 - 999999

1
0.1
0.01
0.001
0.0001
0.00001

0
1
2
3
4
5

Use the following equations to determine the maximum velocity range for your product type.

Maximum Velocity for Stepper Axes

Maximum Velocity for Servo Axes
(determined by feedback source selected for axis 1)

SCLV
6,5000,000

n = maximum velocity as set
by the PULSE command. Encoder Feedback:

SCLV

6,5000,000

ANI Feedback:
SCLV

205 1000 ∗

Distance Scaling (SCLD and SCLMAS)
Stepper Axes: If scaling is enabled (SCALE1), all distance values entered are internally

multiplied by the distance scaling factor to convert user units to commanded
counts (“motor steps”).

Servo Axes: If scaling is enabled (SCALE1), all distance values entered are internally
multiplied by the distance scaling factor to convert user units to encoder or
analog input counts.

All distance commands for point-to-point motion (e.g., D, PSET, REG, SMPER) are multiplied
by the SCLD command value. NOTE: Distance, accel/decel, and velocity commands for
contouring and linear interpolated motion (e.g., PARCM, PARCOM, PARCOP, PARCP, PLC,
PLIN, PRTOL, PWC, PV, PVF, PA, PAD, PAA, PADA) are also multiplied by the SCLD
command value.

Scaling for Following Motion: The SCLD command defines the follower’s distance scale factor,
and the SCLMAS command defines the master's distance scale factor. The Following-related
commands that are affected by SCLD and SCLMAS are listed in the table below.
 Commands Affected by Master Scaling (SCLMAS) Commands Affected by Follower Scaling (SCLD)
 FMCLEN: Master Cycle Length

FMCP: Master Cycle Position Offset
FOLMD: Master Distance
FOLRD: Follower-to-Master Ratio (Denominator)
GOWHEN: Conditional GO (left-hand variable is PMAS)
TPMAS & [PMAS]: Position of Master Axis
TVMAS & [VMAS]: Velocity of Master Axis

FOLRN: Follower-to-Master Ratio (Numerator)
FSHFD: Preset Phase Shift
GOWHEN: Conditional GO (left-hand variable ≠ PMAS)
TPSHF & [PSHF]: Net Position Shift of Follower
TPSLV & [PSLV]: Position of Follower Axis

Scaling for Contouring Motion: All distance, accel/decel, and velocity is scaled by the SCLD
value.

As the SCLD or SCLMAS scaling factor changes, the distance command's range and its
decimal places also change (see table below). A distance value with greater resolution than
allowed will be truncated. For example, if scaling is set to SCLD400, the D105.2776
command would be truncated to D105.277.
SCLD or SCLMAS Value
(counts/unit)

Distance Resolution
(units)

Distance Range
(units)

Decimal
Places

1 - 9 1.0 0 - ±999999999 0
10 - 99 0.10 0.0 - ±99999999.9 1
100 - 999 0.010 0.00 - ±9999999.99 2
1000 - 9999 0.0010 0.000 - ±999999.999 3
10000 - 99999 0.00010 0.0000 - ±99999.9999 4
100000 - 999999 0.00001 0.00000 - ±9999.99999 5

Fractional Step Truncation

If you are operating in the
incremental mode (MAØ), or
specifying master distance
values with FOLMD, when the
distance scaling factor (SCLD or
SCLMAS) and the distance value
are multiplied, a fraction of one
step may be left over. This
fraction is truncated when the
distance value is used in the
move algorithm. This truncation
error can accumulate over a
period of time, when performing
incremental moves continuously
in the same direction. To
eliminate this truncation
problem, set SCLD or SCLMAS to
1, or a multiple of 10.

Equation changes if ANI
voltage range is changed
(see ANIRNG command).

52 6K Series Programmer’s Guide

Scaling Example —
Stepper Axes

Axis 1 and axis 2 control 25,000 step/rev motor/drives attached to 5-pitch leadscrews. The user wants to
program motion parameters in inches; therefore the scale factor calculation is: 25,000 steps/rev x 5
revs/inch = 125,000 steps/inch. For instance, with a scale factor of 125,000, the operator could enter a
move distance value of 2.000 and the controller would send out 250,000 pulses, corresponding to two
inches of travel.
SCALE1 ; Enable scaling
DRES25000,25000 ; Set drive resolution to 25,000 steps/rev on both axes
SCLD125000,125000 ; Allow entering distance in inches (both axes)
SCLV125000,125000 ; Allow entering velocity in inches/sec (both axes)
SCLA125000,125000 ; Allow entering accel/decel in inches/sec/sec

Scaling Example —
Servo Axes

Axis 1 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder) attached to a 5-
pitch leadscrew. The user wants to position in inches; therefore, the scale factor calculation is 4,000
counts/rev x 5 revs/inch = 20,000 counts/inch. Half way through the motion process, axis 1 must switch
to ANI feedback for the purpose of positioning to a voltage (scale factor is 205 counts/volt).

Axis 2 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder) attached to a 10-
pitch leadscrew. The user wants to position in inches (scale factor calculation: 4,000 counts/rev x 10
revs/inch = 40,000 counts/inch).
SFB1,1 ; Select encoder feedback for both axes
ERES4000 ; Set encoder resolution to 4000 steps/rev (post quadrature)
SCALE1 ; Enable scaling
SCLD20000,40000 ; Allow entering distance values in inches
SCLV20000,40000 ; Allow entering velocity values in inches/sec
SCLA20000,40000 ; Allow entering accel/decel values in inches/sec/sec
SFB2 ; Select ANI feedback for axis 1
SCALE1 ; Enable scaling
SCLD205 ; Allow entering distance values in volts
SCLV205 ; Allow entering velocity values in volts/sec
SCLA205 ; Allow entering accel/decel values in volts/sec/sec
SFB1,1 ; Select encoder feedback for both axes (prepare for motion)

Scaling Example —
Following

Typically, the master and follower scale factors are programmed so that master and follower units are the
same, but this is not required. Consider the scenario below as an example.

The master is a 1000-line encoder (4000 counts/rev post-quadrature) mounted to a 50 teeth/rev pulley
attached to a 10 teeth/inch conveyor belt, resulting in 80 counts/tooth (4000 counts/50 teeth = 80
counts/tooth). To program in inches, you would set up the master scaling factor with the SCLMAS800
command (80 counts/tooth ∗ 10 teeth/inch = 800 counts/inch).
The follower axis is a servo motor with position feedback from a 1000-line encoder (4000 counts/rev).
The motor is mounted to a 4-pitch (4 revs/inch) leadscrew. Thus, to program in inches, you would set
up the follower scaling factor with the SCLD16000 command (4000 counts/rev ∗ 4 revs/inch = 16000
counts/inch).
SCALE1 ; Enable scaling
SCLMAS800 ; Master scaling:
 ; (80 counts/tooth * 10 teeth/inch = 800 counts/inch)
SCLD16000 ; Follower scaling:

; (4000 counts/rev  4 revs/inch = 16000 counts/inch)
Scaling Example —
Contouring and
Linear Interpolation

This simple example uses 2 servo axes (axes 1 and 2) for contouring. Both axes use encoder feedback
with a resolution (ERES) of 4000 counts/rev, axis 1 uses a 10-pitch (10 revs per inch) leadscrew and axis
2 uses a 5-pitch (5 revs per inch) lead screw, and you want to program in inches. For this application you
would use the SCLD40000,20000 command to establish path motion units in inches: distance is
inches, acceleration is inches/sec/sec, and velocity is inches/sec. NOTE that all path motion attributes are
scaled by the SCLD value.
SCALE1 ; Enable scaling
SCLD40000,20000 ; Set scaling to program in inches:
 ; Axis 1: 4000 counts/rev * 10 revs/inch = 40000 counts/inch
 ; Axis 2: 4000 counts/rev * 5 revs/inch = 20000 counts/inch
PV5 ; Set path velocity to 5 inches/sec
PA50 ; Set path acceleration to 50 inches/sec/sec
PAD100 ; Set path deceleration to 100 inches/sec/sec
DEF prog1 ; Begin definition of path named prog1
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PAB0 ; Set to incremental coordinates
PLIN1,1 ; Specify X-Y endpoint position to create a 45 degree
 ; angle line segment
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

 Chapter 3. Basic Operation Setup 53

Positioning Modes

But first, a word about basic motion…
Accel, Decel,
Velocity, Distance

The basic motion profile comprises acceleration, deceleration, velocity, and distance
commands (see table below). Motion is generally initiated with the GO command.

Parameter Units (Unscaled), Stepper Units (Unscaled), Servo Unit Scaling Command *

Acceleration revs/sec2 encoder/resolver: revs/sec2
ANI: volts/sec2

SCLA (or SCLD **)

Deceleration revs/sec2 encoder/resolver: revs/sec2
ANI: volts/sec2

SCLA (or SCLD **)

Velocity revs/sec encoder/resolver: revs/sec
ANI: volts/sec

SCLV (or SCLD **)

Distance steps counts SCLD ***

* Scaling must first be enabled with the SCALE1 command. For details on scaling, refer to page 48.
** All Contouring and linear interpolated motion is scaled with SCLD (distance, accel/decel, and velocity).
*** An axis assigned as a master (for Following) is scaled by the SCLMAS command.

Example Program

Resulting Motion Profile:
Velocity

Distance

V8

A20 A5

D100000

The program below controls two axes of motion. Axis 1 produces a preset (incremental)
100,000-count move in a nominally trapezoidal profile. Axis 2 produces a preset 80,000-
count move in a nominally trapezoidal profile.

DEL BASIC ; Delete program called BASIC
DEF BASIC ; Begin definition of program called BASIC
MC00 ; Use the preset positioning mode for axes 1 & 2
MA00 ; Use the incremental (preset) positioning mode
A20,10 ; Accelerate axis 1 at 20 revs/sec/sec, and axis 2 at 10
AD5,5 ; Decelerate axis 1 and axis 2 at 5 revs/sec/sec
V8,5 ; Set axis 1 velocity to 8 revs/sec, and axis 2 to 5
D100000,80000 ; Set distance to 100,000 counts
GO11 ; Execute the motion on both axes
END ; End definition of BASIC

Axis 1 profile: Axis 2 profile:

Velocity

Distance

V8

A20 AD5

D100000

Velocity

Distance

A10 AD5

D80000

V5

Direction of Motion
for Rotary Motors

Positive distance values (e.g., D20000) represent clockwise
motion, negative values (e.g., D-20000) represent counter-
clockwise motion. This assumes you connected the drive
and motor (and feedback device for servo drives) according
to the Hardware Installation Guide instructions. ���
���%
	�
&'���

�
�����(��
��
���

�	�
&'���

�������(��
��
���

54 6K Series Programmer’s Guide

Preset and Continuous Modes
The 6K controller can be programmed to position in either the preset (incremental or absolute)
mode or the continuous mode. You should select the mode that will be most convenient for
your application. For example, a repetitive cut-to-length application requires incremental
positioning. X-Y positioning, on the other hand, is better served in the absolute mode.
Continuous mode is useful for applications that require constant movement of the load based
on internal conditions or inputs, not distance.

 Positioning modes require acceleration, deceleration, velocity, and distance commands
(continuous mode does not require distance). The table below identifies these commands and
their units of measure, and which scaling command affects them.

Parameter Units (Unscaled), Stepper Units (Unscaled), Servo Unit Scaling Command *

Acceleration revs/sec2 encoder/resolver: revs/sec2
ANI: volts/sec2

SCLA (or SCLD **)

Deceleration revs/sec2 encoder/resolver: revs/sec2
ANI: volts/sec2

SCLA (or SCLD **)

Velocity revs/sec encoder/resolver: revs/sec
ANI: volts/sec

SCLV (or SCLD **)

Distance steps counts SCLD ***

* Scaling must first be enabled with the SCALE1 command. For details on scaling, see page 48.
** All Contouring and linear interpolated motion is scaled with SCLD (distance, accel/decel, and velocity).
*** An axis assigned as a master (for Following) is scaled by the SCLMAS command.

On-The-Fly (Pre-emptive Go) Motion Profiling
While motion is in progress (regardless of the positioning mode), you can change these
motion parameters to affect a new profile:

 • Acceleration (A) — s-curve acceleration not allowed during on-the-fly changes
• Deceleration (AD) — s-curve deceleration not allowed during on-the-fly changes
• Velocity (V)
• Distance (D)
• Preset or Continuous Positioning Mode Selection (MC)
• Incremental or Absolute Positioning Mode Selection (MA)
• Following Ratio Numerator and Denominator (FOLRN and FOLRD, respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D,
MC, etc.) followed by the GO command. If the continuous command execution mode is
enabled (COMEXC1), you can execute buffered commands; otherwise, you must prefix each
command with an immediate command identifier (e.g., !A, !V, !D, !MC, etc., followed by
!GO). The new GO command pre-empts the motion profile in progress with a new profile
based on the new motion parameter(s).

For more information, see On-The-Fly Motion Profiling on page 151.

 Chapter 3. Basic Operation Setup 55

Preset Positioning Mode
A preset move is a point-to-point move of a specified distance. You can select preset moves by
putting the 6K controller into preset mode (canceling continuous mode) using the MCØ
command. Preset moves allow you to position the motor/load in relation to the previous stopped
position (incremental mode—enabled with the MAØ command) or in relation to a defined zero
reference position (absolute mode—enabled with the MA1 command).

Incremental Mode
Moves

The incremental mode is the controller's default power-up mode. When using the Incremental
Mode (MAØ), a preset move moves the motor/load the specified distance from its starting
position. For example, if you start at position N, executing the D6ØØØ command in the MAØ
mode will move the motor/load 6,000 units from the N position. Executing the D6ØØØ
command again will move the motor/load an additional 6,000 units, ending the move 12,000
units from position N.

You can specify the direction of the move by using the optional sign + or - (e.g., D+6ØØØ or
D-6ØØØ). Whenever you do not specify the direction (e.g., D6ØØØ), the unit defaults to the
positive (+) direction.

Example SCALE0 ; Disable scaling
MA0 ; Set axis 1 to Incremental Position Mode
A2 ; Set axis 1 acceleration to 2 units/sec/sec
V5 ; Set axis 1 velocity to 5 units/sec
D4000 ; Set axis 1 distance to 4,000 positive units
GO1 ; Initiate motion on axis 1 (move 4,000 positive units)
GO1 ; Repeat the move
D-8000 ; Set distance to 8,000 negative units
 ; (return to original position)
GO1 ; Initiate motion on axis 1 (move 8,000 units in the negative
 ; direction and end at its original starting position)

Absolute Mode
Moves

A preset move in the Absolute Mode (MA1) moves the motor/load the distance that you specify
from the absolute zero position.

Establishing a Zero Position
One way to establish the zero position is to issue the PSET command when the load is at the
location you would like to reference as absolute position zero (e.g., PSETØ,Ø defines the current
position as absolute position zero for axes 1 and 2). Stepper axes with encoder feedback can use
the PESET command set the absolute encoder position in ENCCNT1 mode.

The zero position is also established when the Go Home (HOM) command is issued, the absolute
position register is automatically set to zero after reaching the home position, thus designating the
home position as position zero.

The direction of an absolute preset move depends upon the motor's/load's position at the
beginning of the move and the position you command it to move to. For example, if the
motor/load is at absolute position +12,500, and you instruct it to move to position +5,000
(e.g., with the D5ØØØ command), it will move in the negative direction a distance of 7,500
steps to reach the absolute position of +5,000.

The 6K controller retains the absolute position, even while the unit is in the incremental mode.
To ascertain the absolute position, use the TPC and PC commands.

Example SCALE0 ; Disable scaling
MA1 ; Set the controller to the absolute positioning mode
PSET0 ; Set axis 1 current absolute position to zero
A5 ; Set axis 1 acceleration to 5 units/sec/sec
V3 ; Set axis 1 velocity to 3 units/sec
D4000 ; Set axis 1 move to absolute position 4,000 units
GO1 ; Initiate axis 1 move (move to absolute position +4,000)
D8000 ; Set axis 1 move to absolute position +8,000
GO1 ; Initiate axis 1 move (starting from position +4,000, move 4,000
 ; additional units in the positive direction to position +8,000)
D0 ; Set axis 1 move to absolute position zero
GO1 ; Initiate axis 1 move (starting at absolute position +8,000,
 ; move 8,000 units in the negative direction to position zero)

56 6K Series Programmer’s Guide

Continuous Positioning Mode
The Continuous Mode (MC1) is useful in these situations:

• Applications that require constant movement of the load
• Synchronize the motor to external events such as trigger input signals
• Changing the motion profile after a specified distance or after a specified time period

(T command) has elapsed

You can manipulate the motor movement with either buffered or immediate commands. After
you issue the GO command, buffered commands are not executed unless the continuous
command execution mode (COMEXC1 command) is enabled. Once COMEXC1 is enabled,
buffered commands are executed in the order in which they were programmed. More
information on the COMEXC mode is provided on page 15.

The command can be specified as immediate by placing an exclamation mark (!) in front of
the command. When a command is specified as immediate, it is placed at the front of the
command queue and is executed immediately.

Example A COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Allow command execution to continue after stop
MC1 ; Sets axis 1 mode to continuous
A10 ; Sets axis 1 acceleration to 10
V1 ; Sets axis 1 velocity to 1
GO1 ; Initiates axis 1 move (Go)
WAIT(1VEL=1) ; Wait to reach continuous velocity
T5 ; Time delay of 5 seconds
S1 ; Initiate stop of axis 1 move
WAIT(MOV=b0) ; Wait for motion to completely stop on axis 1
COMEXC0 ; Disable continuous command processing mode
; When the move is executed, the load will accelerate to 1 unit/sec,
; continue at that rate for 5 seconds, and then decelerate to a stop.

Example B DEF prog1 ; Begin definition of program prog1
COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Allow command execution to continue after stop
MC1 ; Set axis 1 to continuous positioning mode
A10 ; Set axis 1 acceleration to 10
V1 ; Set axis 1 velocity to 1
GO1 ; Initiate axis 1 move (Go)
WAIT(1VEL=1) ; Wait for motor to reach continuous velocity
T3 ; Time delay of 3 seconds
A50 ; Set axis 1 acceleration to 50
V10 ; Set axis 1 velocity to 10
GO1 ; Initiate acceleration and velocity changes on axis 1
T5 ; Time delay of 5 seconds
S1 ; Initiate stop of axis 1 move
WAIT(MOV=b0) ; Wait for motion to completely stop on axis 1
COMEXC0 ; Disable continuous command processing mode
END ; End definition of program prog1

While in continuous mode, motion can be stopped if:
• You issue an immediate Stop (!S) or Kill (!K or ctrl/K) command.
• The load trips an end-of-travel limit switch or encounters a software end-of-travel limit.
• The load trips a registration input (a trigger input configured with the INFNCi-H

command to function as a registration input).
• The load trips an input configured as a kill input (INFNCi-C or LIMFNCi-C) or a

stop input (INFNCi-D or LIMFNCi-D).

NOTE
While the axis is moving, you cannot change the parameters of some commands (such as DRIVE
and HOM). This rule applies during the COMEXC1 mode and even if you prefix the command with an
immediate command identifier (!). For more information, see Restricted Commands During Motion
on page 17.

 Chapter 3. Basic Operation Setup 57

End-of-Travel Limits

Related Commands

LHHard limit enable
LHADHard limit decel
LHADAHard limit decel (s)
LIMLVLLimit switch polarity
LSSoft limit enable
LSADSoft limit decel
LSADASoft limit decel (s)
LSNEGSoft limit (negative)
LSPOSSoft limit (positive)
TLIMHard limit status
TASFBits 15-18 indicate if
..................hard or soft limit
..................was encountered
TERFBit 2: hard limit hit
..................Bit 3: soft limit hit
..................(must enable ERROR
..................checking bits 2 & 3)
ERRORBit 2 or 3 is enabled,
..................the 6K will branch to
..................the ERRORP program
..................if a hard or soft limit
..................is encountered

The 6K controller can respond to both hardware and software end-of-travel limits. The purpose
of hardware and software end-of-travel limits is to prevent the motor’s load from traveling past
defined limits. Software and hardware limits are typically positioned in such a way that when
the software limit is reached, the motor/load will start to decelerate toward the hardware limit,
thus allowing for a much smoother stop at the hardware limit. Software limits can be used
regardless of incremental or absolute positioning. When a hardware or software end-of-travel
limit is reached, the 6K controller stops that axis using the respective hardware deceleration
rate (set with LHAD & LHADA) or software limit deceleration rate (set with LSAD & LSADA).

How to set up hardware end-of-travel limits (for each axis):

1. Connect the end-of-travel limit inputs according to the instructions in your 6K product’s
Installation Guide. To help assure safety, connect normally-closed switches and leave
the active level at default “active low” setting (set with the LIMLVL command).

2. (Optional) Define the inputs to be used as end-of-travel inputs for the respective axes.
NOTE: When the 6K product is shipped from the factory, the inputs on the
“LIMITS/HOME” connectors are factory-configured with the LIMFNC command to
function as end-of-travel and home limits for their respective axes. If you intend to use
digital inputs on an external I/O brick as limit inputs:

 a. Assign the limit function to the external input with the INFNC command.
 For example, 1INFNC9-1R assigns the “axis 1 positive end-of-travel limit”
 function to the 1st input on SIM2 (I/O point 9) of I/O brick 1.

 b. Reassign the respective “LIMITS/HOME” input to a non-limit function with the
 LIMFNC command. For example, LIMFNC1-A assigns the “general-purpose
 input” function to limit input 1 (normally assigned the “axis 1 positive end-of-
 travel limit” function).

3. Set the hard limit deceleration rate (LHAD & LHADA) to be used when the limit switch
is activated. The LHADA command allows you to define an s-curve deceleration.
Stepper Axes: If your system is moving heavy loads or operating at high velocities, you
can need to decrease the LHAD command value (deceleration rate) to prevent the motor
from stalling (GEMINI and ZETA drives can compensate without reducing decel).

NOTES ON HARDWARE LIMITS
• 6K controllers are shipped from the factory with the hardware end-of-travel limits

enabled, but not connected. Therefore, motion will not be allowed until you do
one of the following:

 - Install limit switches or jumper the end-of-travel limit terminals to the GND terminal
(see your product's Installation Guide for wiring instructions).

 - Disable the limits with the LH command (recommended only if the load is not
coupled).

 - Reverse the active level of the limits by executing the LIMLVL0 command for the
respective axis.

• If you reverse the commanded direction polarity (CMDDIR1), you should swap the
hardware end-of-travel switch connections to maintain a positive correlation with the
commanded direction.

58 6K Series Programmer’s Guide

How to set up software end-of-travel limits (for each axis):

1. Use the LS command to enable the software end-of-travel limits for the appropriate
axes (for example, LS1111 enables software limits for axes 1-4).

2. Define the positive-direction limit with the LSPOS command, and define the negative-
direction limit with the LSNEG command. If you have scaling enabled (SCALE1), these
limit values are scaled by the SCLD command. Both software limits can be defined
with positive values (e.g., axis 2 in the example below)

NOTES ON SOFTWARE LIMITS
• The software limits (LSPOS & LSNEG) are referenced from a position of absolute

zero. or negative values. Care must be taken when performing incremental moves
because the software limits are always defined in absolute terms. They must be
large enough to accommodate the moves, or a new zero reference position must be
defined (using the PSET command) before each move.

• To ensure proper motion when using soft end-of-travel limits, be sure to set the
LSPOS value to an absolute value greater than the LSNEG value.

Programming
Example

In this sample of code (not a complete program), the hardware and software limits are enabled
on axes 1 and 2, and disabled on axes 3 and 4. The distance scaling command (SCLD) is used
to define software limit locations in revolutions from the absolute zero position (assumes a
4000 step/rev resolution). Deceleration rates are specified for both software and hardware
limits. If a limit is encountered, the motors will decelerate to a stop.
; ***
; These scaling setup commands are downloaded before the
; limit setup commands are executed:
SCALE1 ; Enable scaling
@SCLD4000 ; Program soft limit distance in revs (all axes)
@SCLA4000 ; Program soft limit accel/decel in revs/sec/sec (all axes)
@ERES4000 ; Set encoder resolution to 4000 steps/rev (all axes)
; ***
LH3,3,0,0 ; Enable limits 1 and 2, disable limits 3 and 4
LHAD10,10 ; Set hard limit deceleration
LSAD5,10 ; Set soft limit deceleration
LSNEG0,2 ; Set negative direction soft limit

; (axis 1: 0 revs; axis2: 2 revs)
LSPOS10,20 ; Establish positive soft limit

; (axis 1: 10 revs; axis 1: 20 revs)
LS3,3,0,0 ; Enable soft limits 1 and 2, disable limits 3 and 4

 Chapter 3. Basic Operation Setup 59

Homing (Using the Home Inputs)

Refer to the product's
Installation Guide for
instructions to wire
hardware home limit
switches.

The homing operation is a sequence of moves that position an axis using the Home Limit input
and/or the Z Channel input of an incremental encoder. The goal of the homing operation is to
return the load to a repeatable initial starting location.

Zero Reference After Homing: As soon as the homing operation is successfully completed,
the absolute position register is reset to zero, thus establishing a zero reference position (for
servo axes using analog input feedback, this applies also to the voltage register).

The homing operation has several potential homing functions you can customize to suit the
needs of your application (illustrations of the effects of these commands are presented below):

Command Homing Function (see respective command descriptions for further details) Default
HOMInitiate the homing move. To start the homing move in the positive

direction, use HOMØ; to home in the negative direction, use HOM1.
HOMx
(do not home)

HOMAAcceleration while homing. HOMA1Ø
(10 units/sec2)

HOMAA...........S-curve acceleration while homing. HOMAA10
(10 units/sec2)

HOMAD...........Deceleration while homing. HOMAD10
(10 units/sec2)

HOMADA.........S-curve deceleration while homing. HOMADA10
(10 units/sec2)

HOMBAC.........Back up to home. The load will decelerate to a stop after encountering
the active edge of the home region, and then will move in the opposite
direction at the HOMVF velocity until the active edge of the home region
is encountered. Allows the use of HOMEDG and HOMDF.

HOMBAC0
(function disabled)

HOMDF...........Final approach direction —during backup to home (HOMBAC) or during
homing to the Z channel input of an incremental encoder (HOMZ).

HOMDF0
(positive direction)

HOMEDG.........Specify the side of the home switch on which to stop (either the
positive-travel side or the negative-travel side).

HOMEGD0
(positive-travel
side of switch)

LIMLVL.........Define the home limit input active level (i.e., the state, high or low,
which is to be considered an activation of the input). To use a normally-
open switch, select active low (LIMLVL0); to use a normally-closed
switch, select active high (LIMLVL1).

LIMLVL0
(active-low, use a
normally-open
switch)

HOMVVelocity while seeking the home position (see also HOMVF). HOMV1
(1 unit/sec)

HOMVF...........Velocity while in final approach to home position—during backup to
home (HOMBAC) or during homing to the Z channel input of an
incremental encoder (HOMZ).

HOMVF.1
(0.1 unit/sec)

HOMZHome to the Z channel input from an incremental encoder. NOTE: The
home limit input must be active prior to homing to the Z channel.

HOMZ0
(function disabled)

NOTES ABOUT HOMING

• Avoid using pause and resume functions during the homing operation. A pause command
(PS or !PS) or pause/continue input (input configured with the INFNCi-E or LIMFNCi-E
command) will pause the homing motion. However, when the subsequent resume
command (C or !C) or pause/continue input occurs, motion will resume at the beginning of
the homing motion sequence.

• Relevance of positive and negative direction:

)�����'��
�
!
��(��*����

+�����(��,���
���

-
�%��%.��(�	�$����

������(��,���
���

-
�%��%.��(�	�$����

+�����(��,���
���

-�������)���

������(��,���
���

-�������)���

• If an end-of-travel limit is encountered during the homing operation, the motion will be

reversed and the home switch will be sought in the opposite direction. If a second limit is
encountered, the homing operation will be terminated, stopping motion at the second limit.

Homing Status:
Status of homing moves
is stored in bit #5 of the
axis status register
(indicates whether or not
the home operation was
successful). To display
the status, use the TASF
command or the TAS
command. To use the
status in a conditional
expression (e.g., for an
IF statement), use the
AS assignment/com-
parison operator.

60 6K Series Programmer’s Guide

Figures A and B show the homing operation when HOMBAC is not enabled. “CW” refers to
the positive direction and “CCW” refers to the negative direction.

Figure A:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in positive

direction (HOM0)
 • Backup To Home disabled

(HOMBAC0)

Figure B:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in negative

direction (HOM1)
 • Backup To Home disabled

(HOMBAC0)

Positive Homing,
Backup to Home
Enabled

The seven steps below describe a sample homing operation when HOMBAC is enabled (see
Figure C). The final approach direction (HOMDF) is CW and the home edge (HOMEDG) is the
CW edge. “CW” refers to the positive direction and “CCW” refers to the negative direction.

NOTE
To better illustrate the direction changes in the backup-to-home operation, the illustrations in
the remainder of this section show the backup-to-home movements with varied velocities. In
reality, the backup-to-home movements are performed at the same velocity (HOMVF value).

Step 1 A CW home move is started with the HOMØ command at the HOMA and HOMAA
accelerations. Default HOMA is 10 revs (or volts or inches) per sec2.

Step 2 The HOMV velocity is reached (move continues at that velocity until home input goes
active).

Step 3 The CCW edge of the home input is detected, this means the home input is active.
At this time the move is decelerated at the HOMAD and HOMADA command values. It
does not matter if the home input becomes inactive during this deceleration.

Step 4 After stopping, the direction is reversed and a second move with a peak velocity
specified by the HOMVF value is started.

Step 5 This move continues until the CCW edge of the home input is reached.
Step 6 Upon reaching the CCW edge, the move is decelerated at the HOMAD and HOMADA

command values, the direction is reversed, and another move is started in the CW
direction at the HOMVF velocity.

Step 7 As soon as the home input CW edge is reached, this last move is immediately
terminated. The load is at home and the absolute position register is reset to zero.

 Chapter 3. Basic Operation Setup 61

Figure C:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in positive

direction (HOM0)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is

positive (HOMDF0)
 • Stop on the positive-travel side

of the home switch active region
(HOMEDG0)

Figures D through F show the homing operation for different values of HOMDF and HOMEDG,
when HOMBAC is enabled. “CW” refers to the positive direction and “CCW” refers to the
negative direction.

Figure D:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in positive

direction (HOM0)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is

positive (HOMDF0)
 • Stop on the negative-travel side

of the home switch active region
(HOMEDG1)

Figure E:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in positive

direction (HOM0)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is

negative (HOMDF1)
 • Stop on the positive-travel side

of the home switch active region
(HOMEDG0)

Figure F:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in positive

direction (HOM0)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is

negative (HOMDF1)
 • Stop on the negative-travel side

of the home switch active region
(HOMEDG1)

62 6K Series Programmer’s Guide

Negative Homing,
Backup to Home
Enabled

Figures G through J show the homing operation for different values of HOMDF and HOMEDG,
when HOMBAC is enabled. “CW” refers to the positive direction and “CCW” refers to the
negative direction.

Figure G:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in negative

direction (HOM1)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is negative

(HOMDF1)
 • Stop on the negative-travel side of

the home switch active region
(HOMEDG1)

Figure H:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in negative

direction (HOM1)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is negative

(HOMDF1)
 • Stop on the positive-travel side of

the home switch active region
(HOMEDG0)

Figure I:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in negative

direction (HOM1)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is positive

(HOMDF0)
 • Stop on the negative-travel side of

the home switch active region
(HOMEDG1)

Figure J:

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Start home move in negative

direction (HOM1)
 • Backup To Home enabled

(HOMBAC1)
 • Final approach direction is positive

(HOMDF0)
 • Stop on the positive-travel side of

the home switch active region
(HOMEDG0)

 Chapter 3. Basic Operation Setup 63

Homing Using
The Z-Channel

Figures K through O show the homing operation when homing to an encoder index pulse, or Z
channel, is enabled (HOMZ1). The Z-channel will only be recognized after the home input is
activated. It is desirable to position the Z channel within the home active region; this reduces
the time required to search for the Z channel. “CW” refers to the positive direction and
“CCW” refers to the negative direction.

Figure K:
1����

�	

!
��(��*����

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Z-Channel homing enabled (HOMZ1)
 • Start home move in negative direction

(HOM1)
 • Backup To Home enabled (HOMBAC1)
 • Final approach direction is negative

(HOMDF1)
 • Stop on the negative-travel side of the

z-channel active region (HOMEDG1)

Figure L:
1����

�	

!
��(��*����

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Z-Channel homing enabled (HOMZ1)
 • Start home move in negative direction

(HOM1)
 • Backup To Home enabled (HOMBAC1)
 • Final approach direction is positive

(HOMDF0)
 • Stop on the positive-travel side of the

z-channel active region (HOMEDG0)

Figure M:
1����

�	

!
��(��*����

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Z-Channel homing enabled (HOMZ1)
 • Start home move in negative direction

(HOM1)
 • Backup To Home enabled (HOMBAC1)
 • Final approach direction is positive

(HOMDF0)
 • Stop on the positive-travel side of the

z-channel active region (HOMEDG0)

Figure N:
1����

�	

!
��(��*����

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Z-Channel homing enabled (HOMZ1)
 • Start home move in positive direction

(HOM0)
 • Backup To Home disabled (HOMBAC0)
 • Final approach direction is positive

(HOMDF0)
 • Stop on the positive-travel side of the

z-channel active region (HOMEDG0)

Figure O:
1����

�	

!
��(��*����

��/�-���
���)���

)����!
��(�
*����

�/�-���
���)���

0
�
	�

��
�

��/
$����

#
����	
�������

�/
$����

�������

Home Profile Attributes (commands):
 • Z-Channel homing enabled (HOMZ1)
 • Start home move in positive direction

(HOM0)
 • Backup To Home enabled (HOMBAC1)
 • Final approach direction is positive

(HOMDF0)
 • Stop on the positive-travel side of the

z-channel active region (HOMEDG0)

64 6K Series Programmer’s Guide

Encoder-Based Stepper Operation (stepper axes only)
When using an encoder in an stepper application, you can configure the following:

• Encoder resolution
• Stall Detection & Kill-on-Stall, Stall Deadband
• Encoder polarity
• Encoder-based position reference and position capture
• Encoder failure detection
• Commanded direction polarity

Encoder Resolution
You must specify the encoder resolution with the ERES command. The power-up default
value for encoder resolution is 4,000 counts/rev. Listed below are the resolution values for
Compumotor-supplied encoders.

• -RE, -RC, -EC, and -E Series Encoders:...............ERES4000
• -HJ Series Encoders:...ERES2048
• Daedal Positioning Tables (encoder options):

-E2ERES42000
-E3ERES84000
-E4ERES420000
-E5ERES8400

• Dynaserv:
DR10xxB...............ERES507904 DR5xxxA.................ERES425894
DR1xxxEERES614400 DM10xxB................ERES655360
DR1xxxA...............ERES819200 DM1xxxA................ERES1024000
DR5xxxB...............ERES278528 DM1004x.................ERES655360

Stall Detection & Kill-on-Stall

To detect stalls without
an encoder, see Drive
Stall Detection on page
47.

The ESTALL1 command enables the controller to detect encoder-based stall conditions.
NOTE: Encoder count reference must be enabled (ENCCNT1) before stall detect (ESTALL)
can be used.

If used with Kill-on-Stall enabled (ESK1 command), the move in progress will be aborted upon
detecting a stall. If queried with the ER or the AS commands, the user can branch to any other
section of program when a stall is detected. Refer to the ER, and AS command descriptions in
the 6K Series Command Reference for more information.

Kill-on-Stall functions only if the stall detection is enabled (ESTALL1).

����������
����������
����������
����������

 WARNING

����������
����������
�����������
�����������

Disabling the Kill-on-Stall function with the ESKØ command will allow the controller to finish
the move regardless of a stall detection, even if the load is jammed. This can potentially
damage user equipment and injure personnel.

Stall Deadband Another encoder set-up parameter is the Stall Backlash Deadband (ESDB) command. This
command sets the number of commanded counts of error allowed, after a change in direction,
before a stall will be detected. This is useful for situations in which backlash in a system can
cause false stall situations.

 Chapter 3. Basic Operation Setup 65

Encoder Set Up Example
The example below illustrates the features discussed in the previous paragraphs. The DRES
statement defines the motor resolutions. The ERES statement defines the number of encoder
steps per encoder revolution. Standard 1000-line encoders are used on all axes that produce
4000 quadrature steps/rev. Encoder counting (ENCCNT), stall detect (ESTALL) and kill-on-
stall (ESK1) are enabled. If a stall is detected, the motor's movement is killed. The ESDB
statement defines the stall deadband.

Examples for 4 Axes
(command line samples)

DRES25000,25000,25000,200 ; Set drive resolution
ERES4000,4000,4000,4000 ; Set encoder resolution
ESK1111 ; Enable kill motion on stall
ENCCNT1111 ; Enable encoder counting (this is
 ; required for ESTALL to work)
ESTALL1111 ; Enable stall detection
ESDB0,0,10,10 ; Set stall deadband

Encoder Polarity
If the encoder input is counting in the wrong direction, you can reverse the polarity with the
ENCPOL command. This allows you to reverse the counting direction without having to
change the actual wiring to the encoder input. For example, if the encoder on axis 2 counted in
the wrong direction, you could issue the ENCPOLx1 command to correct the polarity.

Immediately after issuing the ENCPOL command, the encoder will start counting in the
opposite direction (including all encoder position registers).

NOTES
• Changing the feedback polarity effectively invalidates any existing offset position (PSET) setting;

therefore, you will have to re-establish the PSET position.
• The ENCPOL command is automatically saved in non-volatile RAM.
• If you wish to reverse the commanded direction of motion, first make sure there is a direct

correlation between commanded direction and encoder direction, then issue the appropriate
CMDDIR command to reverse both the commanded direction and the encoder direction (see
CMDDIR command description for full details).

Programming
Scenario (as seen in a

terminal emulator)

; This programming scenario assumes the encoder polarity is reversed
; from the commanded direction (e.g., commanding a move of +10 units,
; yields and encoder position of -10 units).
;
> PSET0 ; Define current position of axis 1 as position zero
> 1TPE ; Check the position of encoder 1
*1TPE+0 (response indicates encoder 1 is at position zero)

> MA0 ; Select incremental positioning mode
> D+8000 ; Set distance to 8,000 units in the positive direction
> GO1 ; Move axis 1 a distance of 8,000 units
> 1TPE ; Check the position of encoder 1
*1TPE-8000 (response shows that encoder 1 is at position -8000,

the minus sign indicates that the encoder is counting in the
wrong direction)

> DRIVE0 ; Disable the drive (disabled before changing polarity)
> ENCPOL1 ; Reverse encoder polarity on axis 1
> PSET0 ; Define current position of axis 1 as position zero
> DRIVE1 ; Enable the drive
> D+8000 ; Set distance to 8,000 units in the positive direction
> GO1 ; Move axis 1
> 1TPE ; Check the position of encoder 1
*1TPE+8000 (response shows encoder 1 has moved 8,000 units in the positive

direction, indicating that the encoder is now counting in the
correct direction)

66 6K Series Programmer’s Guide

Encoder Count/Capture Referencing
Use ENCCNT to configure stepper axes to reference either the encoder position or the
commanded position when capturing the position (see INFNCi-H) and checking the encoder
position (PE and TPE). When checking the actual velocity (VELA and TVELA), ENCCNT
determines whether the velocity, in units of revs/sec, is derived with the encoder resolution
(ERES) or the drive resolution (DRES). The default setting (ENCCNT0) references the
commanded position.

Example AXSDEF00 ; Axes 1 & 2 as steppers; axis 1 has encoder, axis 2 doesn't
INFNC1-H ; Configure trigger 1A as position capture input for axis 1
INFNC3-H ; Configure trigger 2A as position capture input for axis 2
ENCCNT10 ; Capture axis 1's encoder position when trigger 1A is
 ; activated. Capture axis 2's commanded position when
 ; trigger 2A is activated.

Encoder Failure Detection
The Encoder Failure Detect (EFAIL) command enables (1) or disables (0) the monitoring of
the encoder signals to determine if the encoder is functioning properly (default is disabled).
For example, the EFAIL1111000 command enables encoder failure checking on axes 1-4, but
not axes 5-8.

The 6K detects a failure if both channel A+ and channel A- are the same state (i.e., both high
or both low). The B channel is not checked. A+ and A- are internally pulled to +5V;
therefore, it the encoder is disconnected a failure is detected. A failure could occur if either
A+ or A- are disconnected, it depends on whether the other signal was high or low at that
time. The typical causes for the failure would be a disconnected encoder or a failed encoder.

If EFAIL is enabled for an axis, and an encoder failure is detected, then bit 5 of the extended
axis status register (reported with TASX, TASXF and ASX) is set to 1. When ERROR bit 17 is set
to 1, an encoder failure occurring on any axis will initiate a jump to the error program
(ERRORP). The error condition is cleared by reconnecting the encoder while EFAIL is enabled
for that particular axis.

DO NOT USE WITH SINGLE-ENDED ENCODERS
Use the EFAIL feature only with differential encoders. Do not attempt to use the EFAIL feature
with single-ended encoders; because the A- terminal is not connected, the 6K will always detect
an encoder failure if EFAIL is enabled.

Commanded Direction Polarity
The CMDDIR command allows you to reverse the direction that the controller considers to be
the “positive” direction; this also reverses the polarity of the counts from the encoder. Thus,
using the CMDDIR command, you can reverse the referenced direction of motion without the
need to (a) change the connections to the drive and the encoder, or (b) change the sign of all
the motion-related commands in your program.

NOTES
• The CMDDIR command cannot be executed while motion is in progress or while the drive is

enabled. For example, you could wait for motion to be complete (indicated when TAS and AS bit
1 is a zero) and then use the DRIVE command to disable the appropriate axis before executing
the CMDDIR command.

• Before changing the commanded direction polarity, make sure there is a direct correlation
between the commanded direction and the direction of the encoder counts (i.e., a positive
commanded direction from the controller must result in positive counts from the encoder).

• Once you change the commanded direction polarity, you should swap the end-of-travel limit
connections to maintain a positive correlation with the commanded direction.

• The CMDDIR setting is automatically saved in non-volatile memory.

 Chapter 3. Basic Operation Setup 67

Servo Setup (servo axes only)

Use Motion Planner

Motion planner provides
wizards and a tuning
aide to create setup code
for your servo product.

To assure optimum performance you should tune your servo system. The goal of the tuning
process is to define the gain settings, servo performance, and feedback setup (see command list
below) that you can incorporate into your application program. (Typically, these commands are
placed into a setup program). Servo tuning should be performed as part of the application setup
process, as described below. To tune your servo system (4-step process):

1. After starting Motion Planner, you will see the Editor window. Select the Servo Tuner
tab. If a Servo Tuner session is not already open, on the File click New. Then select
Servo Tuner and click Ok.

2. To send a pre-programmed step output to the drive, click Start. Notice that the graph
display draws the commanded and actual velocity profiles so that you can graphically
tune your servo system.

Optimize the proportional (SGP) and velocity (SGV) values by iteratively changing
gains and viewing the results on the graph display. The object is to achieve a 1st order
response (minimal overshoot and close position tracking). The typical process is
illustrated in the flow diagram on the next page.

Graphed commanded & actual position
profiles.

Type in gain settings here.

Repeat the tuning process for each axis.

Click “Setup” to view the setup dialog, where you can
change the tuning profile and data capture parameters.

Click “Copy Gains” to copy the all gain settings for all
axes to your computer’s clipboard. Paste the gains into
your user program in the Editor window.

Click “Start” to initiate the tuning profile and capture
data to the graph display. This button changes to
“Abort” so that you can stop the profile in progress.

1st Order Response

Time

P
o
s
it
io

n

Commanded Position
(dashed line)

Actual Position
(solid line)

68 6K Series Programmer’s Guide

Basic Tuning Process

This figure outlines the basic process to achieve a 1st Order Respone (minimal overshoot and close position tracking).

2*

#

���������
3+.#$

2*

,�
���������
3+.#$

#

���������
3+.#$

2*

2*

,�
���������
3+.#$

2*

,�
���������
3+.#$

2*

,�
���������
3+.#$

#

���������
3+.#$

�����

����

 Chapter 3. Basic Operation Setup 69

3. Repeat step 2 for each axis. Then write down the final gain settings.
4. When you have determined which tuning gains are best for your application’s

performance, insert the gain commands into your setup program:
(refer also to the illustration below)

a. Click the “Copy Gains” to Clipboard button. This copies the gain commands to
your computer’s clipboard.

b. Click the “Editor” tab to bring the program editor to the front.
c. Place the cursor at the location in your program where you wish to insert the

gain commands (see note below).
d. Paste the gain commands at the location of the cursor.

NOTE
The tuning gains are specific to the feedback source selection in effect at the time the gain
commands are executed. The factory default feedback source (selected with the SFB command) is
encoder feedback. The illustration below demonstrates where to insert the gain commands relative
to the SFB command.

If your application requires you to switch between feedback sources for the same axis, then for
each feedback source you must select the source with the SFB command and then execute the
tuning gain commands relevant to the feedback source (an example is provided in the illustration
below).

Sample code generated by Motion Planner

These tuning gains are
specific to encoder
feedback (SFB1,1).

These tuning gains are
specific to analog input
feedback (SFB2,2).

70 6K Series Programmer’s Guide

Tuning-Related Commands (see 6K Series Command Reference for details)
Tuning Gains:
SGP........... Sets the proportional gain in the PIV&F servo algorithm.
SGI........... Sets the integral gain in the PIV&F servo algorithm.
SGV........... Sets the velocity gain in the PIV&F servo algorithm.
SGAF......... Sets the acceleration feedforward gain in the PIV&Fa

algorithm.
SGVF......... Sets the velocity feedforward gain in the PIV&Fv

algorithm.
SGILIM Sets a limit on the correctional control signal that results

from the integral gain action trying to compensate for a
position error that persists too long.

SGENB Enables a previously-saved set of PIV&F gains. A set of
gains (specific to the current feedback source selected
with the SFB command) is saved using the SGSET
command.

SGSET Saves the presently-defined set of PIV&F gains as a gain
set (specific to the current feedback source on each axis).
Up to 5 gain sets can be saved and enabled at any point
in a move profile, allowing different gains at different
points in the profile.

 Feedback Setup:
SFBSelects the servo feedback device (encoder or analog

input). To use analog input feedback, you must first use
the ANIFB command to configure the targeted analog
input to be used for feedback.

IMPORTANT: Parameters for scaling, tuning gains, max.
position error (SMPER), and position offset (PSET) are
specific to the feedback device selected (with the SFB
command) at the time the parameters are entered (see
programming examples in the 6K Programmer’s Guide).

ERESEncoder resolution.
SMPERSets the maximum allowable error between the

commanded position and the actual position as measured
by the feedback device. If the error exceeds this limit, the
controller activates the Shutdown output and sets the
DAC output to zero (plus any SOFFS offset). If there is no
offset, the motor will freewheel to a stop. You can enable
the ERROR command to continually check for this error
condition (ERROR.12-1), and when it occurs to branch to
a programmed response defined in the ERRORP program.

Encoder Polarity

To change the
commanded and
encoder polarity,
use the CMDDIR
command instead
(see page 71 for
details).

Servo stability requires a direct correlation between the commanded direction and the direction
of the encoder counts (i.e., a positive commanded direction from the controller must result in
positive counts from the encoder).

If the encoder is counting in the wrong direction, you can reverse the polarity with the
ENCPOL command. This allows you to reverse the counting direction without having to change
the actual wiring to the encoder. For example, if the encoder on axis 2 counted in the wrong
direction, you could issue the ENCPOLx1 command to correct the polarity.

Immediately after issuing the ENCPOL command, the respective encoder will start counting in
the opposite direction (including all the encoder position register, reported with TPE and PE).
The polarity of the encoder is immediately changed whether or not the encoder is currently
selected with the SFB command.

NOTES

• You cannot change the encoder on a specific axis while that axis is moving.

• Changing the encoder polarity effectively invalidates any existing offset position (PSET)
setting; therefore, you will have to re-establish the PSET position.

• The ENCPOL command is automatically saved in non-volatile RAM.

• If you wish to reverse the commanded direction of motion, first make sure there is a direct
correlation between commanded direction and encoder direction, then issue the
appropriate CMDDIR command to reverse both the commanded direction and the encoder
direction (see CMDDIR command description or page 71 for full details).

 Chapter 3. Basic Operation Setup 71

Programming Scenario
(as seen when the

commands are typed
into a terminal

emulator)

> SFB1 (Select encoder feedback for axis 1)
> SMPER100 (Set maximum position error to 100 units on axis 1)
> PSET0 (Define current position of axis 1 as position zero)
> 1TPE (Check the position of encoder 1)
*1TPE+0 (response indicates encoder 1 is at position zero)

> MA0 (Select incremental positioning mode)
> D+8000 (Set distance to 8,000 units in the positive direction)
> GO1 (Move axis 1. If the encoder polarity is incorrect, the axis will be unstable and will stop -

drive disabled - as soon as the maximum position error of 100 units is reached.)
> 1TPE (Check the position of encoder 1)
*1TPE-100 (response should show that encoder 1 is approximately at position -100; the minus sign

indicates that the encoder is counting in the wrong direction)

> ENCPOL1 (Reverse encoder polarity on axis 1)
> PSET0 (Define current position of axis 1 as position zero)
> DRIVE1 (Enable the drive - drive was disabled when the SMPER value was exceeded)
> D+8000 (Set distance to 8,000 units in the positive direction)
> GO1 (Move axis 1)
> 1TPE (Check the position of encoder 1)
*1TPE+8000 (response shows encoder 1 has moved 8,000 units in the positive direction, indicating

that the encoder is now counting in the correct direction)

Commanded Direction Polarity

EXAMPLE
The command to change
the polarity for axis 2 is
CMDDIR,1

The CMDDIR command allows you to reverse the direction that the controller considers to be
the “positive” direction; this also reverses the polarity of the counts from the feedback devices.
Thus, using the CMDDIR command, you can reverse the referenced direction of motion without
the need to (a) change the connections to the drive/valve and the feedback device, or (b)
change the sign of all the motion-related commands in your program.

NOTES
• The CMDDIR command cannot be executed while motion is in progress or while the

drive/valve is enabled. For example, you could wait for motion to be complete (indicated
when TAS and AS bit 1 is a zero) and then use the DRIVE command to disable the
appropriate axis before executing the CMDDIR command.

• Before changing the commanded direction polarity, make sure there is a direct correlation
between the commanded direction and the direction of the feedback source counts (i.e., a
positive commanded direction from the controller must result in positive counts from the
feedback device).

• Once you change the commanded direction polarity, you should swap the end-of-travel
limit connections to maintain a positive correlation with the commanded direction.

• The CMDDIR command is automatically saved in non-volatile memory.

72 6K Series Programmer’s Guide

DAC Output Limits
If you will not be using the entire -10V to +10V range of the 6K controller’s analog output,
you can set up maximum (DACLIM) limits. For example, setting the DAC limit to 8.000V
(DACLIM8.00) will clamp the DAC output range from -8.000 to +8.000.

Use the TDAC command to verify the voltage being commanded at the servo controller's
analog output to the drive.

Servo Control Signal Offset
The SOFFS command provides a means of setting the controller's analog output to a known
voltage value. This could be useful for these occasions:

• Testing motion in an open-loop configuration (all gains set to zero).
• If the commanded output is set to zero (motor is supposed to be stationary), but it keeps

moving, you can impose an offset value to stop motion. This is the same effect as the
balance input on most analog servo drives.

Use the TDAC command to check the voltage being commanded at the servo controller's
analog output (the voltage displayed includes and offset in effect).

WARNING — Torque Drive Users
If there is little or no load attached, the SOFFS offset can cause an acceleration to a
high speed.

Servo Setup Example
This section shows examples of how the servo setup commands might be incorporated into a
setup program. The example shows that much of the feedback selection and scaling code is
place in the program file before the setup program definition; this program file structure is
required because scaling parameters are not allowed in a program.

USE THE SETUP WIZARD IN MOTION PLANNER
Motion Planner automatically generates the setup code when you use the wizards in the
Editor. More information on creating and executing setup programs is provided on page 10.

 Chapter 3. Basic Operation Setup 73

; SETUP FOR 2-AXIS CONTROLLER
;***
;* Setup for encoder *
;* (will need to switch between encoder & ANI feedback) *
;***
SFB1,1 ; Select encoder feedback for axis 1. Subsequent scaling,
 ; gains, SMPER & PSET parameters are specific to encoder feed-
 ; back. (accommodates switching between encoder & ANI feedback)
ERES4000,4000 ; Set encoder resolution to 4,000 counts/rev
SCLA4000,4000 ; Allow programming accel/decel in revs/sec/sec
SCLV4000,4000 ; Set scaling for programming velocity in revs/sec
SCLD4000,4000 ; Set scaling for programming distances in revs
SGP5,5 ; Set proportional feedback gain
SGI1,1 ; Set integral feedback gain
SGV1,1 ; Set velocity feedback gain
SMPER.001,.001 ; Set max. position error to 1/1000 of rev (4 encoder counts)
PSET0,0 ; Set current position as absolute position zero

;***********************
;* setup for ANI *
;***********************
ANIFB2-9,2-10 ; Select the 1st analog input on SIM 2 of I/O brick 2
 ; to be used as position feedback for axis 1, and
 ; select the 2nd analog input on SIM 2 of I/O brick 2
 ; to be used as position feedback for axis 2
SFB2,2 ; Select ANI (analog input) feedback for both axes
 ; (subsequent scaling, gains, SMPER, and PSET
 ; parameters are specific to ANI feedback)
2ANIRNG.9=4 ; Select voltage range of -10V to +10V for the 1st and
2ANIRNG.10=4 ; 2nd analog inputs on SIM 2 of I/O brick 2 (these
 ; are the inputs used for position feedback)
SCLA205,205 ; Allow programming accel/decel in volts/sec/sec
SCLV205,205 ; Allow programming velocity in volts/sec
SCLD205,205 ; Allow programming distances in volts
SGP1,1 ; Set proportional feedback gain
SGI0,0 ; Set integral feedback gain
SGV.5,.5 ; Set velocity feedback gain
SMPER.01,.01 ; Set max. position error to 1/50 of a volt (with a resolution
 ; of -10 to +10V, this is equivalent to 4 ANI counts)
PSET5,5 ; Set current position as absolute position 5

;***
;* Below is the setup program *
;***
DEF SETUP ; Begin definition of SETUP program
DRFEN11 ; Enable the drive fault input
DRFLVL11 ; Set drive fault level to active high
DRIVE00 ; Disable both drives
KDRIVE11 ; Invoke the Disable Drive On Kill feature, both axes
SFB1,1 ; Select encoder feedback for start of main program
Main ; Run the program called "main" (the main controlling
 ; program for this application)
END ; End definition of SETUP program

;***
;* The following command (STARTP SETUP) is used to assign SETUP as the *
;* startup program to be automatically executed on power up or RESET. *
;***
STARTP SETUP

74 6K Series Programmer’s Guide

Target Zone Mode (move completion criteria—servo axes only)
Under default operation (Target Zone Mode
not enabled), the 6K product's move
completion criteria is simply derived from the
move trajectory. The 6K product considers the
current preset move to be complete when the
commanded trajectory has reached the desired
target position; after that, subsequent
commands/moves can be executed for that
same axis. Consequently, the next move or
external operation can begin before the actual
position has settled to the commanded position
(see diagram).

�
�
�
��
��

.���

0
�
	�

��
�

�����
���

!
���	

!
���	

�����
���

.���

/��
�����.������1�
�
��������
����
��	��4����
��(�����
�
�������������

���	�����
����������
�
��(���
�
�����5�
�������
��������
���
������

��(������
���		�
����	����

To prevent premature command execution before the actual position settles into the
commanded position, use the Target Zone Mode. In this mode, enabled with the STRGTE
command, the move cannot be considered complete until the actual position and actual
velocity are within the target zone (that is, within the distance zone defined by STRGTD and
less than or equal to the velocity defined by STRGTV). If the load does not settle into the
target zone before the timeout period set with the STRGTT command, the 6K product detects
a timeout error (see illustration below).

If the timeout error occurs, you can prevent subsequent command/move execution only if you
enable the ERROR command to continually check for this error condition, and when it occurs
to branch to a programmed response you can define in the ERRORP program. (Refer to the
Error Handling section, page 30, for error program examples.)

As an example, setting the distance zone to ±5 counts (STRGTD5), the velocity zone to ≤0.5
revs/sec (STRGTV0.5), and the timeout period to 1/2 second (STRGTT500), a move with a
distance of 8,000 counts (D8000) must end up between position 7,995 and 8,005 and settle
down to ≤0.5 rps within 500 ms (1/2 second) after the commanded profile is complete.

Damping is critical To ensure that a move settles within the distance zone, it must be damped to the point that it
will not move out of the zone in an oscillatory manner. This helps ensure the actual velocity
falls within the target velocity zone set with the STRGTV command (see illustration below).

������
���������������

������
���
�����������

������
�����������	����

�
�
�
��
��
�

�
�

�
�
��
�

���������

6��	�����(������	����

.�������2

���4
-�����7������

���������

�	
���

���

���

�	
���

��(�
����	����

�����
������
� ���
���������

�	
���

��

�����	���(������	����

������
�����������	����

�
�
�
��
��
�

�
�

�
�
��
� ��������� �	
���

���������

���

���

������
���������������

������
���
�����������

����
������
��

Checking the
Settling Time

Checking the Actual Settling Time: Using the TSTLT command, you can display the actual
time it took the last move to settle into the target zone (that is, within the distance zone defined
by STRGTD and less than or equal to the velocity defined by STRGTV). The reported value
represents milliseconds. The TSTLT command is usable whether or not the Target Zone
Settling Mode is enabled with the STRGTE command.

 Chapter 3. Basic Operation Setup 75

Programmable Inputs and Outputs (onboard and external inputs & outputs)
Programmable inputs and outputs allow the controller to detect and respond to the state of
switches, thumbwheels, electronic sensors, and outputs of other equipment such as drives and
PLCs. The I/O that can be used as programmable inputs and outputs are:

• Onboard I/O:
− Limit inputs on the “LIMITS/HOME” connectors
− Trigger inputs on the “TRIGGERS/OUTPUTS” connectors (pins 9, 11, 13, 15, 17,

19, 21 & 23). A “master trigger” is available (see “MASTER TRIG” terminal on the
connector on top of the 6K chassis).

− Digital outputs on the “TRIGGERS/OUTPUTS” connectors (1, 3, 5 & 7)

• Expansion I/O located on I/O bricks connected to the 6K controller’s “EXPANSION I/O”
connector. Each I/O brick can hold from 1 to 4 of these I/O SIM modules in any
combination (each SIM module provides 8 inputs or outputs, for a total of 32 I/O points
per I/O brick):

− Digital inputs
− Digital outputs
− Analog inputs
− Analog outputs

USING THE STATE OF I/O TO CONTROL PROGRAMMED EVENTS: Based on the
binary state of the inputs and outputs (binary status can be used in assignment/comparison
operations using the LIM, IN and OUT operators), the controller can make program flow
decisions and assign values to binary variables for subsequent mathematical operations. These
operations and the associated program flow, branching, and variable commands are listed below.

Operation based on I/O State Associated Commands See Also*
I/O state assigned to a binary variable LIM, [IN], [OUT], VARB Variables (page 18)

I/O state used as a basis for
comparison in conditional branching &
looping statements

LIM, [IN], [OUT], IF,
ELSE, NIF, REPEAT,
UNTIL, WAIT, WHILE,
NWHILE

Program Flow Control (page 23)

Input state used as a basis for a
conditional GO

[IN], GOWHEN, LIM Synchronizing Motion (page 159)

I/O state used as a basis for a
program interrupt (GOSUB)
conditional statement

ONIN Program Interrupts (page 29)

Mimic PLC functionality by scanning
I/O states with a compiled program

PLCP, SCANP PLC Scan Mode (page 104)

* Refer also to the respective command descriptions in the 6K Series Command Reference.

I/O UPDATE RATE: The programmable inputs and outputs are sampled at the “system
update rate,” which is every 2 ms. EXPANSION I/O BRICKS: If the I/O brick is
disconnected or if it loses power, the controller will perform a kill (all tasks) and set error bit
18 (see ERROR). (If you disable the “Kill on I/O Disconnect” mode with KIOENØ, the 6K will
not perform the kill.) The controller will remember the brick configuration (volatile memory)
in effect at the time the disconnection occurred. When you reconnect the I/O brick, the
controller checks to see if anything changed (SIM by SIM) from the state when it was
disconnected. If an existing SIM slot is changed (different SIM, vacant SIM slot, or jumper
setting), the controller will set the SIM to factory default INEN and OUTLVL settings. If a new
SIM is installed where there was none before, the new SIM is auto-configured to factory
defaults.

76 6K Series Programmer’s Guide

Programmable I/O Bit Patterns
The total number of onboard inputs and outputs (trigger inputs, limit inputs, digital outputs) depends on the product. The
total number of expansion inputs and outputs (analog inputs, digital inputs and digital outputs) depends on your
configuration of expansion I/O bricks.

These programmable I/O are represented by binary bit patterns, and it is the bit pattern that you reference when
programming and checking the status of specific inputs and outputs. The bit pattern is referenced 1 to n, from left to right.

• Onboard I/O. For example, the status command to check all onboard trigger inputs is TIN.
An example response for the 6K8 is: *TIN0100_0001_0000_0011_0.

• Expansion I/O. For example, the status command to check all digital inputs on I/O brick 2 is 2TIN.
An example response for the 6K8 is: *2TIN0010_0110_1100_0000_XXXX_XXXX_XXXX_XXXX.

Onboard Programmable I/O

I/O Location Programming Status Report, Assignment
Limit Inputs “LIMITS/HOME” connectors LIMFNC, LIMEN, LIMLVL TLIM, LIM

Trigger Inputs “TRIGGERS/OUTPUTS” connectors
(pins 9, 11, 13, 15, 17, 19, 21 & 23).
Master Trigger is “MASTER TRIG” on
connector on top of the 6K chassis

INFNC, INLVL, INEN, ONIN,
INPLC, INSTW

TIN, IN

Outputs (digital) “TRIGGERS/OUTPUTS” connectors
(pins 1, 3, 5 & 7).

OUT, OUTFNC, OUTLVL,
OUTEN, OUTALL, OUTPLC,
OUTTW, POUT

TOUT, [OUT]

Limit Inputs (“LIMITS/HOME” connectors)

Input bit pattern for LIM, TLIM, LIMEN, LIMFNC, and LIMLVL:

Bit # Pin # Function *

1 23 Positive end-of-travel limit, axis 1.
2 21 Negative end-of-travel limit, axis 1.
3 19 Home limit, axis 1.
4 17 Positive end-of-travel limit, axis 2.
5 15 Negative end-of-travel limit, axis 2.
6 13 Home limit, axis 2.
7 11 Positive end-of-travel limit, axis 3.
8 9 Negative end-of-travel limit, axis 3.
9 7 Home limit, axis 3.
10 5 Positive end-of-travel limit, axis 4.
11 3 Negative end-of-travel limit, axis 4.
12 1 Home limit, axis 4.
13 23 Positive end-of-travel limit, axis 5.
14 21 Negative end-of-travel limit, axis 5.
15 19 Home limit, axis 5.
16 17 Positive end-of-travel limit, axis 6.
17 15 Negative end-of-travel limit, axis 6.
18 13 Home limit, axis 6.
19 11 Positive end-of-travel limit, axis 7.
20 9 Negative end-of-travel limit, axis 7.
21 7 Home limit, axis 7.
22 5 Positive end-of-travel limit, axis 8.
23 3 Negative end-of-travel limit, axis 8.
24 1 Home limit, axis 8.

 * The functions listed are the factory default functions; other
functions may be assigned with the LIMFNC command.

 Bit 17

 Bit 32 Bit 1

Bit 1

I/O Brick 2

Sample response to TLIM (limit inputs status) command:
*TLIM001_001_001_001_001_001_001_001

 Chapter 3. Basic Operation Setup 77

Trigger Inputs (“TRIGGERS/OUTPUTS” connectors)

Outputs (“TRIGGERS/OUTPUTS” connectors)

Input bit pattern for TIN, IN, INFNC, INLVL,
INEN, INPLC, INSTW, and ONIN:

Bit # Pin # Function *
1 23 Trigger input 1 (TRIG-1A).
2 21 Trigger input 2 (TRIG-1B).
3 19 Trigger input 3 (TRIG-2A).
4 17 Trigger input 4 (TRIG-2B).
5 15 Trigger input 5 (TRIG-3A).
6 13 Trigger input 6 (TRIG-3B).
7 11 Trigger input 7 (TRIG-4A).
8 9 Trigger input 8 (TRIG-4B).
9 23 Trigger input 9 (TRIG-5A).
10 21 Trigger input 10 (TRIG-5B).
11 19 Trigger input 11 (TRIG-6A).
12 17 Trigger input 12 (TRIG-6B).
13 15 Trigger input 13 (TRIG-7A).
14 13 Trigger input 14 (TRIG-7B).
15 11 Trigger input 15 (TRIG-8A).
16 9 Trigger input 16 (TRIG-8B).
17 ---- Trigger input 17 (TRIG-M).

 * If the input is assigned the “trigger
interrupt” function with the INFNCi-H
command, it will capture the position of the
dedicated “n” axis identified in the input’s
name (TRIG-nA and TRIG-nB). TRIG-M
captures the position of the master
encoder, as well as all axes.

Output bit pattern for TOUT, [OUT], OUT, OUTFNC,
OUTLVL, OUTEN, OUTALL, OUTPLC, OUTTW, POUT:

Bit # Pin # Function
1 7 Output 1.
2 5 Output 2.
3 3 Output 3.
4 1 Output 4.
5 7 Output 5.
6 5 Output 6.
7 3 Output 7.
8 1 Output 8.

“MASTER TRIG”

Sample response to TIN (trigger inputs status) command:
 *TIN0000_0010_1100_0000_0

Sample response to TOUT
(onboard outputs status) command:
 *TOUT0000_0000

78 6K Series Programmer’s Guide

Expansion I/O Bricks
The 6K product allows you to expand your system I/O by connecting up to 8 I/O bricks (see Installation Guide for
connections). Expansion I/O bricks can be ordered separately (referred to as the “EVM32”). Each I/O brick can hold from 1
to 4 of these I/O SIM modules in any combination:

SIM Type Programming Status Report, Assignment
Digital Inputs SIM (8 inputs) INFNC, INLVL, INEN, ONIN, INPLC, INSTW TIN, IN, TIO

Digital Outputs SIM (8 outputs) OUT, OUTFNC, OUTLVL, OUTEN, OUTALL,
OUTPLC, OUTTW, POUT

TOUT, [OUT], TIO

Analog Inputs SIM (8 inputs) • Enable/Disable: ANIEN.
• Voltage range: ANIRNG.
• Joystick setup: JOYAXH, JOYAXL, JOYCDB,
 JOYCTR, JOYEDB, JOYZ.
• Servo feedback: ANIFB, SFB
• Following master source: ANIMAS, FOLMAS

• Voltage: TANI, ANI, TIO
• Servo position: TPANI, PANI,
 FB, TFB

Analog Outputs SIM (8 outputs) ANO TANO, [ANO], TIO

Each I/O brick has a unique “brick address”, denoted with the “” symbol in the command syntax. The I/O bricks are
connected in series to the “EXPANSION I/O” connector on the 6K. The 1st I/O brick has address 1, the next brick has address
2, and so on. (NOTE: If you leave out the brick address in the command, the 6K product assumes you are addressing the
command to the onboard I/O.) Each I/O brick has 32 I/O addresses, referenced as absolute I/O point locations:

• SIM slot 1 = I/O points 1-8
• SIM slot 2 = I/O points 9-16
• SIM slot 3 = I/O points 17-24
• SIM slot 4 = I/O points 25-32

Example

Slot #1 (I/O points 1-8)

Slot #2 (I/O points 9-16)

Slot #3 (I/O points 17-24)

Slot #4 (I/O points 25-32)

Slot #1 (I/O points 1-8)
Digital Inputs SIM

I/O Brick #1 6K
Controller

Slot #2 (I/O points 9-16)
Digital Inputs SIM

Slot #3 (I/O points 17-24)
Digital Inputs SIM

Slot #4 (I/O points 25-32)
Analog Inputs SIM

Digital Outputs SIM

I/O Brick #2

Digital Inputs SIM

No SIMM installed

Digital Outputs SIM

The TIO command identifies the connected I/O bricks (and installed SIMs), including the status of each I/O point:

*BRICK 1: SIM Type Status Function
 1-8: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 25-32: ANALOG INPUTS 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

*BRICK 2: SIM Type Status Function
 1-8: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SINKING
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: NO SIM PRESENT
 25-32: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SOURCING

Sample response to 1TIN (digital inputs status) command:
*1TIN0000_0010_1100_0000_0100_0001_XXXX_XXXX

Sample response to 2TOUT (digital outputs status) command:
*2TOUT0000_0000_XXXX_XXXX_XXXX_XXXX_0000_0000

 Chapter 3. Basic Operation Setup 79

Input Functions

Programmable input functions can be assigned to the onboard limit and trigger inputs, as well
as to digital inputs on an expansion I/O brick connected to the 6K product. The appropriate
input function command (LIMFNC or INFNC) depends on which input you are configuring:

• Onboard limit inputs (on the “LIMITS/HOME” connector) — use LIMFNC:

Axis number (optional).
Some functions may be made specific to one axis. When shipped
from the factory, all limit inputs are assigned the limit function for
the respective axis. For example, limit input 1 is assigned the
positive travel end-of-travel limit function for axis 1 (LIMFNC1-1R).

Letter that selects the desired
function (see list below).

Syntax: LIMFNCi-<a>c

• Onboard trigger inputs (on the “TRIGGERS/OUTPUTS” connector) and digital inputs
installed on an expansion I/O brick — use INFNC:

Axis number (optional).
Some functions may be made
specific to one axis. For example,
to assign the 2nd input on SIMM2
(I/O point #9) of I/O brick 1 to be
the stop input for axis 2 only, use
the 1INFNC9-2D command.

I/O Brick number.
Trigger inputs are considered
collectively as I/O brick 0 (zero),
and are addressed of the I/O brick
number is left off the command.

Letter that selects the desired
function (see list below).

INFNCi-<a>cSyntax:

Virtual Inputs
Virtual Inputs provide programming input functionality for data or external events that are
not ordinarily represented by inputs. The Virtual Input Override (IN) command allows you
to substitute almost any 32-bit data operand as a virtual input brick of 32 inputs (integer
values are converted to binary). Page 8 provides a list of the data operands; the only data
operands that are not allowed are: SIN, COS, TAN, ATAN, VCVT, SQRT, VAR, TW, READ,
DREAD, DREADF, DAT, DPTR, and PI.

The virtual inputs behave similar to real inputs in that they are affected by INEN and
INLVL, and they affect INFNC, INPLC, INSTW, INDUST, ONIN, and GOWHEN(IN=b<bbbb>)
commands. Unlike real inputs, virtual inputs are not affected by the INDEB debounce
setting.

NOTE: A virtual input can only be defined for expansion I/O bricks that are not connected
on the serial I/O network (remember that up to 8 I/O bricks are allowed). For example, if
your 6K unit has two I/O bricks, you can designate I/O bricks 3-8 as virtual I/O bricks.

EXAMPLE: Suppose a PLC is sending binary data via the VARB1 command to the 6K. If
the binary state of VARB1 is assigned to input brick 2 (2IN=VARB1), the 6K can respond
based on programmable input functions set up with the INFNC command.

2TIN ; Brick 2 is not connected; therefore, the 6K will
 ; respond with an error message: "*INCORRECT I/O BRICK"
2IN=VARB1 ; Map the binary state of VARB1 to be the input state
 ; of "virtual" input brick 2 (2IN)
VARB1=b10100000 ; Change "virtual" input brick 2IN to a new VARB1 value
2TIN ; Check the input status. The response will be:
 ; "*2IN1010_0000_0000_0000_0000_0000_0000_0000"

Number of the input.
(see page 141 for input bit assignments)

Number of the input.
(see page 143 for input bit assignments)

80 6K Series Programmer’s Guide

Letter Designator Function
 A..................General-purpose input (default function for triggers & inputs on I/O bricks)
 B..................BCD program select
 C..................Kill
 <a>D..................Stop (axis designator “a” is optional)
 E..................Pause/Continue
 F..................User fault
 G..................<RESERVED>
 H..................Trigger Interrupt for position capture or registration (trigger inputs only). Special

trigger functions can be assigned with the TRGFN command (see page 162).
 I..................Cause an “Alarm Event” over the Ethernet interface
 aJ..................Jog in the positive-counting direction (axis designator is required)
 aK..................Jog in the negative-counting direction (axis designator is required)
 aL..................Jog velocity select (axis designator is required)
 M..................Joystick release
 N..................Joystick axis select
 O..................Joystick velocity select
 P..................One-to-one program select
 Q..................Program security
 aR..................End-of-travel limit for positive-counting direction (axis designator is required) *
 aS..................End-of-travel limit for negative-counting direction (axis designator is required) *
 aT..................Home limit (axis designator is required) *

* Limit inputs (on the “LIMITS/HOME” connector) are factory-set to their respective end-of-travel or home
limit function (see page 57).

NOTES
• Multi-tasking: If the LIMFNC or INFNC command does not include the task identifier (%) prefix,

the function affects the task that executes the LIMFNC or INFNC command. The only functions
that can be directed to a task with % are: C, D (without an axis specified), E, F, and P (e.g.,
2%INFNC3-F assigns onboard input 3 as a user fault input for task 2). Multiple tasks can share
the same input, but the input can only be assigned one function.

• Limit of 32 functions per input group: You can assign a maximum of 32 LIMFNC functions,
and a maximum of 32 INFNC functions. For LIMFNC, this excludes functions A (“general-
purpose”) and R, S, and T (end-of-travel and home limit input functions). For INFNC, this
excludes functions A (“general-purpose”) and H (“trigger interrupt”).

Input Status

* The purpose of the IN
and LIM operators is to
use the state of the inputs
as a basis for conditional
statements (IF, REPEAT,
WHILE, GOWHEN, etc.) or
for binary variable
assignments (VARB). For
examples, see the
Conditional Looping and
Branching section on
page 25, and
Synchronizing Motion on
page 159.

Limit inputs (LIMFNC):
• Status display commands:

- LIMFNC...............Active state and programmed function of all limit inputs
- LIMFNCiSame as LIMFNC display, but only for the input number (“i”)
- TLIMHardware state of all limit inputs (binary report);

use TLIM.i to check the state of only one input (“i”)

• Status assignment/comparison operator: *
- LIMHardware state (binary) of all limit inputs;

use LIM.i to check the state of only one input (“i”)

Trigger inputs and digital inputs on expansion I/O bricks (INFNC):
• Status display commands:

- TIOI/O brick configuration (which SIMs are present)
- INFNCActive state and programmed function of all trigger inputs
- INFNCi...............Same as INFNC display, but only for the trigger input number (“i”)
- INFNCActive state and programmed function of all inputs on I/O brick B
- INFNCi........Same as INFNC display, but only for the input number (“i”) on brick B
- TINHardware state of all onboard trigger inputs (binary report);

use TIN.i to check the state of only one input (“i”)
- TIN...............Hardware state of all digital inputs on I/O brick B (binary report) ;

use TIN.i to check the state of only one input (“i”) on brick B

• Status assignment/comparison operator: *
- INHardware state (binary) of triggers and expansion digital inputs;

use IN.i to check the state of only one input (“i”) on brick B

 Chapter 3. Basic Operation Setup 81

Input Active Levels Many people refer to a voltage level when referencing the state of programmable inputs and
outputs. Using LIMLVL (for limit inputs) and INLVL (for triggers and I/O brick inputs), you
can define the logic levels of the programmable inputs as positive or negative. The 6K product
defaults to an input level of zero volts as its active level (referred to as “active low”); thus, a
“1” will appear in a status command (TLIM & LIM, or TIN & IN) referencing an input state
when the voltage level is zero volts.

Active Level Setting State LIM/TLIM or IN/TIN Report
Active Low, the default setting
 • LIMLVL0 for limits
 • INLVL0 for triggers/I/O bricks

Grounded — sinking current
(device drive the input is on)
--
Not Grounded — not sinking current
(device drive the input is off)

1 (active)

-
0 (inactive)

Active High
 • LIMLVL1 for limits
 • INLVL1 for triggers/I/O bricks

Grounded — sinking current
(device drive the input is on)
--
Not Grounded — not sinking current
(device drive the input is off)

0 (inactive)

-
1 (active)

Input Debounce
Time

Using the INDEB command, you can change the input debounce time for programmable
inputs. The debounce is the period of time that the input must be held in a certain state before
the controller recognizes it. This directly affects the rate at which the inputs can change state
and be recognized. The default setting is 4 ms. For example, to set the debounce for all digital
inputs on I/O brick 2 to 5 ms, use the 2INDEB6 command.

Exception for Trigger Inputs: For trigger inputs that are assigned the “Trigger Interrupt”
function (INFNCi-H), the debounce is instead governed by the TRGLOT setting. The TRGLOT
setting applies to all trigger inputs defined as “Trigger Interrupt” inputs. The TRGLOT debounce
time is the time required between a trigger’s initial active transition and its secondary active
transition. This allows rapid recognition of a trigger, but prevents subsequent bouncing of the
input from causing a false position capture. The default TRGLOT setting is 24 ms.

Limit Inputs. The limit inputs found on the “LIMITS/HOME” connectors are not normally
debounced; however, if a limit is assigned a different function with the LIMFNC command
(other than LIMFNCi-R, LIMFNCi-S, or LIMFNCi-T), the input is debounced using the
INDEB setting for the on-board trigger inputs (I/O brick 0). If a I/O brick input or an onboard
trigger input is assigned a limit input function (INFNCi-R, INFNCi-S, or INFNCi-T), the
input will not be debounced.

“General Purpose”
 • LIMFNCi-A
 • INFNCi-A

This is the default function for INFNC inputs (triggers and I/O brick inputs). When an input is
defined as a General Purpose input, the input is used as a standard input. You can then use
this input to synchronize or trigger program events, through the use of the LIM or IN operator.

Example DEL prog1 ; Precaution: Delete a program before defining it
DEF prog1 ; Begin definition of program prog1
INFNC1-A ; No function (general purpose) for trigger input 1
INFNC2-A ; No function (general purpose) for trigger input 2
INFNC3-D ; Trigger input 3 is a stop input (all axes)
A10 ; Set acceleration
V10 ; Set velocity
D5 ; Set distance
WAIT(IN=b1XX) ; Wait for onboard trigger input 1
GO1 ; Initiate motion
IF(IN=bX1) ; If onboard trigger input 2
1TFB ; Transfer feedback device position for axis 1
NIF ; End IF statement
END ; End definition of program prog1

82 6K Series Programmer’s Guide

BCD Program Select
 • LIMFNCi-B
 • INFNCi-B

The BCD program select function allows you to execute defined
programs by activating the program select inputs.

BCD program select inputs are assigned BCD weights, with the least
weight on the smallest numbered input. The next BCD weight is
assigned to the next input defined as a BCD input. For example, the
table to the right shows the BCD weights if inputs 1-8 are configured
as program select inputs.

 Input No.
Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8

BCD Weight
1
2
4
8
10
20
40
80

To execute a particular program, you activate the combination of inputs to achieve the BCD
weight that corresponds to the number of the program (see note below). For example, if inputs
1-8 are defined as BCD inputs (as in the example above), activating inputs 4 and 6 would
execute program 28, activating inputs 1 and 4 would execute program 9, and so on.

Program Numbers
A program's number is determined by the order in which the program was downloaded to
the controller. The number of each program stored in the controller's memory can be
obtained through the TDIR command — refer to the number reported in front of each
program name. When selecting programs with BCD Program Select inputs, a program is
executed when the total BCD weight of the active BCD inputs equals the program's number.
When selecting programs with One-to-One Program Select inputs, the program number is
assigned to one specific input and is executed when that input is activated.

Before you can execute programs using the BCD program select inputs, you must first enable
scanning with the INSELP1 command. Once enabled, the controller will continuously scan
the BCD inputs and execute the program (by number) according to the weight of the currently
active BCD inputs. After executing and completing the selected program, the controller will
scan the inputs again. NOTE: To disable scanning, enter !INSELPØ or place INSELPØ in a
program that can be selected.

The INSELP command also determines how long the BCD program select input level must
be maintained before the controller executes the program. This delay is referred to as
debounce time (but is not affected by the INDEB setting).

Example

The number in front of
each program name is

the BCD weight required
to execute the program.

RESET ; Return controller to power-up conditions
ERASE ; Erase all programs
DEF PROG1 ; Begin definition of program PROG1
TPE ; Transfer position of encoders
END ; End program
DEF PROG2 ; Begin definition of program PROG2
TREV ; Transfer software revision
END ; End program
DEF PROG3 ; Begin definition of program PROG3
TSTAT ; Transfer statistics
END ; End program
INFNC1-B ; Assign onboard input 1 as a BCD program select input
INFNC2-B ; Assign onboard input 2 as a BCD program select input
INSELP1,50 ; Enable scanning inputs, levels must be maintained for 50ms
TDIR ; Display number and name of programs stored in memory
; response from TDIR should be similar to following:
; *1 - PROG1 USES 6 BYTES
; *2 - PROG2 USES 18 BYTES
; *3 - PROG3 USES 99 BYTES
; *32877 OF 33000 BYTES (98%) PROGRAM MEMORY REMAINING
; *500 OF 500 SEGMENTS (100%) COMPILED MEMORY REMAINING

You can now execute the programs by activating the correct combination of inputs:
• Activate trigger input 1 (BCD weight of 1) to execute program 1 (PROG1)
• Activate trigger input 2 (BCD weight of 2) to execute program 2 (PROG2)
• Activate trigger inputs 1 & 2 (BCD weight of 3) to execute program 3 (PROG3)

 Chapter 3. Basic Operation Setup 83

Kill
 • LIMFNCi-C
 • INFNCi-C

When an input defined as a Kill input goes active:

• Motion stops on all axes (using the LHAD and LHADA decel rate).
• Program currently in progress is terminated.
• Commands currently in the command buffer are eliminated.
• Drives are left in the enabled state (@DRIVE1), unless the “disable drive on kill”

function is enabled with the KDRIVE command (see description on page 48).
• If error-checking bit 6 is enabled (e.g., ERROR.6-1), the error status is reported by bit

6 of the TERF, TER and ER commands and the error program (assigned with the
ERRORP command) will be executed to respond to the error condition.

NOTE: Kill is not intended as a means to temporarily inhibit motion; use the Pause/Continue
input function instead (LIMFNCi-E or INFNCi-E).

Stop
 • LIMFNCi-<a>D
 • INFNCi-<a>D

An input defined as a Stop input will stop motion on one or all axes (see examples below).
Deceleration is controlled by the programmed AD/ADA deceleration ramp. If error-checking bit
8 is enabled (e.g., ERROR.8-1), the error status is reported by bit 8 of the TERF, TER and ER
commands and the error program (assigned with the ERRORP command) will be executed to
respond to the error condition.

After the Stop input is received, further program execution is dependent upon the COMEXS
command setting:

COMEXSØ: (default setting) Upon receiving a stop input, motion will stop, program
execution will be terminated and cannot be resumed, and every command in the
buffer will be discarded (exception: an axis-specific stop input does not dump
the command buffer).

COMEXS1: Upon receiving a stop input, motion will stop, program execution will pause, and
all commands following the command currently being executed will remain in
the command buffer (but the move in progress will not be saved).

You can resume program execution (but not the move in progress) by issuing an
immediate Continue (!C) command or by activating a pause/continue input (i.e.,
a general-purpose input configured as a pause/continue input with the INFNCi-
E command—see below). You cannot resume program execution while the
move in progress is decelerating.

COMEXS2: Upon receiving a stop input, the 6K responds as it does in the COMEXS0 mode,
with the exception that you can still use the program-select inputs to select
programs (INSELP value is retained). The program-select input functions are:
BCD select (INFNCi-B or LIMFNCi-B; see page 82), and one-to-one select
(INFNCi-P or LIMFNCi-P; see page 88). For further details on program selection
with inputs, see INFNC (or LIMFNC) and INSELP.

Example 1 (stop all axes): The 3INFNC2-D command assigns the “stop” function to the 2nd
input on SIM1 of I/O brick 3. When this input is activated, all axes will stop.

Example 2 (stop a specific axis): The 3INFNC2-4D command assigns the “stop” function to
the 2nd input on SIM1 of I/O brick 3, but makes it specific only to the motion on axis 4. When
this input is activated, only the motion on axis 4 axes will stop.

Pause/Continue
 • LIMFNCi-E
 • INFNCi-E

An input defined as a Pause/Continue input will affect motion and program execution
depending on the COMEXR command setting, as described below. In both cases, when the
input is activated, the current command being processed will be allowed to finish executing
before the program is paused.

COMEXRØ: Upon receiving a pause input, only program execution will be paused; any motion
in progress will continue to its predetermined destination. Releasing the pause

84 6K Series Programmer’s Guide

input or issuing a !C command will resume program execution.

COMEXR1: Upon receiving a pause input, both motion and program execution will be paused;
the motion stop function is used to halt motion. Releasing the pause input or
issuing a !C command will resume motion and program execution. You cannot
resume program execution while the move in progress is decelerating.

User Fault
 • LIMFNCi-F
 • INFNCi-F

An input defined as a User Fault input acts as an immediate Kill (!K) command, stopping
motion on all axes and terminating program execution. Motion is stopped at the rate set with
the hard limit (LHAD & LHADA) commands.

If error-checking bit 7 is enabled (e.g., ERROR.7-1), then a user fault input will cause a
branch to the ERRORP error program (for more information, see Error Handling on page 30)
and the occurrence of a user fault input will be reported by error bit 7 (see TERF, TER and ER
commands).

Trigger Interrupt
(INFNCi-H)

This function is available only for onboard trigger inputs. Any trigger input can be defined
as a Trigger Interrupt input and can be used for these functions:

• Position Capture (see below)
• Special trigger functions assigned with the TRGFN command (see below)
• Registration (see discussion on page 155)

Notes About Trigger Interrupt Inputs

• The trigger interrupt input is debounced for 24 ms (default) before another input on the
same trigger is recognized. If your application requires a different debounce time, you can
change it with the TRGLOT command (see Input Debounce Time on page 81).

• When configured as Trigger Interrupts, the triggers cannot be affected by the input enable
(INEN) command.

• Status: Use the TTRIG and TRIG commands to ascertain if a trigger interrupt input has
been activated. TTRIG displays the status as a binary report, and TRIG is an
assignment/comparison operator for using the status information in a conditional
expression (e.g., in an IF statement). Each TTRIG/TRIG bit is cleared when the
respective captured position value is read with the PCC, PCE, PCME, PCMS, TPCC, TPCE,
TPCME, or TPCMS commands, but the position information is still available from the
respective register until it is overwritten by a subsequent position capture by the same
trigger input.

Position Capture Each axis has two dedicated trigger inputs, referred to as “TRIG-nA” and “TRIG-nB” (n =
number of the axis). These trigger inputs are located on the 25-pin “TRIGGERS/OUTPUTS”
connector. When either trigger input (TRIG-nA or TRG-nB) for a particular axis is assigned
the Trigger Interrupt function, activating the input performs a hardware capture of that axis’
position. If the axis is used as a follower in Following, activating the trigger also performs an
interpolated capture of the associated master axis position.

An additional trigger, labeled “TRIG-M”, can be used to perform a hardware capture of the
Master Encoder (the encoder connected to the “MASTER ENCODER” connector), as well as the
position of all axes (encoder position on servo axes; commanded or encoder position for
steppers, depending on the ENCCNT setting). To assign TRIG-M as a trigger interrupt input,
use the INFNC17-H command.

When a Trigger Interrupt input is activated, the controller captures the relevant positions and
stores them in registers that are available at the next system update (2 ms) through the use of
these transfer and assignment/comparison commands:

 Chapter 3. Basic Operation Setup 85

Captured Information Transfer Assignment/Comparison Offset * Scale Factor **
Commanded position TPCC PCC PSET SCLD
Encoder position TPCE PCE PSET SCLD
Master encoder position TPCME PCME PMESET SCLMAS
Master cycle position TPCMS PCMS PSET SCLMAS

* Captured values are offset by any existing PSET or PMESET offset.
** If scaling is enabled, the captured position is scaled by SCLD or SCLMAS.

Notes About Position Capture
• Hardware Capture: The encoder position is captured within ± 1 encoder count. The

commanded position capture accuracy is ± 1 count.

• Interpolated Capture: There is a time delay of up to 50 µs between activating the trigger
interrupt input and capturing the position; therefore, the accuracy of the captured position
is equal to 50 µs multiplied by the velocity of the axis at the time the input was activated.

• Servo vs. Stepper. The nature of the axis position captured with a Trigger Interrupt input
can be different, depending on whether the axis is configured for servo or stepper
operation (AXSDEF command setting). For servo axes, both the commanded and encoder
position for the axis are captured. Analog input feedback cannot be captured. For stepper
axes, if the ENCCNT command is set to ENCCNT0 (default condition), only the commanded
position is captured. If ENCCNT1 mode is enabled, only the encoder position is captured.

Trigger Functions The Trigger Functions command (TRGFN) allows you to assign additional functions to trigger
inputs that have been defined as trigger interrupt inputs with the INFNCi-H command. These
trigger functions are cleared once the function is triggered. Command syntax is:

!���������
�"#����������$�������

��	�
���

 ��	��%�&�'����	�!��
���
�������$�������

�	����	�
����	��������(����������	����	��))����	�*�
����+'����	��	����	+��
����	�'�������
���,�������

�(������,�	

• “Conditional GO” Function (aTRGFNc1x): Suspend execution of the next start-motion
command until the specified trigger input goes active. Start-motion commands are:

- GO (standard command to begin motion)
- GOL (begin linear interpolated motion)
- FSHFC (begin continuous shift – for Following motion)
- FSHFD (begin preset shift – for Following motion)

Axis status bit 26 (reported with TASF, TAS, or AS) is set to one (1) when there is a
pending “Conditional GO” condition initiated by a TRGFN command; this bit is cleared
when the trigger is activated or when a stop command or a kill command is issued. If you
need execution to be triggered by other factors (e.g., input state, master position, encoder
position, etc.) use the GOWHEN command; see GOWHEN command or page 159 for details.

• “New Master Cycle” Function (aTRGFNcx1): This is equivalent to executing the
FMCNEW command. When the specified trigger input goes active, the controller begins
a new Following master cycle. Refer to the FMCNEW command or to page 184 for
more on master cycles.

Code Examples INFNC2-H ; Assign trigger 1B (onboard input 2) to
 ; function as a trigger interrupt input.
1TRGFNBx1 ; When trigger 1B goes active, axis 1 will begin
 ; a new master cycle
2TRGFNB1 ; When trigger 2B goes active, axis 2 will execute
 ; the move commanded with the GO command.
GO01 ; The move on axis 2 is commanded, but will not

86 6K Series Programmer’s Guide

 ; execute until trigger 2B becomes active.

Registration If registration is enabled (with the RE command), activating a trigger interrupt input will
initiate registration move(s) defined with the REG command. Refer to page 155 for details on
the Registration feature.

Alarm Event
 • LIMFNCi-I
 • INFNCi-I

An input specified as an Alarm Even input will cause the 6K controller to set an Alarm Event
in the Communications Server over the Ethernet interface. You must first enable the Alarm
checking bit for this input-driven alarm (INTHW.23-1). For details on Communications
Server features, see the Com6srvr User’s Guide for Gemini & 6K Series Products.

Jogging the Motor
 • LIMFNCi-aJ
 • LIMFNCi-aK
 • LIMFNCi-aL
 • INFNCi-aJ
 • INFNCi-aK
 • INFNCi-aL

In some applications, you might want to manually move (jog) the load. You can configure
these jog-related input functions:

“J”Jog in the positive counting direction when the input is active, stop when the input is
inactive.

“K”Jog in the negative counting direction when the input is active, stop when the input is
inactive.

“L”Select the high (JOGVH) or low (JOGVL) velocity setting for jog motion. Activating
the input selects high velocity, deactivating the input selects low velocity.

The jog profile is defined with these commands listed below. NOTE: If scaling is enabled
(SCALE1) the velocity is scaled by SCLV and accel/decel is scaled by SCLA.

JOGVHHigh velocity range for jogging. The high velocity is used when the jogging
speed-select input (configured with INFNCi-aL) is active.

JOGVLLow velocity range for jogging. The low velocity is used when the jogging
speed-select input (configured with INFNCi-aL) is inactive.

JOGAJog acceleration
JOGAAJog acceleration (s-curve profile)
JOGADJog deceleration
JOGADAJog deceleration (s-curve profile)

Once you set up the jog functions and move profile, you can attach a switch to the designated
jog inputs and perform jogging. (Jog motion will not occur unless Jog Mode is enabled with
the JOG command.) The example below shows you how to define a program to set up jogging.

Example Step 1 Define program for jog setup:
DEF prog1 ; Begin definition of program prog1
JOGA25 ; Jog acceleration to 25 units/sec/sec
JOGAD25 ; Jog deceleration to 25 units/sec/sec
JOGVL.5 ; Low-speed jog velocity to 0.5 units/sec
JOGVH5 ; High-speed jog velocity to 5 units/sec
INFNC1-1J ; Trigger input 1 is a positive-direction jog input, axis 1
INFNC2-1K ; Trigger input 2 is a negative-direction jog input, axis 1
INFNC3-1L ; Trigger input 3 is a speed-select input, axis 1
JOG1 ; Enable Jog function for axis 1
END ; End program definition

Step 2 Download and run the prog1 program.

Step 3 Activate trigger input 1 to move the load on axis 1 in the positive direction at a velocity of 0.5
units/sec (until trigger input 1 is released). Deactivate the input to stop the axis.

 Chapter 3. Basic Operation Setup 87

Step 4 Activate trigger input 2 to move the load on axis 1 in the negative direction at a velocity of 0.5
units/sec (until trigger input 2 is released). Deactivate the input to stop the axis.

Step 5 Activate trigger input 3 to switch to high-speed jogging.

Step 6 Repeat steps 3 and 4 to perform high-speed jogging at the JOGVH value (5 rps).

Joystick Functions
 • LIMFNCi-M
 • LIMFNCi-N
 • LIMFNCi-O
 • INFNCi-M
 • INFNCi-N
 • INFNCi-O

As part of the joystick setup process, you can configure programmable inputs to serve the
joystick input functions listed below. Full details on joystick setup and operation are provided
on page 114.

“M”The Joystick Release input signals the controller to end joystick operation and resume
program execution with the next statement in your program. When the input is open
(high, sinking current), the joystick mode is disabled (joystick mode can be enabled
only if the input is closed, and only with the JOY command). When the input is closed
(low, not sinking current), joystick mode can be enabled with the JOY command. The
general process of using Joystick mode is:
1. Assign the “Joystick Release” input function to a programmable input.
2. At the appropriate place in the program, enable joystick control of motion (with the JOY

command). (Joystick mode cannot be enabled unless the "Joystick Release" input is
closed.) When the JOY command enables joystick mode for the affect axes, program
execution stops on those axes (assuming the Continuous Command Execution Mode is
disabled with the COMEXCØ command).

3. Use the joystick to move the axes as required.
4. When you are finished using the joystick, open the “Joystick Release” input to disable the

joystick mode. This allows program execution to resume with the next statement after the
initial JOY command that started the joystick mode.

“N”The Joystick Axis Select input allows you to control two pairs of axes with one
joystick. Use the JOYAXH and JOYAXL commands to assign analog inputs to control
specific axes. Opening the Axis Select input (input is high, sinking current) selects the
JOYAXH configuration. Closing the Axis Select input (input is low, not sinking
current) selects the JOYAXL configuration.

“O”The Joystick Velocity Select input allows you to select the velocity for joystick
motion. The JOYVH and JOYVL commands establish the high-speed velocity and the
low-speed velocity, respectively. Opening the Velocity Select input (input is high,
sinking current) selects the JOYVH configuration. Closing the Velocity Select input
(input is low, not sinking current) selects the JOYVL configuration. The high range
could be used to quickly move to a location, the low range could be used for accurate
positioning. NOTE: When this input is not connected, joystick motion always uses
the JOYVL velocity setting.

88 6K Series Programmer’s Guide

One-to-One
Program Select
 • LIMFNCi-iP
 • INFNCi-iP

An input defined as a One-to-One Program Select input is assigned to execute one specific
program. The targeted program is reference by its number (see note).

Program Numbers
A program’s number is determined by the order in which the program was downloaded to the
controller. The number of each program stored in the controller's memory can be obtained
through the TDIR command — refer to the number reported in front of each program name.
When selecting programs with One-to-One Program Select inputs, the program number is
assigned to one specific input and is executed when the input is activated (see example
below).

Before you can execute programs using the One-to-One program select inputs, you must first
enable scanning with the INSELP2 command. Once enabled, the controller will continuously
scan the inputs and execute the program (by number) according to the program number
assigned to the input. After executing and completing the selected program, the controller will
scan the inputs again. NOTE: To disable scanning, enter !INSELPØ or place INSELPØ in a
program that can be selected.

The INSELP command also determines how long the program select input level must be
maintained before the controller executes the program. This delay is referred to as debounce
time (but is not affected by the INDEB setting).

Example RESET ; Return controller to power-up default conditions
DEF proga ; Begin definition of program proga
TFB ; Transfer position of feedback devices
END ; End program
DEF progb ; Begin definition of program progb
TREV ; Transfer software revision
END ; End program
DEF progc ; Begin definition of program progc
TSTAT ; Transfer statistics
END ; End program
TDIR ; Response should show: *1 - PROGA USES 36 BYTES

; *2 - PROGB USES 70 BYTES
; *3 - PROGC USES 133 BYTES

INFNC4-1P ; Trigger input 4 (TRIG-2B) will select proga
INFNC5-2P ; Trigger input 5 (TRIG-3A) will select progb
INFNC6-3P ; Trigger input 6 (TRIG-3B) will select progc
INSELP2,50 ; Enable scanning of inputs with a strobe time of 50 ms

You can now execute programs by making a contact closure from an input to ground to
activate the input:

• Activate trigger input 4 to execute program 1 (proga)
• Activate trigger input 5 to execute program 2 (progb)
• Activate trigger input 6 to execute program 3 (progc)

 Chapter 3. Basic Operation Setup 89

Program Security
 • LIMFNCi-Q
 • INFNCi-Q

Once an input is assigned the Program Security function, the Program Security feature is
enabled. The program security feature denies you access to the DEF, DEL, ERASE, MEMORY,
LIMFNC and INFNC commands until you activate the Program Security input. Being denied
access to these commands effectively restricts altering the user memory allocation. If you try
to use these commands when program security is active (program security input is not
activated), you will receive the error message *ACCESS DENIED.

For example, once you issue the 2INFNC7-Q command, input 7 on I/O brick 2 (2IN.7) is
assigned the program security function and access to the DEF, DEL, ERASE, MEMORY,
LIMFNC and INFNC commands will be denied until you activate 2IN.7.

To regain access to the DEF, DEL, ERASE, MEMORY, LIMFNC or INFNC commands without
the use of the program security input, you must issue the INEN command to disable the
program security input, make the required user memory changes, and then issue the INEN
command to re-enable the input. For example, if input 3 on brick 2 is assigned as the Program
Security input, use 2INEN.3=1 to disable the input and leave it activated, make the necessary
user memory changes, and then use 2INEN.3=E to re-enable the input.

NOTE: If you wish the Program Security feature to be enabled on power-up, place the
INFNCi-Q or LIMFNCi-Q command in the start-up program (STARTP).

Limit Functions
 • LIMFNCi-aR
 • LIMFNCi-aS
 • LIMFNCi-aT
 • INFNCi-aR
 • INFNCi-aS
 • INFNCi-aT

The inputs on the “LIMITS/HOME” connectors are factory-configured with the LIMFNC
command to function as end-of-travel and home limits for the respective axes (see illustration
on page 76). The limit functions are:

“R” Positive-Direction End-of-Travel Limit input, axis specific.
“S” Negative-Direction End-of-Travel Limit input, axis specific.
“T” Home Limit input, axis specific.

If you intend to use digital inputs on an external I/O brick as limit inputs:
1. Assign the limit function to the external input with the INFNC command. For example,

1INFNC9-1R assigns the “axis 1 positive end-of-travel limit” function to the 1st input
on SIM2 (I/O point 9) of I/O brick 1.

2. Reassign the respective “LIMITS” input to a non-limit function with the LIMFNC
command. For example, LIMFNC1-A assigns the “general-purpose input” function to
limit input 1 (normally assigned the “axis 1 positive end-of-travel limit” function).

NOTE: Once a trigger or I/O brick input is assigned a limit function, it is no longer debounced
(INDEB has no effect), and it must be enabled/disabled with the LH command instead of the
INEN command.

90 6K Series Programmer’s Guide

Output Functions

The 6K product provides programmable digital outputs, found on the “TRIGGERS/OUTPUTS”
connect. Additional digital outputs can be installed on expansion I/O bricks (see example on
page 78).

You can turn the controller's programmable outputs on and off with the Output (OUT, POUT
or OUTALL) commands, or you can use the Output Function (OUTFNC) command to
configure them to activate based on seven different situations. The OUTFNC syntax is as
follows:

Axis number (optional).
Some functions may be made
specific to one axis. For example,
to assign the 2nd output on
SIMM3 (I/O point #18) of I/O brick
1 to be the moving indicator
output for axis 2 only, use the
1OUTFNC18-2B command.

Number of the output.
(see page 78-79 for output bit assignments)

I/O Brick number.
Onboard outputs (located on the
“TRIGGERS/OUTPUTS” connector)
are considered collectively as I/O
brick 0 (zero), and are addressed of
the I/O brick number is left off the
command.

Letter that selects the desired
function (see list below).

OUTFNCi-<a>c

Letter Designator Function
 A..................General-purpose output (default function)
 <a>B..................Moving/not moving (axis designator optional)
 C..................Program in progress
 <a>D..................Hardware or software end-of-travel limit encountered (axis designator optional)
 <a>E..................Stall indicator (axis designator optional) — stepper axes only
 F..................Fault indicator (indicates drive fault input or user fault input is active)
 G..................Position error exceeds maximum limit set with SMPER — servo axes only
 H..................Output on position

NOTES
• Multi-tasking: If the OUTFNC command does not include the task identifier (%) prefix, the

function affects the task that executes the OUTFNC command. “Program in progress”
(function C) is only function that can be directed to a specific task with %. Multiple tasks
can share the same output, but the output can only be assigned one function.

• Limit of 32 output functions: You can assign a maximum of 32 OUTFNC functions. This
excludes function A (“general-purpose”).

Output Status

Below is a list of the status commands you can use to ascertain the current state and/or defined
function of the outputs.

• Status display commands:
- TIO........................I/O brick configuration (which SIMs are present, including sinking/sourcing)
- OUTFNC.................Active state and programmed function of all onboard outputs
- OUTFNCiSame as OUTFNC display, but only for the output number (“i”)
- OUTFNC..........Active state and programmed function of all outputs on I/O brick B
- OUTFNCiSame as OUTFNC display, but only for the output number (“i”) on I/O brick B
- TOUTHardware state of all onboard outputs (binary report);

use TOUT.i to check the state of only one output (“i”)
- TOUTHardware state of all outputs (binary report) on I/O brick B;

use TOUT.i to check the state of only one output (“i”) on brick B

 Chapter 3. Basic Operation Setup 91

• Status assignment/comparison operator: *
- OUTHardware state (binary) of all onboard outputs;

use OUT.i to check the state of only one output (“i”)
- OUTHardware state (binary) of all outputs on I/O brick B;

use OUT.i to check the state of only one output (“i”) on I/O brick B
* The purpose of the OUT operator is to use the state of the outputs as a basis for conditional
statements (IF, REPEAT, WHILE, GOWHEN, etc.) or for binary variable assignments (VARB).

Output Active
Levels

Using OUTLVL, you can define the logic levels of the programmable outputs as positive or
negative. OUTLVL0 selects active low (default setting); OUTLVL1 selects active high.

Onboard Outputs (on the “TRIGGERS/OUTPUTS” connector):

 OUTLVL Setting

 OUT State *

Factory Default
 (use internal 24V)

Use an external
 supply at VINref

OUT/TOUT
 status

OUTLVL0 (default) OUT1 Sinking current Sinking current 1
OUTLVL0 (default) OUT0 Sourcing 24V @ 0.7mA Sourcing VINref 0
OUTLVL1 OUT1 Sourcing 24V @ 0.7mA Sourcing VINref 1
OUTLVL1 OUT0 Sinking current Sinking current 0

* The output is “active” when it is commanded by the OUT, OUTP, or POUT command
(for example, OUTxx1 activates output 3).

Outputs on Expansion I/O Bricks:

• Sinking vs. Sourcing Outputs. On power up, the 6K controller auto-detects the type of
output SIM installed on each external I/O brick, and automatically changes the OUTLVL
setting accordingly. If sinking (NPN) outputs are detected, OUTLVL is set to active low
(OUTLVL0); if sourcing (PNP) outputs are detected, OUTLVL is set to active high
(OUTLVL1).

• Disconnect I/O Brick. If the I/O brick is disconnected (or if it loses power), the controller
will perform a kill (all tasks) and set error bit 18. (If you disable the “Kill on I/O
Disconnect” mode with KIOENØ, the 6K will not perform the kill.) The controller will
remember the brick configuration (volatile memory) in effect at the time the
disconnection occurred. When you reconnect the I/O brick, the controller checks to see if
anything changed (SIM by SIM) from the state when it was disconnected. If an existing
SIM slot is changed (different SIM, vacant SIM slot, or jumper setting), the controller
will set the SIM to factory default INEN and OUTLVL settings. If a new SIM is installed
where there was none before, the new SIM is auto-configured to factory defaults.

• Relationships:
Output Type OUTLVL Setting OUT State * Current OUT/TOUT status LED
NPN (sinking) OUTLVL0 (default) OUT1 Sinking current 1 ON
NPN OUTLVL0 (default) OUT0 No current flow 0 OFF
NPN OUTLVL1 OUT1 No current flow 1 OFF
NPN OUTLVL1 OUT0 Sinking current 0 ON
PNP (sourcing) OUTLVL0 OUT1 No current flow 1 OFF
PNP OUTLVL0 OUT0 Sourcing current 0 ON
PNP OUTLVL1 (default) OUT1 Sourcing current 1 ON
PNP OUTLVL1 (default) OUT0 No current flow 0 OFF

* The output is “active” when it is commanded by the OUT, OUTP, or POUT command
(for example, OUTxx1 activates output 3).

“General Purpose”
(OUTFNCi-A)

The default function for the outputs is General Purpose. As such, the output is used as a
standard output, turning it on or off with the OUT, OUTP or OUTALL commands to affect
processes external to the controller. To view the state of the outputs, use the TOUT command.
To use the state of the outputs as a basis for conditional branching or looping statements (IF,
REPEAT, WHILE, etc.), use the [OUT] command.

92 6K Series Programmer’s Guide

Moving/Not Moving
(In Position)
(OUTFNCi-<a>B)

When assigned the Moving/Not Moving function, the output will activate when the axis is
commanded to move. As soon as the move is completed, the output will change to the
opposite state.

Servo Axes: If the target zone mode is enabled (STRGTE1), the output will not change state
until the move completion criteria set with the STRGTD and STRGTV commands has been met.
(For more information, see the Target Zone section on page 74.) In this manner, the
Moving/Not Moving output functions as an In Position output.

Example The code example below defines onboard outputs 1 and 2 as General Purpose outputs and
output 3 as a Moving/Not Moving output. Before the motor moves 4,000 steps, output 1 turns
on and output 2 turns off. These outputs remain in this state until the move is completed, then
output 1 turns off and output 2 turns on. While the motor/load is moving, output 3 remains on.
SCALE0 ; Disable scaling
MC0 ; Set axis 1 to preset positioning mode
MA0 ; Select incremental positioning mode
A10 ; Set axis 1 acceleration to 10
V5 ; Set axis 1 velocity to 5
D4000 ; Set axis 1 distance to 4,000 counts
OUTFNC1-A ; Set onboard output 1 as a general purpose output
OUTFNC2-A ; Set onboard output 2 as a general purpose output
OUTFNC3-1B ; Set onboard output 3 as axis 1 Moving/Not Moving output
OUT10 ; Turn onboard output 1 on and output 2 off
GO1 ; Initiates axis 1 move
OUT01 ; Turn onboard output 1 off and output 2 on

Program in
Progress
(OUTFNCi-C)

When assigned the Program in Progress function, the output will activate when a program is
being executed. After the program is finished, the output's state is reversed. The action of
executing a program is also reported with system status bit 3 (see TSSF, TSS and SS
commands).

Limit Encountered
(OUTFNCi-<a>D)

When assigned the Limit Encountered function, the output will activate when a hard or soft
end-of-travel limit has been encountered.

If a hard or soft limit is encountered, you will not be able to move the motor/load in that same
direction until you clear the limit by changing direction (D) and issuing a GO command. (An
alternative is to disable the limits with the LHØ command, but this is recommended only if the
motor is not coupled to the load.) The event of encountering an end-of-travel limit is also
reported with axis status bits 15-18 (see TASF, TAS and AS commands, summary on page 226).

Stall Indicator
(OUTFNCi-<a>E)
Stepper Axis Only

When assigned the Stall Indicator function, the output will activate when a stall is detected. To
detect a stall, you must first connect an encoder and enable stall detection with the ESTALL1
command. Refer to Encoder-Based Stepper Operation on page 64 for further discussion on
stall detection.

Fault Output
(OUTFNCi-F)

When assigned the Fault Output function, the output will activate when either the user fault
input or the drive fault input becomes active. The user fault input is a general-purpose input
defined as a user fault input with the LIMFNCi-F or INFNCi-F command (see page 83).

Make sure the drive fault input is enabled (DRFEN) and the drive fault active level (DRFLVL)
is appropriate for the drive you are using.

Maximum Position
Error Exceeded
(OUTFNCi-<a>G)
Servo Axes Only

When assigned the Maximum Position Error Exceeded function, the output will activate when
the maximum allowable position error, as defined with the SMPER command, is exceeded.

The position error (TPER) is defined as the difference between the commanded position (TPC)
and the actual position as measured by the feedback device (TFB). When the maximum
position error is exceeded (usually due to lagging load, instability, or loss of position
feedback), the controller shuts down the drive and sets error status bit 12 (reported by the
TERF, TER and ER commands if bit 12 of the ERROR command is enabled).

NOTE
If the SMPER command is set to zero (SMPERØ — the default value), the position error is not
monitored; thus, the Maximum Position Error Exceeded function will not be usable.

 Chapter 3. Basic Operation Setup 93

Output on Position
(OUTFNCi-H)

The Output on Position feature activates the designated output when the axis has reached a
specified position. To use this feature, you must first assign the Output on Position function to
the respective output, and define the Output on Position characteristics with the OUTP
command. The OUTP command correlates directly to a specific onboard programmable output
and axis (e.g., OUTPA correlates to output 1 and axis 1, OUTPB correlates to output 2 and axis
2, and so on):

OUTP n , , <r>, <i>

Axis/Output Specifier:

A ... Turn on output 1 based on axis #1's position
B ... Turn on output 2 based on axis #2's position
C ... Turn on output 3 based on axis #3's position
D ... Turn on output 4 based on axis #4's position
E ... Turn on output 5 based on axis #5's position
F ... Turn on output 6 based on axis #6's position
G ... Turn on output 7 based on axis #7's position
H ... Turn on output 8 based on axis #8's position

Enable Bit:

1 ... Enable the output-on-position function
0 ... Disable the output-on-position function

Servo Axes: If an SFB command is executed,
the function is disabled.

Increment or Absolute Position Comparison:

1 ... Set position comparison to incremental
(measured from the last start-motion
command, such as GO, GOL, GOWHEN, etc.)

0 ... Set position comparison to absolute

Position:

Scalable distance (distance is either
incremental or absolute, depending on the
second data field).

Servo Axes:
Only the encoder position can be used.

Stepper Axes:
· If ENCCNT0, the commanded position is used.
· If ENCCNT1, the encoder position is used.

Time (milliseconds):

Time (milliseconds) the output is to stay active.
The output activates when the specified
position (<r>) is reached or exceeded, and
stays active for the specified time.

If this field is set to zero, the
output will stay active for as long as the actual
distance equals or exceeds the position
comparison distance (this is possible only for
an absolute position comparison).

Sample Code
for Setup

In this example, the user has a two-axis application and wants to turn on output when axis 1
(servo) reaches encoder position 50,000 and turn on another output when axis 2 (stepper)
reaches commanded position 30,000. Both outputs must remain on for 50 milliseconds.
AXSDEF10 ; Define axis 1 as servo, axis 2 as stepper
SFB1 ; Select encoder feedback for axis 1
OUTFNC1-H ; Define onboard output 1 as an "output on
 ; position" output
OUTFNC2-H ; Define onboard output 2 as an "output on
 ; position" output
OUTPA1,0,+50000,50 ; Turn on onboard output 1 for 50 ms when the
 ; encoder position of axis 1 is > or =
 ; absolute position +50,000
OUTPB1,1,+30000,50 ; Turn on onboard output 2 for 50 ms when the
 ; axis 2's commanded position reaches > or =
 ; incremental position 30,000 (since the last GO)

Notes about Output On Position
• On servo axes, this feature can be used only with encoder feedback and is not operational

with ANI (analog input) feedback.
On stepper axes, this feature can be based on commanded position or encoder position,
depending on the ENCCNT setting for the particular axis (default is ENCCNT0, which uses
the commanded position).

• The output activates only during motion; thus, issuing a PSET command to set the
absolute position counter to activate the output on position will not turn on the output until
the next motion occurs.

94 6K Series Programmer’s Guide

Variable Arrays (teaching variable data)

More on variables:
see page 18.

Variable data arrays provide a method of storing (teaching) variable data and later using the
stored data as a source for motion program parameters. The variable data can be any value that
can be stored in a numeric (VAR or VARI) variable (e.g., position, acceleration, velocity, etc.).
The variable data is stored into a data program, which is an array of data elements that have a
specific address from which to write and read the variable data. Data programs do not contain
6K Series commands.

The information below describes the principles of using the data program in a teach-type
application. Following that is an application example in which the joystick is used to teach
position data to be used in a motion program.

Basics of Teach-Data Applications
The basic process of using a data program for data teaching applications is as follows:

1. Initialize a data program.
2. Teach (store/write) variable data into the data program.
3. Read the data elements from the data program into a motion program.

1. Initialize a
Data Program

This is accomplished with the DATSIZ command. The DATSIZ command syntax is
DATSIZi<,i>. The first integer (i) represents the number of the data program (1 - 50). You
can create up to 50 separate data programs. The data program is automatically given a specific
program name (DATPi). The second integer represents the total number of data elements (up
to 6,500) you want in the data program. Upon issuing the DATSIZ command, the data program
is created with all the data elements initialized with a value of zero.

The data program has a tabular structure, where the data elements are stored 4 to a line. Each
line of data elements is called a data statement. Each element is numbered in sequential order
from left to right (1 - 4) and top to bottom (1 - 4, 5 - 8, 9 - 12, etc.). You can use the TPROG
DATPi command (“i” represents the number of the data program) to display all the data
elements of the data program.

For example, if you issue the DATSIZ1,13 command, data program 1 (called DATP1) is
created with 13 data elements initialized to zero. The response to the TPROG DATP1
command is depicted below. Each line (data statement) begins with DATA=, and each data
element is separated with a comma.

*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø

Each data statement, comprising four data elements, uses 43 bytes of memory. The memory
for each data statement is subtracted from the memory allocated for user programs (see
MEMORY command).

 Chapter 3. Basic Operation Setup 95

2. Teach the Data
to the Data
Program

The data that you wish to write to the data elements in the data program must first be placed
into numeric variables (VAR). Once the data is stored into numeric variables, the data elements
in the data program can be edited by using the Data Pointer (DATPTR) command to move the
data pointer to that element, and then using the Data Teach (DATTCH) command to write the
datum from the numeric variable into the element.

When the DATSIZ command is issued, the internal data pointer is automatically positioned to
data element 1. Using the default settings for the DATPTR command, the numberic variable
data is written to the data elements in sequential order, incrementing one by one. When the
last data element in the data program is written, the data pointer is automatically set to data
element 1 and a warning message (*WARNING: POINTER HAS WRAPPED AROUND TO
DATA POINT 1) is displayed. The warning message does not interrupt program execution.

The DATPTR command syntax is DATPTRi,i,i. The first integer (i) represents the data
program number (1 through 50). The second integer represents the number of the data element
to point to (1 through 6500). The third integer represents the number of data elements by
which the pointer will increment after writing each data element from the DATTCH command,
or after recalling a data element with the DAT command.

The DATTCH command syntax is DATTCHi<,i,i,i>. Each integer (i) represents the
number of a numeric variable. The value of the numeric variable will be stored into the data
element(s) of the currently active data program (i.e., the program last specified with the last
DATSIZ or DATPTR command). As indicated by the number of integers in the syntax, the
maximum number of variable values that can be stored in the data program per DATTCH
command is 4. Each successive value from the DATTCH command is stored to the data
program according to the pattern established by the third integer of the DATPTR command.

As an example, suppose data program 1 is configured to hold 13 data elements
(DATSIZ1,13), the data pointer is configured to start at data element 1 and increment 1 data
element after every value stored from the DATTCH command (DATPTR1,1,1), and the
values of numeric variables 1 through 3 are already assigned (VAR1=2, VAR2=4, VAR3=8).
If you then enter the DATTCH1,2,3 command, the values of VAR1 through VAR3 will be
assigned respectively to the first three data elements in the data program, leaving the pointer
pointing to data element 4. The response to the TPROG DATP1 command would be as
follows (the text is highlighted to illustrate the final location of the data pointer after the
DATTCH1,2,3 command is executed):

*DATA=+2.Ø,+4.Ø,+8.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø

If you had set the DATPTR command to increment 2 data elements after every value from the
DATTCH command (DATPTR1,1,2), the data program would be filled differently and the
data pointer would end up pointing to data element 7:

*DATA=+2.Ø,+Ø.Ø,+4.Ø,+Ø.Ø
*DATA=+8.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø,+Ø.Ø,+Ø.Ø,+Ø.Ø
*DATA=+Ø.Ø

3. Recall the Data
from the Data
Program

After storing (teaching) your variables to the data program, you can use the DATPTR command
to point to the data elements and the DATi (“i” = data program number) data assignment
command to read the stored variables to your motion program. You cannot recall more than
one data element at a time; therefore, if you want to recall the data in a one-by-one sequence,
the third integer of the DATPTR command must be a 1 (this is the default setting).

96 6K Series Programmer’s Guide

Summary of Related 6K Series Commands
DATSIZ Establishes the number of data elements a specific data program is to contain. A

new DATPi program name is automatically generated according to the number
of the data program (i = 1 through 50). The memory required for the data
program is subtracted from the memory allocated for user programs (see
MEMORY command).

DATPTR Moves the data pointer to a specific data element in any data program. This
command also establishes the number of data elements by which the pointer
increments after writing each data element from the DATTCH command and
after recalling each data element with the DAT command.

DATTCH Stores the variable data into the data program specified with the last DATSIZ or
DATPTR command. After the data is stored, the data pointer is incremented the
number of times entered in the third integer of the DATPTR command. The data
must first be assigned to a numeric variable before it can be taught to the data
program.

TDPTR Responds with a 3-integer status report (i,i,i): First integer is the number of
the active data program (the program specified with the last DATSIZ or
DATPTR command); Second integer is the location number of the data element
to which the data pointer is currently pointing; Third integer is the increment set
with the last DATPTR command.

[DPTR] ... From the currently active data program, uses the number of the data pointer's
location in a numeric variable assignment operation or a conditional statement
operation.

[DATPi] . The name of the data program created after issuing the DATSIZ command. The
integer (i) represents the number of the data program. Data programs can be
deleted just like any other user program (e.g., DEL DATP1).

[DATi] ... From the data program specified with i, assigns the numeric value of the data
element (currently pointed to by the data pointer) to a specified variable
parameter in a 6K series command (e.g., D(DAT3),(DAT3)).

Teach-Data Application Example
In this example, 2 axes (axis 1 and axis 2) of a 6K Series controller are used to move a 2-axis
stage. This example illustrates a common method of teaching a path by using the joystick to
move the load into position, teach the position (triggered by the Joystick Release input), then
move to the next position. Five positions will be taught from each axis (2 axes at one trigger),
for a total of 10 data elements in the data program. After all 10 positions are taught to the data
program, the controller will automatically move both axes to a home position, move to each
position that was taught, and then return to the home position.

For the sake of brevity, this example is limited to teaching 10 position data points; however,
in a typical application, many more points would be taught. Also, it is assumed that end-of-
travel and home limits are wired and a homing move has been programmed.

What follows is a suggested method of programming the controller for this application. To
accomplish the teach application, a program called MAIN is created, comprising three
subroutines: SETUP (to set up for teaching data to the data program), TEACH (to teach the
positions), and DOPATH (to implement a motion program based on the positions taught).

The joystick operation in this example is based on using an analog inputs (ANI) SIM on an
expansion I/O brick. The ANI SIM is in slot 2 of I/O brick 1 and inputs 1 and 2 are used to
control axes 1 and 2, respectively. A digital input SIM is installed in slot 1 of I/O brick 1, and
input 1 on that SIM is assigned the Joystick Release function to trigger the position teach
operation.

 Chapter 3. Basic Operation Setup 97

Step 1 Initialize a Data Program.
DEL DATP1 ; Delete data program 1 (DATP1) in preparation for
 ; creating a new data program 1
DATSIZ1,1Ø ; Create data program 1 (named DATP1) with an
 ; allocation of 10 data elements. Each element is
 ; initialized to zero.

Step 2 Define the SETUP Subroutine. The SETUP subroutine need only run once.

DEF SETUP ; Begin definition of the subroutine called SETUP
1INFNC1-M ; Assign digital input 1 on SIM 2 (I/O point 1) of
 ; I/O brick 1 to function as a "Joystick Release" input.
JOYVH3,3 ; Set the maximum velocity (3 units/sec) that axes 1
 ; and 2 can achieve when the joystick is at full
 ; deflection
JOYAXH1-9,1-10 ; Assign ANI input 1 on SIM 2 (I/O point 9) of I/O
 ; brick 1 to control axis 1; assign ANI input 2 on
 ; SIM 2 (I/O point 10) of I/O brick 1 to control
 ; axis 1
VAR1=Ø ; Initialize variable 1 equal to zero
VAR2=Ø ; Initialize variable 2 equal to zero
DRIVE11 ; Enable the drives for both axes
MA11 ; Enable the absolute positioning mode for both axes
END ; End definition of the subroutine called SETUP

Step 3 Define the TEACH Subroutine.
DEF TEACH ; Begin definition of the subroutine called TEACH
HOM11 ; Home both axes (absolute position counter is set to
 ; zero after the homing move)
DATPTR1,1,1 ; Select data program 1 (DATP1) as the current active
 ; data program, and move the data pointer to the first
 ; data element. After each DATTCH value is stored to
 ; DATP1, increment the data pointer by 1 data element.
REPEAT ; Set up a repeat/until loop
JOY11 ; Enable joystick mode on both axes. At this point,
 ; you can start moving the axes into position with the
 ; joystick. WHILE USING THE JOYSTICK, COMMAND PROCESSING
 ; IS STOPPED HERE UNTIL YOU ACTIVATE THE JOYSTICK
 ; RELEASE INPUT. Activating the joystick release input
 ; disables the joystick mode and allows the subsequent
 ; commands to be executed (assign the current positions
 ; to the variables and then store the positions in the
 ; data program).
VAR1=1PM ; Set variable 1 equal to the position of motor 1
VAR2=2PM ; Set variable 2 equal to the position of motor 2
DATTCH1,2 ; Store variable 1 and variable 2 into consecutive
 ; data elements. (The first time through the

repeat/until
 ; loop, variable 1 is stored into data element 1 and
 ; variable 2 is stored into data element 2. The data
 ; pointer is automatically incremented once after each
 ; data element and ends up pointing to the third data
 ; element in anticipation of the next DATTCH command.)
WAIT(1IN.1=b1) ; Wait for the joystick release input to be de-activated
UNTIL(DPTR=1) ; Repeat the loop until the data pointer wraps around
 ; to data element 1 (data program full)
END ; End definition of the subroutine called TEACH

98 6K Series Programmer’s Guide

Step 4 Define the DOPATH Subroutine.
DEF DOPATH ; Begin definition of the subroutine called DOPATH
HOM11 ; Move both axes to the home position
 ; (absolute counters set to zero)
A5Ø,5Ø ; Set up the acceleration
V3,3 ; Set up the velocity
DATPTR1,1,1 ; Select data program 1 (DATP1) as the current active
 ; data program, and set the data pointer to the first
 ; data element. Increment the data pointer one element
 ; after every data assignment with the DAT command.
 ; If you wanted to move only axis 1 down the taught
 ; path, you would set the increment (third integer)
 ; to a 2, thus accessing only the axis 1 stored
 ; positions.
REPEAT ; Set up a repeat/until loop
D(DAT1),(DAT1) ; The position of axis 1 and axis 2 are recalled into
 ; the distance command
GO11 ; Move to the position
T.5 ; Wait for 0.5 seconds
UNTIL(DPTR=1) ; Repeat the loop until the data pointer wraps around
 ; to data element 1 (all data elements have been read)
HOM11 ; Move both axes back to the home position
END ; End definition of the subroutine called DOPATH

Step 5 Define the MAIN Program (Include SETUP, TEACH, and DOPATH).
DEF MAIN ; Begin definition of the program called MAIN
SETUP ; Execute the subroutine called SETUP
TEACH ; Execute the subroutine called TEACH
DOPATH ; Execute the subroutine called DOPATH
END ; End definition of the program called MAIN

Step 6 Run the MAIN Program and Teach the Positions with the Joystick.

1 . Enter the MAIN command to execute the teach application program and set the
joystick's axis select input to high.

2 . Use the joystick to move to the position to be taught.

3 . Once in position, activate the joystick release input to teach the positions. Two
positions (one for each axis) are taught each time you activate the joystick release
input.

4 . Repeat steps 2 and 3 for the remaining four teach locations. After triggering the
joystick release input the fifth time, the controller will home the axes, repeat the
path that was taught, and then return both axes to the home position.

4

C H A P T E R F O U R

Product Control
Options

IN THIS CHAPTER
This chapter explains various options for controlling your 6K product:

• Safety features .. 100
• Overview of product control options.. 101
• Programmable I/O (switches, thumbwheels, PLCs, PLC Scan Mode, etc.)........ 102
• RP240 remote operator panel ... 107
• Joystick and analog input interface (requires ANI SIM on expansion I/O brick)114
• Host computer interface ... 118

100 6K Series Programmer’s Guide

Safety Features
������������
������������
������������

������������
������������
������������ WARNING

������������
������������
������������

������������
������������
������������

The 6K Product is used to control your system's electrical and mechanical components.
Therefore, you should test your system for safety under all potential conditions. Failure to do
so can result in damage to equipment and/or serious injury to personnel.

To help ensure a safe operating environment, you should take advantage of the safety features
listed below. These features must not be construed as the only methods of ensuring safety.
See Also refers you to where you can find more in-depth information about the feature (system
connections and/or programming instructions).

Feature Description See Also

Enable Input The ENABLE input, found on the 6K product’s screw-terminal connector,
is provided as an emergency stop input to the controller.

If the ENABLE input is opened (disconnected from GND), output to the
drives is inhibited. For stepper axes, step pulses to the drive are
immediately cut off. For servo axes, the analog output voltage between
CMD+ and CMD- is clamped to almost zero, and the shutdown outputs are
activated on all axes. (The clamping circuit is also connected to the
watchdog timer; if the controller's microprocessor fails, the analog output
voltage will be clamped.)

6K Product's
Installation
Guide

Shutdown
Outputs

The controller uses the shutdown outputs to disable the attached drive if it
detects a problem. Two types of relay outputs are found on the DRIVE
connectors—SHTNC for drives that require a closed contact to disable the
drive, and SHTNO for drives that require an open contact to disable the
drive. The shutdown relay outputs are essential for smooth power-up and
power-down of the system. The shutdown relay is active (disabling the
drive) when no power is applied to the controller. When the controller is
powered up, the shutdown relay remains active until you issue the
DRIVE1111 command. CAUTION: When shut down, the drive cuts all
control to the motor and allows the load to freewheel to a stop.

6K Product's
Installation
Guide

Drive Fault
Inputs

The drive fault (DFT) inputs, found on the product's DRIVE connectors,
allows the drives to tell the controller if they encounter a fault condition.
When a drive fault occurs, the controller stops motion (at the rate set with
the LHAD and LHADA commands) and terminates program execution. No
drive shutdown will result unless it is initiated with an ERRORP error
program. NOTE: The drive fault input state will not be checked unless
you enable the drive fault input (DRFEN1) and enable the drive (DRIVE1).

6K Product's
Installation
Guide

End-of-travel
Limit Inputs

End-of-travel limits prevent the load from crashing through mechanical
stops, an incident that can damage equipment and injure personnel. Use
hardware or software limits, as your application requires. The default
hardware limits are found on the LIMITS connector. Software limits are
set with the LSPOS and LSNEG commands.

End-of-Travel
Limits
(page 57)

User Fault
Input

Using the INFNCi-F command or the LIMFNCi-F command, you can
assign any of the programmable inputs the user fault function. You can
then wire the input to activate when an external event, considered a fault
by the user, occurs.

Input
Functions
(page 83)

Maximum
Allowable
Position Error
(servos only)

A position error (TPER) is defined as the difference between the
commanded position (TPC) and the actual position as measured by the
feedback device (TFB). The maximum allowable position error is set with
the SMPER command. When the maximum allowable position error is
exceeded (usually due to instability or loss of position feedback), the
controller shuts down the drive and sets error status bit 12 (reported by
the TER command).

If SMPER is set to zero (SMPERØ), position error will not be monitored.

Servo Setup
(page 67)

 Chapter 4. Product Control Options 101

Programmed Error-

Handling Responses

When any of the safety features listed above are exercised (e.g., DFT input is activated, etc.),
the controller considers it an error condition. With the exception of the shutdown output
activation, you can enable the ERROR command to check for the error condition, and when it
occurs to branch to an assigned ERRORP program. Refer to Error Handling (page 30) for
further information.

Options Overview

Stand-Alone Interface Options
After defining and storing controller programs, the controller can operate in a stand-alone
fashion. A program stored in the controller can interactively prompt the user for input as part
of the program (input via I/O switches, thumbwheels, RP240, joystick). A joystick can be use
for situations requiring manual manipulation of the load.

Option Application Example
RP240

(see page 107)

Grinding: Program the RP240 function keys to select certain part types,
and program one function key as a GO button. Select the part you want
to grind, then put the part in the grinding machine and press the GO
function key. The controller will then move the machine according to the
predefined program assigned to the function key selected.

Joystick

(see page 114)

X-Y scanning/calibration: Enter the joystick mode and use the 2-axis
joystick to position an X-Y table under a microscope to arbitrarily scan
different parts of the work piece (e.g., semi-conductor wafer). You can
record certain locations to be used later in a motion process (e.g., for
drilling, cutting, or photographing the work piece). The Variable Arrays
section on page 94 provides an example using the joystick to teach
positions.

ANI Analog Inputs

(see page 117)

Injection Molding: Use for feedback from a pressure sensor to maintain
constant, programmable force. (NOTE: ANI control requires that you
install an analog input SIM on an expansion I/O brick.)

Programmable inputs scanned
in PLC Scan Mode

(see page 104)

The PLC Scan feature allows you to create a pre-compiled program that
mimics PLC functionality by scanning through the I/O faster than in a
normal program run. Because the functions of PLC programs are pre-
compiled, delays associated with command processing are eliminated
during profile execution, allowing more rapid sequencing of actions than
would be possible with programs that are not compiled. Command
processing is then free to monitor other activities.

Programmable Logic Controller
The controller's programmable I/O can be connected to most PLCs. After defining and
storing controller programs, the PLC typically executes programs, loads data, and manipulates
inputs to the controller. The PLC instructs the controller to perform the motion segment of a
total machine process.

EXAMPLE (X-Y point-to-point): A PLC controls several tools to stack and bore several
steel plates at once. The controller is programmed to move an X-Y table in a pre-programmed
sequence. The controller moves the load when the inputs are properly configured, signals the
PLC when the load is in position, and waits for the signal to continue to the next position.

Host Computer Interface
A computer can be used to control a motion or machine process. A PC can monitor processes
and orchestrate motion by sending motion commands to the controller or by executing motion
programs already stored in the controller. This control might come from a BASIC or C
program. A BASIC program example is provided on page 101.

102 6K Series Programmer’s Guide

Programmable I/O Devices

Programmable I/O Functions
Programmable inputs and outputs are provided to allow the controller to detect and respond to
the state of switches, thumbwheels, electronic sensors, and outputs of other equipment such as
drives and PLCs. Listed below are the programmable functions that can be assigned to the
programmable I/O.

Programmable I/O offering differs by product. The total number of onboard inputs and
outputs (trigger inputs, limit inputs, digital outputs) depends on the product. The total number
of expansion inputs and outputs (analog inputs, digital inputs and digital outputs) depends on
your configuration of expansion I/O bricks. To determine I/O bit pattern for your product, see
page 76.

NOTE
Refer to page 75 for instructions on establishing programmable input and output functions.
Instructions for connecting to I/O devices are provided in your product’s Installation Guide.

Input Functions Input functions can be assigned to two basic groups of programmable inputs. LIMFNC assigns
functions to the limit inputs found on the “LIMITS/HOME” connector. INFNC assigns functions to
the trigger inputs (on the “TRIGGERS/OUTPUTS” connector) and to the digital inputs installed on
expansion I/O bricks. The syntax, LIMFNCi-c or INFNCi-c, requires a letter designator (“c”)
that corresponds to an input function; options for the input functions are listed in the table below.

Virtual Inputs
can be established
to provide program-
mable input
functionality for data
or external events
that are not
ordinarily
represented by
inputs. See page 79
for details.

Letter Designator Function
 A....................General-purpose input (default function for triggers & inputs on I/O bricks)
 B....................BCD program select
 C....................Kill
 <a>D....................Stop (axis designator “a” is optional)
 E....................Pause/Continue
 F....................User fault
 G....................<RESERVED>
 H....................Trigger Interrupt for position capture or registration (trigger inputs only). Special trigger

functions can be assigned with the TRGFN command (see page 162).
 I....................Cause alarm event (requires Ethernet interface) in Communications Server
 aJ....................Jog in the positive-counting direction (axis designator is required)
 aK....................Jog in the negative-counting direction (axis designator is required)
 aL....................Jog velocity select (axis designator is required)
 M....................Joystick release
 N....................Joystick axis select
 O....................Joystick velocity select
 P....................One-to-one program select
 Q....................Program security
 aR....................End-of-travel limit for positive-counting direction (axis designator is required) *
 aS....................End-of-travel limit for negative-counting direction (axis designator is required) *
 aT....................Home limit (axis designator is required) *

* The limit inputs are factory-set to their respective end-of-travel or home limit function (see page 76).

Output Functions Command Function
 OUTFNCi-AGeneral-purpose output (default function)
 OUTFNCi-<a>B......Moving/not moving (axis designator optional)
 OUTFNCi-CProgram in progress
 OUTFNCi-<a>D......Hardware or software end-of-travel limit encountered (axis designator optional)
 OUTFNCi-<a>E......Stall indicator (axis designator optional) — stepper axes only
 OUTFNCi-FFault indicator (indicates drive fault input or user fault input is active)
 OUTFNCi-GPosition error exceeds maximum limit set with SMPER — servo axes only
 OUTFNCi-HOutput on position
* The “i” in the command syntax represents the number of the programmable input (e.g., OUTFNC3-H

assigns onboard output 3 as an “output on position” function).

 Chapter 4. Product Control Options 103

Thumbwheels
You can connect the controller's programmable I/O to a bank of thumbwheel switches to
allow operator selection of motion or machine control parameters.

The commands that allow for thumbwheel data entry are:

INSTW.....................Establish thumbwheel data inputs
OUTTW.....................Establish thumbwheel data outputs
TWRead thumbwheels or PLC inputs
INPLC.....................Establish PLC data inputs
OUTPLCEstablish PLC data outputs

Thumbwheel Setup The controller's programming language allows direct input of BCD thumbwheel data via the
programmable inputs. Use the steps below to set up and read the thumbwheel interface. Refer
to the 6K Series Command Reference for descriptions of the commands used below.

Step 1 Wire your thumbwheels to the 6K according to the I/O connection instructions provided in
your product’s Installation Guide.

Step 2 Set up the inputs and outputs for operation with thumbwheels. The data valid input will be an
input that the operator holds active to let the controller read the thumbwheels. This input is not
necessary; however, it is often used when interfacing with PLCs.
OUTPLC1,1-4,0,12 ; Config PLC output set 1:
 ; onboard outputs 1-4 are strobe outputs,
 ; no output enable bit,
 ; 12 ms strobe time per digit read.
INPLC1,1-8,9 ; Configure PLC input set 1:
 ; onboard inputs 1-8 are data inputs,
 ; onboard input 9 is a sign input,
 ; no data valid input.
INLVL000000000 ; Onboard inputs 1-9 configured active low

Step 3 The thumbwheels are read sequentially by outputs 1-4, which strobe two digits at a time. The
sign bit is optional. Set the thumbwheels to +12345678 and type in the following commands:
VAR1=TW5 ; Assign data from all 8 thumbwheel digits to VAR1
VAR1 ; Displays the variable (*VAR1=+0.12345678).
 ; If you do not receive this response, return to
 ; step 1 and retry.

PLCs
The controller’s programmable I/O can be connected to most PLCs. After defining and
storing controller programs, the PLC typically executes programs, loads data, and manipulates
inputs to the controller. The PLC instructs the controller to perform the motion segment of a
total machine process.
Refer to your product's Installation Guide for instructions on connecting to I/O devices. For
higher current or voltages above 24VDC, use external signal conditioning such as OPTO-22
compatible I/O signal conditioning racks. Contact your local distributor or automation
technology center for information on these products.

104 6K Series Programmer’s Guide

PLC Scan Mode
The PLC feature allows you to create a pre-compiled program that mimics PLC functionality by
scanning through the I/O faster than in a normal program run. Because the functions of PLC
programs are pre-compiled, delays associated with command processing are eliminated during
profile execution, allowing more rapid sequencing of actions than would be possible with
programs that are not compiled. Command processing is then free to monitor other activities.

Scan Time

To check how much time
(in 2 ms increments) the
last scan took to complete,
issue the TSCAN command
or use the SCAN operand
for variable assignments
and IF conditions.

For example, if the last
PLC program took 3
system updates (2 ms
each) to scan, then TSCAN
would report *TSCAN6,
indicating that it took 6 ms
to complete the scan.
Each pass, if taking the
same path through the
conditional branches (IF
statements), will always
report the same TSCAN
value.

The PLC program is
scanned/ executed at
the beginning of the
2-ms update period.
The scan will stop after
30 segments have been
executed and resume at
the next 2-ms update.
PLCP programs, when
compiled, comprise a
linked list of PLC
segments. During a
scan, each segment is
counted until the total
number of segments
executed exceeds 30.

If the 30-segment limit
occurs while executing
a multi-segment

Scanning

Scanning

• I/O Updated by System
• Trajectories calculated
• Programs/Tasks run
• Etc.

30-segment limit

Begin Scan Window

End Scan Window

Begin New Scan
(or resume scan
 at next segment)

2 millisecond
System Update Period

0

2 msec

Time (msec)

Note: In Scan mode, when a
scan is complete, the next scan
will begin at the start of the
next 2 ms System Update Period.

To ascertain the scan time
required to execute 30
segments, use TSCAN
or [SCAN].

statement, then that statement will finish no matter how many segments it executes. For
example, if 29 segments have executed, then the next segment will cause the scan to pause
until the next 2-ms update. If that next statement is VARI1=1PE, which executes 2 segments,
then VARI1=1PE will complete its operations before pausing the scan.

To Implement a
PLC Program …

1. Define the PLC program (DEF PLCPi statement, followed by commands from the list
below, followed by END). Up to 99 PLC programs can be defined, identified as PLCP1,
PLCP2, PLCP3, and so on. Only these commands are allowed in a PLC program:

• IF, ELSE, and NIF (conditional branching) —The PLC program uses the non-scaled
integer (“raw”) operand values (e.g., PE value is not scaled by SCLD or ERES; PANI
value is ADC counts, not volts). The only operands that are not allowed are: SIN,
COS, TAN, ATAN, VCVT, SQRT, VAR, TW, READ, DREAD, DREADF, DAT, DPTR, and PI.

• L and LN (loops)
• HALT — as of OS revision 5.1

- If the PLC program is executed with SCANP, HALT will terminate the current
PLC program and kill the SCANP mode

- If the PLC program is executed with PRUN, HALT will stop the PLC program
(and the program that executed the PRUN statement) running in that task.

• BREAK — as of OS revision 5.1
- If the PLC program is executed with SCANP, BREAK will end only the current

scan loop. At the next 2-millsecond update, the scan will restart at the first line
of the PLC program.

- If the PLC program is executed with PRUN, BREAK will stop the PLC program
and execution will continue in the program from which the PRUN was executed
(resuming at the command immediately following the PRUN command).

• TIMST and TIMSTP (start and stop the timer) — available as of OS revision 5.1
• OUT (turn on a digital output)

 Chapter 4. Product Control Options 105

• ANO (set an analog output voltage – requires an extended I/O brick with on an
analog output SIM) — available as of OS revision 5.1

• EXE (execute a program in a specific task — e.g., 2%EXE MOVE)
• PEXE (execute a compiled program in a specific task — e.g., 3%PEXE PLCP4)
• VARI (integer variables). A VARI assignment expression is limited to one math

function — either addition (+) or subtraction (-). The operands can be any of the
monitored integer assignment operators (e.g., PE, PC, etc.).
 NOTE: The PLC program uses the non-scaled (“raw”) operand values.

• VARB (binary variables). Bitwise operations are limited to Boolean And (&),
Boolean Inclusive Or (|), and Boolean Exclusive Or (^). The operands can be any
of the monitored binary assignment operators (e.g., IN, LIM, AS, VARB, etc.).

2. Compile the PLC program (PCOMP PLCPi). A compiled program runs much faster than a
standard program. After the PLCP program is compiled, it is placed in the 6K controller’s
“compiled” memory partition (see MEMORY command). To verify which PLC programs are
compiled, type in the TDIR command; compiled PLC programs are identified as
“COMPILED AS A PLC PROGRAM”.

3. Execute the PLC program (SCANP PLCPi). When the PLC program is launched with the
SCANP command, it is executed in the “PLC Scan Mode”. The advantage of the PLC Scan
Mode is that the PLC program is executed within a dedicated 0.5 ms time slot during every
2 ms system update period. This gives the PLCP program faster throughput for monitoring
and manipulating I/O.

An alternative execution method is to use the PRUN command (PRUN PLCPi). This method
is similar to the SCANP PLCPi method, but will only run through the PLCP program once.

Technical Notes
About PLC
Programs

• Controller Status bit 3 is set when a PLCP program is being executed in Scan Mode. To
check the controller status, use SC, TSC, or TSCF.

• Launching programs external to the scan: Using the EXE command or the PEXE
command, a scan program can launch another program in a specified task. EXE launches a
standard, non-compiled program; PEXE launches a compiled program.

• Stopping the scan: The scan program can be stopped in either of two ways: using the !K
command, or clearing the scan program by issuing a SCANP CLR command.

• Timing the PLC program outputs: It is not possible to control where the PLC program
will pause if the scan takes more than the allowed time. This means that there can be a
time lag of several update periods before the outputs, analog outputs, and/or variables
affected by the PLC program are updated. The order in which the scan takes place should
be considered when creating PLC programs to minimize the effects of such a lag. One
way to avoid the lag is to create a binary variable as a temporary holding place for the
desired output states. The last commands before the END statement of the PLC program
can set the outputs according to the final status of the variable, such that all output states
are written at the same time, just as the scan completes. This method is demonstrated in the
example program below.

• Memory Requirements: Most commands allowed in a PLC program consume one
segment of compiled memory after the program is compiled with PCOMP; the exceptions
are VARI and VARB (each consume 2 segments) and IF statements. Each IF conditional
evaluation compounded with either an AND or an OR operator consumes an additional
segment (e.g., IF(IN.1=b1 AND 1AS.1=b0) consumes three segments of compiled
memory). The number of compounds is limited only by the memory available.

• Order of Evaluation for Conditional Expressions:
Because only one level of parenthesis is allowed, the order of evaluation of IF
conditionals is from left to right. Refer to the flowchart below for the evaluation logic.

106 6K Series Programmer’s Guide

NO

Evaluate

Compound = AND?Compound = OR?

FALSE

YES YES

TRUE

Get Next Conditional

Statement
Evaluates FALSE

NO

Statement
Evaluates TRUE

Programming
Example

DEF PLCP3
; Binary states of outputs 1-6 represented by VARB1 bits 1-6.
; Outputs 1-6 set at the end of program.
VARB1=b000000 ; Initialize binary variable 1
IF(IN.1=b1) ; If onboard input 1 is ON, turn output 1 ON
 VARB1=VARB1 | b100000 ; Set binary bit for output 1 only to ON
 NIF
IF(IN.2=b1) ; If onboard input 2 is ON, turn output 2 ON
 VARB1=VARB1 | b010000 ; Set binary bit for output 2 only to ON
 NIF
IF(IN.3=b1) ; If onboard input 3 is ON, turn output 3 ON
 VARB1=VARB1 | b001000 ; Set binary bit for output 3 only to ON
 NIF
IF(IN.4=b1) ; If onboard input 4 is ON, turn output 4 ON
 VARB1=VARB1 | b000100 ; Set binary bit for output 4 only to ON
 NIF
IF(IN.5=b1) ; If onboard input 5 is ON, turn output 5 ON
 VARB1=VARB1 | b000010 ; Set binary bit for output 5 only to ON
 NIF
IF(IN.6=b1) ; If onboard input 6 is ON, turn output 6 ON
 VARB1=VARB1 | b000001 ; Set binary bit for output 6 only to ON
 NIF
OUT(VARB1) ; Turn on appropriate onboard outputs
END

PCOMP PLCP3 ; Compile program PLCP3

SCANP PLCP3 ; Run compiled program PLCP3 in Scan mode. See diagram.

DEF PLCP3
VARB1=b000000
IF(IN.1=b1)
VARB1=VARB1 | b100000
NIF
IF(IN.2=b1)
VARB1=VARB1 | b010000
NIF
IF(IN.3=b1)
VARB1=VARB1 | b001000
NIF
IF(IN.4=b1)
VARB1=VARB1 | b000100
NIF
IF(IN.5=b1)
VARB1=VARB1 | b000010
NIF
IF(IN.6=b1)
VARB1=VARB1 | b000001

NIF
OUT(VARB1)
END

Pause Scan

Scanning

Scanning

Scanning

Scanning

Begin New
Scan

0

2 msec

Time (msec)

4 msec

6 msec

2 System Update Periods are needed to complete the scan
for compiled program PLCP3, for a total of 4 msec.
The response to a TSCAN command would be: *TSCAN4.

Scan
Complete

 Chapter 4. Product Control Options 107

RP240 Remote Operator Panel
6K Series products are directly compatible with the Compumotor RP240 Remote Operator
Panel. This section describes how to use your 6K product with the RP240. Instructions for
connecting the RP240 are provided in the 6K Hardware Installation Guide. Refer to the
Model RP240 User Guide (p/n 88-012156-01) for information on RP240 hardware
specifications, mounting guidelines, environmental considerations, and troubleshooting.

�� �	 �
 �� �� �

�����

����

������

��������

��������

��������

��������

�����

����

�

�

�

�

�

�

�

�

����	

�

�

�

�

���

	

�

!

�����

"

#�$

���������
�������
��
����	�

����
���������
�����������
��		��5�����������	�������
������
�
��
�	������
�(�	�����-���
���

���������5�
����
�����
����

������
���������
�����������
�8����������	���������&���������
�����	���'����������

$-,����.��
��
��
������'���
���������
����
��

�-+3�*-�!$$���	�
������
���(�������
������	���

��������

���������
�������
��
����	���
����
��9���������������
�5�
����
��
��	���������������������������
����
��������������
��������������
��������������
��

���������
�������
��
����	��
����
����#���������(����	�������������������
�����
4�����������
�
�
��
�������������5�
����
���#���������(����	�������������
����������
4������
��������������
�����������5�
����
����������
���������
����
�����
���

��
������

������������������
�
������

��
�

�������������������
�
������

��
�

:%	�
�4�;<%
����
��������	���
3��������������
��������

����
������
������������'

��������4�����������������	�
��
��������������<=��

3���������&���������	�
����
�
��������-�
����

���
�&�����
�
����%��������������
�����

(�	��������
�
����������
����

�����
�(�����	����
���'���
�������
���
����
��

3�������
�����
�&��������
�
����(�	�����
�����
������
���������������
���3������
���
��
����
�������������

�����
�(�	����
���
�����

(�����	�����
���������������
(�����	�������
��
�������

����
�������4������
����

>�������"�3�������	�����������
����'�����������������?����5���@�
�
�����������(����
�����(�
����
���
���3��������������'

����'�����������������?����5���@:�

A���������������*�:;<B������������	�
��������������&�������
��������������
�
�����
��������&�'(�)'%����'*(+�%��(�,'��
��	�'�4��������������������*�:;<B�
�����	����
������
����������
���������4
?�������	���4��
��	�C�����	�����(����4

��
&���������
��������
4����������� <<<
�����
���������-��%�.�%��*(,/�%���,�
��	�'��

Configuration
NOTE

As shipped from the factory, your 6K product is configured to operate an RP240 from the
RS-232/485 connector (referred to as the “COM 2” port). This should be appropriate for the
majority of applications requiring RP240 interface.

For more information
on controlling your
product's multiple

serial ports, see page
37.

Every 6K Series product has two serial ports. The RS-232 connector is referenced as the
“COM1” serial port, and the RS-232/485 connector is referenced as the “COM2” serial port.

To configure the 6K product's serial ports for use with the RP240 and/or 6K language
commands, use the DRPCHK command. Be sure to select the affected serial port (COM 1 or
COM 2) with the PORT command before you execute the DRPCHK command. Once you issue
the DRPCHK command, it is automatically saved in non-volatile memory. The configuration
options are:

DRPCHKØUse the serial port for 6K commands only (default for COM 1)
DRPCHK1Check for RP240 on power up or reset. If detected, initialize RP240.

If no RP240, use serial port for 6K commands.
DRPCHK2Check for RP240 every 5-6 seconds. If detected, initialize RP240. Do not use

port for 6K commands.
DRPCHK3Check for RP240 on power up or reset. If detected, initialize RP240.

If no RP240, use serial port for DWRITE command only. The DWRITE command
can be used to transmit text strings to remote RS-232C devices. (default setting
for COM 2)

108 6K Series Programmer’s Guide

Example COM 2 is to be used for RS-485; COM 1 is to be used for RP240, but the RP240 will be plugged
in on an as-needed basis. The set-up commands for such an application should be executed in
the following order:
PORT1 ; Select COM1 serial port for setup
DRPCHK2 ; Configure COM1 for RP240, periodic check
PORT2 ; Select COM2 serial port for setup
DRPCHKØ ; Configure COM2 for 6K commands only

Operator Interface Features
The RP240 can be used as your product’s operator interface, not a program entry terminal.
As an operator interface, the RP240 offers the following features:

• Displays text and variables
• 8 LEDs can be used as programmable status lights
• Operator data entry of variables: read data from RP240 into variables and command

value substitutions (see Command Value Substitutions on page 7).

Typically the user creates a program in the 6K controller to control the RP240 display and
RP240 LEDs. The program can read data and make variable assignments via the RP240's
keypad and function keys.

The 6K Series software commands for the RP240 are listed below. Detailed descriptions are
provided in the 6K Series Command Reference. The example below demonstrates the
majority of these 6K Series commands for the RP240.

 DCLEAR............Clear The RP240 Display
 DJOG................Enter RP240 Jog Mode
 [DKEY]............Numeric value of RP240 Key
 DLED................Turn RP240 LEDs On/Off
 DPASS..............Change RP240 Password
 DPCUR..............Position The Cursor On The RP240 Display
 [DREAD]Read RP240 Data
 [DREADF]Read RP240 Function Key
 DREADI............RP240 Data Read Immediate Mode
 DRPCHK............Check for RP240
 DSTP................Enable/Disable the RP240 Stop Key
 DVAR................Display Variable On RP240
 DWRITE............Display Text On The RP240 Display

 Chapter 4. Product Control Options 109

Programming
Example

DEF panel1 ; Define program panel1
REPEAT ; Start of repeat loop
 DCLEAR0 ; Clear display
 DWRITE"SELECT A FUNCTION KEY" ; Display text "SELECT A FUNCTION KEY"
 DPCUR2,2 ; Move cursor to line 2 column 2
 DWRITE"DIST" ; Display text "DIST"
 DPCUR2,9 ; Move cursor to line 2 column 9
 DWRITE"GO" ; Display text "GO"
 DPCUR2,35 ; Move cursor to line 2 column 35
 DWRITE"EXIT" ; Display text "EXIT"
 VAR1 = DREADF ; Input a function key
 IF (VAR1=1) ; If function key 1 hit
 GOSUB panel2 ; GOSUB program panel2
 ELSE ; Else
 IF (VAR1=2) ; If function key 2 hit
 DLED1 ; Turn on LED 1
 GO1 ; Start motion on axis 1
 DLED0 ; Turn off LED 1
 NIF ; End of IF (VAR1=2)
 NIF ; End of IF (VAR1=1)
UNTIL (VAR1=6) ; Repeat until VAR1=6 (function key 6)
DCLEAR0 ; Clear display
DWRITE"LAST FUNCTION KEY = F" ; Display text "LAST FUNCTION KEY = F"
DVAR1,1,0,0 ; Display variable 1
END ; End of panel1

DEF panel2 ; Define prog panel2
DCLEAR0 ; Clear display
DWRITE"ENTER DISTANCE" ; Display text "ENTER DISTANCE"
D(DREAD) ; Enter distance number from RP240
END ; End of panel2

Using the Default Menus
On power-up, the 6K product will automatically default to a mode in which it controls the
RP240 with the menu-driven functions listed below.

The flow chart below
illustrates the RP240's
menu structure in the
default operating mode
(when no 6K product
user program is
controlling the RP240).
Press the Menu Recall
key to back up to the
previous screen. The
menu functions are
described in detail
below.

• Run a stored program (run, stop, pause and continue functions)

• Jog the load

• Display the status of:
- System (TSS), for each task
- Axis (TAS)
- Extended Axis (TASX)
- I/O (TIN and TOUT)
- Limits (TLIM) and ENABLE input (TINO bit 6)
- Position: Commanded (TPC), Encoder (TPE)
- Firmware revision levels for the 6K product (TREV) and the RP240

• Enable or disable the internal drive (DRIVE)

• Access RP240 menu functions with a security password (set with DPASS)

• Reset the 6K product (equivalent to the Reset command)

NOTE: To disable these menus, the start-up program (the program assigned with the
STARTP command) must contain the DCLEARØ command.

110 6K Series Programmer’s Guide

 Chapter 4. Product Control Options 111

Running a Stored
Program

������
��
�������������������
�������� ������
����������������
!�����

�������
��
�������������������
�
����������

������

����������"
��������
���
������������������
��������

������

����������"
��������
���
������������������
��������

After accessing the RUN menu, press F1 to “find” the names of the programs stored in the 6K
product’s memory; pressing F1 repeatedly displays subsequent programs in the order in
which they were stored in BBRAM. To execute the program, press the ENTER key.

To type in a program name at the location of the cursor, first select alpha or numeric
characters with the F2 function key (characters will be alpha if an asterisk appears to the right
of ALPHA, or numeric if no asterisk appears). If alpha, press the up (2) or down (8) keys to
move through the alphabet, if numeric, press the desired number key. Press F3 to move the
cursor to the left, or F4 to move the cursor to the right.

Only user programs defined with DEF and END can be executed from this menu. Compiled
profiles (contouring and GOBUF profiles) cannot be executed from this men; they must be
executed from the terminal emulator with the PRUN command, or you can place the PRUN
(name of path) command in a user program and then execute that program from this menu.

 HINT: If you wish to
display each command as
it is executed, select STEP
and TRACE and press the

ENTER key to step
through the program.

When a program is RUN and TRACE is selected (TRACE*), the RP240 display will trace all
program commands as they are executed. This is different from the TRACE command in that
the trace output goes to the RP240 display, not to a terminal via the serial port.

When a program is RUN and STEP is selected, step mode has been entered. This is similar to
the STEP command, but when selected from the RUN menu the step mode allows single
stepping by pressing the ENTER key. Both RP240 trace mode and step mode are exited when
program execution is terminated.

Jogging ������
��
�������������������
�������� ������
����������������
!�����

�
������"��#�������������
����������"��#�
����$%&$$$�������������������������� ��'
You can jog individual axes by pressing the arrow keys on the RP240’s numeric keypad.
Pressing an arrow key on the numeric keypad will start motion and releasing the arrow key
will stop motion. The up and down arrows keys are for selecting the axis to jog. The left and
right arrow keys are for jogging the selected axis in the negative and positive direction,
respectively.

The HI and LO values in the jog menu represent the velocity in units of revs/sec (or volts/sec
for ANI feedback). If scaling is enabled, the value is multiplied by the programmed SCLV
value.

To edit the jog velocity* values:
1 . Press the F5 function key under EDIT (edit mode indicated with an asterisk).
2 . Press the F1 function key to select the HI and LO values (cursor appears under the

first digit of the value selected).
3 . Using the numeric keyboard, enter the value desired.
4 . Repeat steps 2 and 3 for all values to be changed.
5 . Press ENTER when finished editing.
6 . To jog with the new velocity values, first press the F6 function key (under JOG) to

enable the arrow keys again.

Jog accel and decel values are specified by the JOGA and JOGAD commands, respectively.

or

112 6K Series Programmer’s Guide

Status Reports:
System & Axis

��!���
��������
������
���
���
������������
�������
���

������
��
�������������������
�������� ������
����������������
!�����

��!���
���
�����(������"�#����
������"�#�
�$���"��$$$��$$$$$$$$$$$$$$��$$$$$$$$$$

�
������
�������(������"�#���
�������"�#�
���
�"�$$�$$$$$$$$$�$$$$$$$$$$��$$$$$$$

�
�������
������(������"�#���
�������"�#�
���
��"�$$$$$�$$$$$$$$$$$$$$$$$$$$$$$$$$

After accessing the desired status menu, you can ascertain the function and status of each
system (TSS, for each task) or axis (TAS and TASX) status bit by pressing the arrow keys on
the numeric keypad.

To view a more descriptive explanation of each status bit (includes a text description), press
the left or right arrow keys on the numeric keypad.

Status Reports:
I/O, Limits, Position

�$��"����������������#��(�����������"��#�
��$$$$)$$$$)$$$$)$$$$)$

�$���"���������������#��(�����������"��#�
��$$$$)$$$$

���
���"�����������������
����������"��#�
��
������"����"������"�����
�"�����
(��"�

������
��
�������������������
�������� ������
����������������
!�����

���

��"����������������
����������"��#�
���
������"�*�

���������������"���������
����������"��#�
���
������"�*�

���������"
�����������
����������������������������

������
!"
�����������������
���������������

�$��"����������������#��(�����������"��#�
��$$$$)$$$$)$$$$)$$$$)$

��������"����������������
����������"��#�
���
������"�*�

������������	
�

INPUTS Menu: This menu displays the TIN bit patterns for programmable inputs (onboard
triggers and digital inputs on expansion I/O bricks). Remember that I/O bit patterns vary by
product (see page 76 to find the bit patterns for your product). The initial menu show the
trigger inputs status; use the up and down arrows to select the status of inputs on expansion
I/O bricks.

OUTPUTS Menu: This menu displays the TOUT bit patterns for programmable outputs
(onboard outputs and digital outputs on expansion I/O bricks). Remember that I/O bit patterns
vary by product (see page 76 to find the bit patterns for your product). The initial menu show
the onboard outputs; use the up and down arrows to select the status of outputs on expansion
I/O bricks.

LIMITS Menu:
• The POS, NEG and HOME status items represent the hardware states of the limit inputs

on the “LIMITS/HOME” connector, regardless of their LIMFNC input function
assignments; they do not represent INFNC limit functions assigned to onboard trigger
inputs or digital inputs on expansion I/O bricks.

• “POS” refers to the hardware end-of-travel limit imposed when counting in the positive

 Chapter 4. Product Control Options 113

direction. “NEG” refers to the limit imposed when counting in the negative direction.
• A “1” indicates that the input is grounded, “0” indicates not grounded.

The end-of-travel limits (POS and NEG) must be grounded to allow motion (this is
reversed if the active level is reversed with the LHLVL command).

The Enable input (ENABLE input terminal) must also be grounded before motion is
allowed. When not grounded, the output (analog voltage or step pulse) to the drives is
cut off and the shutdown outputs are activated.

POS Menu:
• The position values (encoder, commanded, and position error) shown are continually

updated.
• The position error (“ERROR”) report is applicable only to servo axes.
• Position values are subject to the SCLD scaling factor (if scaling is enabled—SCALE1),

PSET offset value, encoder polarity (ENCPOL), and commanded direction polarity
(CMDDIR).

Enabling and
Disabling the Drive(s)

���������"�������������������
�������"�#�
�������������

������
��
�������������������
�������� ������
����������������
!�����

In the DRIVE menu, the current status of the drive(s) is displayed. To enable or disable the
drive, press F1 or F2, respectively This menu offers the same functionality as the DRIVE
command.

WARNING
Shutting down a rotary drive system allows the load to freewheel if there is no brake installed.

Access Security

�
������++++
���,-.�/01123.4�,5-��/.-11������

�������
��
�������������������
���*(
���������������������������������

������
��
�������������������
�������� ������
����������������
!�����

�������
��
�������������������
�
���������� ��������	�
���������
�
��
����
��

������
���	�-��

������
������

If the RP240 password is modified with the DPASS command to be other than the default (see
Changing the Password below) the ACCESS menu then becomes the new default menu after
power-up or executing a RESET. After that, the new password must then be entered to access
the original default menu (see “Access Approved” path in illustration). If the operator does not
know the new password, all he or she can do is run programs stored in the 6K product (RUN).

Changing the Password: The default password for 6K products is “6000”. A new password
(numeric value of up to 4 characters) can be established with the DPASS command. For
example, the DPASS2001 command sets the password to 2001.

114 6K Series Programmer’s Guide

Revision Levels

�������"����67*$��8�$*$�*&%$
���7�$����"�67*$�76&�*$��

�������
��
�������������������
���*(
���������������������������������

������
��
�������������������
�������� ������
����������������
!�����

Resetting the 6K
Product

�������
������
���!��������

�������
��
�������������������
���*(
���������������������������������

������
��
�������������������
�������� ������
����������������
!�����

After accessing the RESET menu, press the F1 key to execute a reset (or press F2 to cancel
and exit the menu). The reset is identical to issuing a RESET command or cycling power to
the 6K product. If a start-up program has been assigned with the STARTP command, that
program will be executed.

CAUTION

Executing a reset will restore most command values (exclusions: see page 33) to their
factory default setting.

Joystick Control, Analog Inputs

Refer to your

Installation Guide for
connection

procedures.

The 6K allows you to add analog input (ANI) SIMs to the expansion I/O bricks (sold
separately). Each ANI SIM provides 8 analog inputs. The default voltage range for these input
is -10VDC to +10VDC, but other ranges are selectable with the ANIRNG command. ANI
inputs can be used in a variety of ways:

• Control an axis with a joystick (see Joystick Control)
• Position feedback for servo axes. The position of the ANI inputs can be read using the

PANI or TPANI commands.
• Use the voltage value to control other events. The voltage value on the ANI inputs can

be read using the ANI or TANI commands.

Joystick Control
The 6K controller supports joystick operation with digital inputs and analog inputs. The digital
inputs include the onboard limit inputs and trigger inputs, as well as digital input SIMs on an
external I/O brick. The 12-bit analog inputs are available only if you install an analog input
SIM on an external I/O brick (default voltage range is -10V to +10V, selectable with
ANIRNG).

 Chapter 4. Product Control Options 115

To Set Up Joystick
Operation
(refer also to the
example code below)

1. Select the required digital inputs and analog inputs required for joystick operation. Connect
the joystick as instructed in your controller’s Installation Guide.

2. Assign the appropriate input functions to the digital inputs used for joystick's operation:
• Release Input: INFNCi-M for triggers & I/O brick inputs, or LIMFNCi-M for limit

inputs.
• Axis Select Input: INFNCi-N for triggers & I/O brick inputs, or LIMFNCi-N for limit

inputs. NOTE: If you're not using this input, assign the analog inputs to the axes with
the JOYAXH command.

• Velocity Select Input: INFNCi-O for triggers & external inputs, or LIMFNCi-O for
limit inputs.

3. (optional) Use the ANIRNG command to select the voltage range for the analog inputs you
will use. The default range is -10VDC to +10VDC (other options are 0 to +5V, -5 to +5V,
and 0 to +10V).

4. Assign analog inputs to control specific axes, using:
• JOYAXH: Standard analog input-to-axis assignment.
• JOYAXL (optional). Analog input-to-axis assignment when the Axis Select Input is low.

5. Define the joystick motion parameters:
• Maximum Velocity when Velocity Select input switch is open/high (JOYVH command).

If the Velocity Select input is not used, joystick motion always uses the JOYVH
velocity.

• Maximum Velocity when Velocity Select input switch is closed/low (JOYVL
command).

• Accel (JOYA command).
• Accel for s-curve profiling (JOYAA command).
• Decel (JOYAD command).
• Decel for s-curve profiling (JOYADA command).

6. Define the usable voltage zone for your joystick:
(make sure you have first assigned the analog inputs – see step 3 above)
• End Deadband (JOYEDB): Defines the voltage offset (from the -10V & +10V

endpoints) at which maximum velocity occurs. Default is 0.1V, maxing voltage at -
9.9V and +9.9V.

• Center Voltage (JOYCTR or JOYZ): Defines the voltage when the joystick is at rest to be
the zero-velocity center. Default JOYCTR setting is 0V.

• Center Deadband (JOYCDB): Defines the zero-velocity range on either side of the
Center Voltage. Default is 0.1V, setting the zero-velocity range at -0.1V to +0.1V.

7. To jog the axes:
a. In your program, enable Joystick Operation with the JOY command (Joystick Release

input must be closed in order to enable joystick mode). When the JOY command
enables joystick mode for the affect axes, program execution stops on those axes
(assuming the Continuous Command Execution Mode is disabled with the COMEXCØ
command).

b. Move the load with the joystick.
c. When you are finished, open the Joystick Release input to disable joystick mode. This

allows program execution to resume with the next statement after the initial JOY
command that started the joystick mode.

116 6K Series Programmer’s Guide

Joystick
Programming
Example
(refer also to the
illustration below)

Application Requirements: This example represents a typical two-axis joystick application in
which a high-velocity range is required to move to a region, then a low-velocity range is
required for a fine search. After the search is completed it is necessary to record the load
positions, then move to the next region. A digital input can be used to indicate that the position
should be read. The Joystick Release input is used to exit the joystick mode and continue with
the motion program.

Hardware Configuration:
• An analog input SIM is installed in the 3rd slot of I/O brick 1. The eight analog inputs

(1-8) are addressed as input numbers 17-24 on the I/O brick. Analog input 17 will
control axis 1, and analog input 18 will control axis 2.

• A digital input SIM is installed in the 1st slot of I/O brick 1. The eight digital inputs (1-
8) are addressed as input numbers 1-8 on the I/O brick. Digital input 6 will be used for
the Joystick Release function, and input 7 will be used for the Joystick Velocity Select
input. Input 8 will be used to indicate that the position should be read.

Setup Code (the drawing below shows the usable voltage configuration):

1INFNC7-M ; Assign Joystick Release f(n) to brick 1, input 7
1INFNC8-O ; Assign Joystick Velocity Select f(n) to brick 1, input 8
JOYAXH1-17,1-18 ; Assign analog input 17 to control axis 1,
 ; Assign analog input 18 to control axis 2
JOYVH1,1 ; Max. velocity on axes 1 & 2 is 10 units/sec when the
 ; Velocity Select input (1IN.7) is open (high)
JOYVL10,10 ; Max. velocity on axes 1 & 2 is 1 unit/sec when the
 ; Velocity Select input (1IN.7) is closed (low)
JOYA100,100 ; Set joystick accel to 100 units/sec/sec on both axes
JOYAD100,100 ; Set joystick decel to 100 units/sec/sec on both axes
;**** COMMANDS TO SET UP USABLE VOLTAGE: **********
1JOYCTR.17=+1.0 ; Set center voltage for analog input 17 (controls axis 1)
1JOYCTR.18=+1.0 ; and 18 (controls axis 2) to+1.0V. The +1.0V value was
 ; ascertained by checking the voltage of the both
 ; inputs (with the 1TANI.17 and 1TAIN.18 commands)
 ; when the joystick was at rest.
1JOYCDB.17=0.5 ; Set center deadband to compensate for the fact that
1JOYCDB.18=0.5 ; when the joystick is at rest, the voltage received on
 ; both analog inputs can fluctuate +/- 0.5V on either
 ; side of the +1.0V center.
1JOYEDB.17=2.0 ; Set end deadband to compensate for the fact that the
1JOYEDB.18=2.0 ; joystick can produce only -8.0V to +8.0V.
;**
JOY11 ; Enable joystick mode for axes 1 & 2

Velocity
(positive direction)

Volts

Velocity
(negative direction)

-10V +10V

JOYVH or JOYVL

JOYVH or JOYVL

JOYCTR or JOYZ
(voltage when joystick is at rest)

JOYCDB
(zero-velocity range)

JOYEDB

JOYEDB

 Chapter 4. Product Control Options 117

Analog Input Interface

Refer to your product's
Installation Guide for

ANI connection
information.

Using analog (ANI) inputs on expansion I/O bricks, your 6K Series controller can use analog
voltage as position feedback (servo axes only) and simply as a means to control the program
based on external conditions.

Each ANI SIM on an expansion I/O brick provides eight analog inputs. The 12-bit analog
inputs have a default voltage range of -10VDC to +10VDC. Other ranges are selectable with
the ANIRNG command (0 to +5VDC, 0 to +10VDC, and -5 to +5VDC). The voltage value of
the ANI inputs can be transferred to the terminal with the TANI command, or used in an
assignment or comparison operation with the ANI operator (e.g., IF(1ANI<2.4)).

When used for position feedback, the position counter resolution is 205 counts/volt (under the
default ANIRNG setting). The position value of the ANI inputs can be transferred to the
terminal with the TPANI command, or used in an assignment or comparison operation with the
PANI operator (e.g., WAIT(1PANI>421)).

Three common applications of the ANI inputs are:
• Position command to the control loop (e.g., as a master axis in Following mode)
• Position feedback to the control loop (see page 67 to select ANI input feedback for

servo axes)
• A force or torque feedback signal

Programming
Example

The portion of 6K code below (for two axes of control) demonstrates how to read the analog
inputs into the controller and set the commanded analog output of each axis to that value. If
you have a torque drive, this provides open-loop torque control.
SGP0,0 ; Turn off servo proportional feedback gain
SGI0,0 ; Turn off servo integral feedback gain
SGV0,0 ; Turn off servo velocity feedback gain
SGAF0,0 ; Turn off servo acceleration feedforward gain
SGVF0,0 ; Turn off servo velocity feedforward gain
SOFFS0,0 ; Set offset to zero (analog output will be 0 volts)
L ; Enter an infinite loop
 VAR1=2ANI.17 ; Read value of 1st analog input on SIM slot 3

; (I/O point 17) on I/O brick 2 on into VAR variable 1
 VAR1=2ANI.18 ; Read value of 2nd analog input on SIM slot 3

; (I/O point 18) on I/O brick 2 on into VAR variable 2
 SOFFS(VAR1),(VAR2) ; Assign voltages from 2ANI.17 and 2ANI.18 to the
 ; analog output for axes 1 & 2, respectively
 T.01 ; Set time delay to 10 milliseconds
 LN ; End loop

ANI as a Feedback
Device

The ANI analog inputs, when selected as a feedback source with the SFB command, is
assumed to provide position information. With this feedback it is possible to solve applications
that require positioning to a voltage, rather than positioning to a known position. Some
example applications are as follows:

• Using a potentiometer as feedback (mechanical motion is mimicked by the 6K
controller)

• Maintaining a force while position changes due to fluid evacuating a chamber
• Opening or closing a valve as another process changes

118 6K Series Programmer’s Guide

Host Computer Interface

Another choice for product control is to use a host computer and execute a motion program using
the serial interface (RS-232 or RS-485). A host computer can be used to run a motion program
interactively from a BASIC or C program (high-level program controls the 6K product and acts as a
user interface). A BASIC program example (for the 6K2 product) is provided below.

10 ' 6K Series Serial Communication BASIC Routine
12 ' 6K.BAS
14 '
16 ' **
18 '
20 ' This program will set the communications parameters for the
22 ' serial port on a PC to communicate with a 6K series
24 ' stand-alone product.
26 '
28 ' **
30 '
100 '*** open com port 1 at 9600 baud, no parity, 8 data bits, 1 stop bit
110 '*** activate Request to Send (RS), suppress Clear to Send (CS), suppress
120 '*** DATA set ready (DS), and suppress Carrier Detect (CD) ***
130 OPEN "COM1:9600,N,8,1,RS,CS,DS,CD" FOR RANDOM AS 1
140 '
150 '*** initialize variables ***
160 MOVE$ = "" ' *** commands to be sent to the product ***
170 RESPONSE$ = "" ' *** response from the product ***
180 POSITION$ = "" ' *** feedback position reported ***
190 SETUP$ = "" ' *** setup commands ***
200 '
210 '*** format the screen and wait for the user to start the program ***
220 CLS : LOCATE 12, 20
230 PRINT "Press any key to start the program"
240 '
250 '*** wait for the user to press a key ***
260 PRESS$ = INKEY$
270 IF PRESS$ = "" THEN 260
280 CLS
290 '
300 '*** set a pre-defined move to make ***
310 SETUP$ = "ECHO1:ERRLVL0:LH0,0:"
320 MOVE$ = "A100,100:V2,2:D50000,50000:GO11:TFB:"
330 '
340 '
400 '*** send the commands to the product ***
410 PRINT #1, SETUP$
420 PRINT #1, MOVE$
430 '
500 ' *** read the response from the TFB command ***
510 ' *** the controller will send a leading "+" or "-" in response to the TFB command to
520 ' *** indicate which direction travel has occurred. ***
530 WHILE (RESPONSE$ <> "+" AND RESPONSE$ <> "-") ' *** this loop waits for the "+"
540 RESPONSE$ = INPUT$(1, #1) ' *** or "-" characters to be returned
550 WEND ' *** before reading the position ***
560 '
570 WHILE (RESPONSE$ <> CHR$(13)) ' *** this loop reads one character at a time
580 POSITION$ = POSITION$ + RESPONSE$ ' *** from the serial buffer until a carriage
590 RESPONSE$ = INPUT$(1, #1) ' *** return is encountered ***
600 WEND
610 '
620 '*** print the response to the screen ***
630 LOCATE 12, 20: PRINT "Position is " + POSITION$
640 '
650 'END

5C H A P T E R F I V E

Custom
Profiling

IN THIS CHAPTER

This chapter explains how to use these custom profiling features:
• S-Curve Profiling ..120
• Linear Interpolation...123
• Contouring (circular interpolation)124
• Compiled Motion Profiling136
• On-the-Fly Motion (pre-emptive GOs)151
• Registration ...155
• Synchronizing Motion.......................................159

For basic motion (accel/velocity/distance), see page 53.
For homing profiles, see page 59.
For Following profiles, see page 166.

120 6K Series Programmer’s Guide

S-Curve Profiling
6K controllers allow you to perform S-curve move profiles, in addition to the usual
trapezoidal profiles. S-curve profiling provides smoother motion control by reducing the jerk
(rate of change) in acceleration and deceleration portions of the move profile (see drawing
below). Because S-curve profiling reduces jerk, it improves position tracking performance,
especially in linear interpolation applications (not contouring).

D
ec

el
A

cc
el

Time

D
ec

el
V

el
oc

ity

Time

Trapezoidal

A
cc

el

Time

V
el

oc
ity

Time

S-Curve

Maximum Jerk Less Jerk

S-Curve Programming Requirements
To program an S-curve profile, you must use the average accel/decel commands provided in
the 6K Series programming language. For every maximum accel/decel command (e.g., A, AD,
HOMA, HOMAD, JOGA, JOGAD, etc.) there is an average command for S-curve profiling (see
table below).

Maximum Accel/Decel Commands
Command Function

Average (“S-Curve”) Accel/Decel Commands
Command Function

A Acceleration AA Average Acceleration
AD Deceleration ADA Average Deceleration
HOMA Home Acceleration HOMAA Average Home Acceleration
HOMAD Home Deceleration HOMADA Average Home Deceleration
JOGA Jog Acceleration JOGAA Average Jog Acceleration
JOGAD Jog Deceleration JOGADA Average Jog Deceleration
JOYA Joystick Acceleration JOYAA Average Joystick Acceleration
JOYAD Joystick Deceleration JOYADA Average Joystick Deceleration
LHAD Hard Limit Deceleration LHADA Average Hard Limit Deceleration
LSAD Soft Limit Deceleration LSADA Average Soft Limit Deceleration
PA Path Acceleration PAA Average Path Acceleration
PAD Path Deceleration PADA Average Path Deceleration

Determining the S-Curve Characteristics
The command values for average accel/decel (AA, ADA, etc.) and maximum accel/decel (A, AD,
etc.) determine the characteristics of the S-curve. To smooth the accel/decel ramps, you must
enter average accel/decel command values that satisfy the equation ½ A ≤ AA < A, where
A represents maximum accel/decel and AA represents average accel/decel. Given this
requirement, the following conditions are possible:

 Chapter 5. Custom Profiling 121

Acceleration Setting Profiling Condition

AA > ½ A, but AA < A.............S-curve profile with a variable period of constant acceleration. Increasing
the AA value above the pure S-curve level (AA > ½ A), the time required to
reach the target velocity and the target distance is decreased. However,
increasing AA also increases jerk.

AA = ½ APure S-curve (no period of constant acceleration—smoothest motion).

AA = A Trapezoidal profile (but can be changed to an S-curve by specifying a new
AA value less than A).

AA < ½ A; or AA > A...............When you issue the GO command, the move will not be executed and an
error message, *INVALID CONDITIONS FOR S_CURVE ACCELERATION—
FIELD n, will be displayed.

AA = zero................................S-curve profiling is disabled. Trapezoidal profiling is enabled. AA tracks A.
(Track means the command's value will match the other command's value
and will continue to match whatever the other command's value is set to.)
However, if you enter an average decel command (e.g., ADA, HOMADA, etc.)
equal to zero, you will receive the “INVALID DATA-FIELD n” error.

AA ≠ zero and AA ≠ AS-curve profiling is enabled only for standard moves (e.g., not for
contouring, compiled motion, or on-the-fly motion changes). All subsequent
standard moves for that axis must comply with this equation:
½ A ≤ AA < A.

AA > ½ AAverage accel/decel is raised above the pure S-curve level; this decreases
the time required to reach the target velocity and distance. However,
increasing AA also increases jerk. After increasing AA, you can reduce jerk
by increasing A, but be aware that increasing A requires a greater torque to
achieve the commanded velocity at the mid-point of the acceleration profile.

No AA value ever enteredProfile will default to trapezoidal. AA tracks A.

If you never change the A or AA deceleration commands, AA deceleration will track AA
acceleration. However, once you change A deceleration, AA deceleration will no longer track
changes in AA acceleration. For example, if you never change the AD or ADA command values,
ADA will track the AA command value. But once you change AD, the ADA command value will
no longer track the changes in the AA command value.

The calculation for determining S-curve average accel and decel move times is as follows
(calculation method identical for S-curve and trapezoidal moves):

Time = Velocity
A

or Time = 2 Distance
Aavg avg

∗

Scaling affects the AA average acceleration (AA, ADA, etc.) the same as it does for the A
maximum acceleration (A, AD, etc.). See page 48 for details on scaling.

NOTE: Equations for calculating jerk are provided on page 122.

Programming Example
; In this example, axis 1 executes a pure S-curve and takes 1 second
; to reach a velocity of 5 rps; axis 2 executes a trapezoidal profile
; and takes 0.5 seconds to reach a velocity of 5 rps.
SCALE0 ; Disable scaling
DEF SCURV ; Begin definition of program SCURV
@MA0 ; Select incremental positioning mode
@D40000 ; Set distances to 40,000 positive-
 ; direction steps
A10,10 ; Set max. accel to 10 rev/sec/sec
 ; on axes 1 and 2
AA5,10 ; Set avg. accel to 5 rev/sec/sec on
 ; axis 1, & 10 rev/sec/sec on axis 2
AD10,10 ; Set max. decel to 10 rev/sec/sec
 ; on axes 1 and 2
ADA5,10 ; Set avg. decel to 5 rev/sec/sec on
 ; axis 1, & 10 rev/sec/sec on axis 2
V5,5 ; Set velocity to 5 rps on axes 1 & 2
GO11 ; Execute motion on axes 1 and 2
END ; End definition of program

Axis 1V

T
1 2 30

Axis 2V

T
1 2 30

 Move profiles

122 6K Series Programmer’s Guide

Calculating Jerk

V2

A
(Programmed Accel)

V
(Programmed Velocity)

V1

t1 t2 t3

Zero Velocity

Zero Acceleration

Ø
(zero)

A B C

Rules of Motion:

dt

Jerk da=

dt

a dv=

dt

v dx= (x = distance)

Assuming the accel profile starts
when the load is at zero velocity and
the ramp to the programmed velocity
is not compromised:

 A2 * AA

V (A-AA)
Jerk = JA =

A = programmed acceleration

(A, AD, HOMAD, etc.)
AA = average acceleration

(AA, ADA, HOMAA, etc.)
V = programmed velocity

(V, HOMV, etc.)

 A

JA
t1 =

 V

AA
- t2 =

A

JA
 V

AA
t3 =

NOTE: t3 - t2 = t1

2

JA * t1
2

V1 =
2 * JA

A2
=

V2 = V -

2 * JA

A2

 A t1 ≥ t ≥ Ø a (t) = JA * t

2

JA * t
2

v (t) =

6

JA * t
3

d (t) =

 B t2 ≥ t > t1 a (t) = A

2JA

A2
v (t) = + A * (t - t1)

6

JA * t1
3

d (t) = + + V1 * (t - t1)
2

A * (t - t1)2

 C t3 ≥ t > t2 a (t) = A - (JA * (t - t2))

v (t) = V -

2

JA * (t3 - t)2

2AA

V2
d (t) = + - V * (t3 - t)

6

JA (t3 - t)3

Starting at a Non-Zero Velocity: If starting the acceleration profile with a non-zero initial velocity, the move comprises
two components: a constant velocity component, and an s-curve component. Typically, the change of velocity should be
used in the S-curve calculations. Thus, in the calculations above, you would substitute “(VF - VO)” for “V” (VF = final
velocity, VO = initial velocity). For example, the jerk equation would be:

 A2 * AA

(VF - VO) (A-AA)
Jerk = JA =

a (t) = acceleration at time t
v (t) = velocity at time t
d (t) = distance at time t

 Chapter 5. Custom Profiling 123

Linear Interpolation

NOTE
2-axis products can
accommodate only
2-axis (X & Y) linear
interpolation.

The controller allows you to perform linear interpolation, the process of moving two or three
orthogonal (right angle) linear axes to achieve linear (straight line) motion; a fourth axis can
also participate in the move profile. The task is to derive appropriate move parameters to move
from a current location to a new location, where each position is specified by a set of Cartesian
coordinates. All axes must start, accelerate, decelerate, and stop in a synchronized manner.

The Initiate Linear Interpolated Motion (GOL) command initiates linear interpolation moves
based on the parameters set with the D, PA, PAD, and PV commands. You simply enter the
desired path acceleration (PA), the path deceleration (PAD), and the path velocity (PV) to arrive
at the point in space (end point) specified with the distance (D) command; the controller
internally calculates each axis' actual move profiles to achieve a straight-line path with these
parameters.

You can scale the acceleration, velocity, and distance with the SCLD command (see example
below).

The GOL command starts motion on either or both axes. If the GOL command is issued
without any arguments, motion will be started on both axes.

Code Sample SCALE1 ; Enable scaling
@SCLD4000 ; Set distance, accel/decel, and velocity scale factor
 ; to 4000 steps/unit
PA25 ; Set the path acceleration to 25 units/sec/sec
PAD20 ; Set the path deceleration to 20 units/sec/sec
PV2 ; Set the path velocity to 2 units/sec
D10,5 ; Set the distance to 10 & 5 units on axes 1 & 2
GOL11 ; Initiate linear interpolated motion on axes 1 & 2
 ; (see drawings below)

A
��
�!
5
��
�:
�

D���!5�����

8

;

E

:

�

� : E ; 8 � F = �< �� �: �E

���	�

��	�

�
	�

�

�-��('%����'&)/(��0%�(�.

0
�
	�

��
�

.���

�)��'(��-��%�)�-)�%�')*-/��%)*%�1��%�%2%	
�)%�+.-�3�%�.�%�-��('%����'&)/(��0%�(�.

!5����

!5���:

124 6K Series Programmer’s Guide

Contouring (Circular Interpolation)

NOTE
2-axis products can
accommodate only
2-axis (X & Y)
contouring.

6K Series controllers allow you to define and execute two-dimensional motion paths. A path
refers to the path traveled by the load in an X-Y plane, and must be defined before any motion
takes place along that path. The X and Y axes can be specified as any of the controller's two
axes

Controllers with ≥4 axes: A third axis, labeled the C axis, can be included to keep an angular
position that changes linearly with the path direction. The path direction is the vector addition
of the travel of axes X and Y. A fourth axis labeled the P axis can be included to keep a
position that is proportional to the distance traveled along the path described by X and Y. The
X, Y, C and P axes can be specified as any of the controller's four axes.

A path consists of one or more line or arc segments whose end-points are specified in terms of
X and Y positions. The end-point position specifications can be made using either absolute or
incremental programming. The segments can be lines or arcs, both of which are described in
greater detail in the following sections. Each path segment is determined by the end-point
coordinates, and in the case of arcs, by the direction and radius or center. It is possible to
accelerate, decelerate or travel at constant velocity (feedrate) during any type of segment,
even between segments. For each segment, the user can also specify an output pattern that
can be applied to the programmable outputs at the beginning of that segment.

All paths are continuous paths, (i.e., the motion will not stop between path segments, but must
stop at the end of a path). It is not possible to define a path that stops motion within the path
definition and then continues that path. To achieve this result, two individual paths must be
defined and executed. A path can, however, be stopped and resumed by using a Pause/Continue
input (see page 83) while the path is executing. In this case, motion will be decelerated and
resumed along the path without loss of position. If one axis is stopped due to any other reason,
the other axis will stop abruptly, and motion cannot be resumed. Causes for motion being
stopped can include encountering an end-of-travel limit, issuing a Kill (!K) command, detecting
a stall (stepper axes), exceeding the maximum allowable position error (servo axes), etc.

Path Definition

Compiled GOBUF

segments and PLCP
programs are also stored

in compiled memory
(see page 11).

Contouring paths are defined like programs (using the DEF and END commands), but are
compiled with the PCOMP command and executed with the PRUN command. Programs
intended to be compiled as paths are stored in Program memory. After they are compiled with
the PCOMP command, they remain in program memory and the segments (PARCM, PARCOM,
PARCOP, PARCP, and PLIN statements) from the compiled profile are stored in Compiled
memory. The TDIR command reports which programs are stored as a compiled profile.

The amount of RAM allocated for storing contouring path segments is determined by the
MEMORY command setting. The list below identifies memory allocation defaults and limits
for 6K Series products. Further details on re-allocating memory are provided on page 11.

Total memory (bytes) ... 300,000
Default allocation (program,compiled)MEMORY150000,150000
Maximum allocation for compiled profilesMEMORY1000,299000
Maximum No. of compiled profiles 300
Maximum No. of compiled profile segments 2069

CAUTION
Issuing a memory allocation command (e.g., MEMORY70000,80000) will erase all existing
programs and compiled contouring path segments. However, issuing the MEMORY command
by itself (i.e., MEMORY—to request the status of how the memory is allocated) will not affect
existing programs or path segments.

 Chapter 5. Custom Profiling 125

You can store the maximum number of paths possible (see table above) as long as each path
has at least one segment, and the sum of all the segments of all the paths does not exceed the
controller's compiled memory limitation. All path definitions can be compiled and ready to
execute at any time. Paths defined using 6K commands are specified with a path name. Once
a path definition is compiled, it can be executed repeatedly without being re-compiled.

Deleting (DEL) an existing path name will automatically delete the existing path compilation
with that name. The PUCOMP command only deletes (“uncompiles”) the path compilation,
not the path program.

Example Code In the example commands below, storage space is made available for the definition of path
WID3 by first deleting the compiled version of paths WID1 and WID2. The DEF statement
begins the definition of the path WID3.
PUCOMP WID1 ; Remove compilation of WID1
PUCOMP WID2 ; Remove compilation of WID2
DEF WID3 ; Begin definition of WID3

Participating Axes
Units of Measure; Scaling

• If no scaling (SCALE0): Path acceleration, velocity, and distance are based on the
resolution (DRES for steppers, ERES for servos) of axis 1. If multi-tasking is used, path
motion units are based on the resolution of the first (lowest number) axis associated with
the task (TSKAX).

• If scaling (SCALE1): The units used for path distance, acceleration, and velocity is
determined by the SCLD value. For example, suppose you have 2 servo axes (axes 1 & 2)
involved in contouring, both axes use encoder feedback with a resolution of 4000
counts/rev, axis 1 uses a 10:1 (10 turns per inch) leadscrew and axis 2 uses a 5:1 (5 turns
per inch) lead screw, and you want to program in inches. For this application you would
use the SCLD40000,20000 command to establish path motion units in inches: distance is
inches, acceleration is inches/sec/sec, and velocity is inches/sec.

2-Axis Contouring You can change the X-Y plane to an Y-X plane by using the PAXES command. A path
definition default is PAXES1,2. For any path that uses axis 2 as the X axis and axis 1 as the Y
axis, the path definition must start with PAXES2,1 (see example below).

Example Code DEF DRAW1 ; Begin definition of DRAW1
PAXES2,1 ; Set contouring axes (axis 2 is X axis, axis 1 is Y axis)

4-Axis Contouring Some contouring applications can require the execution of more than one path to complete a
part or finish an operation. The application can require that different paths take place in
different planes of a three dimensional work area. In addition, some of the paths can require a
third axis to move either tangent, or proportional to the path. For these reasons, a four-axis
controller offers great flexibility in the specification of participating axes.

You may want to begin your path definition with the PAXES command; this will ensure that
you have specified the appropriate axes to participate in the path. The X, Y, tangent (C) and
proportional (P) axes can be specified as any of the four axes, and this specification must be
made before any of the path travel specifications are made. The X and Y axes must be
specified, the third (tangent) axis labeled C and the fourth (proportional) axis labeled P are
optional.

The C axis will maintain an angular position that changes linearly with the direction of travel
in the X-Y plane. This allows the C axis to control an object, which must stay tangent (or
normal) to the direction of travel such as a cutting tool. The C axis must also be specified by
its signed resolution. The magnitude of the resolution is the number of C axis motor steps in
360 degrees of an arc drawn by the X and Y axes. The sign of the resolution specifies the
direction of rotation of the C axis. Refer to the PTAN command.

126 6K Series Programmer’s Guide

�

D

A

The P axis will keep a position that is proportional to the distance traveled along the X-Y path
as the path is executed. This allows the P axis to act as the Z axis in helical interpolation (see
drawing at left), or to control the motion of any object that moves with distance and velocity
proportional to the path. The P axis must also be specified by the signed ratio of P axis travel
to path travel. The magnitude of this ratio can range from 0.001 to 1000. The sign of this ratio
specifies the direction of rotation of the P axis. Refer to the PPRO command.

A sewing machine application can require all four axes (X, Y, C, and P). The X and Y axes
would direct the sewing head along the required path. The C axis would keep the sewing head
pointed into the direction of travel. The P axis would control the speed of the needle, so that an
even stitch is made, regardless of path speed.

Example Code The following example begins the definition of a path named DRAW1. The X and Y axes are
specified to be axes 4 and 2. The path includes the C axis to be axis 1, with a resolution of
100,000 steps. It also includes the P axis to be axis 3, with a ratio of P axis travel to path travel
specified as 2.5:1.
DEF DRAW1 ; Begin definition of DRAW1
PAXES4,2,1,3 ; Set contouring axes
PTAN100000 ; Define C axis resolution
PPRO2.5 ; Define P axis ratio

Path Acceleration, Deceleration, and Velocity
A path can be composed of many segments, each with their own motion parameters. The path
velocity, acceleration, and deceleration specifications currently in effect at the time a segment
is defined will apply to that segment. This allows construction of a path that moves at one
velocity for a section of the path, then moves at a different velocity for another section.

In most cases, it will be desirable to maintain a constant velocity throughout the path, but it is
easy to define a path in which each segment has its own velocity. For example, this can be
useful when a tool needs to slow down to round a corner, or to allow the rate of glue
application to be controlled by the path speed. Acceleration and deceleration can also be
specified separately.

Example Code The short code example below illustrates the specification of velocity, acceleration, and
deceleration in that order. Note that the scaling commands cannot be placed inside a program.

PV0.5 ; Path velocity 10,000 counts/sec
PA16 ; Path acceleration 400,000 counts/sec/sec
PAD28 ; Path deceleration 700,000 counts/sec/sec

Path Final Velocity The PVF command allows a line or arc segment to terminate with a final segment velocity (PVF)
that can be different from the velocity traveled for the majority of that segment (specified with
PV). PVF must be smaller than or equal to PV, and the path velocity change will take place at the
PAD deceleration rate. Like the other path motion parameters (e.g., PV, PA, PAD), the PVF velocity
is applied to the next line or arc compiled; however, unlike these other commands, the PVF
command applies only to the next line or arc compiled. All subsequent lines and arcs terminate at
the PV value currently in effect. For each line or arc that needs to terminate at a velocity different
than PV, a new PVF command must be issued, even if the PVF value has not changed.

The most common use for the PVF command will be to cause a preceding line segment to
decelerate to the path velocity at which the next line or arc needs to travel. In this case, the PVF
value for the preceding line would be the same as the PV value of the reduced speed segment.
This feature eliminates the need to create a special deceleration segment in the path in order to
have the entire subsequent line or arc travel at the reduced speed.

 Chapter 5. Custom Profiling 127

Example Code In the example below, segments 2 and 4 must travel at a path velocity of 1, while the remainder to
the path travels at a path velocity of 5.

Segment 1 Segment 2 Segment 3
Segment 4

Segment 5

DEF CORNER
PAB1 ; Use absolute positions
PA10 ; Path acceleration of 10
PAD10 ; Path deceleration of 10
PV5 ; Starting path velocity of 5
PVF1 ; Ending segment velocity of 1
PLIN5,0 ; 5 units right (Segment 1)
PV1 ; Path segment velocity of 1
PLIN6,0 ; Another unit right, slowly (Segment 2)
PV5 ; Starting path velocity of 5
PVF1 ; Ending segment velocity of 1
PLIN11,0 ; 5 more units right (Segment 3)
PV1 ; Path segment velocity of 1
PARCM12,1,1 ; Upward arc slowly (Segment 4)
PV5 ; Starting path velocity of 5
PLIN12,6 ; 5 units up (Segment 5)
END

Conditional Path Execution
The PGOWHN command allows a fixed or conditional delay in path travel to occur as part of the
contouring motion profile, without requiring program execution to monitor the PGOWHN
conditions. Combined with the PVF command, PGOWHN provides a convenient method of
imbedding a dwell within a contour.

��������	
��	

����

*�	����
�	�-5�������
���
��5"

���	�����	��������	�����������	����������������	������

������	��2��������"

������� .����������������
��������� #
���������
���������� ,'�		���
���		���
�
���

������	��2��������"

��
��
�
�
�

������	��2��������"

G +�����
�(�����	��
��� ���������

G ,�
���	�
�
���
�
G 7�
����(�	����!""""�
����������
�����������

The PGOWHN expression can be specified as a time (dwell) in milliseconds
(e.g., PGOWHN(T=2000)), or as inputs or limits matching the specified binary pattern (e.g.,
PGOWHN(LIM.3=B1) or PGOWHN(2IN.6=B0)). All participating axes will be at rest during a
dwell, even if the previous segment had not ended in zero path velocity. In the latter case
(limit or input condition), there will be an abrupt change to zero path velocity, until the
PGOWHN condition is satisfied.

When the PGOWHN condition is satisfied, path velocity will ramp to the next segment’s PV
value. Although no motion occurs during a PGOWHN segment, it occupies one segment of
compiled memory. Like the line and arc segments, an output pattern can be asserted for the
duration of the PGOWHN dwell by preceding the PGOWHN statement with a POUT statement (see
example below).

128 6K Series Programmer’s Guide

Example Code In the example below, the total path travel is six inches. At five inches, motion must stop until
input 3 goes active. During this time, output 2 must be asserted. When input 3 goes active,
output 2 must go off and motion then resumes for the final inch.
DEF BISEG
PAB1 ; Use absolute positions
PA10 ; Path acceleration of 10
PAD10 ; Path deceleration of 10
PV5 ; Starting path velocity of 5
PVF0 ; Ending segment velocity of 0
POUT.2-0 ; Start with onboard output 2 off
PLIN5,0 ; 5 units right
POUT.2-1 ; Output 2 on during dwell
PGOWHN(IN.3=B1) ; Dwell until onboard input 3 is active
POUT.2-0 ; Output 2 off during motion
PLIN6,0 ; Another unit right to finish
END

Segment End-point Coordinates
Stepper axes: All end-

point position
specifications are in
units of commanded

counts.

The end-point position specifications of lines and arcs can be either absolute or incremental.
The controller stores the end-point data for all of its compiled segments internally as
incremental, relative to the start of the segment. But in order to ease the programming task,
absolute coordinates and multiple coordinate systems can be used.

When incremental coordinates are used to specify an end-point, the X and Y end-point values
represent the distances from the X and Y start point of the segment being specified. Center
specifications of an arc are always incremental (i.e., relative to the start of that arc segment).
When absolute coordinates are used to specify an end-point, the X and Y end-point values
represent that segment's position in the specified coordinate system. Incremental and absolute
programming are specified with the PAB command. Incremental programming is the default
state at the beginning of a path definition.

Coordinate systems allow the assignment of an arbitrary X-Y position as a reference position
for subsequent absolute end-point specifications. The controller allows the use of two
coordinate systems for use with absolute coordinate programming. These are called the Work
coordinate system and the Local coordinate system. These are specified with the PWC and
PLC commands. Neither coordinate system needs to represent the actual absolute position of
the axes when the path actually executes.

The Work and Local coordinate systems are provided to allow absolute end-point definition of
a segment without needing to know the actual position of each axis when the segment is
executed. If no PWC command precedes the first segment command when a path definition
begins, the controller will place the start of the first segment at location (0,0) in the Work
coordinate system. By using the PWC xpos,ypos command, the programmer defines
subsequent absolute end-points to refer to the Work coordinate system, and also locates that
coordinate system such that the starting position of the next segment is at (xpos, ypos) of the
Work coordinate system.

The Local coordinate system is provided so that if a section of a path is to appear in multiple
locations along the path, the segments that compose that section can be programmed in
absolute coordinates. By using the PLC xpos,ypos command, the programmer defines
subsequent absolute end-points to refer to the Local coordinate system, and also locates that
coordinate system such that the starting position of the next segment is at (xpos, ypos) of the
Local coordinate system.

A single path definition can include both absolute and incremental programming, and be
required to switch between Work and Local coordinates several times. At any point along a
path definition, coordinates can be switched from absolute to incremental, or from
incremental to absolute. When switching to absolute, all subsequent end-point specifications
are assumed to be absolute with respect to the coordinate system in effect at that time. This

 Chapter 5. Custom Profiling 129

remains true until the reference system is switched to incremental, or to a new absolute
reference.

When switching from Work coordinates to Local coordinates, the Local X and Y start
positions of the following segment must be specified with the PLC command. When starting
a path definition with Work coordinates, or when switching to Work coordinates, the starting
position of the next segment can either be specified or assumed. The controller toggles
between the Work coordinate system and the Local coordinate system with the PL command.

Ease of programming results from the ability to switch between absolute and incremental, and
to re-define the coordinate systems between sections of a path. This allows individual
sections of path definition to have Local coordinate systems, yet still be integrated into the
complete path.

Line Segments

Lines are the simpler of the two path segment types. The placement, length, and orientation of
the line is completely specified by the end-point of the line segment and the end-point of the
previous segment. As described above, end-points can be specified with absolute or
incremental coordinates.

8<<<

F <
D

A

�<4<�

�F <48<<<�

The example below is specified with incremental coordinates and results in a line segment
10,000 steps in length, at 30 degrees in the X-Y plane.
PLIN8660,5000 ; Line segment to (8660,5000) — see illustration at left

Arc Segments

A
�!
5
��

=<H

�F<H

:�<H

�

�

#

�����
�
,������

�

�

<H���
E <H

Arcs are more complex to specify than lines, because there are four possible ways to get from
the start point to the end point. The radius of an arc can either be specified directly or implied
by the center specification. In the controller, all path descriptions refer to the X-Y plane. The
general convention describing the X-Y plane, as viewed from a drawing, is as follows. The X
axis is shown as the left-right axis, with left being negative and right being positive. The Y
axis is the up-down axis with down being negative and up being positive. Angles start at zero
and increase in the CCW direction of rotation. A line segment, or the radius of an arc is at zero
degrees if the incremental end-point has a positive X component and zero Y component. The
angle is 90 degrees if the end-point has a positive Y component and zero X component.

Radius Tolerance
Specifications

All arcs have an associated radius. In the controller, the radius can either be specified
explicitly, or implied by a center specification. In both cases, it is possible that the radius
cannot be consistent with the specified end-point of the arc. This could be a result of improper
specification, user calculation error, or of round-off error in the internal arithmetic of the
controller. For this reason, the controller allows the specification of a radius tolerance
(PRTOL). The radius tolerance is specified in the same units as the radius and X and Y data.

The radius tolerance has a factory default of ± one step, which is just enough to overcome
round-off errors. The radius tolerance can be specified at any point along the path definition,
and can be changed between one arc and the next. Each arc definition will be compared to the
most recently specified radius tolerance. The radius tolerance should be about the same as the
dimension tolerances of the finished product. The following paragraphs explain how the
radius tolerance is used for the two types of arc specifications, and gives syntax examples for
the radius tolerance specification.

130 6K Series Programmer’s Guide

Radius Specified
Arcs

*

-
�%
���
�

�����

Specification of an arc using the radius method requires knowledge of the start point, the end
point, and the sign and magnitude of the radius. The controller knows the start point to be
either the start of the path, or the end of the previous segment. The end point and radius are
provided by the user's program. It is possible to specify an impossible arc by specifying an end
point that is more than twice the radius away from the start point (see drawing at left). In this
case, the controller will automatically extend the radius to reach the end-point, provided that
the automatic radius change does not exceed the user specified radius tolerance. If the required
radius extension exceeds the radius tolerance, the controller will respond with an execution
error, and no arc will be generated.

Example The following illustration shows the four possible ways to move from the start point to the end
point using an arc of radius 1000. Arc 1 and 2 both travel in the CW direction, arc 3 and 4 both
travel in the CCW direction. Arc 1 and 3 are both less than 180 degrees. An arc of 180
degrees or less is specified with a positive radius. Arc 2 and 4 are both greater than 180
degrees. An arc of more than 180 degrees is specified with a negative radius. The example
code below shows the radius tolerance specification and the specifications of arcs 1, 2, 3, and 4
respectively.

DEF arcs ; Begin definition of path arcs
PRTOL5 ; 5 steps of radius tolerance
PARCP866,500,1000 ; Arc 1, CW < 180 degrees
PARCP866,500,-1000 ; Arc 2, CW > 180 degrees
PARCM866,500,1000 ; Arc 3, CCW < 180 degrees
PARCM866,500,-1000 ; Arc 4, CCW > 180 degrees
END ; End path definition
;***
;* To compile the arcs path, type "PCOMP arcs" *
;* To run the arcs path, type "PRUN arcs" *
;***

��I
�<<<

�<4�<<<�

!�
�:

��I��<<<

!�
�;

-
�����
�
�F 48<<�

���������
�
�<4<�

!�
��

!�
�E

Center Specified
Arcs

���������
�
�<4<�

-
�����
�
��8<48<�

*�I
�<��

*�I��<<

��
���
��<<4<�

Specifying an arc, using the center method, requires knowledge of the start point, the end point,
and the center point of the arc. The X coordinate of the center is referred to with the letter I,
and the Y coordinate of the center is referred to with the letter J. When an arc is specified with
the center, another potential problem arises.

It is possible to specify the center of an arc such that the radius implied by the start point does
not equal the radius implied by the end point (see illustration on left). In this case, the
controller will re-locate the center so that the resulting arc has a uniform radius and the starting
and ending angles come as close as possible to those implied by the user's center specification.
This automatic center relocation will take place only if the start point and end point radius
difference does not exceed the user specified radius tolerance. If the radius tolerance is
exceeded, an execute error will result, and the arc will not be included in the path.

While automatic center relocation will ensure a continuous path, it can result in an abrupt
change in path direction. This happens because a new location for the center results in a new
tangent direction for an arc about that center.

Example The example code below shows the specifications of arcs 1, 2, 3, and 4 for the drawing on the
right. In the 6K commands, the order of the data is X, Y, I, J from left to right.
DEF arcs2 ; Begin definition of path
PARCOP866,500,866,-500 ; Arc 1, CW < 180 degrees
PARCOP866,500,0,1000 ; Arc 2, CW > 180 degrees
PARCOM866,500,0,1000 ; Arc 3, CCW < 180 degrees
PARCOM866,500,866,-500 ; Arc 4, CCW > 180 degrees
END ; End path definition
;***
;* To compile the arcs2 path, type "PCOMP arcs2" *
;* To run the arcs2 path, type "PRUN arcs2" *
;***

��I
�<<<

�<4�<<<�

!�
�:

��I��<<<

!�
�;

-
�����
�
�F 48<<�

���������
�
�<4<�

!�
��

!�
�E

 Chapter 5. Custom Profiling 131

Circles A circle is a special case of an arc whose end-point is the same as the starting point. Because
these two points are the same, it is impossible to determine the location of the circle's center
from a radius specification. For this reason, an arc that is a complete circle must be specified
using the arc center specification method. An arc with identical starting and ending points
specified with the radius method will be ignored. The circle shown below is specified with the
example below.

Example DEF circle ; Begin definition of path circle
PARCOP0,0,0,500 ; Circle with center at (0,500)
END ; End path definition
;***
;* To compile the circle path, type "PCOMP circle" *
;* To run the circle path, type "PRUN circle" *
;***

��
���
�<48<<�

 ��	�����
/���������

�0�0�

Segment Boundary
So far, all the examples given have shown isolated line or arc segments. Most paths will
consist of many segments put together. The point at which the segments are connected is
called a segment boundary in this text. The controller automatically ensures that the path is
continuous, in that segments are placed end-to-end.

The path velocity can either be constant or change from segment to segment, according to user
specification. Velocity changes use the specified acceleration and deceleration and can take
place even across segment boundaries.

The programmer should ensure that direction of travel is also continuous across segment
boundaries (see Figure A). If the direction change is abrupt (as shown in Figure B) the X and
Y axes will suffer abrupt acceleration or deceleration. The controller ensures that there will
be no abrupt direction change within a segment, but the programmer is responsible for
ensuring that the direction is continuous across segment boundaries. At low speeds, some
motor and mechanical configurations will tolerate such abrupt changes, and the controller will
accept such a program; however, it is generally good practice to design paths with smooth
direction changes. This can be done by designing a path using arcs to round corners.

A

D

D�0�	

.���

A

D

D�0�	

.���

������	�
���		

 Figure A (Segment Example) Figure B (Stall Example for stepper axis)

Using the C Axis (products with ≥4 axes)
The C axis is an axis whose position changes in a manner linearly related to the direction of
travel in X and Y (i.e., the path direction). The C axis would be used in applications that require
a work piece or tool to remain tangent or perpendicular to the path direction. Examples would
be: a knife always pointing into the cut, or a welding head staying normal to the weld.

The magnitude of the C axis resolution refers to the number of steps of C axis position change for
360 degrees of direction change in the X-Y plane. This number can be the same as, or different
from the C axis motor resolution, allowing any gearing that is convenient for the mechanics. If
the C axis load is to be driven directly, the C axis resolution should be the same as the C axis
motor resolution. This will cause the C axis motor and load to rotate once when a circle is drawn
by the X and Y axes. If the C axis load is to be geared (e.g., 5:1), the C axis resolution
specifications should be five times the C axis motor resolution. This will cause the actual motor
to rotate five times and the load to rotate once when a circle is drawn by the X and Y axes.

132 6K Series Programmer’s Guide

The number can be positive or negative, allowing greater flexibility in C axis motor mounting
orientation. If the sign is positive, the C axis will rotate in the positive direction when CCW
arcs are drawn. If the sign is negative, the C axis will rotate in the negative direction when
counter-clockwise arcs are drawn.

The C axis is assumed to be in the proper position when path execution begins. It will change
position only as the direction of travel changes. The program must position the C axis before
the path is executed. This can be done with the HOM command or a GO to a position.

Because the C axis position changes linearly with the direction of X-Y travel, it is important
to avoid path definitions that result in an abrupt direction change between segments. The
segment boundary considerations for the C axis are similar to those for the X and Y axes,
except that abrupt direction changes will result in abrupt C axis position changes. The X and
Y axis would only suffer large accelerations, which can cause a stall in stepper axes or exceed
the maximum position error (SMPER value) in servo axes. The C axis will suffer impossibly
high velocity commands, causing stall and position loss in steppers or position error in servos.

Using the P Axis (products with ≥4 axes)
The P axis is an axis whose position and velocity are proportional to the position and velocity
traveled by the load along the path generated by X and Y. It can be used as the Z axis in
helical interpolation, or to control other motion that must be proportional to the X-Y path
motion. The proportionality of the P axis is specified as a ratio, with a range of ±0.001 to
±1000. The sign of the ratio determines which direction the motor will turn. The magnitude
specifies the ratio of P axis travel to path travel, regardless of path direction or segment type.
This ratio is essentially a position ratio, but because the ratio is maintained at every instant it
also becomes a velocity ratio.

The P axis only responds to the distance traveled along the path, and is not affected by
direction changes in the path. The only caution that must be observed comes when a high
ratio is specified. In this case, path velocity and acceleration are amplified, which can result
in impossible velocities or stalls (stepper axes) or excessive position error (servo axes).

Outputs Along the Path
For each segment, you can also specify an output pattern (POUT), which is to be applied to the
programmable outputs at the beginning of that segment and remains throughout that segment.
These segment-defined output patterns are stored as part of the compiled path definition.
These outputs will change state at some time between 1.5 ms before the beginning of the
segment and 0.5 ms after the beginning of the segment. The programmable outputs cannot be
controlled more precisely than this, because the controller updates its path position every 2 ms.

The path segment defined programmable outputs are provided so that plotting applications
can raise and lower the pen, laser cutters can turn the laser on and off, glue applicators can be
turned on and off, all at prescribed positions along the path. The output specification is stated
before the segment definition, which holds that output state. In the example below,
programmable outputs 2 and 4 are changed during the path segments.

Example
Code

DEF prog1 ; Begin definition of path program prog1
POUT1001 ; Output pattern during first arc
PARCM5,5,5 ; Specify incremental X-Y endpoint position and

; radius arc <180° for 1/4 circle CCW arc
POUT1100 ; Output pattern during second arc

 PARCM5,-5,-5 ; Specify incremental X-Y endpoint
 ; position and radius arc >180° for
 ; 3/4 circle CW arc
END ; End definition of prog1
PCOMP prog1 ; Compile path program prog1
PRUN prog1 ; Execute path program prog1
OUT0000 ; Turn off programmable outputs 1-4

�����$$�

������$$

���$$$$

Paths Built Using 6K Series Commands

 Chapter 5. Custom Profiling 133

When defining a path, the commands that specify all of the path definitions must be contained
in a named block defining that path. Each path definition block has a unique name that is
used to distinguish one path from another. Because the path definition is stored as a program,
many different paths can be stored, each defined with a unique name. A path definition block
begins with a DEF command (containing its name) and ends with an END command.

The controller offers a command to compile (PCOMP) a named path definition block, and a
separate command to execute (PRUN) a named path. Once a named path is compiled, it can
be executed repeatedly without delay.

Compiling the Path
A PCOMP command will cause the controller to find the named path definition block and
compile the path described by those commands, even if that pathname had been previously
compiled. The use of variables (VAR) as parameters in path definition statements allow the
same basic path to be re-defined with slightly different sizes and shapes. They can also be
used to conditionally include or omit sections of the path.

Designed to allow compile-time determination of path parameters, there can be cases when the
controller should prompt the operator or host computer for the value to be used for path
velocity or segment end-points. Alternatively, these values can be read with the READ or DAT
commands, allowing multiple calls of a single subroutine to define similar path sections with
different data values. Commands that retrieve this data would be placed within the path definition, and
would only prompt for the information when the path is compiled (e.g., PV(READ1)).

Example
Code

VARS1="PATH VELOCITY ? " ; Create message string
DEF path1 ; Begin definition of path1
PAXES1,2 ; Set path X & Y axes
PAB1 ; Absolute path mode
PA100 ; Path acceleration
PV(READ1) ; Path velocity, to be read in when compiling
PLIN25000,25000 ; Move in a line
PLIN(VAR2),(VAR3) ; Move in a line, to be read in when compiling
END ; End definition of path1
PCOMP path1 ; Compile path1

Executing the Path
A PRUN command will cause the controller to find the named path definition block and
execute the path described by those commands, if that pathname has already been compiled
(PCOMP).

The use of variables as parameters in the path definition statement is a method of allowing
segment parameters to take new values each time the path is compiled. When the path is
executing, the values of the variables do not affect the path parameters. If a change in a
variable value is intended to affect the path parameters, that path must be re-compiled. The
PRUN command performs the equivalent of a GOSUB to the named path definition block.

Possible Programming Errors
It is possible to create a situation in which the segment statements are interrupted. This could
occur if an enabled ON condition becomes true. If an enabled ON condition (ONCOND)
becomes true while running a compiled path, the branch to the ONP program will result. Motion
from the path that was being executed will continue at the last segment velocity until it is
stopped. Within the ONP program, a Stop command should be issued for all axes to stop the
path from executing. For more information on program interrupts (ON conditions), see page 29.

134 6K Series Programmer’s Guide

Programming Examples
Figure A and Figure B show two simple paths that illustrate most of the controller segment
types. For both figures, axis 1 is X and axis 2 is Y. The C and P axes are not included.

Figure A specifies the end-points with absolute coordinates. The default Work coordinate
system with start point of (0,0) is used, so no PLØ statement is needed.

Figure B specifies the end-points with incremental coordinates. The state of the
programmable outputs needs to be different for Handles than for Knobs. No other controller
actions take place during these paths.

6K Code DEF HANDLE ; Begin HANDLE path definition
PAXES1,2 ; Set X axis as axis 1, and
 ; set Y axis as axis 2
PAB1 ; Use absolute coordinates
POUT1100 ; Programmable pattern for
 ; next segments
PARCOM10,10,0,10 ; CCW quarter circle
PLIN10,20 ; Vertical LINE segment
PARCP20,10,-10 ; CW 3/4 circle
PARCM20,0,5 ; CCW half circle
END ; End of HANDLE path definition

DEF KNOB ; Begin KNOB path definition
PAXES1,2 ; Set X axis to be axis 1, and
 ; set Y axis to be axis 2
PAB0 ; Use incremental coordinates
POUT0011 ; Programmable pattern for next
 ; segments
PLIN30,0 ; Long LINE into circular knob
PARCOM0,0,0,10 ; CCW circle for the knob
PLIN10,0 ; Short LINE out of knob
END ; End of KNOB path definition

*�I��<

*�I�8

��<4:<�

��<4�<�

�<4<� �:<4<�

�:<4�<�

Figure A (HANDLE Example)

*�I��<

�E<4<�

Figure A (KNOB Example)

The third path consists of two pairs of the first two (see drawing below). Each pair is placed
at variable locations within the Work coordinate system and the two pairs are connected with
a Line segment. The Line leading into the first pair starts at (20,20) in the Work coordinate
system. The first pair starts at (VAR1,2Ø) and the second pair starts at (VAR2,2Ø) in the
Work coordinate system. Handle is defined using the Local coordinate system. Even
though Handle is defined in absolute coordinates and appears in two different places along
the path in PARTS, the statements describing it appear only once, in a path definition using
local coordinates.

 Chapter 5. Custom Profiling 135

6K Code DEF PARTS ; Begin PARTS path definition
PAXES1,2 ; Set X axis to be axis 1, Y axis to be axis 2
PAB1 ; Use absolute coordinates
PWC20,20 ; Establish WORK coordinates
PL0 ; Enable WORK coordinates
PLIN(VAR1),20 ; LINE to (VAR1,20)
PLC0,0 ; Specify LOCAL coordinate system
PL1 ; Enable LOCAL coordinate system
PAB1 ; Use absolute coordinates
POUT1100 ; Programmable pattern for next segments
PARCOM10,10,0,10 ; CCW quarter circle
PLIN10,20 ; Vertical LINE segment
PARCP20,10,-10 ; CW 3/4 circle
PARCM20,0,5 ; CCW half circle
PAB0 ; Use incremental coordinates
POUT0011 ; Programmable pattern for next segments
PLIN30,0 ; Long LINE into circular knob
PARCOM0,0,0,10 ; CCW circle for the knob
PLIN10,0 ; Short LINE out of knob
PAB1 ; Use absolute coordinates
PL0 ; Return to WORK coordinates
PLIN(VAR2),20 ; LINE to (VAR2,20)
PLC0,0 ; Specify LOCAL coordinate system
PL1 ; Enable LOCAL coordinate system
PAB1 ; Use absolute coordinates
POUT1100 ; Programmable pattern for next segments
PARCOM10,10,0,10 ; CCW quarter circle
PLIN10,20 ; Vertical LINE segment
PARCP20,10,-10 ; CW 3/4 circle
PARCM20,0,5 ; CCW half circle
PAB0 ; Use incremental coordinates
POUT0011 ; Programmable pattern for next segments
PLIN30,0 ; Long LINE into circular knob
PARCOM0,0,0,10 ; CCW circle for the knob
PLIN10,0 ; Short LINE out of knob
END ; End of PARTS path definition

PCOMP PARTS ; Compile PARTS path definition

*�I��<

*�I�8

*�I��<

�E<4<�

:<

0!*� 0!*::<

/��&�������
����������

*�I��<

*�I�8

*�I��<

�E<4<�

136 6K Series Programmer’s Guide

Compiled Motion Profiling
6K Series products allow you to construct complex motion profiles for each individual axis.
The profiles can contain:

• Sequences of motion
• Loops
• Programmable output changes
• Embedded dwells
• Direction changes
• Trigger functions

Related Commands: Brief descriptions of
related commands are found on page 136. For
detailed descriptions, see the 6K Series Command
Reference.

Contouring path

segments and PLCP
programs are also stored

in compiled memory
(see page 11).

Compiled motion profiles are defined like programs (using the DEF and END commands); the
commands used to construct the motion profile segments are stored in a program (stored in
Program memory). This program is then compiled (using the PCOMP command) and the
compiled profile segments (GOBUF, PLOOP, GOWHEN, TRGFN, POUTA, POUTB, POUTC, and
POUTD statements) from the program are stored in Compiled memory. (HINT: The TDIR
command reports which programs are compiled as a compiled profile.) You can then execute
the compiled profile with the PRUN command.

The amount of RAM allocated for storing compiled profile segments is determined by the
MEMORY command setting. The list below identifies memory allocation defaults and limits for
6K Series products. Further details on re-allocating memory are provided on page 11.

Total memory (bytes) ... 300,000
Default allocation (program,compiled)MEMORY150000,150000
Maximum allocation for compiled profilesMEMORY1000,299000
Maximum No. of compiled profiles 300
Maximum No. of compiled profile segments 2069

CAUTIONS

• Issuing a memory allocation command (e.g., MEMORY70000,230000) will erase all existing
programs and compiled path segments. However, issuing the MEMORY command by itself (i.e.,
MEMORY—to request the status of how the memory is allocated) will not affect existing programs
or segments.

• After compiling (PCOMP) and running (PRUN) a compiled profile. The profile segments will be
deleted from compiled memory if you cycle power or issue a RESET command.

After compiling (PCOMP), you can execute the profiles with the PRUN command, and all of
the motion and functions compiled into the profile are executed without any further
commands during profile execution.

For multi-axis products, profiles on any combination of axes can be launched simultaneously
with a single PRUN command. This provides a very powerful method of synchronizing the
action of multiple axes with very simple programming. For example, in a four-axis product,
one axis could be running a complex Following profile, while two other axes are contouring,
and the fourth could be performing a multi-tiered velocity motion profile.

Because the motion and functions are pre-compiled, delays associated with command
processing are eliminated during profile execution, allowing more rapid sequencing of actions
than would be possible with programs that are not compiled. Command processing is then free
to monitor other activities, such as I/O and communications.

 Chapter 5. Custom Profiling 137

NOTES
• During compilation (PCOMP), most commands are executed the same as if no profile were being

defined, even those that are not relevant to the construction of a profile. This is also true of
non-compiled motion commands embedded in a compiled motion program during PCOMP. For
this reason, it’s good to limit commands between DEF and END to those that actually assist in
the construction of the profile. Even for those that do actually assist in the construction of the
profile, such as A, V, and D, it is important to remember that the command is executed and data
actually changes, and it is not restored after compilation is completed.

• If your compiled motion program contains variables, the variables are evaluation only at compile
time.

Each motion segment in a compiled motion profile can have its own distance, velocity,
acceleration, and deceleration, as shown in the program example below:

Programming
Example

DEF simple ; Begin definition of program simple
MC0 ; Preset positioning mode (disable continuous mode)
D50000 ; Distance is 50000
A10 ; Acceleration is 10
AD10 ; Deceleration is 10
V5 ; Velocity is 5
GOBUF1 ; Store the first motion segment for axis 1.
 ; Profile attributes are: MC0, A10, AD10, V5, D50000
D30000 ; Distance is 30000
V2 ; Velocity is 2
GOBUF1 ; Store the second motion segment for axis 1
 ; Profile attributes are: MC0, A10, AD10, V2, D30000
D40000 ; Distance is 40000
V4 ; Velocity is 4
GOBUF1 ; Store the third motion segment for axis 1
 ; Profile attributes are: MC0, A10, AD10, V4, D40000
 ; Because this is the last segment in a preset profile,
 ; the velocity will automatically end at zero.
END ; End program definition

PCOMP simple ; Compile simple
PRUN simple ; Run simple

The resulting profile from the above program:

v

t0

1

2

3

4

5

D50000

D30000
D40000

STATUS COMMANDS
Use these commands to
check the status of
compiled profiles.

System Status (TSSF, TSS, & SS):
• Bit 29 is set if compiled memory is 75% full.
• Bit 30 is set if compiled memory is 100% full.
• Bit 31 is set if a compile (PCOMP) failed; this bit is cleared on power-up, reset, or after a

successful compile. Possible causes include:
- Errors in profile design (e.g., change direction while at non-zero velocity, distance

& velocity equate to <1 count/system update, preset move profile ends in non-zero
velocity).

- Profile will cause a Following error (see TFS, TFSF & FS status).
- Out of memory (see system status bit 30)
- Axis already in motion at the time of the PCOMP command
- Loop programming errors (e.g., no matching PLOOP or PLN, more than 4

embedded PLOOP/END loops)

Axis Status (TASF, TAS, & AS): Bit 31 is set while compiled a GOBUF profile is executing.

138 6K Series Programmer’s Guide

TSEG & SEG: Reports the number of available segments in compiled memory.

TDIR: Identifies programs that are “compiled as a path” (compiled with the PCOMP
command) and reports the percentage of remaining compiled memory.

Rules for Using
Velocity in Preset
Compiled Motion

When defining preset mode (MC0) compiled profiles there are several rules that govern the
velocity.

Rule 1: The last segment in the compiled profile will automatically end at zero velocity (only
if not in a PLOOP/PLN loop).

DEF PROF5 ; Begin definition of profile 5
MC0 ; Select preset positioning
V1 ; Set velocity to 1 rev/sec
D4000 ; Set distance to 4000
GOBUF1 ; First motion segment (V1, D4000)
V2 ; Set velocity to 2 (second segment)
GOBUF1 ; Second motion segment (V2, D4000)
END ; End definition of profile 5
PCOMP ; Compile profile 5
; When you execute PRUN PROF5, the resulting profile is:

V

D
4000

0

1

2

8000

Rule 2: If you wish intermediate segments to end in zero velocity, use the VF0 command in the
respective GOBUF segment.

DEF PROF6 ; Begin definition of profile 6
MC0 ; Select preset positioning
V1 ; Set velocity to 1 rev/sec
VF0 ; End this segment at zero velocity
D4000 ; Set distance to 4000
GOBUF1 ; First motion segment (V1, D4000, VF0)
V2 ; Set velocity to 2 (second segment)
VF0 ; End this segment at zero velocity
GOBUF1 ; Second motion segment (V2, D4000, VF0)
END ; End definition of profile 6
PCOMP ; Compile profile 6
; When you execute PRUN PROF6, the resulting profile is:

V

D
4000

0

1

2

8000

Rule 3: CAUTION: With compiled loops (PLOOP and PLN), the last segment within the loop
must end at zero velocity or there must be a final segment placed outside the loop. Otherwise,
when the profile is compiled with PCOMP you’ll receive the “ERROR: MOTION ENDS IN
NON-ZERO VELOCITY–AXIS n” error message and system status bit 31 will be set. after the
final segment is completed, the motor will continue moving at the last segment’s velocity.

DEF PROF7 ; Begin definition of profile 7
MC0 ; Select preset positioning
D3000 ; Set distance to 3000
PLOOP4 ; Loop (between PLOOP & PLN) 4 times
V1 ; Set velocity to 1 rev/sec
GOBUF1 ; First motion segment
PLN1 ; End loop
END ; End definition of profile 7
PCOMP ; Compile profile 7, but instead of compile, you receive
 ; an error message

 Chapter 5. Custom Profiling 139

To fix the profile, reduce the PLOOP count by one and add a GOBUF statement after the PLN
command:
DEF PROF7 ; Begin definition of profile 7
MC0 ; Select preset positioning
D3000 ; Set distance to 3000
PLOOP3 ; Loop (between PLOOP & PLN) 3 times
V1 ; Set velocity to 1 rev/sec
GOBUF1 ; Looped motion segment
PLN1 ; End loop
GOBUF1 ; Last motion segment (end at zero velocity)
END ; End definition of profile 7
PCOMP ; Compile profile 7
; When you execute PRUN PROF7, the resulting profile is:

V

D
3000

0

1

2

6000 120009000

Rule 4: With compiled loops (PLOOP and PLN), if you wish the velocity at the end of each loop
to end at zero, use a VF0 command.

DEF PROF8 ; Begin definition of profile 8
MC0 ; Select preset positioning
D3000 ; Set distance to 3000
PLOOP4 ; Loop (between PLOOP & PLN) 4 times
V1 ; Set velocity to 1 rev/sec
VF0 ; End each segment at zero velocity
GOBUF1 ; Looped motion segment
PLN1 ; End loop
END ; End definition of profile 8
PCOMP ; Compile profile 8
; When you execute PRUN PROF8, the resulting profile is:

V

D
3000

0

1

2

6000 120009000

Compiled Following Profiles

More details on
Following are
found in Chapter 6
(page 166).

The new FOLRNF command designates that the motor will move the load the distance
designated in a preset GOBUF segment, completing the move at the specified final ratio. The
only allowable value for FOLRNF is zero (0). FOLRNF is allowed for a segment only if the
starting ratio is also zero, i.e., it must be the first segment, or the previous segment must have
ended in zero ratio. FOLRNF is only useful with compiled preset Following moves because the
starting and final ratios are already zero for motion initiated with GO.

Compiled motion profiles can be constructed with any combination of preset or continuous
motion segments. A continuous (MC1) Following segment will start with the final ratio of the
previous segment, and end with the ratio given by FOLRN and FOLRD. The motion segment
will consist of one ramp from the starting ratio to the final ratio. Just as with continuous
Following ramps outside of a compiled profile, the master travel over which the ramp takes
place is specified with FOLMD. The slave travel over which the ramp takes place is simply the
product of master travel and average ratio. Because the slave travel is not specified explicitly,
it is possible for arithmetic round-off errors to cause actual slave travel during a ramp to differ

140 6K Series Programmer’s Guide

from theoretical calculations. For applications in which slave distance is important, preset
segments should be used.

A preset (MCØ) Following segment will also start with the final ratio of the previous segment,
but can end in one of two ways. FOLRNF specifies the final ratio of a preset Following
segment. As previously described, the only valid value for FOLRNF is zero (0). If FOLRNFØ
is given before the GOBUF, the resulting motion segment will be constructed exactly as preset
Following moves are outside of compiled profiles. In this case, the starting ratio must be zero,
the final ratio will be zero, and the maximum intermediate ratio will be given by FOLRN and
FOLRD. The relationships between ratio, master distance, and slave distance for this case are
given on page 195 under the heading Master and Follower Distance Calculations. The
FOLRNF command affects only the immediately subsequent preset Following segment, and
must be given explicitly for each preset segment that is to end in zero ratio.

If FOLRNFØ is not given before the GOBUF, the segment will end with the ratio given by
FOLRN and FOLRD, and need not start with zero ratio. This type of motion segment is
constrained, however, to intermediate ratios that fall between the starting and final ratios.

Compiled profiles are built from motion segments created with the GOBUF command. For
each individual axis, all motion segments in a compiled profile must use the same state of
Following. That is, the motion segments can be all Following or all non-Following, but not a
mixture of Following and non-Following (but at any point in time, separate axes can have
different Following mode states).

The GOBUF command builds the appropriate type of motion segment based on the values of
FOLMAS and FOLEN during compilation. These parameters cannot be changed inside a
compiled program after a GOBUF. The choice of zero or non-zero FOLMAS must be the same
during PRUN as during PCOMP (if non-zero, the value can be changed, but still must be non-
zero). If a non-zero FOLMAS is given, the value of FOLEN must be the same during PRUN as
during PCOMP.

Distance
Calculations For
Compiled
Following Moves

The graph below shows 6 possibilities of ratio change profiles for preset segments, with legal
FOLMD and “D” values constrained by the requirement that the average ratio (given by
“D”/FOLMD) is between R1 and R2. If the distance is outside these ranges, in the profile used
to get from R1 to R2 over FOLMD (covering “D” slave distance), an error message will be
generated during the PCOMP command. For the graphs shown, the constraints are expressed by:

 (R1 * FOLMD) <= “D” <= (R2 * FOLMD) if R2 > R1
 (R1 * FOLMD) >= “D” >= (R2 * FOLMD) if R2 < R1

��
��

*�

*:

�	�(��,����

�

,�J��*��K�*:��L���
��C:

,�I��*��K�*:��L���
��C:

,�M��*��K�*:��L���
��C:

��
��

*�

*:

�	�(��,����

�

,�M��*��K�*:��L���
��C:

,�I��*��K�*:��L���
��C:

,�J��*��K�*:��L���
��C:

 Chapter 5. Custom Profiling 141

The two graphs above show the cases of R1<R2 or R1>R2, but the distance calculations of the
ramp and constant ratio portions are the same for the two cases. For each graph, the heavy
lined profile (first case) of these mimics the shape of the corresponding preset velocity change
(FOLENØ) segments in that the ramp takes place before the constant ratio portion. The second
case occurs only if the distance specified exactly matches the start and end ratios and
FOLMD1. In the third case, the ramp takes place after the constant ratio portion. In the first
and third cases, only two segments are built, and the slave and master distances traveled in
each segment are easily calculated with the simple formulas shown below. These formulas
are based on positive ratios and master and slave distances. In the construction of Following
profiles, ratios and master distances are always positive, with direction implied by the sign of
the slave distance. For calculations with negative slave distances, simply use the magnitude
of “D” in the formulas below, and invert the sign of the resulting slave distances.

Case 1 (Ramp first) MD1 = [D-(R2*FOLMD)]/((R1-R2)/2) where MD1 = master distance during ramp
MD2 = FOLMD - MD1 where MD2 = master distance during flat
D1 = .5*(R1+R2)*MD1 where D1 = slave distance during ramp
D2 = D - D1 where D2 = slave distance during flat

Case 2 (Ramp only) MD1 = FOLMD where MD1 = master distance during ramp
D1 = D where D1 = slave distance during ramp

Case 3 (Ramp last) MD1 = [D-(R1*FOLMD)]/((R2-R1)/2) where MD1 = master distance during ramp
MD2 = FOLMD - MD1 where MD2 = master distance during flat
D1 = .5*(R1+R2)*MD1 where D1 = slave distance during ramp
D2 = D - D1 where D2 = slave distance during flat

Dwells and Direction Changes
Compiled profiles can incorporate changes in direction only if the preceding motion segment
has come to rest. This can be achieved for non-Following segments either by creating a
continuous segment with a goal velocity of zero, or by preceding a preset segment with VFØ.
It can be achieved for Following segments either by creating a continuous or preset segment
with a goal ratio of zero, or by preceding a preset segment with FOLRNFØ. In all cases,
motion within the profile comes to rest, although the profile is not yet complete. Even though
the motor is not moving, the axis status bit 1 (AS.1) will remain set, indicating a profile is
still underway. Only then can you change direction (using the D+ or D- command, D~ is not
allowed) within a profile. An attempt to incorporate changes in direction if the preceding
motion segment has not come to rest will result in a compilation error.

In many applications, it can be useful to create a time delay between moves. For example, a
machine cycle can require a move out, dwell for 2 seconds, and move back. To create this
dwell, a compiled GOWHEN can be used between the two moves. The code within a compiled
program can look like:
MC0 ; Preset incremental positioning used
D(VAR1) ; Target position is in VAR1
VF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move out segment
GOWHEN(T=2000) ; Profile delays for 2 seconds
D- ; Return position is home (direction reversed)
VF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move back home segment

In Following applications, it can be more useful to create a master travel delay between
moves. For example, a machine cycle replacing a cam can require a move out, dwell for 2000

142 6K Series Programmer’s Guide

master counts, and move back. To create this dwell, a compiled GOBUF of zero slave distance
can be used between the two moves. The code within a compiled program can look like:
MC0 ; Preset incremental positioning used
D(VAR1) ; Target position is in VAR1
FOLMD4000 ; Move takes place over 4000 master counts
FOLRNF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move out segment
D0 ; No change in target position
FOLMD2000 ; Dwell takes place over 2000 master counts
FOLRNF0 ; Motion comes to rest at end of “move” (dwell)
GOBUF1 ; Create dwell segment
D(VAR1) ; Return position is home (direction change implied)
D- ; Return position is home (direction reversed)
FOLMD4000 ; Move takes place over 4000 master counts
FOLRNF0 ; Motion comes to rest at end of move
GOBUF1 ; Create move back home segment

Compiled Motion Versus On-The-Fly Motion
The two basic ways of creating a complex profile are with compiled motion or with on-the-fly
pre-emptive GO commands. With compiled motion, portions of a profile are built piece by
piece, and stored for later execution. Compiled motion is appropriate for profiles with motion
segments of pre-determined velocity, acceleration and distance. Compiled motion profiles
allow for shorter motion segments, which results in faster cycle times because there is no
command processing and execution delay. The axes can perform their own motion control
and coordination, freeing program flow for other tasks, such as I/O, machine control, and host
requests. The disadvantages to pre-defined compiled motion profiles are the amount of
memory use and limited run-time decision making and I/O processing.

With pre-emptive GO moves, the motion profile underway is pre-empted with a new profile
when a new GO command is issued. The new GO command constructs and launches the pre-
empting profile. Pre-emptive GOs are appropriate when the desired motion parameters are not
known until motion is already underway.

The table below summarizes the differences between the use of compiled motion and on-the-
fly motion.

Command/Issue Compiled Motion On-The-Fly Motion
GOBUF Constructs motion segment and appends to

previously constructed segment
N/A

PRUN Used to launch previously compiled motion N/A
GO GO causes move during PCOMP GO Constructs & launches profile,

even if moving
Direction changes Only if previous motion segment comes to rest

(MCØ & VFØ or MC1 & VØ), else compile error
Not allowed during motion, else
AS.3Ø, ER.1Ø

Insufficient room for
AD (decel) value

Same as on-the-fly Decel is modified (steppers);
Motion is killed, AS.3Ø (servos)

Related Commands
GOBUF Store a Motion Segment in Compiled Memory:

The GOBUF command creates a motion segment as part of a profile and places it in a segment
of compiled memory, to be executed after all previous GOBUF motion segments have been
executed. An individual axis profile is constructed by sequentially appending motion segments
using GOBUF commands. Each motion segment can have its own distance to travel, velocity,
acceleration, and deceleration.

The end of a GOBUF motion segment in preset mode is determined by the distance or position
specified. The end of a GOBUF motion segment in continuous mode is determined by the goal
velocity specified. In both cases, the final velocity and position achieved by a segment will be
the starting velocity and position for the next segment. If either type of segment is followed by

 Chapter 5. Custom Profiling 143

a GOWHEN command, the segment’s final velocity will be maintained until the GOWHEN
condition becomes true.

PLOOP & PLN Loop Start & Loop End (Compiled Motion only):

The PLOOP and PLN commands specify the beginning and end of an axis-specific profile loop,
respectively. All segments defined between the PLOOP and PLN commands are included
within that loop.

VF & FOLRNF Final Velocity & Numerator of Slave-to-Master Final Ratio:

The VF and FOLRNF commands are used to designate that the motor will move the load the
distance designated in a preset GOBUF motion segment, completing the move at a final speed
of zero. The VF command is used when the Following mode is disabled (FOLENØ). The
FOLRNF command is used when the Following mode is enabled (FOLEN1).

GOWHEN Conditional GO:

When GOWHEN is compiled in a profile, the GOWHEN condition is stored as part of that profile
instead of being executed immediately. When progress through the profile reaches the
compiled GOWHEN, AS.26 is set, and the next segment’s execution will be suspended until the
GOWHEN condition becomes true. This allows subsequent GOWHEN and GOBUF combinations
to be issued and stored, instead of overriding each other.

TRGFN Trigger Functions:

When TRGFN is compiled in a profile, the TRGFN condition is stored as part of that profile
instead of being executed immediately. When progress through the profile reaches the
compiled TRGFN, the embedded trigger functions are assigned to that trigger. AS.26 is set if
the GOWHEN function has been assigned to the trigger, and the next segment’s execution will
be suspended until the specified trigger input goes active. This allows subsequent TRGFN,
GOWHEN, and GOBUF combinations to be issued and stored, instead of overriding each other.

PCOMP, PRUN
& PUCOMP

Compile a Program, Run a Compiled Program, & Un-Compile a Compiled Program:

The PCOMP, PRUN, and PUCOMP commands allow you to incorporate individual axis profiles
within compiled motion profiles. Compiled motion for the 6K series allows you to construct
complex motion programs using an individual contour (a series of arcs and lines), individual
axis profiles (a series of GOBUF commands), or a path (combination of contours and individual
axis profiles).

PEXE Execute Compiled GOBUF Profile from PLC Program:

You can place a PEXE command inside a compiled PLCP program. When the PLCP program
is scanned in the PLC Scan Mode (SCANP), the PEXE command launches the specified
compiled profile in another task. For details on the PLC Scan Mode, see page 104.

POUTA through
POUTH

Output During Compiled Motion Profile — Axes Specific:

The POUTA, POUTB, POUTC, POUTD, POUTE, POUTF, POUTG, and POUTH commands turn
the programmable output bits on and off for axes 1, 2, 3, 4, 5, 6, 7 and 8, respectively.

TSEG & SEG Transfer/Display (TSEG) or Assign (SEG) the Number of Free Segment Buffers:

The TSEG command returns the number of free segment buffers in compiled memory. The
SEG command is used to assign the number of free segment buffers in compiled memory to a
variable or to make a comparison against another value.

Compiled Motion — Sample Application 1
A manufacturer has an application where wire is being wrapped onto a spindle. There is a
motor controlling the rotational speed of the spindle. Every application of the spindle requires
that the motor runs at a fast speed with a slow acceleration for the first few revolutions, a
medium speed for the next couple of revolutions, and a slower speed as the spindle gets fuller
to maintain somewhat of a constant velocity off the feed wire. The technician would like to

144 6K Series Programmer’s Guide

use an RP240 to enter the velocity and number of revolutions for each stage of winding.
Programmable outputs 1, 2 and 3 are wired to status LEDs, and should go on for the
respective stages of winding (output 1 for stage 1, etc.).

Profile
(

�

,����

����
�����������

,����

����
��
�
�������

,����

����
�����������

Program DEF PROFIL ; Define motion profile program
VAR10 = 4000 * VAR4 ; Get distance of first stage
 ; (assuming 4000 steps/revolution)
D(VAR10) ; Set distance
V(VAR1) ; Set velocity of first stage
POUTA.1-1 ; Turn output 1 on
GOBUF1 ; Build motion
VAR10 = 4000 * VAR5 ; Get distance of second stage
D(VAR10) ; Set distance
V(VAR2) ; Set velocity of second stage
POUTA01 ; Turn output 1 off and output 2 on
GOBUF1 ; Build motion
VAR10 = 4000 * VAR6 ; Get distance of third stage
D(VAR10) ; Set distance
V(VAR3) ; Set velocity of third stage
POUTAx01 ; Turn output 2 off and output 3 on
GOBUF1 ; Build motion
POUTA.3-0 ; Turn off output 3
END ; End motion profile program

DEF EXMPL1 ; Define program example 1
L ; Continual loop of program execution
DCLEAR0 ; Clear all lines on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER VELOCITY STAGE 1" ; Prompt user
VAR1 = DREAD ; Get 1st velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER VELOCITY STAGE 2" ; Prompt user
VAR2 = DREAD ; Get 2nd velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER VELOCITY STAGE 3" ; Prompt user
VAR3 = DREAD ; Get 3rd velocity from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER REVOLUTIONS STAGE 1" ; Prompt user
VAR4 = DREAD ; Get # of windings 1st stage from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"ENTER REVOLUTIONS STAGE 2" ; Prompt user
VAR5 = DREAD ; Get # of windings 2nd stage from RP240 entry
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE”ENTER REVOLUTIONS STAGE 3" ; Prompt user
VAR6 = DREAD ; Get # of windings 3rd stage from RP240 entry
PCOMP PROFIL ; Re-compile profile with new vel/dist info
$AGAIN ; Label for repeating same profile
PRUN PROFIL ; Execute profile
DCLEAR1 ; Clear line 1 on RP240 display
DPCUR1,1 ; Position cursor at line 1, column 1
DWRITE"SAME DATA (1=YES,2=NO)"
 ; Prompt user if perform again with old data
VAR7 = DREAD ; Get response
IF(VAR7=1) ; If user wants to perform same profile
 GOTO AGAIN ; perform again
NIF ; End conditional
LN ; End command execution loop
END ; End definition program example 1

; **
; * To begin, execute the EXMPL1 program *
; **

 Chapter 5. Custom Profiling 145

Compiled Motion — Sample Application 2
Here’s an example of replacing a mechanical cam using a compiled Following profile. There
is evenly spaced product coming in on a feeder belt. The feeder belt can vary in speed. The
cam that you are replacing controls a push arm that will push the product into a box for
shipping. You would also like the arm to retract at a faster rate than it extends. In other
words, you would like to have a smooth push to load and a fast retract to set up for the next
product. Since this is a cam, this profile must repeat continuously for each product or master
cycle but won’t start until the first product is detected.

�����
�
�����
�
,���
���

�����!��

7�5

The feeder belt is the master and the master cycle length (space from the front of one product
to the front of the next) is 12000 master (encoder) counts on the feeder belt. The push of the
product will start 2000 counts into the master cycle. The push will take place over 6K master
counts, and the retract over 2000 master counts. The distance the push arm (slave) must travel
is 4000 counts. Assume the detector is wired to trigger 1A (onboard trigger input 1). Below is
a graph of this Following profile.

Profile

�

�(�-)

�(���'%�-��(�+�
<

:

E

:<<< F<<< �<<<< �:<<<

,��	�(���I�;<<<
,��	�(��
I�%;<<<

Program ; Setup code
FOLMAS21 ; Master is coming in on encoder 2
FOLEN1 ; Enable Following
INFNC1-H ; Assign onboard input 1 (TRG-1A) as trigger interrupt

; Motion program
DEL EXPL2 ; Delete program (in case it already exists in memory)
DEF EXPL2 ; Begin definition of program example 2
1TRGFNA1 ; Launch axis 1 profile upon receiving TRG-1A
 ; (1st product detected)
PLOOP0 ; Loop continuously to mimic a mechanical cam

; Program first move - dwell
FOLRN1 ; Set up ratios - numerator
FOLRD1 ; and denominator
FOLMD2000 ; Over a distance of 2000 master steps
D0 ; slave will not move
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

146 6K Series Programmer’s Guide

; Program second move - positive slave move
FOLMD6000 ; Over a distance of 6000 master steps
D4000 ; slave will move 4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program third move - negative slave move
FOLRN3 ; New ratio to accommodate larger distance of slave travel
FOLMD2000 ; Over a distance of 2000 master steps
D-4000 ; slave will move -4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program last move - dwell
FOLMD2000 ; Over a distance of 2000 master steps
D0 ; slave will not move
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion
PLN1 ; Close cam loop
END ; End program example 2

PCOMP EXPL2 ; Compile program EXPL2

; ** To execute the program, enter the PRUN EXPL2 command **

Program
Modification

Let’s now modify the constraints of the system. Let’s say that the product will be spaced roughly 12000
master counts apart. It may or may not be exactly 12000, but it will never be less than 10000 (just to
make sure the retraction finishes before the next product is detected). We can then modify the program to
wait for the product to be detected each cycle. We can also take the extra “dwell” or zero distance move
out of the end of the profile. See program below:
; Setup code
FOLMAS21 ; Master is coming in on encoder 2
FOLEN1 ; Enable Following mode
INFNC1-H ; Assign onboard input 1 (TRG-1A) as trigger interrupt

; Motion program
DEL EXPL2B ; Delete program (in case it already exists in memory)
DEF EXPL2B ; Begin definition of program example 2b
PLOOP0 ; Loop continuously to mimic a mechanical cam
1TRGFNA1 ; Pause axis 1 profile until TRG-1A is activated

; (detect next product)

; Program first move - dwell
FOLRN1 ; Set up ratios - numerator
FOLRD1 ; and denominator
FOLMD2000 ; Over a distance of 2000 master steps
D0 ; slave will not move
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program second move - positive slave move
FOLMD6000 ; Over a distance of 6000 master steps
D4000 ; slave will move 4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion

; Program third move - negative slave move
FOLRN3 ; New ratio to accommodate larger distance of slave travel
FOLMD2000 ; Over a distance of 2000 master steps
D-4000 ; slave will move -4000 steps
FOLRNF0 ; and end at zero ratio
GOBUF1 ; Build motion
PLN1 ; Close cam loop
END ; End program example 2b

PCOMP EXPL2B ; Compile program EXPL2B

; **
; * To execute the program, enter the PRUN EXPL2B command *
; **

 Chapter 5. Custom Profiling 147

Compiled Motion — Sample Application 3

In this application, there is a wheel that stamps a logo onto the product. The product is
assumed to be entering at a constant and fixed spacing, each product is 4 inches in length with
2 inches separating each unit. The stamp wheel has a circumference of 9 inches, and must be
traveling at a 1 to 1 ratio with the product at the time of stamping. The stamp wheel must then
travel five inches in just 2 inches of master travel. There is a sensor wired to trigger A of the
6K controller to detect the first product and start the cycling. At the time of the trigger the
product is 1 inch away from contact with the stamp wheel. Assume that the home position of
the slave is 0.5 inches away from a stamp. The mechanics of the system give 3000 steps of
master travel per inch and 1500 steps of slave travel per inch.

Profile
�(�-)

�(���'
�-��(�+�

<
<�8N

,��	�(���I�;N

,��	�(���I�<�8N
,��	�(���I��N

,��	�(���I�EN

,��	�(���I��N

<�8N

���������
	�
As you can see above, we have a multi-tiered Following profile. By multi-tiered we mean
that ratio is changing from a non-zero value to another non-zero value. To program this
profile effectively, we will break the profile into pieces as shown with the dotted lines in the
above illustration:

Program FOLMAS21 ; Define the master as encoder on axis 2
FOLEN1 ; Enable Following
INFNC1-H ; Assign onboard input 1 (TRG-1A) as trigger interrupt
SCLMAS3000 ; Set scaling of master steps per inch
SCLD1500 ; Set scaling of slave steps per inch
SCALE1 ; Enable scaling

DEF EXMPL3 ; Start definition of example program 3
1TRGFNA1 ; Launch axis 1 profile when TRG-1A is activated

; Program first ramp from ratio 0 to ratio 1
FOLRD1 ; Set Following ratio - denominator
FOLRN1 ; Set the Following ratio at 1 to 1
FOLMD1 ; Over a master distance of 1"
D0.5 ; Slave will travel 0.5"
GOBUF1 ; Build motion

PLOOP0 ; Start the continuous loop

; Program constant ratio
FOLRN1 ; At a 1 to 1 ratio
FOLMD4 ; Over a master distance of 4"
D4 ; Slave will travel 4"
GOBUF1 ; Build motion

; Program ramp to new ratio
FOLRN3 ; Go to a 3 to 1 ratio
FOLMD0.5 ; Over a master distance of 0.5"
D1 ; Slave will travel 1"
GOBUF1 ; Build motion
; Program second constant ratio
FOLRN3 ; At a 3 to 1 ratio
FOLMD1 ; Over a master distance of 1"
D3 ; Slave will travel 3"
GOBUF1 ; Build motion

; Program ramp to lower ratio
FOLRN1 ; Go to a 1 to 1 ratio
FOLMD0.5 ; Over a master distance of 0.5"

148 6K Series Programmer’s Guide

D1 ; Slave will travel 1"
GOBUF1 ; Build motion
PLN1 ; Close motion loop

; Define the exit motion
FOLRN0 ; Stop slave at zero ratio (and zero velocity)
FOLMD1 ; Over a master distance of 1"
D0.5 ; And a slave distance of 0.5"
GOBUF1 ; Build motion
END ; End definition of example program 3

PCOMP EXMPL3 ; Compile example program 3

; **
; * To execute the program, enter the PRUN EXMPL3 command *
; **

NOTE: The GOBUF command has been added to the “Define the exit motion” portion
of the program despite the fact that an infinite loop has been programmed earlier in the
program. This is to avoid an error message when the program is compiled.

Compiled Motion — Sample Application 4
A manufacturer of stamped molds needs to make a machine that will stamp molds into a
continuous flow of extruded plastic material. The stamp must be lowered 0.5 inches into the
plastic to leave the correct impression. Because the flow is continuous, the stamp must also
move in synchronization with plastic in the direction of flow as it is lowered and raised. The
initial design approach to the machine required two axes of motion. One was needed to lower
and raise the stamp, the other to allow the stamp to follow the plastic. With the availability of
complex Following cam profiles the job can done with a single axis.

In the drawing below, the stamp is attached to a rotating arm in such a way that the stamp
remains level as the arm rotates. The length of the arm at the stamp fixture, or radius of
rotation, is exactly one inch. The arm is mounted above the plastic so that at the bottom of its
rotation (270 degrees), the stamp will be 0.5 inches into the plastic. Using trigonometry, the
horizontal and vertical positions and speeds can be calculated at other arm angles. Because the
stamp must follow the flow of the plastic, we must adjust the ratio of rotational speed to
plastic speed so that the horizontal velocity component of the arm stays at 1:1 with the plastic
while the stamp is in the plastic.

0 0

E<H

0

E<H

The table below shows these relationships. The arm is directly driven with a servo motor
having 4096 steps per revolution. The table shows increments of 30 degrees, which is about
341 servo motor steps, or about 0.524 slave inches measured around the circumference
described by rotation of the arm. The plastic flow is measured with an encoder giving 1000
steps per inch of flow. To maintain ratios in terms of inches, FOLRD will always be 1000. The
required FOLRN value is simply the inverse of the arm’s horizontal velocity component
multiplied by the number of slave steps per inch. The corresponding ratio in terms of surface
speeds is given in parentheses. The required FOLMD is the number of master steps
corresponding to the horizontal component of slave rotation.

 Chapter 5. Custom Profiling 149

Arm angle,
degrees

Horizontal
component
(in.) = cos(deg)

FOLMD =
1000 * delta cos(deg)

Horizontal vel
component = -sin(deg)

Required FOLRN =
-651.9/sin(deg)

210 -0.866 n/a 0.500 1304 (2:1)
240 -0.500 366 0.866 753 (1.155:1)
270 0.000 500 1.000 652 (1:1)
300 0.500 500 0.866 753 (1.155:1)
330 0.866 366 0.500 1304 (2:1)

The profile that we construct from these number is meant to approximate the inverse sine
function in the last column, but of course, will actually be a series of ramps and constant ratio
segments. Let’s review the Compiled Following Move Distance Calculations to determines
the exact shape and error in the first motion segment(from 210 to 240 degrees). First, we need
to determine if the ramp or constant ratio is first for that segment. Using ratios and distances
in inches, we have:

R1 = 2... Starting ratio
R2 = 1.155.................................. Final ratio
D = (2*pi)/12 = 0.524 Distance at stamp hinge
FOLMD=.366.............................. Travel along plastic

We find (R1+R2) * FOLMD/2 = 0.577, which is greater than D, so the “Ramp First”
equations apply to this segment. Let’s examine the error at the junction between the ramp and
constant ratio portion of this segment.

MD1 = [D - (R2 * FOLMD)] / ((R1 - R2) / 2) = 0.239 master inches
D1 = 0.5 * (R1 + R2) * MD1 = 0.377 slave inches at circumference = 21.6 degrees
cos(210+21.6) - cos(210) = -0.621 - (-0.866) = 0.245 inches slave horizontal travel
error = horizontal slave travel - master travel = 0.245 - 0.239 = 0.006 inches

A similar calculation can be done for the “elbow” of the next of the next segment, and
symmetry indicates these errors will be the same between 270 and 330 degrees. The error
along intermediate points can be found with linear interpolation of ratio and master distance.
In this case, the errors fall within manufacturing tolerance. If the errors were too large, the
travel could be broken into more segments, each with exactly correct positions and ratios at
their boundaries.

So far, we have only discussed the portion of the profile that lowers and raises the stamp.
During the remainder of the profile, the arm must continue its rotation to bring the stamp to its
starting position in time for the next mold. The mold is 3 inches long, and .4 inches are needed
between molds for strength at the edges. This makes the total master cycle 3.4 inches long.
The total slave cycle must be 4096 steps, so the segments required to bring the arm around
must complete the portions of master and slave cycles not already accounted for. We will
create two segments, which divide the remaining master and slave travels in two, and are
mirror images of each other. The average ratio of these two segments must simply be slave
travel divided by master travel, i.e., (D / FOLMD). As previously determined, the FOLRN
value for the boundaries of the stamping portion of the profile is 638. From this value and the
average ratio, we can calculate the peak FOLRN value.

D = 0.5 * remaining slave = 0.5 * (4096 - 4 * 341) = 1366
FOLMD = 0.5 * remaining master = 0.5 * [1000 * (3.4 - 2 * 0.866)] = 834
peak ratio = FOLRN/1000
0.5 * (FOLRN/1000 + 1304/1000) = average ratio = D / FOLMD = 1366 / 834 = 1.638
FOLRN = 1972 (solved from above)

Finally, we need to design a segment used to create a smooth entry into the repetitive portion
of the profile. We’ll assume that the home position of the arm is at 180 degrees, so it needs to
achieve the FOLRN ratio of 1304 in 30 degrees (341 slave steps). Using the same averaging
arithmetic as above, the required master distance for the entry segment is 523 steps. A sensor
is positioned with this entry segment in mind, and wired to TRG-1A. A function to start motion
when the sensor is triggered will be imbedded inside the profile. The motion segments for the
stamping portion and recovery portions of the profile must be enclosed in a loop, and can be
programmed by picking the numbers from the table and equations above. Because the ratio
denominators are the same for all segments, and the slave distances are the same for the entry
and each of the stamping segments, these are commanded only when the values change.

150 6K Series Programmer’s Guide

Repetitive Portion of
Profile ��
��

�(���'%�'(3�/

 8:

�8E

�E<;

�=�:

�<<< �E �F :E :�E: E8 ;;<<

������
��������

-�
�������
�����
E;���	�(�������

*�
�(����������

Program FOLMAS21 ; Follow extra encoder
FOLEN1 ; Enable Following mode
INFNC1-H ; Enable trigger 1 (TRG-1A) for interrupt function
SCALE0 ; Parameters are in steps

DEF STAMP ; Start program definition
1TRGFNA1 ; Axis 1 profile starts upon trigger 1 (TRG-1A)
FOLRD1000 ; Ratio denominator, 1ØØØ steps per inch
;define the entry segment
D341 ; Distance of 341 steps is about 3Ø degrees
FOLRN13Ø4 ; Goal ratio for start segment
FOLMD523 ; Master distance during ramp
GOBUF1 ; Build start segment
PLOOP0 ; Start the continuous loop
;this profile section starts 2-to-1 ratio, or a starting FOLRN13Ø4
FOLRN753 ; Goal ratio for segment
FOLMD366 ; Master travel in steps for segment
GOBUF1 ; Build motion segment
;the 2nd section of profile starts with the final ratio of the 1st section
FOLRN652 ; Goal ratio for segment
FOLMD500 ; Master travel in steps for segment
GOBUF1 ; Build motion segment
;the next two sections are mirror images of the first two
FOLRN753 ; Goal ratio for third segment
FOLMD500 ; Master travel in steps for 3rd segment
GOBUF1 ; Build motion segment
FOLRN1304 ; Goal ratio for 4th segment
FOLMD366 ; Master travel in steps for 4th segment
GOBUF1 ; Build motion segment
;the next two sections complete the loop and are mirror images of each other
D1366 ; Slave travel in recovery segments
FOLMD834 ; Master travel in steps for recovery segments
FOLRN1972 ; Goal ratio for ramp up segment
GOBUF1 ; Build ramp up motion segment
FOLRN523 ; Goal ratio for ramp down segment
GOBUF1 ; Build ramp down motion segment
PLN1 ; End of loop cycle
;finally, a segment to end motion
D341 ; Distance of 341 steps is about 3Ø degrees
FOLRN0 ; Goal ratio for end segment
FOLMD1000 ; Master distance during ramp
GOBUF1 ; Build end segment
END ; End of STAMP program definition

PCOMP STAMP ; Compile the program

; **
; * To execute the program, enter the PRUN STAMP command *
; **

 Chapter 5. Custom Profiling 151

On-the-Fly Motion (pre-emptive GOs)
While motion is in progress, you can change these motion parameters to affect a new profile:

• Acceleration (A) — s-curve acceleration is not allowed
• Deceleration (AD) — s-curve deceleration is not allowed
• Velocity (V)
• Distance (D)
• Preset or Continuous Positioning Mode Selection (MC)
• Incremental or Absolute Positioning Mode Selection (MA)
• Following Ratio Numerator and Denominator (FOLRN and FOLRD, respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D, MC)
followed by the GO command. If the continuous command execution mode is enabled
(COMEXC1), you can execute buffered commands; otherwise (COMEXCØ), you must prefix each
command with an immediate command identifier (e.g., !A, !V, !D, !MC, followed by !GO).

The new GO command pre-empts the motion profile in progress with a new profile based on
the new motion parameter(s). On-the-fly motion changes are applicable only for motion
started with the GO command, and not for motion started with other commands such as HOM,
JOG, JOY, PRUN or GOL.

On-the-fly motion changes are most likely to be used to change the velocity and/or goal
position of a preset move already underway. In the event that the goal position is completely
unknown before motion starts, a move can be started in continuous mode (MC1), with a switch
to preset mode (MCØ), a distance command (D), and a GO given later. In absolute positioning
mode (MA1) the new goal position given with a pre-emptive GO is explicit in the D command.
In incremental positioning (MAØ) the distance given with a new pre-emptive GO is always
measured from the at-rest position before the original GO. If a move is stopped (with the S
command), and then resumed (with the C command), this resumed motion is considered to be
part of the original GO. A subsequent distance given with a new pre-emptive GO is measured
from the at rest position before the original GO, not the intermediate stopped position.

Programming Example: This program creates a 2-tiered profile (single-axis) that changes velocity and
deceleration at specific motor positions.

SCALE0 ; Disable scaling
DEL OTF ; Delete program (in case program is already in memory)
DEF OTF ; Begin definition of program
PSET0 ; Set position to zero
COMEXC1 ; Enable continuous command processing mode
MC0 ; Select preset positioning
MA0 ; Select incremental positioning
A20 ; Set accel to 20 revs/sec/sec
AD20 ; Set decel to 20 revs/sec/sec
V9 ; Set velocity to 9 revs/sec
D500000 ; Set distance to 20 revs
GO1 ; Initiate motion
WAIT(PC>100000) ; Wait until commanded position > 100000 steps (4 revs)
V4 ; Slow down for machine operation
GO1 ; Initiate new profile with new velocity
WAIT(PC>450000) ; Wait until the motor position > 450000 steps (18 revs)
AD5 ; Set decel for gentle stop
V1 ; Slow down for gentle stop
GO1 ; Initiate new profile with new velocity
END ; End program definition

152 6K Series Programmer’s Guide

The table below summarizes the restrictions on pre-emptive GOs.

Condition Possible?

Execute GO during MC1 & FOLENØ Yes

Execute GO during MC1 & FOLEN1 Yes

Execute GO during MCØ & FOLENØ Yes

Execute GO during MCØ & FOLEN1 No

Change MC setting during motion Yes (but cannot change MC1 to MCØ during FOLEN1)

Change ENC setting during motion No

Change FOLENØ to FOLEN1 during motion No

Change FOLEN1 to FOLENØ during motion Only while MC1, constant ratio, and not shifting

OTF Error Conditions
The ability to change the goal position on the fly raises the possibility of several error
conditions:

6K Response
Error Conditions

Set axis status
bit 30

Set error
status bit 10

Kill motion (decelerate
at the LHAD value)

The new position goal of an on-the-fly
GO cannot be reached with the
current direction, velocity, and decel.

YES

YES

NO

The direction of the new goal position
is opposite that of current travel

YES

YES

YES

Further instructions
about handling error
conditions are provided
on page 30.

There has not yet been an overshoot,
but it is not possible to decelerate to
the new distance from the current
velocity using the specified AD value.

YES

YES

YES

RELATED STATUS COMMANDS

Axis Status — Bit 30: (this status bit is cleared with the next GO command)
 AS.30Assignment & comparison operator — use in a conditional expression (see page 25).
 TASFFull text description of each status bit. (see “Preset Move Overshot” line item)
 TASBinary report of each status bit (bits 1-32 from left to right). See bit 30.

Error Status — Bit 10: The error status is monitored and reported only if you enable error-
checking bit 10 with the ERROR command (e.g., ERROR.1Ø-1). NOTE: When the error occurs, the
controller with branch to the error program (assigned with the ERRORP command). (this status bit is
cleared with the next GO command)
 ER.10Assignment & comparison operator — use in a conditional expression (see page 25).
 TERFFull text description of each status bit. (see “Preset Move Overshot” line item)
 TERBinary report of each status bit (bits 1-32 from left to right). See bit 10.

Scenarios

Scenario 1: OTF change of velocity and
distance, where new commanded distance (D2) is
greater than the original distance (D1) that was
pre-empted [D2 >D1]. The distances are the areas
under the profiles, starting at t0 for both. If the
original move had continued, D1 would have been
reached at time t1. D2 is reached at time t2.

(

�

,�

,:

�� �:�<

 Chapter 5. Custom Profiling 153

Scenario 2: OTF change of distance, where new
commanded distance (D2) is less than the original
distance (D1) that was pre-empted [D2 < D1]. In
this example, the position where the OTF change
was entered is already beyond D2 (or D2 cannot be
reached with the commanded deceleration). The
result is an error and motion is killed (decel at the
LHAD value) and TAS bit 30 and TER bit 10 are
set.

(

�

,�,:

���<

Scenario 3: OTF change of velocity. Note that
motion must continue for a longer time at the
reduced velocity to reach the original
commanded distance than if it had continued at
the original velocity (t2 > t1).

(

�

,�

�� �:�<

,�

On-The-Fly Motion — Sample Application
A manufacturer of three products wishes to produce a “sampler-pak” package that will contain
a few of each of his products. The products all have the same width and length, but are 3, 4,
and 5 inches high respectively. The 3 products are fed from individual lines into a common
conveyor, and arrive at a stacking and wrapping station. At this station, a tray accepts a
product and must have moved down by that product’s height by the time the next product
arrives. This means that each time a new product arrives, the velocity of the tray must be
changed to match the height of that product. Although product spacing will be regular, the
ordering of product type on the common conveyor will be random, due to variations in the
input lines. Also, a finished sampler-pak should contain 5 products or be at least 18 inches
high, whichever occurs first. This means that the total move distance of the tray will be
unknown until the last product arrives. When the last product is stacked, an output is asserted
that will pause the conveyor and start the wrapping process. When wrapping is complete, the
sampler-pak is removed from the tray, and the tray returns to the starting position.

The basic problems in this application are that the move distance is not known until near the
end, and the velocity must change on the fly. As the products approach the tray, they are
detected with a near vertical arrangement of three sensors. Products of heights 3, 4, and 5
inches are detected by 1, 2, or all 3 sensors respectively. Input 1 always detects a product, and
switches last, so that the others will be stable. When each product is identified, the motion
profile is modified accordingly.

154 6K Series Programmer’s Guide

��
����

EN ;N ;N 8N 8NEN ;N
�

:
E

EN

EN

Program
(portion only)

VAR1=0 ; Initialize product count
VAR2=0 ; Initialize move distance variable
VAR3=0 ; Initialize velocity
A10 ; Moderate acceleration
MC0 ; Start with preset move
WHILE(VAR1<5 AND VAR2<18) ; Loop until cycle complete
WAIT(IN.1=B1) ; Wait for start of next product
 ; (onboard input 1 is activated)
VAR1=VAR1+1 ; Update product count
IF(IN.2=B1) ; If not a 3" product
 IF(IN.3=B1) ; If it is a 5" product
 VAR3=5 ; Set velocity
 VAR2=VAR2+5 ; Update distance
 ELSE ; If not 5", must be 4"
 VAR3=4 ; Set velocity
 VAR2=VAR2+4 ; Update distance
 NIF ; End of 5" case check
ELSE ; 3" inch case
 VAR3=3 ; Set velocity
 VAR2=VAR2+3 ; Update distance
NIF ; End of 3" case check
V(VAR3) ; New velocity
D(VAR2) ; New distance
WAIT(IN.1=B0) ; Wait for end of this product
GO1 ; Implement new distance and velocity
NWHILE ; Sampler-pak completed product detection
WAIT(AS.1=B0) ; Wait for move to complete
OUT1 ; Output to indicate stacking complete

 Chapter 5. Custom Profiling 155

Registration
A “registration input” is

a trigger input assigned
the “trigger interrupt”

function with the
INFNCi-H command.

When a registration input is activated, the motion profile currently being executed is replaced
by the registration profile with its own distance (REG), acceleration (A & AA), deceleration (AD
& ADA), and velocity (V) values. The registration move can interrupt any preset, continuous,
or registration move in progress.

The registration move does not alter the rest of the program being executed when registration
occurs, nor does it affect commands being executed in the background if the controller is
operating in the continuous command execution mode (COMEXC1).

Registration moves will not be executed while the motor is not performing a move, while in
the joystick mode (JOY1), or while decelerating due to a stop, kill, soft limit, or hard limit.

How to Set up a Registration Move

ENCCNT: Encoder

capture options for
stepper axis are

discussed on page 66.

Before you can initiate a registration move, you must program these elements (refer also to the
programming examples below):

1. Configure one of the trigger inputs (TRG-nA or TRG-nB per axis) to function as a trigger
interrupt input; this is done with the INFNCi-H command, where “i” is the input bit
number representing the targeted trigger input. Note that the “Master Trigger” input
cannot be used for registration.

2. Specify the distance of the registration move with the REG command. For servo axes,
the distance refers to the encoder position (registration cannot be used with analog input
feedback). For stepper axes, the distance refers to commanded position if ENCCNT0
(default setting) or encoder position if ENCCNT1.

3. Enable the registration function with the RE command. Registration is performed only
on the axis or axes with the registration function enabled, and with a non-zero distance
specified in the respective axis-designation field of the REG command; the other axes
will not be affected. Each trigger has a distinct move defined for its axis; for example,
trigger 3 (called TRG-2A) can initiate a registration move for axis 2 with the specified
2REGA distance.

NOTE: The registration move is executed using the A, AA, AD, ADA, and V values that
were in effect when the REG command was entered.

Registration Move Accuracy(see also Registration Move Status below)
The accuracy of the registration move distance specified with the REG command is ±1 count
(servo axes: encoder count; stepper axes: commanded count if ENCCNT0 or encoder count if
ENCCNT1).

RULE OF THUMB: To prevent position overshoot, make sure the REG distance is greater
than 4 ms multiplied by the incoming velocity.

The lapse between activating the registration input and commencing the registration move
(this does not affect the move accuracy) is less than one position sample period (2 ms).

The REG distance will be scaled by the distance scale factor (SCLD value) if scaling is
enabled (SCALE1). See page 51 for details on scaling.

156 6K Series Programmer’s Guide

Preventing Unwanted Registration Moves (methods)
• Registration Input Debounce: Registration Input Debounce: By default, the registration

inputs are debounced for 2 ms before another input on the same trigger is recognized.
(The debounce time is the time required between a trigger's initial active transition and
its secondary active transition.) Therefore, the maximum rate that a registration input
can initiate registration moves is 500 times per second. If your application requires a
shorter debounce time, you can change it with the TRGLOT command.

• Registration Single-Shot: The REGSS command allows you to program the 6K
controller to ignore any registration commands after the first registration move has
been initiated. Refer to the REGSS command description for further details and an
application example.

• Registration Lockout Distance: The REGLOD command specifies what distance an axis
must travel before any trigger assigned as a registration input will be recognized. Refer
to the Sample Application 3 below.

Registration Move Status & Error Handling
Axis Status — Bit 28: This status bit is set when a registration move has been initiated by
any registration input (trigger). This status bit is cleared with the next GO command.

 AS.28Assignment & comparison operator — use in a conditional expression (see page 25).
 TASF..........Full text description of each status bit. (see “Reg Move Commanded” line item)
 TASBinary report of each status bit (bits 1-32 from left to right). See bit 28.

Axis Status — Bit 30: If, when the registration input is activated, the registration move
profile cannot be performed with the specified motion parameters, the 6K controller will kill
the move in progress and set axis status bit 30. This status bit is cleared with the next GO
command.

 AS.3ØAssignment & comparison operator — use in a conditional expression (see page 25).
 TASF..........Full text description of each status bit. (see “Preset Move Overshot” line item)
 TASBinary report of each status bit (bits 1-32 from left to right). See bit 30.

Further instructions
about handling error
conditions are provided
on page 30.

Error Status — Bit 10: This status bit can be set if axis status bit 30 is set. The error status is
monitored and reported only if you enable error-checking bit 10 with the ERROR command
(e.g., ERROR.1Ø-1). NOTE: When the error occurs, the controller will branch to the error
program (assigned with the ERRORP command). This status bit is cleared with the next GO
command.

 ER.1ØAssignment & comparison operator — use in a conditional expression (see page 25).
 TERF..........Full text description of each status bit. (see “Preset Move Overshot” line item)
 TERBinary report of each status bit (bits 1-32 from left to right). See bit 10.

Trigger Status — Bits 1-17: Trigger status bits are set when a registration move has been
initiated by trigger inputs A or B for each axis, or with the TRIG-M (master trigger) input.
This also indicates that the positions of all axes has been captured. As soon as the captured
information is transferred or assigned/compared (see page 84), the respective trigger status bit
is cleared (set to Ø).

 TRIG..........Assignment & comparison operator — use in a conditional expression.(see page 25).
 TTRIGBinary report of each status bit (bits 1-17 from left to right). From left to right the bits

represent trigger A and B for axes 1-8, the 17th bit is master trigger M (the “MASTER
TRIG” input terminal) — see page 76.

 Chapter 5. Custom Profiling 157

Registration — Sample Application 1
In this example, two-tiered registration is achieved (see illustration below). While axes 1 is
executing it’s 50,000-unit move, trigger input 1 (TRG-1A) is activated and executes
registration move A to slow the load's movement. An open container of volatile liquid is then
placed on the conveyor belts. After picking up the liquid and while registration move A is
still in progress, trigger input 2 (TRG-1B) is activated and executes registration move B to
slow the load to gentle stop.

DEL REGI1 ; Delete program (in case program already resides in memory)
DEF REGI1 ; Begin program definition
INFNC1-H ; Define trigger input 1 (TRG-1A) as trigger interrupt input
INFNC2-H ; Define trigger input 2 (TRG-1B) as trigger interrupt input
A20 ; Set acceleration on axis 1 to 20 units/sec2
AD40 ; Set deceleration on axis 1 to 40 units/sec2
V1 ; Set velocity on axis 1 to 1 unit/sec
1REGA4000 ; Set TRG-1A's registration distance on axis 1 to 4000 units
 ; (registration A move will use the A, AD, & V values above)
A5 ; Set acceleration on axis 1 to 5 units/sec/sec
AD2 ; Set deceleration on axis 1 to 2 units/sec/sec
V.5 ; Set velocity on axis 1 to 0.5 units/sec
1REGB13000 ; Set TRG-1B's registration distance on axis 1 to 13,000 units
 ; (registration B move will use the A, AD, & V values above)
RE10 ; Enable registration on axis 1 only
A50 ; Set acceleration to 50 units/sec/sec on axis 1
AD50 ; Set deceleration to 50 units/sec/sec on axis 1
V10 ; Set velocity to 10 unit/sec on axis 1
D50000 ; Set distance to 50000 units on axis 1
GO10 ; Initiate motion on axis 1
END ; End program definition

v

D
0

1st Registration mark
(TRG-1A) occurs

2nd Registration mark
(TRG-1B) occurs

2

4

6

8

10

20,00010,0000

Pick up
container

here

158 6K Series Programmer’s Guide

Registration — Sample Application 2
A user has a line of material with randomly spaced registration marks. It is known that the
first mark must initiate a registration move, and that each registration move cannot be
interrupted or the end product will be destroyed. Since the distance between marks is random,
it is impossible to predict if a second registration mark will occur before the first registration
move has finished.
DEL REGI2 ; Delete program (in case program already resides in memory)
DEF REGI2 ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1 (TRG-1A)
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
AD.5 ; a deceleration of 0.5 rev/sec/sec
1REGA20000 ; and a distance of 20000 steps for axis 1
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

v

t0

1

2

1st Registration
mark occurs

2nd Registration
mark occurs The first registration move

is pre-empted by a second
registration input.

In order to stop the second registration from occurring, REGSS can be used:

DEL REGI2b ; Delete program (in case program already resides in memory)
DEF REGI2b ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1 (TRG-1A)
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
1REGA20000 ; and a distance of 20000 steps for axis 1
REGSS1 ; Enable registration single shot mode
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

v

t0

1

2

1st Registration
mark occurs

2nd Registration
mark occurs Because of REGSS, the

first registration move is
NOT pre-empted by the
second registration input.
The registration “single
shot” will be reset when
you issue a new motion
command (GO, PRUN, etc.).

 Chapter 5. Custom Profiling 159

Registration — Sample Application 3
A print wheel uses registration to initiate each print cycle. From the beginning of motion, the
controller should ignore all registration marks before traveling 2000 steps. This is to ensure
that the unit is up to speed and that the registration mark is a valid one.
DEL REGI3 ; Delete program (in case program already resides in memory)
DEF REGI3 ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1 (TRG-1A))
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
1REGA2500 ; and a distance of 2500 steps for axis 1
REGLOD2000 ; Set registration lockout distance to 2000 steps
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

v

t0

1

2

1st Registration mark occurs
after 1500 steps, but the
registration
move does not
occur because
the lockout
distance is set
to 2000 steps.

2nd Registration
mark occurs after
3000 steps.

Synchronizing Motion (GOWHEN and TRGFN operations)
GOWHEN and TRGFN allow you to synchronize the execution of motion on one or more axes:

• GOWHEN — synchronize execution of the subsequent start-motion command (GO, GOL,
FGADV, FSHFC, or FSHFD) to:
 - Position (commanded, feedback device, motor, master, slave, Following shift)
 - Master cycle number
 - Input status
 - Time delay (dwell)

• TRGFN:
 - Suspend execution of the next start-motion command (GO, GOL, FGADV, FSHFC,
 or FSHFD) until the specified trigger input goes active.
 - Suspend beginning a new Following master cycle until the specified trigger
 input goes active.

Conditional “GO”s (GOWHEN) The GOWHEN command is used to synchronize a motion profile of an axis
with a specified position count, input status, dwell (time delay), or master cycle number on
that axis or other axes. Command processing does not wait for the GOWHEN conditions
(relational expressions) to become true during the GOWHEN command. Rather, the motion
from the subsequent start-motion command (GO, GOL, FGADV, FSHFC, and FSHFD) will be
suspended until the condition becomes true.

Start-motion type commands that cannot be synchronized using the GOWHEN command are:
HOM, JOG, JOY, and PRUN. A preset GO command that is already in motion can start a new
profile using the GOWHEN and GO sequence of commands. Continuous moves (MC1) already
in progress can change to a new velocity based upon the GOWHEN and GO sequence. Both
preset and continuous moves can be started from rest with the GOWHEN and GO sequence.

160 6K Series Programmer’s Guide

GOWHEN
Syntax ����#���	
��	

����$�	
��	

����$�	
��	

����$��%�%�%

*�	����
�	�-5�������
���
��5"

!5���� !5���: !5���E

���	�����	��������	�����������	����������������	������

������	��2��������"

&'������� 6�����
&���(�
���������

������� .����������������
�������'����	����
�����,�	
�(������� �����
�����������

�#������� -

������������

�)�*�����������������

�*+(��� �	�(���������

�*�&��� 6�		�'�
�������
��������� #
���������
���������� ,'�		���
���		���
�
���

������	��2��������"

��
��
�
�
�

������	��2��������"

G +�����
�(�����	��
��� ���������

G ,�
���	�
�
���
�
G 7�
����(�	����!"""�
������������
��
��
�����������
	�

��������

����#��,�#�-....� /�
0
�	����	
�����0������
�
�,�	�1��	����
��������-....
����#����%2�!,� /�
0
�	����	
�����0�������!��������0��32��
��1��4��	���!,�
����#��5�)�*�566� /�
0
�	����	
�����0�������	�7�
�	�������
�
�5���

/����4	�	��566�7�
�	����
���1	�0���

SCALING

If scaling is enabled (SCALE1), the right-hand operand is multiplied by SCLD if the left-hand
operand is FB, PC, PE, PSLV, or PSHF. The right-hand operand is multiplied by the SCLMAS
value if the left-hand operand is PMAS. (The SCLD or SCLMAS values used correlate to the
axis specified with the variable–e.g., a GOWHEN expression with 3PE scales the encoder
position by the SCLD value specified for axis 3.)

GOWHEN
Status

Axis Status — Bit 26: Bit 26 is set when motion has been commanded by a GO, GOL, FGADV,
FSHFC, or FSHFD command, but is suspended due to a pending GOWHEN condition. This status
bit is cleared when the GOWHEN condition is true or when a stop (!S) or kill (!K or ^K)
command is executed. An individual axis' GOWHEN command can be cleared using an axis-
specific S or K command (e.g., !S11XØ or !KØXX1).

 AS.26Assignment & comparison operator — use in a conditional expression (see page 25).
 TASF..........Full text description of each status bit. (see “Gowhen is Pending” line item)
 TASBinary report of each status bit (bits 1-32 from left to right). See bit 26.

Axis Status — Bit 29: Bit 29 is set when the input state of position relationship specificed in
the GOWHEN expression was already true when the subsequent GO, GOL, FGADV, FSHFC or
FSHFD command was executed.
 AS.29Assignment & comparison operator — use in a conditional expression (see page 25).
 TASF..........Full text description of each status bit. (see “Gowhen Error” line item)
 TASBinary report of each status bit (bits 1-32 from left to right). See bit 29.

 Chapter 5. Custom Profiling 161

Further instructions
about handling error
conditions are
provided on page 30.

Error Status — Bit 14: Bit 14 is set if the input state or position relationship specified in the
GOWHEN expression was already true when the subsequent GO, GOL, FGADV, FSHFC, or FSHFD
command is issued. The error status is monitored and reported only if you enable error-
checking bit 14 with the ERROR command (e.g., ERROR.14-1). NOTE: When the error
occurs, the controller with branch to the error program (assigned with the ERRORP command).

 ER.14Assignment & comparison operator — use in a conditional expression (see page 25).
 TERF..........Full text description of each status bit. (see “GOWHEN condition true” line item)
 TERBinary report of each status bit (bits 1-32 from left to right). See bit 14.

GOWHEN ...
On a Trigger Input

If you wish motion to be triggered with a trigger input, use the aTRGFNc1 command. The
aTRGFNc1 command executes in the same manner as the GOWHEN command, except that
motion is executed on specified axis “a” when the specified trigger input “c” is activated. For
more information, see Trigger Functions below.

GOWHEN vs.WAIT A WAIT will cause the 6K controller program to halt program flow (except for execution of
immediate commands) until the condition specified is satisfied. Common uses for this function
include delaying subsequent I/O activation until the master has achieved a required position or
an object has been sensed.

By contrast, a GOWHEN will suspend the motion profile for a specific axis until the specified
condition is met. It does not affect program flow. If you wish motion to be triggered with a
trigger input, use the TRGFNc1 command. The TRGFNc1 command executes in the same
manner as the GOWHEN command, except that motion is executed when the specified trigger
input (c) is activated (see Trigger Functions below for details). In addition, GOWHEN
expressions are limited to the operands listed above; WAIT can use additional operands such as
FS (Following status) and VMAS (velocity of master).

Factors Affecting
GOWHEN Execution

If, on the same axis, a second GOWHEN command is executed before a start-motion command
(GO, GOL, FSHFC, or FSHFD), then the first GOWHEN is over-written by the second GOWHEN
command. (GOWHEN commands are not nested.) An error is not generated when a GOWHEN
command is over-written by another GOWHEN.

While waiting for a GOWHEN condition to be met and a start-motion command has been
issued, if a second GOWHEN command is encountered, then the first sequence is disabled and
another start-motion command is needed to re-arm the second GOWHEN sequence.

A new GOWHEN command must be issued for each start-motion command (GO, GOL, FGADV,
FSHFC, or FSHFD). That is, once a GOWHEN condition is met and the motion command is
executed, subsequent motion commands will not be affected by the same GOWHEN command.

If the GOWHEN and start-motion commands are issued, the motion profile is delayed until the
GOWHEN condition is met. If a second start-motion command is encountered, the second start-
motion command will override the GOWHEN command and start motion. If this override
situation is not desired, it can be avoided by using a WAIT condition between the first start-
motion command and the second start-motion command.

It is probable that the GOWHEN command, the GO command, and the GOWHEN condition
becoming true can be separated in time, and by other commands. Situations can arise, or
commands can be given that make the GOWHEN invalid or inappropriate. In these cases, the
GOWHEN condition is cleared, and any motion pending the GOWHEN condition becoming true
is canceled. These situations include execution of the JOG, JOY, HOM, PRUN, and DRIVEØ
commands, as well motion being stopped due to hard or soft limits, a drive fault, an
immediate stop (!S), or an immediate kill (!K or ^K).

162 6K Series Programmer’s Guide

GOWHEN in Compiled

Motion (Compiled
Motion is discussed on

page 136)

When used in a compiled program, a GOWHEN will pause the profile in progress (motion
continues at constant velocity) until the GOWHEN condition evaluates true. When executing a
compiled Following profile, the GOWHEN is ignored on the reverse Following path (i.e., when
the master is moving in the opposite direction of that which is specified in the FOLMAS
command). A compiled GOWHEN can require up to 4 segments of compiled memory storage.

Sample
6K Code

In the example below, axis 2 must start motion when the actual position of axis 1 has reached
4. While axis 1 is moving, the program must be monitoring inputs and serving other system
requirements, so a WAIT statement cannot be used; instead, a GOWHEN and GO sequence will
delay the profile of axis 2.

MC00 ; Set both axes to preset move mode
D20,20 ; Set distance end-point
COMEXC1 ; Enable continuous command execution mode
V1,1 ; Set velocity
A100,100 ; Set acceleration
GOWHEN(,1PE>4) ; Delay axis 2 profile. When expression is true (position
 ; of encoder 1 is > 4), allow axis 2 to start motion.
GO11 ; Command both axes to move. Axis 2 will not start until
 ; conditions in the GOWHEN statement are true.
 ; Command processing does not wait, so other system
 ; functions can be performed.

Trigger Functions (TRGFN)
The Trigger Functions command (TRGFN) allows you to assign additional functions to trigger
inputs that have been defined as “trigger interrupt” inputs (INFNCi-H):

!���������
�"#����������$�������

��	�
���

 ��	��%�&�'����	�!��
���
�������$�������

�	����	�
����	��������(����������	����	��))����	�*�
����+'����	��	����	+��
����	�'�������
���,�������

�(������,�	

• “Conditional GO” Function (aTRGFNc1x): Suspend execution of the next start-motion
command on axis “a” until specified trigger input “c” goes active. Start-motion commands
are listed below. Refer to page 159 or to the GOWHEN command description for additional
details.

- GO (standard command to begin motion)
- GOL (begin linear interpolated motion)
- FGADV (begin geared advance – for Following motion)
- FSHFC (begin continuous shift – for Following motion)
- FSHFD (begin preset shift – for Following motion)

Axis status bit 26 (reported with TASF, TAS, or AS) is set to one (1) when there is a
pending “Conditional GO” condition initiated by a TRGFN command; this bit is cleared
when the trigger is activated or when a stop command (S) or a kill command (K) is issued.
If you need execution to be triggered by other factors (e.g., input state, master position,
encoder position, etc.) use the GOWHEN command.

 Chapter 5. Custom Profiling 163

• “New Master Cycle” Function (aTRGFNcx1): This is equivalent to executing the FMCNEW
command. When specified trigger input “c” goes active, the controller begins a new
Following master cycle on axis “a”. For more information on master cycles, see page 183
or to the FMCNEW command description.

These trigger functions are cleared once the function is complete (trigger input is activated). To
use the trigger to perform a GOWHEN function again, the TRGFN command must be given again.

Sample
6K Code

INFNC2-H ; Define trigger 2 (TRG-1B) as a trigger interrupt input
INFNC4-H ; Define trigger 4 (TRG-2B) as a trigger interrupt input
1TRGFNBx1 ; When TRG-1B goes active, axis 1 will begin a
 ; new master cycle
2TRGFNB1x ; When TRG-2B goes active, axis 2 will execute the move
 ; commanded with the GO command.
GO01 ; The move on axis 2 is commanded, but will not execute
 ; until trigger 2B goes active.

6

C H A P T E R S I X

Following

IN THIS CHAPTER
This chapter will help you understand Ratio Following:

• Introduction to Ratio Following ..166
• Implementing Ratio Following ...168
• Master Cycle Concept ...183
• Technical Considerations for Following ...189
• Troubleshooting for Following ...199
• Following Commands (list)...200

166 6K Series Programmer’s Guide

Ratio Following – Introduction
As part of its standard features, the 6K Series Controller family allows you to solve
applications requiring Ratio Following.

Compiled Profiles

You can pre-compile
Following profiles
(saves processing
time). See page 139
for details.

Ratio Following is, essentially, controlled motion based on the measurement of external
motion. This includes concepts such as an electronic gearbox, trackball, follower axis feed-to-
length, as well as complex changes of ratio as a function of master position. Ratio Following
can include continuous, preset, and registration-like moves in which the velocity is replaced
with a ratio.

The follower axis can follow in either direction and change ratio while moving, with phase
shifts allowed during motion at otherwise constant ratio. Ratio changes or new moves can be
dependent on master position or based on receipt of a trigger input. Also, a follower axis can
perform Following moves or normal time-based moves in the same application because
Following can be enabled and disabled at will. Product cycles (operations that repeat with
periodic master travel) can be easily specified with the master cycle concept (see page 183).

In Ratio Following, acceleration ramps between ratios will take place over a user-specified
master distance. Product cycles can be easily specified with the master cycle concept.

This chapter highlights the capabilities of the 6K Following features and provides application
examples. If you need more details on the operation or syntax of a particular command,
please see the 6K Series Command Reference.

Before delving into the specifics of Ratio Following, read on to gain a basic understanding of
how the 6K controller follows.

What can be a master?
Any axis on the 6K controller can can made to any of the master input (“master”) sources
listed in the table below. All of the 6K controller’s axes can be following at the same time
with the same or different master.

• Commanded position
• Incremental encoder. The encoder can be one of the axis-related “ENCODER” ports, or it

can be the “MASTER ENCODER” port.
• Analog input (servo axes only). This requires an ANI SIM be installed on an expansion

I/O brick (see your product’s Installation Guide for instructions). ANI SIMs and
expansion I/O bricks are sold separately.

• Internal count source (a “virtual master” option)
• Internal sine wave source (a “virtual master” option)
• Integer variable (VARI)

A servo axis cannot follow its own feedback device input (encoder or analog input). A stepper
axis can follow its own encoder input, as long as that axis does not using the Stall Detect
feature (ESTALL1 mode).

For instructions on assigning a master for a particular follower axis, see Define the Master
and Follower Axes (page 168), or see the FOLMAS command description in the 6K Series
Command Reference.

 Chapter 6. Following 167

Following Status (TFSF, TFS & FS Commands)

Many of the Following features described in this document have associated status bits that can be displayed
(with the TFSF and TFS commands) or used in assignment or comparison operations (with the FS operator).
The portions of this document that describe those features also summarize the related status bits.

FS Bit Function (YES = 1; NO = Ø)
 1....... Follower in Ratio Move..... A Following move is in progress.
 2....... Ratio is Negative The current ratio is negative (i.e., follower counts counting in the opposite direction from master).
 3....... Follower Ratio Changing .. The follower is ramping from one ratio to another (including a ramp to or from zero ratio).
 4....... Follower At Ratio The follower is at constant non-zero ratio.

Bits 1-4 indicate the status of the follower axis in Following motion.

 * 5....... FOLMAS Active.................. A master is specified with the FOLMAS command.
 * 6....... FOLEN Active Following has been enabled with the FOLEN command.
 * 7....... Master is Moving The specified master is currently in motion.
 8....... Master Dir Neg The current master direction is negative. (Bit must be cleared to allow Following move in preset

mode—MCØ).
Bits 5-8 indicate the status required for Following motion (i.e., a master must be assigned, Following must be enabled,
the master must be moving, and for many features, the master direction must be positive).
Unless the master is a commanded position of another axis, minor vibration of the master will likely cause bits 7-8 to
toggle on and off, even if the master is nominally “at rest”. These bits are meant primarily as a quick diagnosis for the
absence of master motion, or master motion in the wrong direction. Many features require positive master counting to
work properly.

 9....... OK to Shift Conditions are valid to issue shift commands (FSHFD or FSHFC).
 10....... Shifting now...................... A shift move is in progress.
 11....... Shift is Continuous............ An FSHFC-based shift move is in progress.
 12....... Shift Dir is Neg.................. The direction of the shift move in progress is negative.

Bits 9-12 indicate the shift status of the follower. Shifting is super-imposed motion, but if viewed alone, can have its
own status. In other words, bits 10-12 describe only the shifting portion of motion.

 13....... Master Cyc Trig Pend....... A master cycle restart is pending the occurrence of the specified trigger.
 14....... Mas Cyc Len Given A non-zero master cycle length has been specified with the FMCLEN command.
 15....... Master Cyc Pos Neg......... The current master cycle position (PMAS) is negative. This could be by caused by a negative initial

master cycle position (FMCP), or if the master is moving in the negative direction.
 16....... Master Cyc Num > 0......... The master position (PMAS) has exceeded the master cycle length (FMCLEN) at least once, causing

the master cycle number (NMCY) to increment.

Bits 13-16 indicate the status of master cycle counting. If a Following application is taking advantage of master cycle
counting, these bits provide a quick summary of some important master cycle information.

 17....... Mas Pos Prediction On..... Master position prediction has been enabled (FPPEN).
 18....... Mas Filtering On A non-zero value for master position filtering (FFILT) is in effect.
 19....... <RESERVED>
 20....... <RESERVED>

Bit 17 and 18 indicate the status of master position measurement features.

 21....... <RESERVED>
 22....... <RESERVED>
 23....... OK to do FGADV move...... OK to do Geared Advance move (master assigned with FOLMAS, Following enabled with FOLEN, and

follower axis is either not moving, or moving at constant ratio in continuous mode).
 24....... FGADV move underway Geared Advance move profile is in progress.

Bits 23 and 24 indicate the status of a Geared Advance move.

 25....... <RESERVED>
 26....... FMAXA/FMAXV limited........ The present Following move profile is being limited by FMAXA or FMAXV.
 27....... <RESERVED>
 28....... <RESERVED>

Bits 23 and 24 indicate the status of a Geared Advance move.

* All these conditions must be true before Following motion will occur.

168 6K Series Programmer’s Guide

Implementing Ratio Following
This section covers the basic elements of implementing Ratio Following:

• Applying Following setup parameters
• Move profiles
• Performing phase shifts (FSHFC and FSHFD)
• Geared advanced (FGADV)
• Application scenarios:

 - Electronic gearbox
 - Trackball

Ratio Following Setup Parameters
Prior to executing a Following move, there are several setup parameters that must be
specified. These parameters can be established:

Programming

examples — see
application examples

later in this chapter.

• Define the master and follower axes (FOLMAS)
• Define master & follower scaling factors (SCLMAS, SCLA, SCLD, and SCLV) – if required
• Define the follower-to-master Following ratio (FOLRN and FOLRD)
• Define the master distance (FOLMD) – define scaling first
• Enable the Following Mode (FOLEN)

Following Status
(see TFSF, TFS and FS
commands)

Following Status bits 5-8 (see table below) are meant to indicate the status required for
Following motion (i.e., a master must be assigned, Following must be enabled, the master must
be moving, and for many features, the master direction must be positive).

Bits 7-8 represent master motion and master direction respectively. Unless the master is a
commanded position of another axis, it is likely that minor vibration of the master will cause
these bits to toggle on and off, even if the master is nominally “at rest”. These bits are meant
primarily as a quick diagnosis for the absence of master motion, or master motion in the wrong
direction. Many features require positive master counting to work properly.

Bit No. Function (YES = 1; NO = Ø)

5 FOLMAS Active................A master is specified with the FOLMAS command.
6 FOLEN ActiveFollowing has been enabled with the FOLEN command.
7 Master is MovingThe specified master is currently in motion.
8 Master Dir NegThe current master direction is negative. (bit must be cleared to

allow Following move in preset mode–MCØ).

Define the Master
and Follower Axes
(FOLMAS)

The FOLMAS command defines the masters and the followers. The command syntax is:

 Chapter 6. Following 169

 Follower
Axis 3

Follower
Axis 2

Follower
Axis 1

Follower
Axis 5

Follower
Axis 4

<+ii>

Master source selection

Master source axis # (optional)

Sign Bit

Format for master assignment to follower:

FOLMAS <+ii>,<+ii>,<+ii>,<+ii>,<+ii> ...

• Sign bit (±): Specifies the count direction of the master source that will result in positive
master travel counts. The sign bit is not meant to be used simply to change the direction of
follower motion. That function can be done with the sign of the D command. Rather, the
sign bit is used to allow forward motion of the physical master (e.g., conveyor belt,
rotating wheel, or the continuous feed of material or product) to result in positive counts.
Several features described later in this document require increasing master counts for
proper operation. These include Following motion in preset positioning mode (MCØ) ,
master cycle counting, and executing GOWHEN based on master cycle position.

• Master source axis number (1st i): Selects the axis number of the master source. This
number is not required when selecting the Master Encoder as the master source. If the
master source is “8” (VARI), this represents the integer variable (VARI) number.

• Master source selection (2nd i): Selects the master source (according to the master source
axis number). The options, selected by their respective number, are:

1.... Incremental encoder connected to one of the axis-related “ENCODER” ports, or the
“MASTER ENCODER” port. If the master encoder is selected, the master source
input number must be omitted from the syntax.

2.... Analog input (servo axes only). This requires an ANI SIM be installed on an
expansion I/O brick (see your product’s Installation Guide for instructions), and
the ANI input must be designated as a master input source with the ANIMAS
command. ANI SIMs and expansion I/O bricks are sold separately.

4.... Commanded position
5.... Internal count source (see “Following a Virtual Master” below for details)
6.... Internal sine wave source (see “Following a Virtual Master” below for details)
8.... VARI variable (see “Following an Integer Variable” below for details)

NOTES
• Servo controllers: The follower axis cannot use its own commanded position or its

currently selected feedback device (encoder or ANI) as the master input.
• Stepper controllers: The follower axis cannot use its own commanded (motor) position as

the master input. Also, a follower axis that is using the Stall Detect mode (ESTALL1)
cannot use its own encoder as the master input.

• Multiple axes can follow the same count source (e.g., encoder) from the same master.
However, multiple axes cannot follow different count sources (e.g., encoder and
commanded position) from the same master.

• If scaling is enabled (SCALE1), the measurement of the master is scaled by the SCLMAS
value.

As an example, suppose the ENCODER 3 input is to be the master input for follower axis 2,
and forward travel of the physical master (e.g., conveyor belt) results in negative counts on
ENCODER 3. Given these operating constraints, you would use the FOLMAS,-31 command.

170 6K Series Programmer’s Guide

The default setting is that all axes are disabled from being follower axes (@FOLMAS+Ø). If
you do not want a particular axis to be a follower, simply leave it not configured (e.g.,
FOLMAS,+31,, command configures only axis 2 as a follower to encoder 3; the rest of the
axes are left in the default state—not follower axes). If an axis is currently configured as a
follower, you can disable its follower status by putting a zero (Ø) in the parameter field (e.g.,
the FOLMAS,Ø,, command disables axis 2 from being a follower axis).

As soon as the master/follower configuration is specified with the FOLMAS command, a
continuously updated relationship is maintained between the follower’s position and the
master’s position. The update period is 2 ms.

FOLMAS Setting Not Saved in Non-Volatile Memory
The FOLMAS configuration is not saved in non-volatile memory. Therefore, consider including
it in the power-up program (STARTP).

Following a Virtual
Master

The 6K controller allows two “Virtual Master” options for applications that require the
synchronization features of Following, but have no external master to measure.

• Internal count sourceFor example, this feature could be used in an application in which
multi-axis electronic cams may need to start, stop and run backward together, under
control of an internally generated “machine speed”, not an externally measured master
encoder.

• Internal sine wave. Other applications require a sinusoidal trajectory, which may be
achieved by following a sinusoidal master.

Internal Count Source
The internal count source is intended to mimic the counts that might be received on an
external encoder port. Just as can be encountered with an external encoder, this count
source can speed up, slow down, stop, or count backwards. There is one count source per
axis, each with a user definable and variable count frequency. The count frequency,
specified in counts per second with FVMFRQ, is a signed value, allowing the master to
move forward or backwards. The rate at which the count frequency can change is
specified in counts per second per second with the FVMACC command. This allows
smooth changes in master velocity and direction. Neither of these commands are scaled
or have associated report backs. The accumulated raw count and count rate have no
report back, but can be accessed via TPMAS and TVMAS respectively if the internal count
source is specified as master.

The associated commands are:
FVMFRQi,i,i,i,i,i,i,i Where “i” is the count frequency in counts/sec

(range is 0-1,000000)
FVMACCi,i,i,i,i,i,i,i Where “i” is the count accel in counts/sec2

(range is 0-9,999,999)

The count sources are always enabled, counting at the signed rate specified with the
FVMFRQ command. There are no start or stop commands, no modes, distances, or limit
inputs. To stop and start the count source, specify zero or non-zero values respectively
for the FVMFRQ command. To add or subtract a “preset” number of counts (i.e., move
the master forward or backward a “preset distance”), you must calculate the time required
for that distance, (using the frequency and acceleration values), and command the
appropriate value of FVMFRQ for that duration.

Internal Sine Wave
The internal sine wave is generated using the internal count source as a frequency input.
By designating the internal sine wave as a master (e.g., FOLMAS+16), you can produce a
sinusoidally oscillating motion, with control of the phase (angle), amplitude, and center
of oscillation. There is one sine wave per axis, each using the variable count frequency
(FVMFRQ) of that axis to increase or decrease the angle from which the sine is calculated.

 Chapter 6. Following 171

Each count of the count frequency changes the angle by one tenth (0.1) of a degree. For
example, a FVMFRQ value of 3600 would create an angular frequency of 3600 tenths
degrees per second, or 1 cycle per second. When used as a source for the sine wave, the
maximum value for FVMFRQ is 144000. This results in a maximum of 40 Hz angular
frequency. Higher frequencies are not allowed because they can be subject to aliasing.

The associated commands are:
SINANGi,i,i,i,i,i,i,i Where “i” is the new angle (range is 0.0-360.0 degrees)
SINAMPi,i,i,i,i,i,i,i Where “i” is the amplitude (range is 0-9,999,999 —

maximum peak-to-peak is 16384))
SINGObbbbbbbb Where “b” is the binary start/stop for each master axis:

1 = restart from zero degrees
0 = stop the sine wave

The SINAMP command is included in the specification in order to allow a change in slave
amplitude without changing the center of oscillation. Changing the ratio (with FOLRN)
will also change the slave amplitude, but unless the command is given at exactly the
master zero crossing, it will also change the center of slave oscillation. The center of
oscillation can be changed by a controlled amount by using the FSHFD command. The
SINAMP command affects the sine wave immediately, without any built in ramp in
amplitude. If a gentle change is desired, a user program should be written that repeatedly
issues the command with small changes in value, until the desired value is reached.

Using SINGO with a “0” parameter abruptly stops the sine wave, without changing its
current magnitude. Using SINGO with a “1” parameter abruptly starts the sine wave, also
without changing its current magnitude. To gently pause the slave output, use an
FVMFRQ value of zero, with a moderate FVMACC value; to resume, restore the FVMFRQ
value.

The SINGO with a “1” parameter always starts at the previous angle, which might not be
the desired start of oscillation. The SINANG command will instantly change the angle
and corresponding sine of the angle. This represents an abrupt change in master position.
If the slave is still following when this occurs, there will be an abrupt change in
commanded slave position. To start the slave properly, move the slave to the desired
start position first (using MC0, D, GO), then issue SINANG, then MC1, GO1, and finally
SINGO. If SINANG is issued without any parameters, the current angle is reported, not
the most recent user SINANG command value.

Sinewave Example

In the example below, an analog input (ANI) is used for feedback on axes 1 and 2, without
scaling, so distance is in ANI counts of 205 counts/volt. The ANI voltage range (ANIRNG) is left
at its default of -10V to +10V. Axis 1 is supposed to oscillate at 1 Hz, centered around -4096,
with a peak-to-peak amplitude of 2048. Axis 2 is supposed to oscillate at 0.1 Hz, centered around
7000, with a peak-to-peak amplitude of 2000. Because both the master axis and the follower
axis use the same units, we can use a Following ratio of 1:1, and control the amplitude with the
SINAMP command. In order to provide a gentle start, the oscillation is started at the bottom of
the cycle, where the velocity is zero.

D-3072,6000 ; Establish desired bottom of oscillation
MC00 ; Put axes into preset move mode
GO11 ; Move axes to desired center locations
FOLMAS16,26 ; Axis 1 follows sine 1, axis 2 follows sine 2
FOLRN1,1 ; Set both axes to 1:1 ratio
FOLRD1,1
FOLEN11 ; Put axes into following mode
MC11 ; Put axes into continuous following
SINAMP1024,1000 ; Establish center to peak amplitudes
FVMFRQ3600,360 ; Establish frequencies
@FVMACC999999 ; Reach frequencies rapidly
SINANG270,270 ; Start angles at bottom of cycle
GO11 ; Lock follower axes to master (not started yet)
SINGO11 ; Start sine waves (and hence follower axis motion)

In observing operation, it is determined that for axis 2, the bottom of the cycle is correct

172 6K Series Programmer’s Guide

(minimum value 6000), but the top of cycle needs to change from 8000 to 8192. In order to
correct this, both the center and amplitude need to increase by 96 (192/2 = 96):

FSHFD,96 ; Shift center of axis 2 only
SINAMP,1096 ; Increase amplitude of axis 2 only

Following an Integer
Variable

Syntax is FOLMASn8. This option allows an axis to follow the integer variable (VARI)
specified with “n”; that is, VARIn. The range for “n” is 1-8 (VARI1 – VARI8). For example,
FOLMAS,48 assigns axis 2 to follow VARI4.

This option is particularly useful in conjunction with the INVARI (Map Inputs to a VARI
Variable) feature. INVARI continuously updates a specified VARI variable with the value of a
specified group of digital inputs, allowing an axis to follow a binary input pattern. Another
useful way to update the value of the VARI variable is to calculate its value in a PLCP program
(launched with the SCANP command).

The INVARI and SCANP options for updating VARI are good choices, because both are
performed every system update, thus facilitating smooth Following motion. It is also possible
to use an extra task (multi-tasking) to calculate VARI values, but the resulting updates will not
be as fast (not perfectly periodic); consequently, Follow motion will be less smooth.

Define the Master
and Follower
Scaling Factors
(SCLMAS)
. . . . if required

If you will be scaling your motion parameters (distance, velocity, acceleration/deceleration), be
aware that the only variance from non-Following scaling is that the master source (distance) is
scaled by the SCLMAS value. Virtual master sources are not scaled.

Typically, the master and follower scale factors are programmed so that master and follower units are
the same, but this is not required. Consider the scenario below as an example.
The master is a 1000-line encoder (4000 counts/rev post-quadrature) mounted to a 50 teeth/rev pulley
attached to a 10 teeth/inch conveyor belt, resulting in 80 counts/tooth (4000 counts/50 teeth = 80
counts/tooth). To program in inches, you would set up the master scaling factor with the SCLMAS800
command (80 counts/tooth * 10 teeth/inch = 800 counts/inch).
The follower axis is a servo motor with position feedback from a 1000-line encoder (4000 counts/rev).
The motor is mounted to a 4-pitch (4 revs/inch) leadscrew. Thus, to program in inches, you would set
up the follower scaling factor with the SCLD16000 command (4000 counts/rev * 4 revs/inch = 16K
counts/inch).

NOTE: Additional details on scaling and non-scaled units of measure are presented on page 48.

Define the Follower-
to-Master Following
Ratio (FOLRN &
FOLRD)

The FOLRN and FOLRD commands establish the goal ratio between the follower and master
travel, just as the V command establishes the goal velocity for a typical non-Following move.
The FOLRN command specifies the ratio's numerator (follower travel), and the FOLRD
command specifies the ratio’s denominator (master travel). If the denominator (FOLRD) is not
specified, it is assumed to be 1.

FOLRNF can be used to

define a final ratio for
compiled Following

profiles (see page 139).

FOLRN and FOLRD are specified with two positive numbers, but the resulting ratio applies to
moves in both directions; the actual follower direction will depend on the direction
commanded with the D command and master direction. Numeric variables (VAR) can be used
with these commands for follower and/or master parameters (e.g., FOLRN(VAR1) :
FOLRD3). The maximum value of the resulting quotient is 127 to 1.

For a preset Following move (MCØ mode), the FOLRN/FOLRD ratio represents the maximum
allowed ratio. For a continuous move (MC1 mode), it represents the final ratio reached by the
follower axis.

Example As an example, assume the follower-to-master ratio is set to 5-to-3 for an axis (FOLRN5 :
FOLRD3). The first parameter (5) is scaled by the SCLD value to give follower steps. The
second parameter (3) is scaled by the SCLMAS value to give master steps. If the SCLD setting
is 25000 and the SCLMAS setting is 4000, the follower-to-master step ratio would be 5 ∗ 25000

 Chapter 6. Following 173

to 3 ∗ 4000, or 125 follower steps for every 12 master steps.

Define the Master
Distance (FOLMD)

The “master distance” for moves in the Following mode (FOLEN1) is analogous to the move
time for normal time-based moves with Following disabled (FOLENØ). For time-based moves,
the time required to ramp to a new velocity (MC1 mode) or move to a new position (MCØ
mode) is determined indirectly by the acceleration (A), deceleration (AD), and velocity (V)
command values. For Following mode moves, a ramp to a new ratio (MC1 mode) or a move to
a new position (MCØ mode) takes place over a specific master distance, not over a specific
time. This distance is defined directly by the user with the FOLMD command.

In other words, the FOLMD command defines the master distance over which a preset follower
move will take place, or the master distance over which a continuous follower move will
change from its current ratio (including zero) to the commanded ratio (ratio established by
FOLRN and FOLRD).

By carefully specifying a master distance (FOLMD), a precise position relationship between
master and follower during all phases of the profile is ensured.

 HINT: If the follower axis is in continuous mode (MC1) and the master is starting from
rest, setting FOLMD to Ø will ensure precise tracking of the master's acceleration ramp.

If scaling is enabled (SCALE1), the FOLMD value is scaled by the SCLMAS parameter.

Examples and more information on this topic can be found below in the section titled
Follower vs. Master Move Profiles.

Enable the
Following Mode
(FOLEN1)

When an axis is configured as a follower with the FOLMAS command, it will continuously
monitor the position and motion of its master, even if the follower is at rest. This allows
subsequent motion to be related to the motion of the master via ratios (FOLRN/FOLRD) and
ramping over master distances (FOLMD). Such moves are done with Following enabled
(FOLEN1).

It is also possible, and sometimes desirable, to have the follower axis motion independent of
master axis motion, yet still “aware” of master position. For example, a move might need to
start at a specified master position, yet finish in a fixed time, independent of the master speed.
This move would be performed with Following disabled (FOLENØ).

Following can be enabled or disabled between moves, as needed, without affecting the
monitoring of the master.

If a move is performed with Following disabled, its motion profile is determined by the
acceleration, deceleration, and velocity specified with the A, AD, and V commands. Its motion
is the same as if the axis were not configured as a follower, but the axis does monitor the
master.

If a move is performed with Following enabled, its profile is determined by the specified
master distance (FOLMD) and Following ratio (FOLRN/FOLRD). The next section describes
such profiles.

Follower vs. Master Move Profiles
Following Status (TFSF, TFS, and FS) bits 1-4 indicate the status of follower axis in Following
motion. They mimic the meaning and organization of Axis Status (TASF and AS) bits 1-4,
except that each bit indicates the current state of the ratio, rather than the current state of the
velocity:

174 6K Series Programmer’s Guide

Bit No. Function (YES = 1; NO = Ø)

1 Follower in Ratio Move A Following move is in progress
2 Ratio is Negative The current ratio is negative (i.e., the follower axis counts are

counting in the opposite direction from the master counts).
3 Follower Ratio Changing .. The follower axis is ramping from one ratio to another (including a

ramp to or from zero ratio).
4 Follower At Ratio The follower axis is at constant non-zero ratio.

Continuous
Positioning Mode
Moves

For Following moves in the continuous positioning mode (MC1), FOLMD specifies the exact
master travel distance over which the follower axis ratio changes. This will be required for any
application that uses multiple ratios and continuous moves for the construction of precisely
defined multi-segment moves.

 HINT: If the follower is in continuous mode (MC1) and the master is starting from rest,
setting FOLMD to Ø will ensure precise tracking of the master’s acceleration ramp.

In the profile below, the first two moves each change ratio over one master inch, and the final
ramp to zero takes place over two master inches.

R
at

io

Master Travel (inches)1 2 3 4 5 6 7

1

2

3

Example In the sample 6K code below, assume the follower has a 1000-line encoder on axis 1,

connected to a 2-pitch leadscrew. This gives 8000 follower axis steps per inch. The master is
a toothed belt with a pulley connected to encoder 2, such that there are 800 master steps per
inch.
SCALE1 ; Enable scaling
SCLD8000 ; Set axis 1 scaling so that follower commands are in inches
SCLMAS800 ; Set axis 1 scaling so that master commands are in inches
COMEXC1 ; Allow commands during motion
FOLMAS21 ; Define axis 1 master to be encoder input 2
FOLEN1 ; Enable Following on axis 1 (will follow encoder 2)
FOLMD1 ; Follower to change ratio over 1 inch of the master travel
FOLRD1 ; Set Following ratio denominator to 1 for subsequent ratios
D+ ; Set direction positive
MC1 ; Mode set to continuous clockwise moves
FOLRN1 ; Set Following ratio numerator to 1 (ratio set to 1:1)
FMCNEW1 ; Restart master cycle counting
GO1 ; Start axis 1 from rest to reach velocity of master
 ; (encoder 2)
WAIT(1FS.4=B1) ; (for stepper axes) Wait until follower axis is at ratio
FOLRN3 ; Set Following ratio numerator to 3 (ratio set to 3:1)
GOWHEN (1PMAS>=2) ; Enable motion pre-processing so that the next ramp
 ; begins at master position 2
GO1 ; Follower starts ratio change to 3 to 1 at master position 2
FOLRN0 ; Set Following ratio numerator to zero (ratio is 0 to 1)
FOLMD2 ; Follower axis changes ratio over 2 inches of master travel
WAIT(1AS.26=b0) ; Wait until the previous ramp is started
 ; (GOWHEN bit in axis status register is cleared)
WAIT(1FS.3=b0) ; Wait until the previous ramp is finished
GOWHEN(1PMAS>=5) ; Enable motion pre-processing so that follower motion
 ; begins at master position 5
GO1 ; Wait for master to reach 5 revolutions before
 ; follower axis starts ratio change to 0 (zero)

 Chapter 6. Following 175

Preset Positioning
Mode Moves

For preset positioning mode (MCØ) moves, the FOLMD parameter is the master distance over
which the entire follower axis move is to take place.

As an example, a follower axis is to move 20 inches over a master distance of 25 inches with a
maximum ratio of 1:1 (ratio set with the FOLRN1 and FOLRD1 commands). The program and
a diagram of the move profiles are provided below.
FOLMAS31 ; Define axes 1 master to be encoder input port 3
FOLMD25 ; Define follower to perform the move over 25 inches
 ; of the master (encoder 3)
MC0 ; Set positioning mode to preset
MA0 ; Set preset positioning mode to incremental
D20 ; Set follower distance to 20 inches
FOLRN1 ; Set Following ratio numerator to 1
FOLRD1 ; Set Following ratio denominator to 1 (ratio is 1:1)
GO1 ; Perform the follower move

R
at

io

Master Travel (inches)

Slave Profile

Master Profile

5 10 15 20 25

1

If the master distance specified is too large for the follower distance and ratio (FOLRN and
FOLRD) commanded, the follower will never actually reach the commanded ratio, and the
move profile will look similar to that below. Here, the FOLMD is 25 inches and the follower is
commanded to move 10 inches:

R
at

io

Master Travel (inches)

Slave Profile

Master Profile

5 10 15 20 25

1

If the master distance is too small for the follower distance and ratio commanded, the 6K
controller will not perform the move at all. For example, if the FOLMD is 25, the ratio is 1:1,
and the follower is commanded to move 30 inches, the move will not even be attempted. The
error message “INVALID DATA” will be displayed (depending on the ERRLVL setting) and
program execution will continue.

176 6K Series Programmer’s Guide

Performing Phase Shifts
Following Status (TFSF, TFS and FS) bits 9-12 indicate the shift status of the follower axis.
Shifting is super-imposed motion, but if viewed alone, can have its own status. In other words,
bits 10-12 describe only the shifting portion of motion.

Bit No. Function (YES = 1; NO = Ø)

9 OK to ShiftConditions are valid to issue shift commands (FSHFD or FSHFC).

10 Shifting nowA shift move is in progress.

11 Shift is Continuous..........An FSHFC-based shift move is in progress.

12 Shift Dir is Neg................The direction of the shift move in progress is negative.

When a follower axis is following a master continuously, it might be necessary to adjust, or
shift, the Following phase (follower’s position with respect to the master) independent of
motion due to ratio moves. The FSHFC and FSHFD commands allow time-based follower
moves to be superimposed upon ratio Following moves. Because phase shifts are time-based,
they are independent of master motion; in fact, the master can be at rest and a shift can still be
performed.

Use the FSHFD command to perform a preset shift move with a specific change in follower
phase. The FSHFD distance value will be scaled by SCLD if scaling is enabled (SCALE1).

Use the FSHFC command to superimpose a continuous shift move in the positive (FSHFC1)
or negative (FSHFC2) direction. The FSHFC parameters stop (Ø) and kill (3) can be used to
halt a continuous FSHFC move or a preset FSHFD move without affect the ratio motion.

The most recently defined velocity and acceleration (i.e., the V and A values) for the follower
will determine the basis for the superimposed shift move profile for both FSHFC and FSHFD
moves. The commanded velocity of the FSHFC or FSHFD move will be added to the current
velocity at which the follower is performing the Following move. For example, assume a
follower is traveling at 1 rps in the positive direction as a result of following a master. If a
FSHFC move is commanded in the positive direction at 2 rps, the follower's actual velocity
(after acceleration) will be 3 rps.

For servos, shifting can be performed whenever Following is enabled (FOLEN1). For steppers,
this can only be done while Following is enabled and the follower is either not in a move, or is
in continuous positioning mode (MC1) and moving at constant ratio. For both products, TFS/FS
bit 9 indicates when a shift is allowed.

The current follower position (TPSLV value) and the net follower shift accumulated since the
most recent FOLEN1 command (TPSHF value) can be read into numeric variables (VAR)
using the PSLV and PSHF commands, respectively (e.g., VAR6=2PSLV). They can also be
used for subsequent decision making (e.g., IF(3PSHF<6), GOWHEN(1PSLV>VAR2), etc.).
The TPSHF and PSHF values are set to zero each time the Following mode is enabled
(FOLEN1), even if the follower is already in Following mode. This provides a way of
clearing these values for programming convenience.

Note that the distance traveled during the time-based deceleration due to stop, kill, or limits is
included in the PSHF value. By comparing “before and after” values of PSHF, a 6K program
can calculate how much shift was required to perform visual- or sensor-based alignment of a
master/follower phase relationship.

 Chapter 6. Following 177

Phase Shift
Examples

An FSHFC or FSHFD move can be needed to adjust the follower position on the fly because of
a load condition that changes during the continuous Following move. Below are programming
examples to demonstrate both shift methods.

FSHFC Example An operator is visually inspecting the follower’s continuous Following motion with respect to
the master. If he notices that the master and follower are out of synchronization, it might be
desirable to have an interrupt programmed (e.g., activated by pressing a push-button switch)
that will allow the operator to move the follower at a superimposed correction speed until the
operator chooses to have the follower start tracking the master again (by releasing the push-
button). The programming example below illustrates this.

Assume all scale factors and set-up parameters have been entered for the master and follower.
In this example, the follower (axis 1) is continually following the master at a 1:1 ratio. If the
operator notices some mis-alignment between master and follower, he can press 1 of 2
pushbuttons (connected to onboard trigger inputs 1 and 2) to shift the follower in the positive
or negative direction until the button is released. After the adjustment, the program continues
on as before.
DEL SHIFT ; Delete program before defining
DEF SHIFT ; Begin definition of program called SHIFT
COMEXS1 ; Continue command execution after stop
COMEXC1 ; Continue command execution during motion
FOLMAS21 ; Axis 2 encoder input is the master for axis 1
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1
 ; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis 1
A25 ; Set acceleration
AD18 ; Set deceleration
V5 ; Set velocity
D+ ; Set direction to positive
MC1 ; Select continuous positioning mode
GO1 ; Start following master continuously
VARB1=b10 ; Define onboard input pattern 1 and assign to VARB
VARB2=b01 ; Define onboard input pattern 2 and assign to VARB
$TESTIN ; Define label called TESTIN
IF(IN=VARB1) ; IF statement (if input 1 is activated, do the jump)
JUMP SHIFTP ; Jump to shift follower axis in the positive direction
 ; when pattern 1 active
NIF ; End of IF statement
IF(IN=VARB2) ; IF statement (if input 2 is activated, do the jump)
JUMP SHIFTN ; Jump to shift follower axis in the negative direction
 ; when pattern 2 active
NIF ; End of IF statement
JUMP TESTIN ; Return to main program loop
$SHIFTP ; Define label called SHIFTP (subroutine to shift in
 ; the positive direction)
FSHFC1 ; Start continuous follower shift in positive direction
WAIT(IN.1=B0) ; Continue shift until input bit 1 is deactivated
FSHFC0 ; Stop shift move
WAIT(1FS.10=B0) ; (stepper axes only) Wait until the shift is completed
JUMP TESTIN ; Return to main program loop
$SHIFTN ; Define label called SHIFTN (subroutine to shift
 ; in the negative direction)
FSHFC2 ; Start continuous follower axis shift move in the
 ; negative direction
WAIT(IN.2=B0) ; Continue shift until bit 2 is deactivated
FSHFC0 ; Stop shift move
WAIT(1FS.10=B0) ; (stepper axes only) Wait until the shift is completed
JUMP TESTIN ; Return to main program loop
END ; End definition of program called SHIFT

178 6K Series Programmer’s Guide

FSHFD Example In this example, the follower axis follows a master that moves in a continuous cycle. Once
each cycle, the master and follower both pick parts. The master’s part is detected by a sensor
connector to trigger 1B, and the follower’s part is detected by a sensor connected to trigger 1A.
After both parts are detected, they must be aligned. The sensors are mounted 2 inches apart
from each other, so that proper alignment would result in 2 inches of follower axis travel
between detection of the master's part and detection of the follower’s part.

The follower axis position is sampled when each of the sensors activates. The difference
between the follower axis positions is compared to the required 2 inches. If the measured
difference is greater than or less than 2 inches, then a shift move to correct the alignment is
made. At that point, the follower axis will then start tracking the master again. The follower
axis (axis 1) is continually following the master at a 1:1 ratio.
DEL ALIGN ; Delete program before defining
DEF ALIGN ; Begin definition of program called ALIGN
COMEXC1 ; Allow continuous command execution during motion
FOLMAS31 ; Axis 3 Encoder input is the master for follower axis 1
FOLRN1 ; Set follower-to-master ratio numerator to 1
FOLRD1 ; Set follower-to-master ratio denominator to 1
 ; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis 1
MC1 ; Enable continuous positioning mode
D+ ; Set direction to positive
GO1 ; Start Following master continually
INFNC1-H ; Enable trigger input 1A to latch position of follower
 ; when the follower's part is detected
INFNC2-H ; Enable trigger input 1B to latch position of follower
 ; when the master's part is detected
$SYNCLP ; Main loop where synchronizing moves occur
WAIT(TRIG.1=b1 AND TRIG.2=b1)

; Wait for both follower and master inputs to occur
VAR10=1PCCA ; Load VAR10 with the follower commanded position due
 ; to follower input activation
VAR11=1PCCB ; Load VAR11 with the follower commanded position due
 ; to master input activation
VAR12=VAR10-VAR11 ; Load VAR12 with the offset distance
VAR13=VAR12-2 ; Calculate the required shift
FSHFD(VAR13) ; Perform synchronization move of distance in VAR13
JUMP SYNCLP ; Return (jump) to main program loop
END ; End of program

Geared Advance Following
The FGADV command provides the ability to super-impose an advance or retard on Following
motion. This is the same ability provided by the FSHFD command (see Performing Phase
Shifts above), except that the super-imposed motion is also geared to master motion. The
FGADV command has the positive or negative “advance” distance as a parameter, but it
initiates motion instead of simply setting up the distance. The shape of the super-imposed
profile is determined by the FOLMD, FOLRN, and FOLRD commands (just as a normal preset
Following move).

The FGADV command profile can be delayed with the GOWHEN command.

A FGADV move can be performed only while the conditions below exist (Following status bit
23, reported with the FS, TFS, and TFSF commands, indicates that it is “OK to do FGADV
move”):

• Master is specified with a FOLMAS command
• Following is enabled with the FOLEN command
• The follower axis is either not moving, or moving at constant ratio in continuous

mode (MC1)

A FGADV move cannot be performed:
• During a preset (MC0) move
• In a compiled profile or programFollowing Status (FS, TFS, and TFSF) bit 24 reports if

a “FGADV move is underway”.

 Chapter 6. Following 179

Example COMEXC1 ; All command processing during motion
FOLRN25 ; Set numerator of follower-to-master Following ratio
FOLRD10 ; Set denominator of follower-to-master Following ratio
FOLMD1000 ; Set master distance to 1000 units
MC1 ; Enable continuous positioning mode
D+ ; Set direction to positive
FOLEN1 ; Enable Following
GO ; Ramp up to a 2.5:1 ratio over 1000 master distance units
FOLMD500 ; Set master distance to 500 units
FOLRN13 ; Superimposed ratio will be 1.3 (added to 2.5 = 3.8 total)
WAIT(FS.23=B1) ; Wait for OK to do geared advance
 ; (in this case, ramp is complete)
FGAVD400 ; Advance the follower axis 400 counts over a distance
 ; of 500 master counts
WAIT (FS.23=B1) ; Wait for OK to do geared advance (in this case,
 ; FGADV400 super-imposed profile is complete)
FGADV-400 ; Retard the follower axis 400 counts over a distance of
 ; 500 master counts (2.5 - 1.3 = 1.2 net ratio)

Summary of Ratio Following Commands
ANIMAS...............................Assigns an analog input to be used as a master in a FOLMAS assignment

(requires a ANI SIM located on an expansion I/O brick)
FGADVDefines the geared advance distance
FOLENEnables or disables Following mode
FOLMAS...............................Defines masters for follower axes
FOLMDDefines the master distance over which follower acceleration or moves are to

take place
FOLRN and FOLRDEstablishes the maximum follower-to-master ratio for a preset move or the final

ratio for a continuous move (FOLRN for the numerator and FOLRD for the
denominator)

FSHFD Initiates preset advance or retard (shift) of follower position during continuous
Following moves

FSHFC Initiates continuous advance or retard (shift) of follower position (or kills or stops
the shift portion of motion) during continuous Following moves

FVMACC...............................Establishes the rate at which the virtual master count frequency (FVMFRQ) can
change for an axis.

FVMFRQ...............................Defines the frequency of the virtual master count.
SCLDSets the follower distance scale factor
SCLMAS...............................Sets the master distance scale factor
SINAMP...............................Defines the amplitude of the internal sine wave
SINANG...............................Defines the phase angle of the internal sine wave
SINGO Initiates the internal sine wave

TPSHF or [PSHF]Transfers or assigns the net position shift since constant ratio
TPSLV or [PSLV]Transfers or assigns the current follower position
TVMAS or [VMAS]Transfers or assigns the velocity of the master axis

180 6K Series Programmer’s Guide

Electronic Gearbox Application for Ratio Following
An electronic gearbox is a classic application for Ratio Following. Suppose we need a three-
output gearbox, with all three outputs geared off the same input. Also, each gear ratio must be
individually programmed. In this example, a 1000-line encoder is mounted to the input shaft
of a master motor, giving 4000 master counts per revolution after quadrature. This encoder is
fed into the encoder input on axis 4 (ENCODER 4 connector) of the 6K controller. The motors
on axes 1, 2, and 3 have resolutions of 2000, 4000, and 5000 steps/revolution.

In this example, a precise position relationship is not required between master and followers,
but a ratio change during motion is required. The ratio change will take place over one master
revolution in order to avoid abrupt acceleration of the follower. The followers will accelerate
to their initial ratios (in terms of revolutions), and after 10 seconds the gear ratio on each axis
will change to their final ratios.

In this example, ENCODER 4 is specified as the master. This means that this external master
encoder is wired to the 6K controller's axis 4 encoder input.

Program
(code portion)

;**
; execute scaling before the program is executed
SCALE1 ; Enable scaling
SCLD2000,4000,5000 ; Set follower scale factors equal to the

; motor resolutions
SCLA2000,4000,5000 ; Set acceleration scale factors equal to the
 ; motor resolutions
SCLMAS4000,4000,4000 ; Master scale factor to number of pulses per rev
;**
COMEXC1 ; Allow continuous command execution during motion
FOLMAS+41,+41,+41 ; Encoder 4 is master axis for follower axes 1-3.
 ; The + sign indicates that the master input is not
 ; inverted before it is read as master counts.
FOLEN111 ; Enable followers to follow
FOLMD1 ; Change to new ratio over one master revolution
FOLRN1,3,2 ; Set follower-to-master ratio numerators to 1, 3 & 2
FOLRD1,1,1 ; Set all follower-to-master ratio denominators to 1
 ; (initial Following ratio for axis 1 is 1:1, axis 2
 ; is 3:1, and axis 3 is 2:1)
MC111 ; Enable continuous mode
GO111 ; Begin follower continuous Following move
TIMST0 ; Reset and start the timer
FOLRN10,6,1 ; Set follower-to-master ratio numerators to 10, 6 & 1
FOLRD1,7,2 ; Set follower-to-master ratio denominators to 1, 7 & 2
 ; (change Following ratios: axis 1 is 10:1,
 ; axis 2 is 6:7, axis 3 is 1:2)
WAIT(TIM>=10000) ; Wait 10 seconds to change to new ratio
GO111 ; Start moving to new ratio

 Chapter 6. Following 181

Trackball Application for Ratio Following Motion
A trackball is a two-axis, two-dimensional positioning device; just as a mouse is used to
position the cursor on a computer screen, a trackball could be used to position an X-Y stage.

In this example, a two-axis trackball is needed that can do fine and coarse positioning of an X-
Y stage. The fine or coarse setting is selected by the user with a two-position switch
connected to onboard trigger input 1 on the 6K controller. Onboard trigger input 2 on the 6K
controller is used to switch back and forth from trackball to standard point-to-point
positioning mode. Unlocking the stage from the trackball is necessary because of other point-
to-point move requirements elsewhere in the 6K controller program.

The trackball housing has two encoders mounted at 90 degrees to each other that are driven by
rubber wheels in contact with the ball. The stage is driven by motors and leadscrews.

For one inch of trackball motion to result in one inch of stage motion, the follower-to-master
ratio must be 10-to-1; this will be the ratio for coarse positioning. The fine positioning ratio
will be one tenth of that, or 1-to-1. When programmable input 1 is low, coarse positioning is
selected, and when trigger input 2 goes low, the stage becomes locked to the trackball. Each
change of state of trigger inputs 1 and 2 calls a different subroutine in the 6K controller
program; however, the ratios can only change if the stage is locked to the trackball positioning
mode.

The trackball is initially unlocked and fine positioning is selected.

Program SCALE1 ; Enable & define scale factors before loading program
SCLD4000,4000 ; Follower axes 1 and 2 have 4000 counts per rev
 ; resolution post-quadrature
SCLV4000,4000 ; Set velocity scaling factors
SCLA4000,4000 ; Set acceleration scaling factors
SCLMAS200,200 ; Master axis 3 and 4 have 200 counts per rev
 ; resolution post-quadrature
DEL UNLOCK ; Delete program before defining
DEF UNLOCK ; Program that unlocks the stage from the trackball
S11 ; Stop moves
WAIT(1AS.1=B0 AND 2AS.1=B0) ; (for steppers only)

; Wait for motion to stop on both axes
ONIN.2-1 ; Set up onboard input 2 to lock trackball to stage
FOLEN00 ; Stop Following mode
ONP LOCK ; Select LOCK as an ON program
JUMP WAITLP ; Return to main loop
END ; End program definition

DEL LOCK
DEF LOCK ; Program that locks the stage to the trackball
FOLEN11 ; Enable Following on both axis
IF(VAR1=0) ; If in the FINE mode, set ratio to 0.5:1
FOLRN.5,.5
ELSE
FOLRN1.5,1.5 ; If in the COARSE mode, set ratio to 1.5:1
NIF
ONIN.2-0 ; Set up input 2 to unlock trackball from stage
GO11 ; Start following the trackball
ONP UNLOCK ; Select UNLOCK as ON program
JUMP WAITLP ; Return to main loop
END ; End program definition

DEL COARSE
DEF COARSE ; Declare COARSE label
FOLRN1.5,1.5 ; Coarse positioning ratio of 1.5 to 1
GO11 ; Move to begin travel at new ratio
VAR1=1 ; Flag to indicate we are in coarse mode
END ; Return to main loop

(Continued on next page)

182 6K Series Programmer’s Guide

Trackball Program (Continued from previous page)

DEL FINE
DEF FINE ; Subroutine to assign fine positioning
FOLRN.5,.5 ; Fine positioning ratio is 0.5:1
GO11 ; Move to begin travel at new ratio
VAR1=0 ; Flag to indicate we are in fine mode
END ; Return to main loop

DEL TRACK
DEF TRACK ; Main track ball program
IF(IN.1=b1 AND VAR1=0) ; If input 1 is set to 1 and we are
 ; currently in fine mode, then enter coarse mode
 GOSUB COARSE ; Set high ratio
NIF
IF(IN.1=b0 AND VAR1=1) ; If input 1 is set to 0 and we are
 ; currently in coarse mode, then enter fine mode
 GOSUB FINE ; Set low ratio
NIF
IF(LIM.1=b0 OR LIM.2=b0) ; If a limit is hit, allow track ball to move off
D~ ; Back off of the limit, axis 1
GO1
NIF
IF(LIM.4=b0 OR LIM.5=b0)
D,~ ; Back off of the limit, axis 2
GOX1
NIF
END

DEL MAIN
DEF MAIN ; Begin definition of main program
V1,1 ; Set non-Following move parameters
A99,99
LH3,3,0,0
FOLMAS+31,+41 ; Encoder 3 is master axis for follower axes 1 and
 ; Encoder 4 is master axis for follower axes 2.
 ; The follower axes will move in the same direction as
 ; the master.
FOLRN.5,.5
INDEB250 ; Noisy switch debounce of 250 milliseconds for

; onboard trigger inputs
FOLRD1,1 ; Initial follower-to-master ratio is set to fine
 ; positioning (0.5:1)
VAR1=0 ; Flag set to fine positioning
MC11 ; Set both axes 1 and 2 to continuous positioning mode
FOLEN00 ; Following is initially disabled
COMEXC1 ; Continue command execution during motion.
COMEXS1 ; Continue command execution after stop
COMEXL11 ; Continue command execution after a limit is hit
SGP20,20 ; Set servo gains
SGV5,5
DRIVE11 ; Enable drives
DRFEN11 ; Enable checking for drive fault input states
DRFLVL11 ; Set drive fault level for Compumotor 670-T drives
ONP LOCK ; Select LOCK as an ON program
ONIN.2-1 ; Trigger 1B locks trackball to stage
ONCOND1000 ; Inputs enabled for interrupts
$WAITLP ; Main program loop
IF(IN.2=b1) ; If trigger input 1B is set to 1 (stage locked),
 ; enter trackball mode
 GOSUB TRACK
NIF ; End of IF statement

; ***
; * Other user programs can be added here for performing *
; * motion when the stage is not locked to the trackball. *
; ***

JUMP WAITLP ; Return to main loop
END ; End program definition

 Chapter 6. Following 183

Master Cycle Concept
Ratio Following can also address applications that require precise programming
synchronization between moves and I/O control based on master positions or external
conditions. The concept of the master cycle greatly simplifies the required synchronization.

A master cycle is simply an amount of master travel over which one or more related follower
axis events take place. The distance traveled by the master in a master cycle is called the
master cycle length. A master cycle position is the master position relative to the start of the
current master cycle. The value of master cycle position increases as positive-direction
master cycle counts are received, until it reaches the value specified for master cycle length.
At that point, the master cycle position becomes zero, and the master cycle number is
incremented by one—this condition is called rollover.

The master cycle concept is analogous to minutes and hours on a clock. If the master cycle is
considered an hour, then the master cycle length is 60 minutes. The number of minutes past
the hour is the master cycle position, and current hour is the master cycle number. In this
analogy, the master cycle position decrements from 59 to zero as the hour increases by one.

By specifying a master cycle length, periodic actions can be programmed in a loop or with
subroutines that refer to cycle positions, even though the master can be running continuously.
To accommodate applications where the feed of the product is random, the start of the master
cycle can be defined with trigger inputs. Two types of waits are also programmable to allow
suspension of program operation or follower moves based on master positions or external
conditions.

Master Cycle Commands
Following Status (TFSF, TFS and FS) bits 13-16 indicate the status of master cycle counting.
If a following application is taking advantage of master cycle counting, these bits provide a
quick summary of some important master cycle information:

Bit No. Function (YES = 1; NO = Ø)

13 Master Cyc Trig Pend.....A master cycle restart pending the occurrence of the specified
trigger.

14 Mas Cyc Len GivenA non-zero master cycle length has been specified with FMCLEN.

15 Master Cyc Pos Neg.......The current master cycle position (PMAS) is negative. This could
be by caused by a negative initial master cycle position (FMCP), or
if the master is moving in the negative direction.

16 Master Cyc Num > 0.......The master position (PMAS) has exceeded the master cycle length
(FMCLEN) at least once, causing the master cycle number (NMCY)
to increment.

Master Cycle Length
(FMCLEN)

The FMCLEN command is used to define the length of the master cycle. The value entered
with this command is scaled by the SCLMAS parameter to allow specification of the master
cycle length in user units. This parameter must be defined before those commands that wait
for periodically repeating master positions are executed.

The default value of FMCLEN is zero, which means the master cycle length is practically
infinite (i.e., 4,294,967,246 steps, after scaling). If a value of zero is chosen, the master cycle
position will keep increasing until this very high value is exceeded or a new cycle is defined
with the FMCNEW command (or triggered after a TRGFNcx1 command) described below. If a
non-zero value for FMCLEN is chosen, the internally maintained master cycle position will
keep increasing until it reaches the value of FMCLEN. At this point, it immediately rolls over
to zero and continues to count.

The master cycle length can be changed with the FMCLEN command even after a master cycle
has been started. The new master cycle length takes affect as soon as it is issued. If the new
master cycle length is greater than the current master cycle position, the cycle position will

184 6K Series Programmer’s Guide

not change, but will rollover when the new master cycle length is reached. If the new master
cycle length is less than the current master cycle position, the new master cycle position
becomes equal to the old cycle position minus one or more multiples of the new cycle length.

Example
Code

FMCLEN23,10,12,22 ; Set master cycle length for all four axes:
 ; (axis 1: 23 units; axis 2: 10 units;
 ; axis 3: 12 units; and axis 4: 22 units)

Restart Master Cycle
Counting (FMCNEW or
TRGFNcx1xxxxxx)

Once the length of the master cycle has been specified with the FMCLEN command, master
cycle counting can be restarted immediately with the FMCNEW command, or based on
activating a trigger input as specified with the TRGFNcx1 command. The new master cycle
count is started at an initial position specified with the FMCP command (see below).

When the TRGFNcx1 command is used, the restart of master cycle counting is pending
activation of the specified trigger. If an FMCNEW command is issued while waiting for the
specified trigger to activate, counting is restarted immediately with the FMCNEW command,
and the TRGFNcx1 command is canceled.

When using TRGFNcx1
• Before the TRGFN command can be used, you must first assign the trigger interrupt function

to the specified trigger input with the INFNCi-H command, where “i” is the input number of
the trigger input desired for the function (input bit assignments vary by product).

• Because the 6K controller program will not wait for the trigger to occur before continuing on
with normal program execution, a WAIT or GOWHEN condition based on PMAS will not
evaluate true if the restart of master cycle counting is pending the activation of a trigger. To
halt program operation, the WAIT command can be used.

A new master cycle will restart automatically when the total master cycle length (FMCLEN value)
is reached. This is useful in continuous feed applications.

Example
Code

FMCNEW11xx ; Restart new master cycle counting on axes 1 and 2
INFNC2-H ; Assign input 2 (TRG-1B) the trigger interrupt
 ; function (prerequisite to using the TRGFN features)
1TRGFNBx1 ; When trigger input 2 (TRG-1B) goes active,
2TRGFNBx1 ; restart new master cycle counting on axes 1 and 2

Initial Master Cycle
Position (FMCP)

The FMCP command allows you to assign for the first cycle only, an initial master cycle
position to be a value other than zero. When master cycle counting is restarted with the
FMCNEW command or with the trigger specified in the TRGFNcx1 command, the master cycle
position takes the initial value previously specified with the FMCP command. The value for
FMCP is scaled by SCLMAS if scaling is enabled (SCALE1)

FMCP was designed to accommodate situations in which the trigger that restarts master cycle
counting occurs either before the desired cycle start, or somewhere in the middle of what is to
be the first cycle. In the former case, the FMCP value must be negative. The master cycle
position is initialized with that value, and will increase right through zero until it reaches the
master cycle length (FMCLEN). At that point, it will roll over to zero as usual.

The continuous cut-to-length example below illustrates the use of a negative FMCP (a trigger
that senses the motion of the master is physically offset from the master position at which
some action must take place). If it is desired that the first cycle is defined as already partially
complete when master cycle counting is restarted, the FMCP value must be greater than zero,
but less than the master cycle length.

To give a value for FMCP that is greater than master cycle length is meaningless since master
cycle positions are always less than the master cycle length. The 6K controller responds to
this case as soon as a new master cycle counting begins by using zero instead of the initial
value specified with FMCP.

 Chapter 6. Following 185

Transfer and
Assignment/
Comparison of Master
Cycle Position and
Number

The current master cycle position and the current master cycle number can be displayed with
the TPMAS and TNMCY commands, respectively. These values can also be read into numeric
variables (VAR) at any time using the PMAS and NMCY commands (e.g., VAR6=NMCY). If
position capture is used, the master cycle position and be captured, and the value is available
with the TPCMS and PCMS commands.

Very often, the master cycle number will be directly related to the quantity of product produced
in a manufacturing run, and the master cycle position can be used to determine what portion of
a current cycle is complete.

The master cycle number is sampled once per position sampling period (see note, left). If the
master cycle length (FMCLEN) divided by the master's velocity (VMAS) is less than the
position sampling period (2 ms), then the sample (TNMCY or NMCY value) cannot be accurate.

Details on using PMAS in conditional expressions is provided below in Using Conditional
Statements with PMAS.

Using Conditional
Statements with
Master Cycle Position
(PMAS)

The current master cycle position (PMAS) value can be used in comparison expressions, just
like other position variables such as PC, PE, and FB. PMAS is a special case, however, because
its value rolls over to zero when the master cycle length (FMCLEN) is met or exceeded. This
means that PMAS values greater than or equal to the master cycle length will never be reported
with the TPMAS command, or with expressions such as (VAR1=1PMAS).

The other fact that makes PMAS special is that master cycle counting can be restarted after the
command containing the PMAS expression has been executed. Either the FMCNEW command
or the TRGFNcx1 command can be used to restart counting, each with a different effect on
the evaluation of PMAS.

The treatment of PMAS in comparison expressions depends on the command using the
expression, as described below. WAIT and GOWHEN are treated as special cases.

IF, UNTIL, and
WHILE

These commands evaluate the current value of PMAS in the same way that TPMAS does (i.e.,
PMAS values will never be greater than or equal to the master cycle length). With these
commands, avoid comparing PMAS to be greater than or equal to variables or constants that are
nearly equal to the master cycle length, because rollover can occur before a PMAS sample is
read that makes the comparison true. If such a comparison is necessary, it should be combined
(using OR) with a comparison for master cycle number (NMCY) being greater than the current
master cycle number.

Also, master cycle counting restart can be pending activation of a trigger, but this will not
affect the evaluation of PMAS for IF, WAIT, and WHILE. It is simply evaluated based on
counting currently underway.

WAIT and GOWHEN These commands evaluate the current value of PMAS differently than TPMAS does, in such a
way that it is possible to compare PMAS to variables or constants that are greater than or equal
to the master cycle length and still have the comparison be reliably detected.

Effectively, PMAS is evaluated as if the master cycle length were suddenly set to its maximum
value (232) at the time the WAIT or GOWHEN command is encountered. It eliminates the need to
OR the PMAS comparison with a comparison for master cycle number (NMCY) being greater than
the current master cycle number. Such multiple expressions are not allowed in the GOWHEN
command, so this alternative evaluation of PMAS offers the required flexibility.

This method of evaluation of PMAS allows commands that sequence follower axis events
through a master cycle to be placed in a loop. The WAIT or GOWHEN command at the top of
the loop can execute, even though the actual master travel has not finished the previous cycle.
If it is desired to WAIT or GOWHEN for a master cycle position of the next master cycle, the
variable or constant specified in the command should be calculated by adding one master
cycle length to the desired master cycle position.

Finally, master cycle counting restart can be pending activation of a trigger (TRGFNcx1), and

186 6K Series Programmer’s Guide

this will suspend the evaluation of PMAS for these commands. PMAS is not sampled, and the
comparison evaluates as false. During this time, if the pending status of master cycle
counting restart is aborted with FMCNEWØ, the GOWHEN condition is also cleared, and any
motion profile of any axis waiting on that PMAS comparison will be canceled. Otherwise,
when master cycle counting is restarted by a trigger, evaluation takes place as described
above. This allows GOWHEN to include waiting on a trigger without explicitly including it in
the GOWHEN expression.

Synchronizing
Following Moves with
Master Positions

A final special case allows perfect synchronization between the start of a Following motion
profile of a follower axis and a specified position of its master. If a GOWHEN(nPMAS >= xxx)
expression is used to synchronize a follower with its own master, with the operator specifically
“>=”, a special synchronization occurs. Although it can be impossible for the 6K product to
sample the exact master position specified, the Following motion profile is calculated from
master travel based on that position. This allows for the construction of profiles in which the
synchronization of master and follower positions is well defined and precisely maintained.
This feature requires positive travel of the master, which can be achieved with the appropriate
sign for the FOLMAS specification.

Summary of Master Cycle and Wait Commands
FMCLEN...................................Defines the length of the master cycle

FMCNEW................................... Immediately restart master cycle counting

FMCPDefines the initial position of a new master cycle

GOWHEN...................................GOWHEN suspends execution of the next move on the specified axis or axes
until the specified conditional statement (based on T, IN, LIM, FB, NMCY, PC,
PE, PMAS, PSLV, or PSHF) is true

TNMCY or [NMCY]Transfers or assigns the current master cycle number

TPCMS or [PCMS]Transfers or assigns the captured master cycle position
TPMAS or [PMAS]Transfers or assigns the current master cycle position

TRGFN.....................................aTRGFNc1x initiates a GOWHEN, suspending execution of the next follower
move on axis (a) until the specified trigger input (c) goes active.
aTRGFNcx1 causes master cycle counting to restart when the specified
trigger input (c) goes active.

WAITWAIT suspends program execution until the specified conditional statement
(based on PMAS, FS, NMCY, PCMS, PSHF, PSLV, or VMAS) is true;
WAIT(SS.i=b1) suspends program execution until a trigger input is
activated. The “i” is the programmable input bit corresponding to the
trigger input. (Input bit assignments vary by product; see the Programmable
I/O Bit Patterns table on page 76 to determine the correct bit pattern for your
product.)

AS and TAS bit 26...................AS and TAS (and TASF) bit 26 is set when there is a profile suspended
pending GOWHEN condition, initiated either by a GOWHEN command or a
TRGFNc1 command; this bit is cleared when the GOWHEN condition is true or
when a stop or kill command is issued.

ER and TER bit 14...................ER, TER, and TERF bit 14 is set if the GOWHEN condition is already true when
the GO, GOL, FGADV, FSHFC, or FSHFD command is given (ERROR bit 14
must first be enabled to check for this condition)

NOTE
The continuous cut-to-length application example below illustrates the use of the master
cycle concept and the commands above.

 Chapter 6. Following 187

Continuous Cut-to-Length Application
This application requires automobile trim to be cut to a pre-defined length. The saw is
controlled by axes 1 and 2 on the 6K controller. It must be moving with the material while
the cut is being made (axis 1), and also move perpendicular to the trim (axis 2) to actually
make the cut. The trim comes in long stock that moves continuously under the cutting area.

The leading edge of the trim stock is detected with a sensor connected to trigger 1 that is
located 4 inches from the home position of the saw. Axis 1 will be following the trim based
on an encoder mounted on the trim via a friction wheel. The encoder is a 1000-line encoder
and the wheel is geared to give 2 revolutions per inch of trim, resulting in 8,000 post-
quadrature steps per inch of trim. Axis 1 has a resolution of 4,000 steps per rev and is
connected to a 2-pitch leadscrew 24 inches in length. Axis 2 is similar in mechanics but its
length is 10 inches. The travel on Axis 1 will be controlled by the speed at which axis 2
makes its cut. The travel on axis 2 is a fixed speed of 5 inches per second, with a fixed cross
stroke of 5 inches. Limit switches are in place for safety.

Raw Stock ❇
4"

Axis #1

Axis #2

E

Sensor
Encoder

Sensor
Encoder

Sensor
Encoder

When stock is sensed, the master cycle
position is assigned to 3.7"

Axis #1, initially 4.0 inches from the sensor,
begins to accelerate when stock reaches
master cycle position - ¯

Synchronization takes place over 0.5
inches of Axis 1 travel, and 1 inch of
stock travel. Axis #1 travel becomes
synchronized 0.2 inches from end of stock

Raw Stock ❇

3.7"

Axis #1

Axis #2

E 4"

Raw Stock ❇

4.7"

Axis #1

Axis #2

E 4.5"

188 6K Series Programmer’s Guide

The master cycle length will be set equal to the desired cut length (36" in the example below),
which the operator can change by modifying variable VAR1. The cut cycle will be a
continuous loop, but the first cut will be made 0.2 inches from the end of the stock to ensure
an even first edge. Axis 1 will accelerate to the desired tracking ratio over 1 inch of master
travel for all cuts. Assume that the home position of both axes is at position 0 inches.

The Cut-to-Length example takes advantage of being able to change master cycle length,
while being careful to change it only at the beginning of a current cycle. This ensures that the
current master cycle position will be less than the new master cycle length, and will not
change as a result of a change in cycle length. In this example, the master cycle length and
corresponding waits are redefined every cycle to the current value of VAR1. The value of
VAR1 becomes the cut length, and can be changed via remote command during program
execution. With minor modifications, the cut lengths and the number of iterations could be
read from DATA commands (e.g., in a teach mode application).

Program
SCALE1 ; Enable scaling
SCLD8000,8000 ; Set axes 1 & 2 scale factors for programming
 ; in inches
SCLV,8000 ; Axis 2 velocity scale factor for inches/sec
SCLA,8000 ; Axis 2 accel scale factor for inches/sec/sec
SCLMAS8000 ; Master scale factor for programming in inches

DEF CUTLEN ; Start definition of Cut-to-Length program
COMEXC1 ; Enable continuous command execution mode
COMEXS1 ; Continue execution if stop is issued
INFNC1-H ; Enable trigger input 1 (TRG-1A) for TRGFN use
A20,20 ; Set acceleration
V5,5 ; Set velocity
MA11 ; Absolute positioning mode for non-Following moves
VAR1=36 ; Desired cut length is 36"
VAR2=4 ; Sensor is 4" from home position of axis 1
VAR2=VAR2+0.2 ; 1st cut to be 0.2" from end of stock
VAR3=1 ; FOLMD to be set to 1"
VAR4=VAR3/2 ; Follower will travel 1/2" when accelerating to
 ; 1:1 ratio while master travels 1"
VAR2=VAR4-VAR2 ; Take distance follower travels during accel into
 ; account so we'll be up to speed at position = 0.2"
 ; from end of stock. Then the cut will be made.
 ; Initial master cycle position will be the negative
 ; of the distance traveled during follower wait and

; accel.
FOLMAS31 ; Encoder 3 is the master for follower axis 1
FMCP(VAR2) ; Set initial master cycle position to wait length
FOLMD(VAR3) ; Acceleration to constant ratio will take place
 ; over VAR3" (1" here) of master travel
FOLRN1
FOLRD1 ; Following ratio is 1 to 1
1TRGFNA X1 ; Define a new master cycle on axis 1 when trigger

; input 1 (TRG-A) is activated
WAIT(IN.1=b1) ; Suspend program execution until stock is sensed
OUT.6-1 ; Turn on output for saw blade to move into position
GOWHEN(1PMAS>=0) ; Wait on first move for start of master cycle.
 ; This will ensure being at 1:1 ratio at exactly
 ; 0.2" from end of stock.
$NEWCUT ; Subroutine DEF for continuous cutting
D,5 ; Axis 2 will move 5 inches across the stock
MC1 ; Axis 1 into continuous move mode.
FOLEN1 ; Enable Following on axis 1
VAR5=VAR1 ; Set VAR5 = VAR1 (Snapshot of VAR1)
FMCLEN(VAR5) ; New master cycle length is cut length
GO1 ; Start Following move on follower axis 1

(Continued on next page)

 Chapter 6. Following 189

Continuous Cut-to-Length Program (Continued from previous page)

WAIT(1FS.4=b1) ; Wait for axis 1 to be in sync with the moving stock
GOx1 ; Once axis 1 is up to speed, move axis 2 across
 ; stock to make the cut
WAIT(2AS.1=b0) ; Wait for axis 2 cut to finish
S1 ; Stop Following move on axis 1
WAIT(MOV=b0) ; Wait until the move is complete on axis 1
FOLEN0 ; Exit Following mode
OUT.6-0 ; Raise the saw blade
MC0 ; Axis 1 into preset move mode.
D0,0 ; Move both axes back to home positions
GO11 ; Execute moves on axes 1 and 2 (execution will not
 ; occur until motion from previous move is complete)
WAIT(MOV=b00) ; Wait until the moves are complete on axes 1 and 2
OUT.6-1 ; Move saw blade into position for next cut
GOWHEN(1PMAS>=VAR5) ; Synchronize next move with next master cycle
GOTO NEWCUT ; Repeat the cut cycle
END ; End program definition

Technical Considerations for Following
In the introduction to Following (see page 166), the algorithm for 6K controller Following
was briefly discussed. Here we will address some of the more technical aspects of Following:

Keep in mind that
in all cases, the

follower position is
calculated from a
sampled master

position.

• Performance
• Master Position Prediction
• Master Position Filtering
• Following error
• Maximum acceleration and velocity (stepper axes only)
• Factors affecting Following accuracy
• Preset vs. Continuous Following moves
• Master and follower axis distance calculations
• Using other features with Following

Performance Considerations
When a follower axis is following a master, the 6K controller does not simply measure the master
velocity to derive follower axis velocity. Instead, the 6K controller samples the master position
(position sampling period = 2 ms) and calculates the corresponding follower axis position
command. This is true even if the follower axis is in the process of changing ratios. A follower
axis is not simply following velocity, but rather position. With this algorithm, the master and
follower position or phase relationship is maintained indefinitely, without any drift over time due
to velocity measurement errors.

The 6K controller also measures master velocity by measuring the change in master position
over a number of sample periods. The present master velocity and position can be used to
calculate the next commanded follower position, so the follower has no velocity-dependent
phase delay. This concept is known as Master Position Prediction and can be enabled or
disabled as needed with the FPPEN command.

The 6K controller's default Following algorithm should work well for most applications;
however, you can change the Following algorithm to meet application-specific needs. For
instance, suppose that the speed of the master is very slow, or has some vibration. For a case
like this, the 6K controller allows you to filter the master position signal to generate a smooth
follower position command. This is known as Master Position Filtering and is programmed
with the FFILT command.

190 6K Series Programmer’s Guide

Master Position Prediction
Master Position Prediction is a technique used to compensate for the fact a follower's position
command cannot be calculated and implemented infinitely fast.

The master position prediction mode is enabled by default (FPPEN1) in the Following
algorithm, but can be turned off as desired with the FPPENØ command.

The 6K controller measures master position once per position sampling period (2 ms), and
calculates a corresponding follower position command. This calculation and achieving the
subsequent follower commanded position requires 2 sample periods (4 ms).

If master position prediction mode is disabled (FPPENØ), waiting 2 sample periods results in
a follower position lag. That is, by the time the follower reaches the position that corresponds
to the sampled master position, 2 sample periods have gone by, and the master can be at a new
position. Measured in time, the lag is 2 sample periods. Measured in position, the lag is 2
sample periods ∗ current follower velocity.

For example, suppose the follower is traveling at a speed of 25000 counts per second. If
master position prediction mode is disabled (FPPENØ), the follower will lag the master by
100 counts (25000 counts/sec ∗ 4 ms = 100 counts).

By measuring the change in master position over sequential sample periods, the master's
present velocity is calculated. The present master velocity and position are used to predict
future master position. If master position prediction mode is enabled (FPPEN1, the predicted
future master position is used to determine the follower's position command. In this case the
follower has no velocity-dependent phase delay. The follower's velocity for a given sample
will always be the velocity required to move from its current position to the next calculated
position command.

If the master motion is fairly smooth and velocity is not very slow, the measurement of its
recent velocity will be very accurate, and a good way of predicting future position. But the
master motion can be rough, or the measurements can be inaccurate if there is no filtering (see
Master Position Filtering below). In this case, the predicted master position and the
corresponding follower position command will have some error, which can vary in sign and
magnitude from one sample to the next. This random variation in follower position command
error results in rough motion. The problem is particularly pronounced if there is vibration on
the master.

It can be desirable to disable the master position prediction mode (FPPENØ) when maximum
follower smoothness is important and minor phase delays can be accommodated.

If master filtering is enabled (FFILT_Ø), then the prediction algorithm would be used on the
filtered master position, resulting in a smoother follower position command. However, due to
the delay introduced by the filtering, the prediction algorithm would not compensate for the
total delay in the follower's tracking command. (See also Master Position Filtering below.)

Following Status (TFSF, TFS, and FS) bit 17 indicates the status of where or not the master
position prediction mode is enabled.

Master Position Filtering
The follower axis' position command is calculated at each position sample period (2 ms). This
calculation is a function of the master position and the master velocity estimated from the
change in master position over 2 position sample periods.

The Master Position Filter feature allows you to apply a low-pass filter to the measurement of
master position. Master position filtering is used in these situations:

• Measurement of master position is contaminated by either electrical noise (when analog
input is the master) or mechanical vibration.

• Measurement noise is minimal, but the motion that occurs on the master input is
oscillatory. In this case, using the filter can prevent the oscillatory signal from

 Chapter 6. Following 191

propagating into the follower axis (i.e., ensuring smoother motion on the follower axis).
The bandwidth of the low-pass filter is controlled with the FFILT command:

 FFILT Setting Low pass Filter Bandwidth

 Ø infinite (no filtering) – default setting
 1 120 Hz
 2 80 Hz
 3 50 Hz
 4 20 Hz

When considering whether or how much master position filtering to use, consider the
application requirement itself. The application requirements related to filtering can be
categorized into these three types:

Type I: If an application requires smooth motion but also high follower tracking accuracy,
then a heavy filtering should not be used. It should not be used because it can
introduce too much velocity phase lag, although the motion can be smooth. In
other words, the master axis in the first place should produce very smooth motion
and low sensor measurement noise such that a higher level of master filtering is
not needed.

Type II: If follower axis velocity tracking error is not critical but smooth follower axis
motion is desired, then you can use a higher level of master filtering to deal with
sensor noise or master vibration problems.

Type III: If it is determined that under certain dynamic conditions the master position's
oscillatory measurement is purely caused by its vibration motion (noise is
insignificant), and it is necessary for the follower to follow such motion, then the
filter command should not be used or only use the highest bandwidth (FFILT1).

Following Status (TFSF, TFS, and FS) bit 18 indicates the status of master position filtering.

Following Error
As soon as an axis becomes configured as a follower, the follower's position command is
continuously updated and maintained. At each update, the position command is calculated
from the current master position and velocity, and the current ratio or velocity of the follower.

Whenever the commanded position is not equal to the actual follower position, a Following
error exists. This error, if any, can be positive or negative, depending on both the reason for
the error and the direction of follower travel. Following error is defined as the difference
between the commanded position and the actual position.

Following Error = Commanded position - Actual position

If the follower is traveling in the positive direction and the actual position lags the
commanded position, the error will be positive. If the follower is traveling in the negative
direction and the actual position lags the commanded position, the error will be negative. This
error is always monitored, and can be read into a numeric variable (VAR) at any time using the
PER command. The error value in follower steps is scaled by SCLD for the axis. This value
can be used for subsequent decision making, or simply storing the error corresponding to
some other event.

192 6K Series Programmer’s Guide

Maximum Velocity and Acceleration (Stepper Axes Only)
The follower's attempt to faithfully follow the master can command velocities and
accelerations that the follower axis is physically not able to complete. Therefore, the FMAXV
and FMAXA commands are provided to set the maximum velocity and acceleration at which
the follower will be allowed to move.

If the follower is commanded to move at rates beyond the defined maximums, the follower
will begin falling behind it's commanded position. If this happens, a correction velocity will
be applied to correct the position error as soon as the commanded velocity and acceleration
fall within the limitation of FMAXV and FMAXA.

The FMAXA and FMAXV commands should be used only to protect against worst case
conditions, and should be avoided altogether if they are not needed. If an axis is not able to
follow its profile because of limitations imposed by these commands, some correction motion
will occur. If the maximum acceleration (FMAXA value) is set very low, some oscillation
about the commanded position can occur because the follower is not allowed to decelerate fast
enough to prevent overshoot.

Factors Affecting Following Accuracy
There are additional accuracy requirements of Following applications beyond those of
standard positioning. The follower axis must maintain positioning accuracy while in motion,
not just at the end of moves, because it is trying to stay synchronized with the master.

Assuming parameters such as master and follower scaling and ratios have been specified
correctly, the overall positioning accuracy for an application depends on several factors:

• Resolution of the master
• Resolution of the follower axis
• Position sampling accuracy
• Accuracy of the follower axis motor and drive
• Accuracy of load mechanics
• Master position prediction
• Master velocity relative to master position prediction & master position filtering
• Tuning (servo axes only)
• Repeatability of the trigger inputs and sensors

Just as with a mechanical arrangement, the accuracy errors can build up with every link from
the beginning to the end. The overall worst case accuracy error will be the sum of all the
sources of error listed below. The errors fall into two broad categories, namely, master
measurement errors and follower errors. These both ultimately affect follower accuracy,
because the commanded follower position is based on the measured master position.

It is important to understand how master measurement errors result in follower position errors.
In many applications, master and follower units will be the same (e.g., inches, millimeters,
degrees). These applications will require linear speeds or surface speeds to be matched (i.e., a
1:1 ratio). For example, suppose that in a rotary knife application, there were 500 master
steps per inch of material, so an error in master measurement of one encoder step would result
in 0.002 inches of follower position error.

If the master and follower units are not the same, or the ratio is not 1:1, the master error times
the ratio of the application gives the follower error. An example would be a rotary master and
a linear follower. For instance, suppose one revolution of a wheel gives 4000 master counts,
and results in 10 inches of travel on the follower. The ratio is then 10 inches/revolution. The
follower error that results from one step of master measurement error is (1/4000) ∗ 10
inches/revolution = 0.0025 inches.

 Chapter 6. Following 193

Resolution of the
Master

The best case master measurement precision is the inverse of the number of master steps per
user's master unit. For example, if there are 100 master steps/inch, then the master
measurement precision is 0.01 inches. Even if all other sources of error are eliminated,
follower accuracy will only be that which corresponds to 1 step of the master (e.g., 0.01 inches
in the previous example).

Resolution of the
Follower

The best case follower axis precision is the inverse of the number of follower steps per user's
position unit. For example, if there are 1000 follower steps/inch, then the follower resolution is
0.001 inches. Even if all other sources of error are eliminated, follower positioning accuracy
will only be that which corresponds to 1 step of the follower. This must be at least as great as
the precision required by the application.

Position Sampling
Accuracy

The position sampling rate for the 6K controller depends on whether it is a servo or a stepper.
The sample period for is 2 ms.

The repeatability of the sampling rate, from one sample to the next, can vary by as much as 100
µs. This affect can be eliminated by using non-zero master position filter (FFILT) command
values. Otherwise, measurement of master position can be off by as much as (20 to 100
microseconds ∗ master speed). This can appear to be a significant value at high master speeds,
but it should be noted that this error changes in value (and usually sign) every sample period.
It is effectively like a noise of 200-600 Hz; if the mechanical frequency response of the motor
and load is much less than this frequency, the load cannot respond to this error.

Accuracy of the
Follower Motor and
Drive

The precision also depends on how accurately the drive follows its commanded position while
moving. Even if master measurement were perfect, if the drive accuracy is poor, the precision
will be poor.

In the case of stepper drives, this amounts to the specified motor/drive accuracy.

In the case of servo drives, the better the drive is tuned for smoothness and zero Following
error, the better the precision of the positioning. Often, this really only matters for a specific
portion of the profile, so the drive should be tuned for zero Following error at that portion.

Accuracy of the
Load Mechanics

The accuracy (not repeatability) of the load mechanics must be added to the overall build up of
accuracy error. This includes backlash for applications that involve motion in both directions.

Master Position
Prediction

The master position prediction mode can be enabled or disabled with the FPPEN command,
but each state contributes a different error.

Disabled (FPPENØ): The follower position command is based on a master position that is 2
sample periods (4 ms) old. This means that master measurement error due to
disabling the position prediction mode will be (2 sample periods ∗ master speed).

Enabled (FPPEN1): If the position prediction mode is enabled (default setting), its accuracy is
also affected by position sampling accuracy, master speed, and master position
filtering. The error due to enabling the position prediction mode is about twice that
due to sampling accuracy (i.e., 40 to 200 microseconds ∗ master speed). As with the
error due to position sampling accuracy, the error due to the position prediction mode
being enabled is like a noise on the order of 200-600 Hz, which is not noticed by
large loads.

194 6K Series Programmer’s Guide

Master Velocity
Relative to Master
Position Prediction

Variation in Master Velocity: Although increasing master position filtering (increasing the
FFILT command value) eliminates the error due to sampling accuracy, it increases the error
due to variations in master speed when the master position prediction mode is enabled
(FPPEN1).

Most applications maintain a constant master speed, or change very slowly, so this effect is
minimal. But if the master is changing rapidly, there can be a significant master speed
measurement error. Because predicted master positions are in part based on master speed
measurement, the can result in an error in master position prediction mode (FPPEN1). This
effect will always be smaller than that due to the master position prediction mode being
disabled (FPPENØ).

Tuning
(Servo Axes Only)

A servo system’s tuning has a direct impact on how well the follower axis can track the master
input. Overshoot, lag, oscillation, etc., can be devastating to Following performance. The best
tool to use for tuning the 6K series controller is Motion Planner’s Servo Tuner utility.

Repeatability of the
Trigger Inputs and
Sensors

Some applications can use the trigger inputs for functions like registration moves, GOWHENs,
or new cycles. For these applications, the repeatability of the trigger inputs and sensors add to
the overall position error.

Refer to page 84 for accuracy specifications on the trigger input position capture function.
Refer to your sensor manufacturer’s documentation for the sensor repeatability.

Preset vs. Continuous Following Moves
When a follower performs a preset (MCØ) move in Following mode (FOLEN1), the
commanded position is either incremental or absolute in nature, but it does have a commanded
endpoint. The direction traveled by the follower will be determined by the commanded
endpoint position, and the direction the master is counting.

Let’s illustrate this with an example. Assume all necessary set-up commands have been
previously issued for our follower (axis 1) and master so that distances specified are in
revolutions:

FOLRN3 ; Set Following follower-to-master ratio numerator to 3
FOLRD4 ; Set Following follower-to-master ratio denominator to 4
 ; (ratio is 3 revs on the follower to 4 revs on the master)
FOLEN1 ; Enable Following on axis 1
FOLMD10 ; Set preset move to take place over 10 master revolutions
MC0 ; Set follower to preset positioning mode
MA1 ; Set follower to absolute positioning mode
PSET0 ; Set current absolute position reference to zero
D5 ; Set move distance to absolute position 5 revolutions
GO1 ; Initiate move to absolute position 5

If the master is stationary when the GO1 command is executed, the follower will remain
stationary also. If the master begins to move and master pulses are positive in direction, the
follower will begin the preset move in the positive direction. If the master pulses stop arriving
before 10 master revolutions have been traveled, the follower will also stop moving, but that
GO1 command will not be completed. If the master then starts to count in the negative
direction, the follower will follow in the negative direction, but only as far as it's starting
position. If the master continues to count negative, the follower will remain stationary. The
GO1 command will not actually be completed until the master has traveled at least 10
revolutions in the positive direction from where it was at the time the GO1 command was
executed. If the master oscillates back and forth between it's position at the start of the GO1
command to just under 10 revolutions, the follower will oscillate back and forth as well.

The master must be counting in the positive direction for any preset (MCØ) GO1s commanded

 Chapter 6. Following 195

on the follower to be completed. If mechanics of the system dictate that the count on the
source of the master pulses is negative, a minus (-) sign should be entered in the FOLMAS
command so that 6K controller sees the master counts as positive.

Continuous follower moves (MC1) react much differently to master pulse direction. Whereas a
preset move will only start the profile if the master counts are counting in the positive
direction, a continuous move will begin the ramp to its new ratio following the master in either
direction. As long as the master is counting in the positive direction, the direction towards
which the follower starts in a continuous move is determined by the argument (sign) of the D
command. The follower direction is positive for D+ and negative for D-.

If the master is counting in the negative direction when follower begins a continuous move,
the direction towards which the follower moves is opposite to that commanded with the D
command. The follower direction is positive for D- and negative for D+.

If the master changes direction during a continuous follower move, the follower will also
reverse direction. As with standard continuous moves, the GO1 will continue until terminated
by S, K, end-of-travel limits, stall condition, or command to go to zero velocity. As with
preset moves, the sign on the FOLMAS command determines the direction of master counting
with respect to the direction of actual counting on the master input.

Master and Follower Distance Calculations
The formulas below show the relationship between master move distances and the
corresponding follower move distances. These relationships can be used to assist in the
design of Following mode moves in which both the position and duration of constant ratio are
important.

In such calculations, it is helpful to use SCLMAS and SCLD values that allow the master and
follower distances to be expressed in the same units (e.g., inches or millimeters). In this case,
many applications will be designed to reach a final ratio of 1:1, and the distances in these
figures can be easily calculated.

 HINT: For a trapezoidal preset follower axis move with a maximum ratio of 1:1, the
master and follower distances during the constant ratio portion will be the same. The
follower travel during acceleration will be exactly half of the corresponding master travel,
and it will also occur during deceleration.

Master Distance (FOLMD)
If the follower axis is in continuous positioning mode (MC1), FOLMD is the master distance
over which the follower axis is to accel or decel from the current ratio to the new ratio. If the
follower axis is in preset positioning mode (MCØ), FOLMD is the master distance over which
the follower's entire move will take place.

When the Follower is in Continuous Positioning Mode (MC1)

D =
FOLMD * (R2 + R1)

2

where:
 FOLMD = Master distance
 R2 = New ratio (FOLRN ÷ FOLRD)
 R1 = Current ratio (FOLRN ÷ FOLRD)
 D = Follower distance traveled during ramp

196 6K Series Programmer’s Guide

When the Follower is in Preset Positioning Mode (MCØ)

Trapezoidal
Follower Moves

Dmax = (FOLMD * Rmax)

D1 =
(Dmax - D)

2

MD1 =
2 * D1
Rmax

D2 = D - (2 * D1)

MD2 =
D2
Rmax

FOLMD = 2 * MD1) + MD2

where:
 FOLMD = Master distance
 MD1 = Master distance during accel & decel ramps
 MD2 = Master distance during constant ratio
 D = Total follower axis preset distance commanded
 D1 = Follower travel during accel and decel ramps
 D2 = Follower travel during constant ratio
 Dmax = Maximum follower distance possible

 (assuming no accel or decel)
 Rmax = Maximum ratio = FOLRN ÷ FOLRD

R max

Distance

Trapezoidal profile if:
D = (D2 + 2 * D1) < Dmax

Rectangular profile if:
D 2 = D
D 1 = zero
MD 2 = FOLMD
MD 1 = zero

R max

Distance

D2

D1 D2 D1

MD1 MD2 MD1

MD2

R
at

io
R

at
io

Triangular
Follower Moves

D =
Rpeak * FOLMD

2

where:
 FOLMD = Master distance
 Rpeak = Peak ratio reached during move
 D = Total follower distance

R max

Distance

Triangular profile if:
D < 1/2 D max

D

Rpeak

R
at

io

FOLMD

Distance
Calculation
Example

In the example below, the desired travel during constant ratio is already contained in numeric
variable 1 (VAR1), and can have been read from thumbwheels or a DATA command. The
corresponding follower move distance (D) and FOLMD are calculated as shown:

VAR2=2 ; Desired follower travel during accel and decel combined
VAR3=2 * VAR2 ; Required master travel during these ramps
VAR4=VAR1 + VAR2 ; Move distance is constant ratio portion plus ramps
VAR5=VAR1 + VAR3 ; Master travel for entire follower move
FOLMD(VAR5) ; Establish calculated master travel
D(VAR4) ; Establish calculated follower travel
GO1 ; Make desired follower move

Similar calculations can be done for a series of continuous move ramps to ratios, separated by
GOWHEN for master cycle positions. These ramps can be repeated in a loop to create a
continuous cyclical follower profile.

These Profiles
depict ratio vs.
distance

This Profile depicts
ratio vs. distance

 Chapter 6. Following 197

Beware of Roundoff
Error (Scaling only)

Some potential for roundoff error exists if the scaling of a move distance or master distance by
SCLD and SCLMAS does not result in an integer number of steps. Some additional care must
be taken in the segment by segment construction of profiles using ramps to continuous ratio.
The 6K controller maintains a follower position command that is calculated from the
commanded constant ratios, the ramps to the new ratios, and the master travel over which these
take place. At the end of each ramp or constant ratio portion, this commanded position is
calculated to the nearest integer follower step. If the ratios and master travel result in a non-
integer follower travel for a segment, the fractional part of that segment's calculated travel will
be lost. In a cyclical application, repeated truncations could build up to a significant error.
This can be avoided through careful attention to design of the profile.

Using Other Features with Following
The 6K controller has many features that can be used in the same application as its Following
features. In some cases, having configured an axis as a follower with the FOLMAS command
will affect, or be affected by, the operation of other features, as described below.

Setups used by
FOLMAS
(Stepper Axes Only)

The FOLMAS command uses the drive resolution (DRES) and the velocity range (PULSE) data
to configure an axis as a follower. In order for this data to be used correctly, these commands
must be given before FOLMAS. These commands are not allowed after FOLMAS is given.
After FOLMAS is executed, the MC command can be used to change from incremental to
absolute positioning and back.

S (Stop) & K (Kill)
Commands

Stop (S) and Kill (K) commands cause the follower to do a non-Following decel, even if the
follower is in Following mode. A stop or a kill, buffered or immediate, will clear a pending
GOWHEN condition (clears AS bit 26).

Kill Conditions Under default operation (FOLK0), certain error conditions (i.e., drive fault input active, or
maximum position error limit exceeded) will cause the 6K controller to disable the drive and
kill the Following profile (follower’s commanded position loses synchronization with the
master).

If you enable Following Kill (FOLK1), these error conditions will still disable the drive
(DRIVE0), but will not kill the Following profile. Because the Following profile is still running,
the controller keeps track of what the follower’s position should be in the Following trajectory.
To resume Following operation, resolve the error condition (drive fault, excessive position
error), enable the drive (DRIVE1), and command the controller to impose a shift to compensate
for the lapse/shift that occurred while the drive was disabled and the follower was not moving.
To impose the shift, assign the negative of the internally monitored shift value (PSHF) to a
variable (e.g., VAR1 = -1 * PSHF) and command the shift using a variable substitution in the
FSHFD command (e.g., FSHFD(VAR1)).

The FOLK command only preserves Following profiles; normal velocity-based profiles will be
killed regardless of the FOLK command.

GO Command If a follower axis is in Following mode (FOLEN1), moves will ramp to a ratio (set with FOLRN
and FOLRD). If it is not in Following mode, moves will ramp to a velocity (V). Switching in
and out of Following mode does not change the value for final ratio or final velocity goals, but
simply changes which parameter is used as the goal.

Registration
Moves
(see page 155)

Registration inputs can be enabled with the INFNCi-H command while an axis is a follower,
and registration moves can interrupt either a Following mode move or a time-based move. The
registration move itself, however, is always a time based move, and implements the registration
velocity with respect to a stationary reference. Any trigger input can be used as a registration
input or for any Following feature that uses triggers, even at the same time.

198 6K Series Programmer’s Guide

Enter/Exit
Following Mode
While Moving

The FOLENØ command can be executed while a follower axis is moving at constant ratio. In
this case, the current velocity becomes the constant velocity, and the follower can accelerate or
decelerate to other velocities. The FOLEN1 command cannot be executed while the follower
axis is moving in the non-Following mode. Attempting to do so will result in the error
response “MOTION IN PROGRESS”.

Pause and
Continue

A program can be paused and continued, even if one or more axes is configured as a follower
axis. Those axes do not lose track of the master input, even though motion is stopped. As
usual, if a program finishes normally, or if COMEXS is set to zero (COMEXSØ), the program
cannot be continued. If a program is resumed, partially completed Following moves will be
completed; however, the remainder of the move is completed over the entire original master
distance (FOLMD value).

TVEL and TVELA
Commands

The TVEL and VEL commands have always reported an unsigned value (i.e. magnitude),
consistent with the fact that the V command is always positive, even if the move direction is
negative. When Following is enabled (FOLEN1), TVEL and VEL report the net magnitude of
commanded velocity due to following and/or shifting. For example, if the follower axis is
Following in the positive direction at 1 rps, TVEL reports 1.000. If a shift in the negative
direction of 1.5 rps is then commanded, TVEL will report 0.5 – still positive, even though the
net direction is negative.

By contrast, TVELA and VELA have always been signed. In the above example, TVELA will
report -0.5.

TASF, TAS & AS
Axis Status Bits

Axis Status (TASF, TAS and AS) bits 1-4 represent the motion status of an axis. Bits 1 and 2
represent the moving and direction status of the net motion of an axis, including the
combination of following and shifting.

Bits 3 and 4 represent acceleration and velocity, respectively. With Following disabled
(FOLENØ), the accel and velocity can only be due to a commanded time-based profile. With
Following enabled (FOLEN1), the net commanded velocity and accel could be due to
following the master and/or a simultaneous shift (time-based profile). Bits 3 and 4 only reflect
the acceleration and velocity status of the time-based profile, not the combined command.

For example, if the follower axis is Following in the positive direction at 1 rps, TAS reports
1ØØØ. If a continuous shift (FSHFC2) of 0.8 rps in the negative direction is then commanded,
TAS will report 1Ø1Ø, while the shaft is decelerating to 0.2 rps. When the continuous shift
velocity is reached, TAS will report 1ØØ1.

Changing
Feedback Sources
(Servo Axes only)

Changing feedback sources (SFB) can result in a follower axis Following its own feedback.
For this reason, changing feedback sources is not allowed while a master is specified
(FOLMAS).

Following and
Other Motion

Following motion is initiated with the GO command, just like normal motion. Other motion,
that does not depend on the motion of an external master, cannot be used while a follower axis
is in Following mode (FOLEN1). These motion types include jog mode, joystick mode,
contouring, homing, streaming mode, and linear interpolation (GOL). To use these motion
types, Following must be disabled (FOLENØ) — see Enter/Exit Following Mode While Moving
above for precautions.

Conditional
Statements Using
PMAS

The master cycle position (PMAS) value can be used in the comparison argument of these
commands:

• WAIT & GOWHEN: If it is desired to WAIT or GOWHEN on a master cycle position of the
next master cycle, one master cycle length (value of FMCLEN) should be added to the
master cycle position specified in the argument. This allows commands that sequence

 Chapter 6. Following 199

follower axis events through a master cycle to be placed in a loop. The WAIT or
GOWHEN command at the top of the loop could execute, even though the actual master
travel had not finished the previous cycle. This is done to allow a PMAS value that is
equal to the master cycle length to be specified and reliably detected.

• IF, UNTIL, & WHILE: These arguments use the instantaneous PMAS value. Be careful
to avoid specifying PMAS values that are nearly equal to the master cycle length
(FMCLEN), because rollover can occur before a PMAS sample is read.

Compiled Motion Following profiles can be pre-compiled to save processing time. For details, see page 139.

Troubleshooting for Following (also see Chapter 8)
The table below offers some possible reasons for troubles that can be encountered in achieving the desired follower motion.

Symptom Possible Causes
Follower axes do not follow master • Improper FOLMAS

• Poor connection if master is encoder
• Master running backward
• No encoder power (when the encoder is selected as the master)

Follower motion is rough • FFILT command value too low
• Unnecessary FPPEN amplifies master roughness

Ratio seems wrong • FOLRN and FOLRD follower-to-master ratio values are inaccurate, possibly
reversed

• SCLD or SCLMAS wrong
• Following limited by FMAXV or FMAXA (steppers only)

Follower profile wrong, or un-
repeatable

• WAIT used where GOWHEN should be
• Too little master travel between GOWHEN and GO1, desired PMAS is missed

Master/follower alignment drifts over
many cycles

• Roundoff error due to fractional steps resulting from SCLD or SCLMAS and user's
parameters

• Ratios and master distances specified result in fractional follower steps covered
during ramps, constant ratio

Follower lags Following position
 (steppers only)

• Inhibited by FMAXV
• FMAXA clips acceleration peaks resulting from attempt to follow rough master

Error Messages
If an illegal programming condition is discovered while programming or executing programs, the 6K controller responds
with an error message. If a program execution error is detected, the program is aborted.

The table below lists all the error messages that relate to Following, and indicates the command and cause that can generate
them. These error messages are displayed only if the error level is set to level 4 with the ERRLVL4 command (this is the
default setting).

200 6K Series Programmer’s Guide

Error Message Cause

FOLMAS NOT SPECIFIED No FOLMAS for the axis is currently specified. It will occur if FMCNEW, FSHFC, or
FSHFD commands are executed and no FOLMAS command was executed, or
FOLMASØ was executed.

INCORRECT DATA Velocity (V), acceleration (A), or deceleration (AD) command is zero. (used by
FSHFC & FSHFD)

INVALID CONDITIONS FOR
COMMAND

The FOLMD command value is too small to achieve the preset distance and still
remain within the FOLRN/FOLRD ratio.
A command phase shift cannot be performed:
 FSHFDError if already shifting or performing other time based move.
 FSHFCError if currently executing a FSHFD move, or if currently executing another

FSHFC move in the opposite direction.

The FOLEN1 command was given while a profile was suspended by a GOWHEN.

INVALID DATA The parameter supplied with the command is invalid.
 FFILTError if: smooth number is not 0-4
 FMCLEN...........Error if: master steps > 999999999 or negative
 FMCPError if: master steps > 999999999 or <-999999999
 FOLMDError if: master steps > 999999999 or negative
 FOLRDError if: master steps > 999999999 or negative
 FOLRNError if: follower steps>999999999 or negative
 FSHFCError if: number is not 0-3
 FSHFDError if: follower steps>999999999 or <-999999999
 GOWHEN...........Error if: position > 999999999 or <-999999999
 WAITError if: position > 999999999 or <-999999999

Error if a GO command is given in the preset positioning mode (MCØ) and:
 FOLRN = zero
 FOLMD = zero, or too small (see Preset Positioning Mode Moves on page 175)

INVALID FOLMAS SPECIFIED An illegal master was specified in FOLMAS. A follower can never use its own
commanded position or feedback source as its master.

INVALID RATIO Error if the FOLRN:FOLRD ratio after scaling is > 127 when a GO is executed.

MASTER SLAVE DISTANCE
MISMATCH

Attempting a preset Following move with a FOLMD value that is too small.

MOTION IN PROGRESS The FOLEN1 command was given while that follower was moving in a non-Following
mode.

NOT VALID DURING
FOLLOWING MOTION

A GO command was given while moving in the Following mode (FOLEN1) and while
in the preset positioning mode (MCØ).

NOT VALID DURING RAMP A GO command was given while moving in a Following ramp and while in the
continuous positioning mode (MC1). Following status (FS) bit 3 will be set to 1.

SYSTEM UPDATE OVERRUN,
USE SYSPER4

The system update service has overrun the time allotted with the default
2-millisecond period. Use the SYSPER4 command to increase the system update
period to 4 milliseconds.

Following Commands
Detailed information about these commands is provided in the
6K Series Command Reference.

ANIMAS Assigns an analog input to be used as a master in a FOLMAS assignment (requires a ANI SIM located on an
expansion I/O brick).

ERROR............................. Enable bit 14 to check for when a GOWHEN condition is already true when a subsequent GO, GOL, FGADV, FSHFC,
or FSHFD command is given.

ERRORP If ERROR bit 14 is enabled, a GOSUB branch to the error program occurs if a GOWHEN condition is already true

 Chapter 6. Following 201

when a subsequent GO, GOL, FGADV, FSHFC, or FSHFD command is given.
FFILT............................. Sets the bandwidth for master position filtering.
FGADV............................. Defines the geared advance distance.
FMAXA............................. Stepper axes only: Sets the maximum acceleration a follower can use while Following.
FMAXV............................. Stepper axes only: Sets the maximum velocity at which a follower can travel.
FMCLEN Defines the length of the master cycle.
FMCNEW Restarts new master cycle counting immediately. To make this a trigger-based operation instead of issuing the

FMCNEW command, use the TRGFNcx1 command.
FMCP............................... Defines the initial position of a new master cycle.
FOLEN............................. Enables or disables Following mode.
FOLK............................... Allows drive fault or maximum position error to disable drive without killing the Following profile.
FOLMAS Defines masters for follower axes.
FOLMD............................. Defines the master distance over which ratio changes or moves are to take place.
FOLRD............................. Establishes the DENOMINATOR ONLY for the maximum follower-to-master ratio for a preset move or the final

ratio for a continuous move (use in combination with the FOLRN command).
FOLRN............................. Establishes the NUMERATOR ONLY for the maximum follower-to-master ratio for a preset move or the final ratio

for a continuous move (use in combination with the FOLRD command).
FPPEN............................. Allows master position prediction to be enabled or disabled.
FSHFC............................. Allows continuous advance or retard (shift) of follower position during continuous Following moves.
FSHFD............................. Allows preset advance or retard (shift) of follower position during continuous Following moves.
FVMACC Establishes the rate at which the virtual master count frequency (FVMFRQ) can change for an axis.
FVMFRQ Defines the frequency of the virtual master count.
GOWHEN A GOWHEN command suspends execution of the next follower move until the specified conditional statement

(based on T, IN, LIM, PC, PE, PMAS, PSLV, or PSHF) is true. To make this a trigger-based operation instead of
issuing the GOWHEN command, use the TRGFNc1x command.

SCLD............................... Sets the follower distance scale factor.
SCLMAS Sets the master scale factor.
SINAMP Defines the amplitude of the internal sine wave.
SINANG Defines the phase angle of the internal sine wave.
SINGO............................. Initiates the internal sine wave.
TRGFN............................. aTRGFNc1x initiates a GOWHEN. Suspends execution of the next follower move on follower axis (a) until the

specified trigger input (c) goes active.
aTRGFNcx1 allows master cycle counting to be restarted on axis (a) when the specified trigger input (c) goes
active.

Status and Assignment Commands
TASF, TAS & [AS] Bit 26 of each axis status is set (1) if a motion profile suspended by a GOWHEN (including TRGFNc1x) is pending on

that axis. The bit is cleared when the GOWHEN is true, or when a stop (S) or kill (K) command is executed.
TERF, TER & [ER] Bit 14 is set if the GOWHEN condition is already true when a subsequent GO, GOL, FGADV, FSHFC, or FSHFD

command is given. (The corresponding error-checking bits must be enabled with the ERROR command before the
error will be detectable.)

TFSF, TFS & [FS] Transfers or assigns/compares the Following status or each axis.
TNMCY and [NMCY] Transfers or assigns the current master cycle number.
TPCMS and [PCMS] Transfers or assigns the current captured master cycle position.
TPMAS and [PMAS] Transfers or assigns the current master cycle position.
TPSHF and [PSHF] Transfers or assigns the net position shift since constant ratio.
TPSLV and [PSLV] Transfers or assigns the follower's current commanded position.
TVMAS and [VMAS] Transfers or assigns the current velocity of the master axis.
WAIT............................... A WAIT command suspends program execution until the specified conditional statement (based on PMAS, FS,

NMCY, PCMS, PSHF, PSLV, or VMAS) is true;
WAIT(SS.i=b1) suspends program execution until a trigger input is activated (“i” is the input bit number
corresponding to the trigger input—see the 6K Series Command Reference).

7

C H A P T E R S E V E N

Multi-Tasking

IN THIS CHAPTER
• Introduction to Multi-Tasking ...204
• Using 6K Resources While Multi-Tasking..213
• Multi-Tasking Performance Issues..217
• Multi-Tasking Application Examples ...219

204 6K Series Programmer’s Guide

Introduction to Multi-Tasking

What is Multi-Tasking? Multi-tasking is the ability of the 6K to run more than one program
at the same time. This allows users to manage independent sets of axes for multiple machines
or unrelated parts of a single machine.

Why use Multi-Tasking?
• Multiple independent tasks can act on the same process or same set of axes.
• A supervisory program can control and coordinate multiple processes or axes sets.

What is a Task? A system task is a program execution environment, not a program. Each
task runs independently. Each task can be used to run independent programs. Any task can
run any program. Multiple tasks could even be running the same program simultaneously.
Each task can either be:

• Running a program
• Monitoring ON, ERROR, or INSELP conditions
• Inactive (not running a program or monitoring conditions)

Using Multi-Tasking to Run Programs

Use the Wizard
Motion Planner provides
a Multi-Tasking wizard,
accessed from the
Editor. The wizard leads
you, step by step,
through the process of
setting up for multi-
tasking.

Multi-tasking is initiated by the Task Supervisor. The supervisor is the 6K controller’s main
program execution environment — it runs the STARTP program and contains the command
buffer and parser. If the multi-tasking feature is not being used, the supervisor is the lone
program execution environment of the 6K controller, as shown in Figure 1. When multi-
tasking is in operation, the supervisor is referred to as “Task 0”.

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory

move1

math

inout

move2

fill

seal

gohome

move3

main

Supervisor

Run Start-up Program

Execute Programs

Monitor Conditions

Command Buffer & Parser

6K8

VAR
VARB
VARI
VARS

PORT1 (RS-232)
PORT2 (RS-232/485)
Ethernet

Inputs
Outputs
Limits
Triggers

Figure 1: 6K Supervisor, with no Multi-Tasking

The 6K can have a maximum of 10 tasks, in addition to the Task Supervisor (Task 0). Each
task acts as an individual program execution environment. The boxes shown under Resources
in Fig. 1, and the following Figures, represent the resources that the supervisor and tasks

 Chapter 7. Multi-Tasking 205

monitor and manipulate (see list below). These resources can be shared with other tasks.
• I/O................................. Inputs and Outputs (onboard I/O and expansion I/O bricks)
• Communication ports ... “RS-232”, “RS-232/485”, and “ETHERNET”
• Axes.............................. Axes available with the 6K
• Variables Real (VAR), binary (VARB), integer (VARI), and string (VARS)

“Program Memory” is the 6K’s non-volatile memory where programs are stored. Any task
can run any program. Multiple tasks could even be running the same program
simultaneously. Programs in multi-tasking are defined as they typically are with the 6K

Resources Program Memory

move1

math

inout

move2

fill

seal

gohome

move3

main

Supervisor

Task 1

Task 2

Execute Programs
Monitor Conditions

Execute Programs
Monitor Conditions

Command Buffer & Parser

Run Start-up Program

Execute Programs
Monitor Conditions

Execute Programs
Monitor Conditions

Task 10

6K8

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

VAR
VARB
VARI
VARS

PORT1 (RS-232)
PORT2 (RS-232/485)
Ethernet

Inputs
Outputs
Limits
Triggers

Figure 2: 6K8 - Multi-Tasking with 10 tasks.

The Task Identifier (%) prefix is used to specify that the associated command will affect the
indicated task number. For most simple multi-tasking applications, the % prefix will only be
used to start a program running in a specific task. Multi-tasking programs can be started
through the communication ports (see Figs. 3a-3c), or from a program (see Figs. 4a-4d). Note
that the programs are run in the tasks specified with the % prefix.

Starting Tasks from
a Communications
Port Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory

move1

Supervisor

Task 1

6K8

Ethernet

1%move1

1%move1

1%move1

1%move1

DEF move1
_
_
_

END
Run move1

Figure 3a: Multi-Tasking initiated from a computer terminal.

206 6K Series Programmer’s Guide

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory

move1

Supervisor

Task 1

6K8

Ethernet

2%inout

2%inout

2%inout

2%inout

DEF move1
_
_
_

END

inout

DEF inout
_
_
_

END

Running move1

Task 2

Run inout

Figure 3b: Multi-Tasking initiated from a computer terminal (cont’d).

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory

move1

Supervisor

Task 1

6K8

Ethernet

3%fill

3%fill

3%fill

3%fill

DEF move1
_
_
_

END

inout

DEF inout
_
_
_

END

Running move1

Task 2

Running inout

Task 3

Run fill

fill

DEF fill
_
_
_

END

Figure 3c: Multi-Tasking initiated from a computer terminal (cont’d).

Starting Tasks from
a Program

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

RUN main

RUN main
RUN main

DEF main
_
_
_

1%move1
2%inout
3%fill
END

Figure 4a: Multi-Tasking initiated from a program.

 Chapter 7. Multi-Tasking 207

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

Task 1

6K8

Ethernet

Running main

1%move1

1%move1

1%move1 DEF main
_
_
_

1%move1
2%inout
3%fill
END

RUN move1

move1

DEF move1
_
_
_

END

Figure 4b: Multi-Tasking initiated from a program (cont’d).

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

Running main

2%inout

2%inout DEF main
_
_
_

1%move1
2%inout
3%fill
END

move1

DEF move1
_
_
_

END

inout

DEF inout
_
_
_

END

Task 1

2%inout

Running move1

Task 2

RUN inout

Figure 4c: Multi-Tasking initiated from a program (cont’d).

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

Running main

3%fill

3%fill DEF main
_
_
_

1%move1
2%inout
3%fill
END

move1

DEF move1
_
_
_

END

inout

DEF inout
_
_
_

END

fill

DEF fill
_
_
_

END

Task 1

Running move1

Task 2

Running inout

3%fill

Task 3

RUN fill

Figure 4d: Multi-Tasking initiated from a program (cont’d).

208 6K Series Programmer’s Guide

Interaction Between Tasks
A new task is initiated by identifying the task number with the Task Identifier (%) prefix,
followed by the name of the program to be run in the specified task. Because the % prefix
specifies the task number that the associated command will affect, new tasks can be started
from within other tasks. Fig. 5b shows the move1 program in task 1 being started by the
main program in the supervisor. Fig. 5c shows the fill program in task 3 being started by
the move1 program in task 1 with the 3%fill command. Fig. 5d shows the inout
program in task 2 being started by the fill program in task 3 with the 2%inout command.

Program execution in a task is controlled by commands executed from the program the task is
running. In the example shown in Figs 5a-5d, program execution in Task 1 is controlled by
commands executed from the move1 program, program execution in Task 2 is controlled by
commands executed from the inout program, and program execution in Task 3 is controlled
by commands executed from the fill program.

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

RUN main

RUN main
RUN main

DEF main
1%move1
_
_
_

END

Figure 5a: Initiating multi-tasking.

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

Task 1

6K8

Ethernet

Running main

1%move1

1%move1

1%move1
DEF main
1%move1
_
_
_

END

RUN move1

move1
DEF move1
3%fill
_
_

END

Figure 5b: Task initiated from another task (cont’d).

 Chapter 7. Multi-Tasking 209

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

Running main
DEF main
1%move1
_
_
_

END

move1
DEF move1
3%fill
_
_

END

fill

DEF fill
2%inout
_
_

END

Task 1

Running move1

3%fill

3%fill

3%fill

Task 3

RUN fill

Figure 5c: Task initiated from another task (cont’d).

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

Running main
DEF main
1%move1
_
_
_

END

move1
DEF move1
3%fill
_
_

END

inout

DEF inout
_
_
_

END

fill

DEF fill
2%inout
_
_

END

Task 1

Running move1

Task 2

RUN inout
2%inout

2%inout 2%inout

Task 3

Running fill

Figure 5d: Task initiated from another task (cont’d).

210 6K Series Programmer’s Guide

Axes & Tasks

Refer to page 213 for
more details about

associating axes with
tasks.

The default condition in multi-tasking is that each task is associated with all controller axes, as
shown in Fig. 6a. This means that when an axis being used in a task hits an end-of travel limit,
program execution will be killed within that task, and in all other tasks, because they all share
that axis. It can therefore be necessary to assign a set of axes to a given task to allow a multi-
axis controller to be used as more than one independent program execution environment.

The TSKAX command allows you to assign axes to specific tasks, thus constraining task
response and control to a smaller set of axes. A task is allowed to control only its associated
axes. This axis association covers all interaction between axes commands, conditions or inputs
and task program flow. For example, if a 6K controller is controlling two independent
machines that do not share common axes, with control of each machine as a separate task, a
limit hit by an axis in one machine can kill the task running that machine, but will not kill the
task running the other machine.

Default = All Axes

Resources Program Memory

move1

math

inout

move2

fill

seal

gohome

move3

main

Supervisor

Task 1

Task 2

Execute Programs
Monitor Conditions

Execute Programs
Monitor Conditions

Command Buffer & Parser

Run Start-up Program

Execute Programs
Monitor Conditions

Execute Programs
Monitor Conditions

Task 10

6K8

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

VAR
VARB
VARI
VARS

PORT1 (RS-232)
PORT2 (RS-232/485)
Ethernet

Inputs
Outputs
Limits
Triggers

Default = All Axes

Default = All Axes

Figure 6a: Each task is associated with all controller axes in default condition.

The TSKAX command syntax identifies the first and last axis numbers (range) associated with
the task. Thus, the axes associated with a task will always be consecutive. For example, the
following commands will associate axes 1-3 with Task 1, axes 4-6 with Task 2, and axes 7
and 8 with Task 3. These associations are illustrated in Figures 6b-6d below. If axis 3 in task
1 hits a limit, program execution in task 1 will be killed, but task 2 and task 3 can continue to
run because they are independent and do not share axis 3.
DEF main ; Begin definition of program called "main"
1%TSKAX1,3 ; Associate axes 1-3 with Task 1 (see Fig 6b)
2%TSKAX4,6 ; Associate axes 4-6 with Task 2 (see Fig 6c)
3%TSKAX7,8 ; Associate axes 7 & 8 with Task 3 (see Fig 6d)
1%move1 ; Execute the "move1" program in Task 1 (affects axes 1-3)
2%inout ; Execute the "inout" program in Task 2 (affects axes 4-6)
3%fill ; Execute the "fill" program in Task 3 (affects axes 7 & 8)
END ; End definition of program called "main"

 Chapter 7. Multi-Tasking 211

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

1%TSKAX1,3

1%TSKAX1,3

1%TSKAX1,3

DEF main
1%TSKAX1,3
2%TSKAX4,6
3%TSKAX7,8
1%move1
2%inout
3%fill
END

move1

DEF move1
_
_
_

END

inout

DEF inout
_
_
_

END

fill

DEF fill
_
_
_

END

Task 1

Task 2

Task 3

Assign Axes 1, 2, 3

Running main

Figure 6b: Executed from the “main” program, the 1%TSKAX1,3 command assigns axes 1-3 to Task 1.

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

2%TSKAX4,6

2%TSKAX4,6

2%TSKAX4,6

DEF main
1%TSKAX1,3
2%TSKAX4,6
3%TSKAX7,8
1%move1
2%inout
3%fill
END

move1

DEF move1
_
_
_

END

inout

DEF inout
_
_
_

END

fill

DEF fill
_
_
_

END

Task 1

Task 2

Task 3

Assign Axes 4, 5, 6

Running main

Figure 6c: Executed from the “main” program, the 2%TSKAX4,6 command assigns axes 4-6 to Task 2.

212 6K Series Programmer’s Guide

Resources

Variables

Serial Ports

Axes

I/O

1
2
3
4
5
6
7
8

Program Memory
main

Supervisor

6K8

Ethernet

3%TSKAX7,8

3%TSKAX7,8

3%TSKAX7,8

DEF main
1%TSKAX1,3
2%TSKAX4,6
3%TSKAX7,8
1%move1
2%inout
3%fill
END

move1

DEF move1
_
_
_

END

inout

DEF inout
_
_
_

END

fill

DEF fill
_
_
_

END

Task 1

Task 2

Task 3

Assign Axes 7, 8

Axes 4, 5, 6

Axes 1, 2, 3

Running main

Figure 6d: Executed from the “main” program, the 3%TSKAX7,8 command assigns axes 7 and 8 to Task 3.

How a “Kill” Works While Multi-Tasking
The general rule of command execution within a task is that the command affects only the
task in which it was executed or to which it was directed via the % prefix. This includes
almost all motion commands when tasks have associated (TSKAX) axes. The exception is the
Kill command. A “K” or “!K” without prefix or parameters will kill all controller axes, and
programs running in all tasks. This exception is made to allow one short, familiar command
to effectively stop all controller processes. As usual, a “K” with parameters (e.g., Kx11) will
kill motion only on the specified axes, and will not kill the program. A “K” prefixed with a
task specifier but without parameters (e.g., 3%K) will kill the program and motion of all axes
associated with that task.

Certain inputs can be used to kill programs and motion. These inputs and their results under
multi-tasking are:

• Drive Fault input. Kills program execution and associated axes for all tasks that are
associated with the faulted axis.

• Kill input (INFNCi-C or LIMFNCi-C). If prefixed with the task identifier (e.g.,
2%INFNC3-C), it will kill the designated task, its program and associated axes. If not
prefixed with a task identifier, it will kill all controller axes, and programs running in
all tasks. It will also cause a branch to the task’s error program if the task’s error-
checking bit 6 is enabled (n%ERROR.6-1).

• User fault input (INFNCi-F or LIMFNCi-F). This input functions the same as the kill
input noted above, with the exception that it will also cause a branch to the task’s error
program if the task’s error-checking bit 7 is enabled (n%ERROR.7-1).

 Chapter 7. Multi-Tasking 213

Using 6K Resources While Multi-Tasking

Associating Axes with Tasks
The default condition in multi-tasking is that each task is associated with all controller axes.
The TSKAX command allows you to assign axes to specific tasks, thus constraining task
response and control to a smaller set of axes. The TSKAX command allows you to specify the
first and last axis numbers associated with the task; thus, the axes associated with a task will
always be consecutive. This association covers all interaction between axes commands,
conditions or inputs and task program flow, including the following:

• Axis data commands (e.g., A, V, D). These commands will affect only the associated
axes. If data is supplied in the fields of non-associated axes, it will be ignored. To alter
the data of an axis associated with another task, that task number must prefix the
command (e.g., if axis 3 is associated with task 2 but not task 1, then to change axis 3
velocity to 5 units/sec from task 1, the command 2%3V5 can be issued).

• Stop, pause, and continue commands and inputs. These commands will affect motion
only on the associated axes of the task receiving the command: S (stop) command —
without parameters, PS (pause) command, and C (continue) command. Inputs
programmed with these functions will affect motion only on the associated axes of the
task specified in the input function assignment (with the n% prefix): Kill input
(n%INFNCi-C or n%LIMFNCi-C), stop input (n%INFNCi-D or n%LIMFNCi-D),
pause/continue input (n%INFNCi-E or n%LIMFNCi-E), and user fault input
(n%INFNCi-F or n%LIMFNCi-F).

• Drive fault and limit inputs. If a drive fault or end-of-travel limit occurs on an axis,
only tasks that include that axis as an associated axis will be killed.

• ON conditions. If user status information includes axis status bits, and ONUS is
enabled via ONCOND, then only bits of an associated axis will be monitored by that
task.

• ERROR conditions. Each task has its own error status register (ER, TER, TERF), error-
checking bits (ERROR), and error program (ERRORP). If an axis-related error occurs,
only the task that is associated (TSKAX) with the axis is affected.

• Command buffer control:
− COMEXC. Pauses command processing of that task until no associated axes are

moving.
− COMEXL. Allows specified associated axes to not kill that task’s program.

(COMEXL applies to axes, and any task that includes an axis will be affected by
that axis’ COMEXL status. An axis can’t be enabled for one task and disabled for
another.)

− COMEXR. Motion on only the associated axes will also pause if a task-specific
pause input becomes active.

• OUTFNC bits. Output bits defined without an axis specifier will become active if the
condition becomes true on any associated axis.

214 6K Series Programmer’s Guide

Sharing Common Resources Between Multiple Tasks
Controller resources other than processing time must also be shared between multiple tasks.
All physical inputs and outputs are shared (i.e., each task can read all inputs and write to all
outputs). Some of the functions associated with that I/O (defined with LIMFNC, INFNC and
OUTFNC commands) are unique for each task. All variables (VAR, VARI, VARB, VARS),
DATA programs, and the DATPTR are shared. If one task modifies a variable, a DATA
program, or DATPTR, the new value is the same for all tasks. There are no “private” variables.
The serial ports are shared (i.e., any task can read from, or write to, any serial port). When a
task writes to a serial port, the characters are all sent to the output buffer at once, but
execution proceeds to the next command without waiting for those characters to be
transmitted.

The data assignment functions READ, DREAD, or DREADF, and TW are also shared between
tasks, but in these cases, the task is not allowed to execute the next command until the data
has been received and assigned. This requires waiting for human or host input, or
thumbwheel strobe time. During this time, that task is “blocked”, and that data assignment
function (READ, DREAD, or DREADF, or TW) is owned by the blocked task. If another task is
active, it will continue to execute commands. If this second task attempts to access a data
assignment function that is still owned by the first task, the second task becomes blocked also.
This situation persists until the first task receives and assigns its data. At that point,
ownership of the data assignment function passes to the second task, until it too receives and
assigns its data. All this blocking and ownership is automatic, not requiring coordination by
the user.

Locking Resources to a Specific Task

Examples:
LOCK1,1 locks COM1
LOCK1,0 unlocks COM1
LOCK2,1 locks COM2
LOCK2,0 unlocks COM2
LOCK3,1 locks swapping
LOCK3,0 unlocks swapping

The LOCK command can be used by a system task to gain or release exclusive ownership of a
resource. This will allow that task to complete a sequence of commands with that resource
while preventing another task from using the resource in between commands. Any other task
attempting to access or LOCK that resource will become blocked (i.e., become temporarily
totally inactive) until the resource is released by the task that owns it. Resources that can be
LOCKed are:

• COM1 — the “RS-232” connector or the “ETHERNET” connector
• COM2 — the “RS-232/485” connector
• Task Swapping — When task swapping is locked to a specific task, command

statements in all other tasks will not be executed until the task swapping is again
unlocked. For more information on task swapping, see page 218.

NOTE: A resource can be locked by a task only while that task is executing a program. If
program execution is terminated for any reason (e.g., stop, kill, limit, fault, or just reaching the
END of a program), all resources locked by that task will become unlocked.

For example, to report the current position of a robotic arm, one might program:
VAR10 = 2PM ; position of axis two
LOCK1,1 ; lock COM1 ("RS-232" port) resource
WRITE "Arm Position is" ; write string
WVAR10 ; write position
WRITE "inches\13" ; write string and carriage return
LOCK1,0 ; release COM1 to other tasks
; Between the LOCK commands, other tasks will run unless they
; attempt to access COM1, in which case they become
; temporarily blocked. The same concept applies to COM2 and task
; swapping. In the extreme, the LOCK command may be used to prevent
; other tasks from doing anything, allowing one task all command
; processing resources. This might be done to maximize the speed
; of a group of commands, or to protect a sequence which is not
; otherwise covered with the LOCK options.

 Chapter 7. Multi-Tasking 215

How Multi-tasking and the % Prefix Affect Commands and Responses
Multi-tasking affects many, but not all, of the 6K commands and features. The table below
lists the commands that are affected by multi-tasking and the task-identifier (%) prefix. Any
command that is not listed can be considered unaffected by multi-tasking. Any command that
has axis data (e.g., A, V, D) is only affected if the axes have been associated with a task via the
TSKAX command. Any command listed below as affected by the % prefix can also accept the
@ character as a task number; in this case, all tasks will be affected by the command.

The response (if any) sent to the terminal by the command will be prefixed with the task
number and % sign if the command had been executed by any task other than Task 0, the
Supervisor Task. For commands executed in Task 1, if the command itself had the 1% prefix,
then the response will also have the prefix. Otherwise, the response will not be prefixed.
Therefore, if no multi-tasking is used, no responses will have task prefixes. If multi-tasking is
used, however, you can determine which task originated the response. A response could be
the result of a transfer command (e.g., TER), a command with no parameters (e.g. MC),
trace output, or an error message.

Command(s) Effect of % Prefix Effect of Multi-tasking

GOTO, IF, ELSE, NIF,
WHILE, NWHILE, REPEAT,
UNTIL, L, LN, LX

None (ignored) These commands direct program
flow only on the task from which
they are executed.

GOSUB, RUN, <progname>,
JUMP, HALT, BP, PS, T,
WAIT, C

Effectively inserts
command into
numbered task’s
program

These commands initiate, interrupt
or continue program flow only on
implicitly or explicitly specified task.

COMEXC, COMEXR, COMEXS Affects mode on
numbered task

These commands affect program
flow only on implicitly or explicitly
specified task.

S, K Specifies affected
task and axes, or
axes only

These commands affect program
flow and/or associated axes
(depending on parameters given)
only on implicitly or explicitly
specified task. A “K” with no prefix
or parameters kills all tasks.

ERROR, ERRORP, TER,
TERF, ER

Affect/report on
numbered task

These commands affect/report
error conditions and programs only
on implicitly or explicitly specified
task (each task has its own error
status register and error program).

TCMDER, TSS, TSSF, SS,
TSTAT

Report on numbered
task

These commands report command
errors and status only on implicitly
or explicitly specified task.

TTIM, TIMINT, TIMST,
TIMSTP, TIM

Command refers to
timer of numbered
task

Each task has an independent
timer. Also, TIMST0,# resets the
timer to # msec., TIMST1,# restarts
the timer with the TIM value of task
#.

TRACE, TRACEP, TEX,
STEP, #

Command refers to
numbered task

Each task has its own trace and
step mode. This allows tracing on
a single task, or combined tasks
commands.

ONCOND, ONIN, ONP, ONUS,
ONVARA, ONVARB

Command refers to
numbered task

Each task has its own set of ON
conditions and its own ONP
program.

LIMFNCi-C, LIMFNCi-D, Command refers to These functions are task specific.

216 6K Series Programmer’s Guide

LIMFNCi-E, LIMFNCi-F,
LIMFNCi-P,
INFNCi-C, INFNCi-D,
INFNCi-E, INFNCi-F,
INFNCi-P,
INSELP,
OUTFNCi-C

numbered task All others affect the entire controller
and cannot be affected by the %
prefix.

Input and Output Functions and Multi-tasking
The 6K has inputs and outputs (onboard and on external optional I/O bricks) that can be
assigned various I/O functions with these function assignment commands:

limfnc Assigns input functions to the dedicated limit inputs on the “LIMITS/HOME”
connectors (factory default functions are the respective R, S, and T limit
input functions).

INFNC.......... Assigns input functions to the onboard digital inputs (trigger input on the
“TRIGGERS/OUTPUTS” connectors) and to the digital inputs on external I/O
bricks.

OUTFNC Assigns output functions to the onboard digital outputs (outputs on the
“TRIGGERS/OUTPUTS” connectors) and to the digital outputs on external I/O
bricks.

The 6K’s I/O and events involving programmed I/O are related to tasks only if:

• The input or output function assignment is associated with a specific task. For example,
because of the 1% prefix, the 1%INFNC3-F command assigns the “user fault” function
to onboard input 3 and directs its function to be specific to Task 1.

• An input or output is assigned an axis-specific function and the axis is associated with a
specific task. For example, if axes 2 and 3 are associated with Task 1 (1%TSKAX2,3)
and onboard input 4 is assigned as a “stop” input for axis 2 (INFNC4-2D), then when
onboard input 4 goes active axis 2 is stopped; thus Task 1 is affected by input 4.

Each input or output group (LIMFNC, INFNC, and OUTFNC) is limited to a maximum of 32
function assignments at one time. Exceptions are: function A, LIMFNC functions R, S, and T,
and INFNC function H. A given input or output can be assigned only one function, although
for task-specific functions, this I/O point can perform the same function for multiple tasks (by
using the % prefix). This only counts as one function against the maximum total of 32, even
though it is shared by multiple tasks. A given I/O point cannot perform different functions for
different tasks. Re-assigning a I/O point’s function in any (same or different) task will result
in removing the assignment of the previous function in the previous task(s). For example:
1%2INFNC4-C ; module 2's 4th input will kill task 1
2%2INFNC4-C ; module 2's 4th input now kills tasks 1 & 2
3%2INFNC4-D ; module 2's 4th input will stop all axes in task 3,

; it no longer has a kill function for tasks 1 & 2

 Chapter 7. Multi-Tasking 217

Axis-Specific I/O
Functions

The table on page 215 shows the LIMFNC, INFNC and OUTFNC functions that can be shared
by multiple tasks. A special case is the “stop” input function (INFNCi-aD or LIMFNCi-aD).
Here, “a” is the optional axis number. If it is not included, the function stops the program and
all associated (via TSKAX) axes of a task. In this case, the function is task specific, and can be
shared by multiple tasks. If an axis number is included, it simply stops motion on the specified
axis, and does not affect program flow. In this case, the function is not task specific; it
associates an input with only one physical axis. The same is true for any INFNC or OUTFNC
function that can accept (or require) an axis identifier. An I/O function can be associated with
only one physical axis. The actual physical axis associated with the input or output is
determined at the time the LIMFNC, INFNC or OUTFNC command is issued, in the context of
current value of TSKAX for the current or % designated task. That association does not change
if TSKAX changes later. As with all commands, if the specified axis is not part of the
associated axes group (via TSKAX) of the task, the command will be ignored. Refer to the
example below.

Example TSKAX1,4 ; task 1 associated with physical axes 1-4
2%TSKAX5,8 ; task 2 associated with physical axes 5-8

Multi-Tasking Performance Issues

When is a Task Active?
Tasks are always ready to become active if commanded to do so. No special command is
required to allow a task to do something. A task is active if it is:

• Executing a program (SS.3=B1)
• Executing a T or WAIT command (even if not running a program)
• Monitoring drive faults conditions (DRFEN1)
• Monitoring ONCOND conditions (SS.15=B1)
• Waiting in Program Select Mode (INSELP1 and SS.18=B1)
• Monitoring ERROR conditions (ERROR has any non-zero bit)

A task becomes active when it receives a command to perform something from the list above.
A task that is not active does not create any overhead (delays) in command processing for
tasks that are active. Once a task becomes active, however, it takes its turn in the sequence of
swapping (see below), and checks for all of the conditions listed above. This adds a
processing burden that will slow the command execution rate of programs running in other
tasks.

A task becomes inactive if nothing from the above list is occurring. There is no special
command “kill task” to disable all these modes/conditions/activities at once. The standards
methods for terminating these (S, INSELP0, ERROR0, etc.) are needed to make a task
completely inactive, and therefore not creating command processing overhead. Task 0, the
Task Supervisor, will always be active, even if nothing from the above list is occurring,
because Task 0 always checks the input command buffer for commands to execute.

The TSWAP command reports a binary bit pattern indicating the tasks that are currently active.
Bit 1 represents task 1, bit 2 represents task 2, etc. A “1” indicates that the task is active, and
a “0” indicates that the task is inactive. The SWAP assignment operator allows the same
information to be assigned to a binary variable, or evaluated in a conditional statement such as
IF or WAIT. This is useful for determining which tasks have any activity, whereas the system
status (SS) and error status (ER) states reveal exactly what activity a given task has at that
time.

218 6K Series Programmer’s Guide

Task Swapping
The 6Kn controller has only one processor responsible for executing programs, therefore,
multiple tasks are not actually executing simultaneously. Tasks take turns executing when
they are active. A task’s “turn” consists of executing one command and checking its input,
output, ON, ERROR and INSELP conditions before relinquishing control to the next task. The
process of changing from one task to the next is called task swapping. The 6K controller
determines when to swap tasks. The user is not required (or allowed) to determine how long a
task should run, or when to relinquish control to another task.

Although the user does not determine how long a task should run, or when to relinquish
control to another task, the number of “turns” a task gets before swapping can be set with the
TSKTRN command. The default value is one for all active tasks. Thus, each task has equal
weight, swapping after every command. If a task needs a larger share of processing time
however, the TSKTRN value for that task can be increased. For example, if task 2 issued a
TSKTRN6 command, while the others stayed at 1, programs running in task 2 would execute
six commands before relinquishing. The TSKTRN value for a task can be changed at any
time, allowing a task to increase its weight for an isolated section of program statements.

The TTASK command reports to the display the task number of the task that executed the
command. This could be used for diagnostic purposes, as a way to indicate which task is
executing a given section of program. The corresponding TASK assignment allows the
program itself to determine which task is executing it. The current task number TASK can be
assigned to a variable or evaluated in a conditional statement such as IF. This allows a single
program to be used as a subroutine called from programs running in all tasks, yet this routine
could contain sections of statements that are executed by some tasks and not others.

Task Execution Speed
Two terms describe the execution speed of tasks in multi-tasking environments.

Performance Performance is a measure of how fast a task executes commands, and could be described in
terms of commands per second. Because tasks must take turns executing, performance will
decrease when tasks are added. For example, the performance of a task sharing the controller
with two other tasks will be just one third of its performance if it were running by itself. Using
the TSKTRN command described above, the relative performances of tasks can be altered.

Determinism Determinism is a measure of how independent the performance of one task is from the
commands and conditions involved in another task. If task swapping were done via a periodic
interrupt (time slicing), task performance would be completely determinate, i.e., each task
would run exactly for its time slice, not more or less. In the 6K products, task swapping is not
time sliced, rather each task is allowed to execute one command and check its input, output,
ON, ERROR and INSELP conditions before relinquishing control to the next task. For this
reason, the performance of each task is somewhat determined by the commands and conditions
underway in the other tasks. Most commands execute in approximately the same time. The
others (some math commands, and line and arc commands) are broken into sections with
durations that approximate those of the average command (approximately 2 ms). Swapping
also takes place between these sections, allowing all task performance to be reasonably
determinate regardless of which commands are being executed by other tasks.

Although time slicing would give completely determined task performance, the task swapping
would need to include additional task save and restore functions to completely protect the task
from the interrupt. This additional overhead would effectively rob processor time from the
time slice, resulting in lower task performance. Task swapping in the 6K products does not
add this overhead, and is therefore extremely efficient, taking less than 0.5% of task execution
time.

 Chapter 7. Multi-Tasking 219

Multi-Tasking Application Example

One machine multi-tasking application

A machine must perform three processes to a product. They are:

1. Fill the bottle with product. (axes 1,2)
2. Put a cap on the bottle. (axes 3,4)
3. Put the bottle in a box. (axes 5,6)

Each process must operate independently, because they wait on inputs that are not
synchronized with each other. Even so, if one process slows too much, the others must also
slow, to accommodate overall product flow. If a drive fault or limit occurs on any axis of any
process, the entire machine must stop.

Solution Create programs CAP, FILL, BOX, SETUP, and MAIN. The first three will control the
respective processes, and will each be run from their own task. The STARTP program will be
SETUP. SETUP will initialize all I/O and motion parameters, launch the tasks that run CAP,
FILL and BOX, then jump to MAIN, which monitors the overall product flow. The TSKAX
command is not used, with the result that all tasks are affected by limits or faults on any axis.
DEF SETUP
INFNC1-A ; set up I/O (assign onboard inputs 1-7 as
INFNC2-A ; "general-purpose" inputs)
INFNC3-A ;
INFNC4-A ;
INFNC5-A ;
INFNC6-A ;
INFNC7-A ;
OUT011001 ; initialize outputs
@A100 ; set up all accelerations
V4,5,7,6,32,12 ; set up all velocities
VARB1=B1 ; process 1 (filler) flag
VARB2=B1 ; process 2 (capper) flag
VARB3=B1 ; process 3 (boxer) flag
2%FILLER ; start filler in task 2
3%CAPPER ; start capper in task 3
4%BOXER ; start boxer in task 4
JUMP MAIN
END

DEF MAIN
WHILE(IN.1=B1) ; while process is running
 IF (IN.5=B1) ; If filling too fast (high-flow input on)
 VARB1=B0
 ELSE
 VARB1=B1
 NIF
 IF (IN.6=B1) ; If capping too fast (high-flow input on)
 VARB2=B0
 ELSE
 VARB2=B1
 NIF
 IF (IN.7=B1) ; If boxing too fast (high-flow input on)
 VARB3=B0
 ELSE
 VARB3=B1
 NIF
NWHILE
END

(continued on next page)

220 6K Series Programmer’s Guide

(continued from previous page)

DEF FILLER
WHILE(IN.1=B1) ; while process is running
 IF(VARB1=B1) ; if allowed by MAIN
 WAIT(IN.2=B1) ; fill input
 D4000,6000
 GO11
 WAIT(IN.2=B0)
 D-4000,-6000
 GO11
 NIF
NWHILE
END

DEF CAPPER
WHILE(IN.1=B1) ;while process is running
 IF(VARB2=B1) ;if allowed by MAIN
 WAIT(IN.3=B1) ;cap input
 D,,7000,5000 ;could write "3D7000,5000"
 GOXX11 ;could write "3GO11"
 WAIT(IN.3=B0)
 D-,,7000,-5000 ;could write "3D7000,-5000"
 GOXX11 ;could write "3GO11"
 NIF
NWHILE
END

DEF BOXER
WHILE(IN.1=B1) ;while process is running
 IF(VARB3=B1) ;if allowed by MAIN
 WAIT(IN.4=B1) ;cap input
 D,,,,7000,5000 ;could write "5D7000,5000"
 GOXXXX11 ;could write "5GO11"
 WAIT(IN.4=B0)
 D-,,,,7000,-5000 ;could write "5D7000,-5000"
 GOXXXX11 ;could write "5GO11"
 NIF
NWHILE
END

STARTP SETUP

8

C H A P T E R E I G H T

Troubleshooting

IN THIS CHAPTER
• Troubleshooting basics ..222
• Solutions to common problems (problem/cause/remedy table).................222
• Program debug tools

 - Status commands ..226
 - Error messages ..232
 - Trace mode..236
 - Single-step mode...237
 - Simulating programmable I/O activation..238
 - Simulating analog input activation..240
 - Motion Planner’s Panel Gallery ..240

• Technical support...241
• Operating system upgrades ..241
• Product return procedure ...241

222 6K Series Programmer’s Guide

Troubleshooting Basics
When your system does not function properly (or as you expect it to operate), the first thing
that you must do is identify and isolate the problem. When you have accomplished this, you
can effectively begin to resolve the problem.

The first step is to isolate each system component and ensure that each component functions
properly when it is run independently. You can have to dismantle your system and put it back
together piece by piece to detect the problem. If you have additional units available, you can
want to exchange them with existing components in your system to help identify the source of
the problem.

Determine if the problem is mechanical, electrical, or software-related. Can you repeat or re-
create the problem? Random events can appear to be related, but they are not necessarily
contributing factors to your problem. You can be experiencing more than one problem. You
must isolate and solve one problem at a time.

Log (document) all testing and problem isolation procedures. Also, if you are having
difficulty isolating a problem, be sure to document all occurrences of the problem along with
as much specific information as possible. You can need to review and consult these notes
later. This will also prevent you from duplicating your testing efforts.

Once you isolate the problem, see the problem solutions contained in this chapter. If the
problem persists, contact your local technical support resource (see Technical Support below).

Electrical Noise
If you suspect that the problems are caused by electrical noise, see your 6K product's
Installation Guide for help.

Solutions to Common Problems

NOTES
• Some hardware-related causes are provided because it is sometimes difficult to identify a

problem as either hardware or software related.
• Refer to other sections of this manual for more information on controller programming

guidelines, system set up, and general feature implementation. You can also see the
command descriptions in the 6K Series Command Reference. Refer to your product’s
Installation Guide for hardware-related issues.

Problem Cause Solution
Communication
(Ethernet) errors.

1. Ethernet card not installed
correctly.

1. Refer to the user instructions that came with your Ethernet card.

 2. Ethernet IP address conflict. 2. Change IP address with the NTADDR command.
 3. Connection to Ethernet port is

compromised or miswired.
3. Refer to the connection instructions in the Installation Guide.

Communication (serial)
not operative, or receive
garbled characters.

1. Improper interface connections or
communication protocol.

1. See troubleshooting section in your product’s Installation Guide.

 2. COM port disabled. 2.a. Enable serial communication with the E1 command.
2.b. If using RS-485, make sure the internal jumpers are set
accordingly (see Installation Guide). Make sure COM 2 port is
enabled for sending 6K language commands (execute the PORT2
and DRPCHKØ commands).

 3. In daisy chain, unit cannot be set to
proper address.

3. Verify DIP switch settings (see Installation Guide), verify proper
application of the ADDR command.

 Chapter 8. Troubleshooting 223

Problem Cause Solution
Direction is reversed.
(stepper axes only)

1. Direction connections to the drive
are reversed.

1. Switch DIR+ with DIR- connection to drive.

 2. Phase of step motor reversed
(motor does not move in the
commanded direction).

2. Switch A+ with A- connection from drive to motor.
SOFTWARE ALTERNATIVE: If the motor (and the encoder if one is
used) is reversed, use the CMDDIR1 command to reverse the
polarity of both the commanded direction and the polarity of the
encoder counts).

 3. Phase of encoder reversed
(reported TPE direction is reversed).

3. Swap the A+ and A– connection at the ENCODER connector.

Direction is reversed,
servo condition is stable.
(servo axes only)

1. Command output (CMD)
connections and feedback device
connections or mounting are
reversed.

1. Software remedy: Issue the CMDDIR1 command to the affected
axis. This reverses the polarity of the commanded direction and the
feedback direction so that servo stability is maintained.

Hardware remedy: Switch CMD- with the CMD+ connection to drive
or valve (if your drive or valve does not accept differential outputs
this will not work). You will also have to change the feedback device
wiring or mounting so that it counts in same direction as the
commanded direction.

Direction is reversed,
servo condition is
unstable.
(servo axes only)

1. Not tuned properly. 1. Refer to tuning instructions in your product's Installation Guide.

 2. Phase of encoder reversed or
mounting of ANI input is such that it
counts in the opposite direction as the
commanded direction.

2. Software remedy for encoder feedback only: For the affected
axis, issue ENCPOL1.

Hardware remedy: If using encoder feedback, swap the A+ and A-
connections to the 6K product. If using ANI feedback, change the
mounting so that the counting direction is reversed.

Distance, velocity, and
accel are incorrect as
programmed.

1. Incorrect resolution setting. 1.a. Stepper axes: Set the resolution on the to match the 6K
product’s DRES command setting (default DRES setting is 4,000
steps/rev).
1.b. Match the 6K product's ERES command setting (default ERES
setting is 4,000 counts/rev) to match the post-quadrature resolution
of the encoder.
ERES values for Compumotor encoders:

Stepper axes:
 • RE, -RC, -EC, & -E Series Encoders:..... ERES4000
 • HJ Series Encoders:............................... ERES2048

Servo axes (SM, N or J Series Servo Motors):
 • SM/N/JxxxxD-xxxx:................................. ERES2000
 • SM/N/JxxxxE-xxxx: ERES4000

Dynaserv (stepper and servo):
 • DR10xxB .. ERES507904
 • DR1xxxE... ERES614400
 • DR1xxxA... ERES819200
 • DR5xxxB... ERES278528
 • DR5xxxA... ERES425894
 • DM10xxB .. ERES655360
 • DM1xxxA .. ERES1024000
 • DM1004x .. ERES655360

 2. Pulse width too narrow.
(stepper axes)

2. Set pulse width to drive specifications using the PULSE command.
See page 47 for Parker drive PULSE settings.

 3. Wrong scaling values. 3. Check the scaling parameters (SCALE1, SCLA, SCLD, SCLV,
SCLMAS) – see also page 48.

Erratic operation. 1. Electrical Noise. 1. Reduce electrical noise or move product away from noise source.
 2. Improper shielding. 2. Refer to the instructions in your product’s Installation Guide.
 3. Improper wiring. 3. Check wiring for opens, shorts, & mis-wired connections.
Feedback device (encoder
or ANI) counts missing.

1. Improper wiring. 1. Check wiring.

 2. Feedback device slipping. 2. Check and tighten feedback device coupling.
 3. Encoder too hot. 3. Reduce encoder temperature with heatsink, thermal insulator, etc.
 4. Electrical noise. 4a. Shield wiring.

4b. Use encoder with differential outputs.
 5. Encoder frequency too high. 5. Peak encoder frequency must be below 12 MHz post-quadrature.

Peak frequency must account for velocity ripple.

224 6K Series Programmer’s Guide

Problem Cause Solution
Following problems — see page 199.
Joystick mode:
Motor does not move.

1. Joystick Release input not
grounded.

1.a. If an input is not assigned the “Joystick Release” input function,
do so with the INFNCi-M command (see page 86).
1.b. Ground the Joystick Release input.

 2. Improper wiring. 2. Check wiring for opens, shorts, and mis-wired connections.

LEDs: All other LED states indicate hardware c
“POWER” LED is
off.

1. No power. 1. Check 24VDC power connection and restore power.

“POWER” LED is
red.

1. General fault.
2. ENABLE input not grounded.

1. Reset the controller by one of these methods:
• Cycle power
• Issue the RESET command

2. Ground the ENABLE input.
An “AXIS” LED is on
(red).

1. Drive was commanded to shut
down (DRIVE0). If Disable Drive on
Kill mode is enabled (KDRIVE1), a kill
command or kill input will also
disabled the drive.
2. Servo Axes: Maximum position
error (SMPER value) exceeded. Could
be caused by disconnected or
mismounted feedback device.

1. Re-enable the drive by sending a DRIVE1 command to the
affected axis.
2. (verify position error by checking to see if TAS/TASF bit 23 is set)
Check feedback device connection and mounting and re-enable
drive by sending DRIVE1 command to the affected axis.

Motion does not occur. 1. “AXIS” LED is red, or “POWER”
LED is off or red.

1. See LED troubleshooting as noted above.

 2. End-of-travel limits are active. 2.a. Move load off of limits or disable limits by sending the LHØ
command to the affected axis.
2.b. Software limits: Set LSPOS to a value greater than LSNEG.

 3. Step pulse too narrow for drive to
recognize (stepper axes only).

3. Set pulse width to drive specifications using the PULSE command
(see page 47).

 4. Drive fault level incorrect. 4. Set drive fault level using the DRFLVL command (see page 46).
 5. Improper wiring. 5. Check drive fault & limit connections.

Stepper Axes: check step and direction connections.
Servo Axes: check command and shutdown connections.

 6. ENABLE input is not grounded. 6. Ground the ENABLE input connection.
 7. Load is jammed. 7. Remove power and clear jam.
 8. No torque from motor. 8. See problem: Torque, loss of.
 9. Maximum position error (SMPER

value) exceeded. (servo axes only)
9. Check to see if TAS/TASF bit 23 is set, and issue the DRIVE1
command to the axis that exceeded the position error limit.

 10. Drive has activated the drive fault
input.

10. Check to see if TAS/TASF bit 14 is set, and check the drive fault
level (DRFLVL) — see page 46 for appropriate DRFLVL settings.

Power-up Program does
not execute.

1. ENABLE input is not grounded. 1. Ground the ENABLE input to GND and reset the product.

 2. STARTP program is not defined. 2. Check the response to the STARTP command. If no program is
reported, define the STARTP program and reset (see page 13, or see
the STARTP command description).

Program access denied:
receive the message
*ACCESS DENIED when
trying to use the DEF,
DEL, ERASE, LIMFNC,
INFNC, or MEMORY
commands.

1. Program security function has been
enabled (INFNCi-Q or LIMFNCi-Q)
and the program access input has not
been activated

1.a. Activate the assigned program access input, perform your
programming changes, then deactivate the program access input.
1.b. Refer to the instructions on page 89, or to the INFNC or LIMFNC
command descriptions.

Program execution: the
first time a program is
run, the move distances
are incorrect. Upon
downloading the program
the second time, move
distances are correct.

1. Scaling parameters were not
issued when the program was
downloaded; or scaling parameters
have been changed since the
program was defined.

1. Issue the scaling parameters (SCALE1, SCLA, SCLD, SCLV,
PSCLA, PSCLD, PSCLV, SCLMAS) before saving any programs.

 Chapter 8. Troubleshooting 225

Problem Cause Solution
Program execution:
stops at the DRFEN1
command

1. DRFEN1 enables drive fault
monitoring, but the drive fault level
(DRFLVL) command is set incorrectly
for the drive being used.

1. Issue the correct DRFLVL command for your drive (see the
DRFLVL command or to page 46).

Runaway
(SERVOS ONLY)

1. Direction connections reversed.
(if encoder counts positive when
turned clockwise or extended).

1. Switch CMD– with the CMD+ connection to drive or valve.
NOTE: The CMD+/– Connection is not differential. Do not connect

CMD+ to ground on your drive or valve.
Torque, loss of. 1. Improper wiring. 1. Check wiring to the drive, as well as other system wiring.
 2. No power to drive . 2. Check power to drive.
 3. Drive failed. 3. Check drive status.
 4. Drive faulted. 4. Check drive status.
 5. Shutdown issued to drive. 5. Re-enable drive by sending the DRIVE1 command to the affected

axis.
Velocity & acceleration
is incorrect as
programmed.

See Distance problem noted above.

Program Debug ToolsAfter creating your programs, you can need to debug the programs to ensure that
they perform as expected. The 6K controller provides several debugging tools. Detailed
descriptions are provided on the following pages.

• Status Commands: Use the “Transfer” commands (e.g., TAS, TSS, TIN) to display
various controller status information. Multi-Tasking: System (TSS) and Error (TER)
status information is task specific; to check the status for a specific task, you must
prefix the status command with the task identifier (e.g., 2%TSS to check the system
status for task 2).

• Error Messages: You can enable the 6K controller to display error messages when it
detects certain programming errors as you enter them or as the program is run. When
the controller detects an error with a command, you can issue the TCMDER command to
find out which command caused the error.

• Trace mode: Trace a program as it is executing.

• Single-Step mode: Step through the program one command at a time.

• Simulate Programmable I/O Activation: You can set the desired state of the 6K
controller’s inputs and outputs via software commands.

• Simulate Analog Input Activation: Without an actual voltage present, you can
simulate a specific voltage on the 6K controller’s analog input channels using the
ANIEN command.

• Motion Planner’s Panel Gallery: Motion Planner’s Panel Gallery provides an
assortment of test panels you can use to verify various system I/O and operating
parameters.

226 6K Series Programmer’s Guide

Status Commands
Status commands are provided to assist your diagnostic efforts. These commands display
status information such as, axis-specific conditions, general system conditions, error
conditions, etc.

Checking Specific Setup Parameters
One way to check the conditions that are established with a specific setup command is to
simply type in the command name without parameters. For example, type “ERES” to check
the encoder resolution setting; the response would look something like: *ERES4ØØØ.

Refer to page 44 for a list of most setup parameters and their respective commands.

HINT: To send a status

command to the 6K
product during program
execution, prefix the
command with an “!” (e.g.,
!TASF).

Below is a list of the status commands that are commonly used for diagnostics. Additional
status commands are available for checking other elements of your application (see List of All
Status Commands below). For more information on each status command, see the respective
command description in the 6K Series Command Reference.

SPECIAL NOTATIONS

* The command has a binary report version (just leave the “F” off when you type
it in—e.g., TAS). This is used more by experienced 6K programmers. Using
the binary report command, you can check the status of one particular bit (e.g.,
The 2TAS.1 command reports “1” if axis 2 is moving or “Ø” if it is not moving.).
In the binary report the bits are numbered left to right, 1 through n. A “1” in the
binary report correlates to a “YES” in the full text report, and a “Ø” correlates to
a “NO” in the full text report.

† The command has an assignment/comparison operator that uses the bit status
for conditional expressions and variable assignments. For example, the
WAIT(2AS.1=bØ) command pauses program execution until axis 2’s status
bit 1 (2AS.1) reports a binary zero value (indicates that the axis is not-
moving). See page 7 and page 25 for more information on using assignment
and comparison operators in conditional expressions and variable
assignments.

TASF Reports axis-specific conditions. * (TAS) † (AS)

1. Axis is in motion (commanded) 17. Positive-direction software limit (LSPOS) encountered
2. Direction is negative 18. Negative-direction software limit (LSNEG) encountered
3. Accelerating (n/a to deceleration) 19. RESERVED
4. At velocity 20. RESERVED

5. Home Successful (HOM) 21. RESERVED6. In absolute positioning mode (MA) 22.
RESERVED7. In continuous positioning mode (MC) 23. Position error limit is exceeded (SMPER) —
servos
8. In Jog Mode (JOG) 24. Load is within Target Zone (STRGTD & STRGTV)

9. In Joystick Mode (JOY) 25. Target Zone timeout occurred (STRGTT) — servos
10. RESERVED 26. Motion suspended, pending GOWHEN
11. RESERVED 27. RESERVED
12. Stall detected (ESTALL) — steppers 28. Registration move occurred since last GO

13. Drive shutdown occurred 29. GOWHEN error
14. Drive fault occurred (enable DRFEN1 first) 30. Pre-emptive (OTF) GO or Registration profile not possible
15. Positive-direction hardware limit hit 31. Executing profile
16. Negative-direction hardware limit hit 32. RESERVED

 Chapter 8. Troubleshooting 227

TASXF Reports extended axis-specific conditions. * (TASX) † (ASX)

1. RESERVED
2. RESERVED
3. RESERVED
4. Drive Fault input is active (hardware state is always recognized, regardless of DRIVE and DRFEN)
5. Encoder failure detected (encoder failure detection must first be enabled with the EFAIL1 command)
6. Z-Channel input (on the encoder connector) is active.
7. Drive Stall Active

TSTAT Reports general system setup and current conditions.

Sample response for the 6K8:
*6K8 (8-axis controller)
*6K revision: 92-XXXXXX-01-5.0 6K 92-XXXXXX-XX-NOP2.5 DSP
*Ethernet address: xxxxxxxxxx; IP address: 192.168.10.30
*Axis definition: Servo,Servo,Servo,Servo,Stepper,Stepper,Stepper,Stepper
*Power-up program assignment (STARTP): SETUP
*ENABLE input OK: Yes
*Drive status (DRIVE): 0000_0000
*Drive Fault input states (ASX.4 for each axis): 0000_0000
*Drive Fault input checking - enabled (DRFEN1): 0000_0000
*Drive resolution (DRES): -,-,-,-,25000,25000,25000,25000
*Encoder resolution (ERES): 4000,4000,4000,4000
*Encoder failure detection enabled (EFAIL1): 0000_0000
*Hard Limit enable: LH3,3,3,3,3,3,3,3
*Soft Limit enable: LS0,0,0,0,0,0,0,0
*Current Motion Attributes:
* Scaling enabled (SCALE1): 0
* Acceleration scaler (SCLA): 4000,4000,4000,4000,4000,4000,4000,4000
* Distance scaler (SCLD): 1,1,1,1,1,1,1,1
* Velocity scaler (SCLV): 4000,4000,4000,4000,4000,4000,4000,4000
* Continuous/Preset (MC1/MC0) positioning mode: 0,0,0,0,0,0,0,0
* Absolute/Incremental (MA1/MA0) positioning mode: 0,0,0,0,0,0,0,0
* Feedback position (TFB or TPE): +0,+0,+0,+0,-,-,-,-
* Commanded position (TPC): +0,+0,+0,+0,+0,+0,+0,+0
* A10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* AA10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* AD10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* ADA10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* V1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000
* D+4000,+4000,+4000,+4000,+4000,+4000,+4000,+4000
*I/O Status:
* Onboard limit inputs:
* Hardware state (TLIM): 000_000_000_000_000_000_000_000
* Prog. function (LIMFNC): RST_RST_RST_RST_RST_RST_RST_RST
* Onboard trigger inputs:
* Hardware state (TIN): 0000_0000_0000_0000_0
* Prog. function (INFNC): AAAA_AAAA_AAAA_AAAA_A
* Onboard digital outputs:
* Hardware state (TOUT): 000_000
* Prog. function (OUTFNC): AAA_AAA
* Expansion I/O bricks: See TIO response
*Axis Status (see TASF for full text report of all axes):
* Axis 1 (1TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 2 (2TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 3 (3TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 4 (4TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 5 (5TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 6 (6TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 7 (7TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 8 (8TAS): 0010_0000_0000_1000_0000_0001_0000_0000
*System Status (This is Task 0 status if using multi-tasking.):
* Assoc. axes (TSKAX): 1,2,3,4,5,6,7,8
* System status (TSSF): 1000_1100_0000_0000_0000_0100_0000_0000
* Error checking (ERROR): 1000_0100_1000_0001_0000_0000_0000_0000
* Error status (TERF): 0000_0000_0000_0000_0000_0000_0000_0000
* Error program (ERRORP): ERRPRG
* On conditions (ONCOND): 0000
*Multi-Tasking Status:
* Currently active tasks (TSWAP): 0000_0000_00
*Following Conditions:
* Master-Follower assignment (FOLMAS): +0,+0,+0,+0,+0,+0,+0,+0
* Master scaling (SCLMAS): 4000,4000,4000,4000,4000,4000,4000,4000
* Following status (TFSF): 0000_0000_0000_0000_0000_0000_0000_0000

228 6K Series Programmer’s Guide

TSSF Reports current system conditions. * (TSS) † (SS)
Multi-tasking: Each task has its own system status; therefore, to check the
system status for a specific task, prefix the TSSF command (e.g., 2%TSSF).

1. System is ready 17. Loading Thumbwheel Data (TW operator)
2. RESERVED 18. In External Program Select Mode (INSELP)
3. Executing a Program 19. Dwell in Progress (T command)
4. Last command was immediate 20. Waiting for RP240 Data (DREAD or DREADF)

5. In ASCII Mode 21. RP240 Connected
6. In Echo Mode (ECHO) 22. Non-volatile Memory Error
7. Defining a Program (DEF) 23. Gathering servo data
8. In Trace Mode (TRACE, TRACEP) 24. RESERVED

9. In Step Mode (STEP) 25. RESERVED
10. RESERVED 26. RESERVED
11. Command error (check with TCMDER) 27. RESERVED
12. Break Point Active (BP) 28. RESERVED

13. Pause Active (PS or pause input) 29. Compiled memory partition is 75% full
14. Wait Active (WAIT) 30. Compiled memory partition is 100% full
15. Monitoring On Conditions (ONCOND) 31. Compile operation (PCOMP) failed
16. Waiting for Data (READ) 32. RESERVED

TINOF Reports the status of the ENABLE input. * (TINO) † (INO)

1-5. RESERVED
6. ENABLE input OK (motion not inhibited
7-8. RESERVED

TFSF Reports Following Mode conditions (details on page 167). * (TFS) † (FS)

1. Slave is in a Following ratio move 17. Master Position Prediction Mode enabled (FPPEN)
2. Current ratio is negative 18. Master Position Filtering Mode enabled (FFILT)
3. Slave is changing ratio 19. RESERVED
4. Slave at ratio (constant non-zero ratio) 20. RESERVED

5. FOLMAS Active 21. RESERVED
6. Following Mode enabled (FOLEN) 22. RESERVED
7. Master is moving 23. OK to do a geared advance (FGADV) move
8. Master direction is negative 24. Geared advance (FGADV) move is underway

9. OK to Shift 25. RESERVED
10. Shifting now 26. Following profile is limited (FMAXA/FMAXV)
11. FSHFC-based shift move is in progress 27. RESERVED
12. Shift direction is negative 28. RESERVED

13. Master cycle trigger input is pending 29. RESERVED
14. Mas cycle length (FMCLEN) given 30. RESERVED
15. Master cycle position is negative 31. RESERVED
16. Master cycle number is > 0 32. RESERVED

 Chapter 8. Troubleshooting 229

TERF Reports error conditions. ** * (TER) † (ER)
Multi-tasking: Each task has its own error status; therefore, to check the
error status for a specific task, prefix the TERF command (e.g., 2%TErF).

1. Stall detected. 1st: Enable Stall Detection (ESTALL).
2. Hardware end-of-travel limit encountered. 1st: Enable hard limits (LH).
3. Software end-of-travel limit encountered. 1st: Enable hard limits (LH).
4. Drive Fault input is active. 1st: enable (DRFEN) & set fault level (DRFLVL).

5. Stop or Kill Issued
6. A programmable input, defined as a “kill” input, is active.
7. A programmable input, defined as a “user fault” input, is active.
8. A programmable input, defined as a “stop” input, is active.

9. ENABLE input not grounded.
10. Pre-emptive (OTF) GO or Registration profile not possible.
11. Target Zone settling timeout period (STRGTT) is exceeded. — servo only
12. Maximum position error (SMPER value) is exceeded. — servo only

13. RESERVED
14. GOWHEN condition already true.
15. RESERVED
16. Bad command detected (use TCMDER to identify the bad command).

17. Encoder failure detected (1st: enable failure detection with EFAIL1).
18. Expansion I/O brick is disconnected or has lost power.
19 Option Card Fault
20. RESERVED

21. RESERVED
22. Ethernet Failure
23. Client Connect Error
24. Client Polling Error

25–32. RESERVED

** The error condition will not be reported until you enable the respective error-checking bit with the ERROR
command (for details, see page 30 or the ERROR command description).

NOTE: When the error-checking bit is enabled and the error occurs, the controller will branch to the “error”
program that you assigned with the ERRORP command.

230 6K Series Programmer’s Guide

Other status commands commonly used for diagnostics:

TDIR Identifies the name and number of all programs residing in the 6K product's memory. Also
reports percent of available memory for programs and compiled path segments.

TCMDER.... Identifies the bad command that caused the error prompt (?). (see page 235 for details)

TEX Execution status (and line of code) of the current program in progress. Task specific.

TIN Binary report of all programmable and trigger inputs (“1” = active, “Ø“ = inactive). INFNC also
reports the state and programmed function of each input. (see page 76 for bit assignments)

TOUT Binary report of all programmable and auxiliary outputs (“1” = active, “Ø“ = inactive). OUTFNC
also reports the state and programmed function of each output. (see page 76 for bit
assignments)

TLIM Binary report of all limit inputs (“1” = active, “Ø“ = inactive). LIMFNC also reports the state and
programmed function of each limit input. (see page 76 for bit assignments)

TIO Reports current contents on all expansion I/O bricks connected to the 6K controller. Includes
current state and function of the digital inputs and outputs, as well as voltage of analog inputs.

TPER (servo axes) Reports the difference between the commanded position and the actual position
as measure by the feedback device.

TPC Current commanded position.

TPE Current position of the encoder.

TFB (servo axes) Current position of the feedback device selected with the last SFB command.

TPMAS...... Current position of the Following master axis.

TPSLV...... Current position of the Following slave axis.

TNMCY...... Current master cycle number.

TSCF Full-text report of the current "Controller Status" register.

TNT Report the current Ethernet status.

List of All Status
Commands

SPECIAL NOTATIONS
* The command responds with a binary report. This is used more by experienced 6K

programmers. Using the bit select operator (.), you can check the status of one particular
bit (e.g., The 2TAS.1 command reports “1” if axis 2 is moving or “Ø” if it is not moving.). In
the binary report, the bits are numbered left to right, 1 through n. A “1” in the binary
report correlates to a “YES” in the full text report, and a “Ø” correlates to a “NO” in the full
text report.

∆ The command has a full-text report version (just add an “F” when you type it in—e.g.,
TASF). This makes it easier to check status information without having to look up the
purpose of each status bit. (see full-text descriptions on pages 226-230)

† The command has an assignment/comparison operator that uses the bit status for
conditional expressions and variable assignments. For example, the WAIT(2AS.1=bØ)
pauses progress execution until axis 2's status bit 1 (2AS.1) reports a binary zero value
(indicates that the axis is not-moving). See page 7 and page 25 for more information on
using assignment and comparison operators in conditional expressions and variable
assignments.

 Chapter 8. Troubleshooting 231

COMMAND STATUS SUBJECT
TANIVoltage of ANI inputs (servo products with ANI option) †
TANOreport the value of an analog output channel †
TASBinary Report of Axis Status * ∆ †
TASX Binary Report of Axis Status – extended * ∆ †
TCMDER...........Command Error (view command that caused the error prompt)
TDACDigital-to-Analog (DAC) Voltage (Servos) †
TDIRProgram Directory and Available Memory
TDPTR.............Data Pointer Status †
TERError Status * ∆ †
TEXProgram Execution Status †
TFBPosition of Selected Feedback Devices †
TFSBinary Report of Following Status * ∆ †
TGAIN.............Current Value of Active Servo Gains
TINBinary Report of Status of Programmable Inputs * †
TINOStatus of the ENABLE input (bit 6) * ∆ †
TIOReport of all I/O on expansion I/O bricks
TLABEL...........Defined Labels (names of)
TLIMBinary Report of Hardware Status of All Limit Inputs †
TMEMMemory Usage (partition and available memory)
TNMCY.............Master Cycle Number †
TNTReports the current Ethernet conditions
TNTMAC...........Ethernet Address
TOUTBinary Report of Status of Programmable Outputs * †
TPANI.............Position of ANI Inputs †
TPCCommanded Position †
TPCCCaptured Commanded Position †
TPCECaptured Encoder Position †
TPCME.............Captured Master Encoder Position †
TPCMS.............Captured Master Cycle Position †
TPEPosition of Encoder †
TPERPosition Error †
TPMAS.............Position of Master Axis †
TPMEPosition of Master Encoder †
TPROGContents of a Program
TPSHFNet Position Shift †
TPSLVCurrent Commanded Position of the Slave Axis †
TREVFirmware Revision Level
TSCCurrent "Controller Status" register.
TSCANScan Time of Last PLC Program * ∆ †
TSGSET...........Servo Gain Sets
TSEGNumber of Free Segment Buffers †
TSSBinary Report of System Status * ∆ †
TSTATStatistics
TSTLTSettling Time
TSWAPIdentify Currently Active Tasks (in multi-tasking) * †
TTASKTask Number of the program that executes this command †
TTIMTime Value †
TTRIGStatus of “Trigger Interrupt” Activation * †
TUSUser Status * †
TVELCurrent Commanded Velocity †
TVELACurrent Actual Velocity †
TVMASCurrent Velocity of the Master Axis †

232 6K Series Programmer’s Guide

Error Messages

Depending on the error level setting (set with the ERRLVL command), when a programming error is created, the 6K controller
will respond with an error message and/or an error prompt. A list of all possible error messages is provided in a table below. The
default error prompt is a question mark (?), but you can change it with the ERRBAD command if you wish.

At error level 4 (ERRLVL4—the factory default setting) the 6K controller responds with both the error message and the error
prompt. At error level 3 (ERRLVL3), the 6K controller responds with only the error prompt.

Error Response Possible Cause

ACCESS DENIED Program security feature enabled, but program access input (INFNCi-Q) not
activated.

ALREADY DEFINED FOR THUMBWHEELS Attempting to assign an I/O function to an I/O that is already defined as a
thumbwheel I/O.

alternative task not allowed Attempting to execute a LOCK command directed to another
task.

AXES NOT READY Compiled Profile path compilation error.

COMMAND NOT IMPLEMENTED Command is not applicable to the 6K Series product.

COMMAND NOT ALLOWED IN PROGRAM Command is not allowed inside a program definition (between DEF and END).

COMMAND/drive mismatch The command (or ≥ one field in the command) is not
appropriate to the AXSDEF configuration (e.g., attempting
to execute a servo tuning command on a stepper axis)

ERROR: MOTION ENDS IN NON-ZERO
VELOCITY - AXIS N

Compiled Motion: The last GOBUF segment within a PLOOP/PLN
loop does not end at zero velocity, or there is no final
GOBUF segment placed outside the loop.

EXCESSIVE PATH RADIUS
DIFFERENCE

Contouring path compilation error.

FOLMAS NOT SPECIFIED No FOLMAS for the axis is currently specified. It will occur if FMCNEW, FSHFC, or
FSHFD commands are executed and no FOLMASØ command was executed, or
FOLMAS0 was executed.

INCORRECT AXIS Axis specified is incorrect.

INCORRECT BRICK NUMBER Attempted to execute a command that addresses an I/O brick that is not
connected to your 6K controller.

INCORRECT DATA Incorrect command syntax.
Following: Velocity (V), acceleration (A) or deceleration (AD) command is zero
(used by FSHFC & FSHFD).

INPUT(S) NOT DEFINED AS
JOYSTICK INPUT

Attempted to execute JOYCDB, JOYCTR, JOYEDB, or JOYZ before executing
JOYAXH or JOYAXL to assign the analog input to an axis.

INSUFFICIENT MEMORY Not enough memory for the user program or compiled profile segments. This
can be remedied by reallocating memory (see MEMORY command description).

INVALID COMMAND Command is invalid because of existing conditions

 Chapter 8. Troubleshooting 233

Error Response Possible Cause

INVALID CONDITIONS FOR COMMAND System not ready for command (e.g., LN command issued before the L
command).

Following (these conditions can cause an error during Following):

• The FOLMD value is too small to achieve the preset distance and still
remain within the FOLRN/FOLRD ratio.

• A phase shift cannot be performed:
FSHFD Error if already shifting or performing other time based move.
FSHFC Error if currently executing a FSHFD move, or if currently

executing another FSHFC move in the opposite direction.

• The FOLEN1 command was given while a profile was suspended by a
GOHWHEN.

INVALID CONDITIONS FOR
S_CURVE ACCELERATION—FIELD n

Average (AA) acceleration or deceleration command (e.g., AA, ADA, HOMAA,
HOMADA, etc.) with a range that violates the equation ½A ≤ AA ≤ A (A is the
maximum accel or decel command—e.g., A, AD, HOMA, HOMAD, etc.)

INVALID DATA Data for a command is out of range.

Following (these conditions can cause an error during Following):

• The parameter supplied with the command is valid.
FFILT Error if: smooth number is not 0-4
FMCLEN .. Error if: master steps > 999999999 or negative
FMCP....... Error if: master steps > 999999999 or < -999999999
FOLMD Error if: master steps > 999999999 or negative
FOLRD Error if: master steps > 999999999 or negative
FOLRN Error if: follower steps > 999999999 or negative
FSHFC Error if: number is not 0-3
FSHFD Error if: follower steps > 999999999 or < -999999999
GOWHEN .. Error if: position > 999999999 or < -999999999
WAIT....... Error if: position > 999999999 or < -999999999

• Error if a GO command is given in the preset positioning mode (MCØ) and:
FOLRN = zero
FOLMD = zero, or too small

(see Following chapter on page 166)

INVALID FOLMAS SPECIFIED Following: An illegal master was specified in FOLMAS. A follower can never use
its own commanded position or feedback source as its master.

INVALID RATIO Following: Error if the FOLRN:FOLRD ratio after scaling is > 127 when a GO is
executed

INVALID TASK IDENTIFIER Attempting to launch a PEXE or EXE command into the
supervisor task (task 0).

MASTER, SLAVE DISTANCE MISMATCH Attempting a preset Following move with a FOLMD value that
is too small.

LABEL ALREADY DEFINED Defining a program or label with an existing program name or label name

MAXIMUM COMMAND LENGTH EXCEEDED Command exceeds the maximum number of characters

MAXIMUM COUNTS PER SECOND
EXCEEDED

Velocity value is greater than 1,600,000 counts/sec

234 6K Series Programmer’s Guide

Error Response Possible Cause

MOTION IN PROGRESS Attempting to execute a command not allowed during motion (see Restricted
Commands During Motion on page 17).

Following: The FOLEN1 command was given while that follower was moving in
a non-Following mode.

NEST LEVEL TOO DEEP IFs, REPEATs, WHILEs, or GOSUBs nested greater than 16 levels (for each
type)

NO MOTION IN PROGRESS Attempting to execute a command that requires motion, but motion is not in
progress

NO PATH SEGMENTS DEFINED Compiled Profile compilation error

NO PROGRAM BEING DEFINED END command issued before a DEF command

NOT ALLOWED IF SFBØ Changes to tuning commands (SGILIM, SGAF, SGI, SGP, SGV, and SGVF) and
SMPER are not allowed if SFBØ is selected

NOT ALLOWED IN PATH Compiled Profile path compilation error

NOT DEFINING A PATH Executing a compiled profile or contouring path command while not in a path

NOT VALID DURING FOLLOWING
MOTION

A GO command was given while moving in the Following mode (FOLEN1) and
while in the preset positioning mode (MCØ).

NOT VALID DURING RAMP A GO command was given while moving in a Following ramp and while in the
continuous positioning mode (MC1). Following status (FS) bit 3 will be set to 1.
A FOLEN command was given during one of these conditions:

• During a shift (FSHFC or FSHFD)
• During a change in ratio (FOLRN/FOLRD)
• During deceleration to a stop

OUTPUT BIT USED AS OUTFNC Attempted to change an output that is not an OUTFNCi-A
output.

PATH ALREADY MOVING Compiled Profile path compilation error

PATH NOT COMPILED Attempting to execute a individual axis profile or a multiple axis contouring path
that has not been compiled

PATH RADIUS TOO SMALL Contouring path compilation error

PATH RADIUS ZERO Contouring path compilation error

PATH VELOCITY ZERO Contouring path compilation error

STRING ALREADY DEFINED A string (program name or label) with the specified name already exists

STRING IS A COMMAND Defining a program or label that is a command or a variant of a command

SYSTEM UPDATE OVERRUN, USE
SYSPER4

The system update service has overrun the time allotted
with the default 2-millisecond period. Use the SYSPER4
command to increase the system update period to 4
milliseconds.

 Chapter 8. Troubleshooting 235

Error Response Possible Cause

UNDEFINED LABEL Command issued to product is not a command or program name

WARNING: POINTER HAS WRAPPED
AROUND TO DATA POINT 1

During the process of writing data (DATTCH) or recalling data (DAT), the pointer
reached the last data element in the program and automatically wrapped
around to the first datum in the program

WARNING: ENABLE INPUT INACTIVE ENABLE input is no longer connected to ground (GND)

WARNING: DEFINED WITH ANOTHER
TW/PLC

Duplicate I/O in multiple thumbwheel definitions

Identifying Bad
Commands

To simplify program debugging, the Transfer Command Error (TCMDER) command allows you
to display the first command that the controller detects as an error. This is especially useful if
you receive an error message when running or downloading a program, because it catches and
remembers the command that caused the error.

Using Motion Planner:
If you are typing the command in a live terminal emulator session, the controller will
detect the bad command and respond with an error message, followed by the ERRBAD
error prompt (?). If the bad command was detected on download, the bad command
is reported automatically (see example below).

NOTE: If you are not using Motion Planner, you’ll have to type in the TCMDER
command at the error prompt to display the bad command.

Once a command error has occurred, the command and its fields are stored and system status
bit 11 (reported in the TSSF, TSS and SS commands) is set to 1. The status bit remains set
until the TCMDER command is issued.

Example Error
Scenario

1. In Motion Planner’s program editor, create and save a program with a programming error:
DEL badprg ; Delete a program before defining and downloading
DEF badprg ; Begin definition of program called badprg
MA11 ; Select the absolute preset positioning mode
A25,40 ; Set acceleration
AD11,26 ; Set deceleration
V5,8 ; Set velocity
VAR1=0 ; Set variable 1 equal to zero
GO11 ; Initiate move on both axes
IF(VAR1<)16 ; MISTYPED IF STATEMENT - should be typed as "IF(VAR1<16)"
VAR1=VAR1+1 ; If variable 1 is < 16, increment the counter by 1
NIF ; End IF statement
END ; End programming of program called badprg

2. Using Motion Planner’s terminal emulator, download the program to the 6K Series
product. Notice that an error response identifies the bad command as an “INCORRECT
DATA” item and displays it:
> *NO ERRORS
*INCORRECT DATA
> *IF(VAR1<)16
>

236 6K Series Programmer’s Guide

Trace Mode
You can use the Trace mode to debug a program. The Trace mode allows you to track,
command-by-command, the entire program as it runs. The 6K controller will display all of
the commands as they are executed. NOTE: Program tracing is also available on the RP240
display (see page 111).

The example below demonstrates the Trace mode.

Step 1 Create a program called prog1:
DEF prog1 ; Begin definition of program prog1
A10 ; Acceleration is 10
AD10 ; Deceleration is 10
V5 ; Velocity is 5
L3 ; Loop 3 times
GOSUB prog3 ; Gosub to program 3 (prog3)
LN ; End the loop
END ; End definition of program prog1

Step 2 Create a program prog3:
DEF prog3 ; Begin definition of program prog3
D50000 ; Sets the distance to 50,000
GO1 ; Initiates motion
END ; End definition of program prog3

Step 3 Enable the Trace Mode:
TRACE1 ; Enables the Trace mode

Step 4 Execute the program prog1: (each command in the program is displayed as it is executed)
EOT13,10,0 ; Set End-of-Transmission characters to <cr>,<lf>
RUN prog1 ; Run program prog1

The response will be:
*PROGRAM=PROG1 COMMAND=A10.0000
*PROGRAM=PROG1 COMMAND=AD10.0000
*PROGRAM=PROG1 COMMAND=V5.0000
*PROGRAM=PROG1 COMMAND=L3
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=1
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=1
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=1
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=2
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=2
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=2
*PROGRAM=PROG1 COMMAND=GOSUB PROG3 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=D50000 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=GO1 LOOP COUNT=3
*PROGRAM=PROG3 COMMAND=END LOOP COUNT=3
*PROGRAM=PROG1 COMMAND=LN LOOP COUNT=3
*PROGRAM=PROG1 COMMAND=END

The format for the Trace mode display is:
Program Name ... Command ... Loop Count or
Program Name ... Command ... Repeat Count or
Program Name ... Command ... While Count

Step 5 Exit the Trace Mode.
TRACE0 ; Disables the Trace mode

 Chapter 8. Troubleshooting 237

Tracing Program
Flow

Using the TRACEP command, you can monitor the entry and exit of programs and their
associated nest levels.

For example, let’s assume these four programs are defined:
DEF PICK1
GOSUB PICK2
GOTO PICK3
END

DEF PICK2
GOSUB PICK4
END

DEF PICK3
END

DEF PICK 4
END

Now we’ll enable the TRACEP mode and launch the calling program (PICK1) to start tracing
the program flow:
>TRACEP1
>PICK1
*INITIATE PROGRAM: PICK1 NEST=1
*INITIATE PROGRAM: PICK2 NEST=2
*INITIATE PROGRAM: PICK4 NEST=3
*END: PROGRAM NOW: PICK2 NEST=2
*END: PROGRAM NOW: PICK1 NEST=1
*INITIATE PROGRAM: PICK3 NEST=1
*END: PROGRAM EXECUTION TERMINATED
>TRACEP0

Single-Step Mode
The Single-Step mode allows you to execute one command at a time. Use the STEP
command to enable Single-Step mode. To execute a command, you must use the !# sign. By
entering a !# followed by a delimiter, you will execute the next command in the sequence. If
you follow the !# sign with a number (n) and a delimiter, you will execute the next n
commands. The Single-Step mode is demonstrated below (using the programs from the Trace
mode above).

Step 1 Enable the Single-Step Mode:
STEP1 ; Enables Single Step Mode

Step 2 Enable the Trace Mode and begin execution of program prog1:
TRACE1 ; Enables the Trace mode
RUN prog1 ; Run program called prog1

Step 3 Execute one command at a time by using the !# command:
!# ; Executes one command

The response will be:
*PROGRAM=PROG1 COMMAND=A10.0000

Step 4 To execute more than one command at a time, follow the !# sign with the number of
commands you want executed:
!#3 ; Executes three commands

The response will be:
*PROGRAM=PROG1 COMMAND=AD10.0000
*PROGRAM=PROG1 COMMAND=V5.0000
*PROGRAM=PROG1 COMMAND=L3

To complete the sequence, use the # sign until all the commands are completed (!#16 would
complete the example).

Step 5 To exit Single-Step mode, type:
STEP0 ; Disables Single Step Mode

238 6K Series Programmer’s Guide

Breakpoints
The Break Point (BP) command allows the programmer to set a place in the program where
command processing will halt and a message will be transmitted to the PC. There are 32 break
points available, BP1 to BP32, all transmitting the message *BREAKPOINT NUMBER
x<cr> where x is the break point number.

After halting at a break point, command processing can be resumed by issuing a continue (!C)
command.

The break point command is useful for stopping a program at specific locations in order to test
status for debugging or other purposes.

Example
DEF prog1 ; Begin definition of program named prog1
D50000,1000 ; Set distance to 50000 units on axis 1, and 1000 units

on axis 2
MA1100 ; Absolute mode for axes 1 and 2
GO1100 ; Initiate motion on axes 1 and 2
IF(1PC>40000) ; Compare axis 1 commanded position to 40000
BP1 ; If the motor position is > 40000 units, set break

point 1
NIF ; End IF statement
D80000,2000 ; Set distance to 80000 units on axis 1, and 2000 units

on axis 2
GO1100 ; Initiate motion on axes 1 and 2

BP2 ; Set break point 2
END ; End program definition
RUN prog1 ; Execute program prog1

If the IF statement evaluates true, the message *BREAKPOINT NUMBER 1 will be
transferred out. A !C command must be issued before processing will continue. Once
processing has continued, the second break point command will be encountered, again the
message *BREAKPOINT NUMBER 2 will be transferred out, and processing of commands
will pause until a second !C command is received.

Simulating I/O Activation
If your application has inputs and outputs that integrate the 6K controller with other
components in your system, you can simulate the activation of these inputs and outputs so that
you can run your programs without activating the rest of your system. Thus, you can debug
your program independent of the rest of your system.

There are two commands that allow you to simulate the input and output states desired. The
INEN command controls the inputs and the OUTEN command controls the outputs.

NOTE
The INEN command has no effect on the trigger inputs when they are configured as trigger
interrupt (position latch) inputs with the INFNCi-H command.

The OUTEN command has no effect on the onboard outputs when they are configured as
output-on-position outputs with the OUTFNCi-H command.

You will generally use the INEN command to cause a specific input pattern to occur so that a
program can be run or an input condition can become true. Use the OUTEN command to
simulate the output patterns that are needed, and to prevent an external portion of your system
from being initiated by an output transition. When you execute your program, the OUTEN
command overrides the outputs and holds them in a defined state.

 Chapter 8. Troubleshooting 239

Outputs The following steps describe the use and function of the OUTEN command

Step 1 Display the state of the outputs with the TOUT command:
TOUT ; Displays the state of the outputs

The response will be:
*TOUT0000_0000_0000_0000_0000_0000_00

Display the function of the outputs with the OUTFNC command:
OUTFNC ; Displays the state of the outputs

The response will be:
*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS OFF
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS OFF
.
.
*OUTFNC26-A PROGRAMMABLE OUTPUT - STATUS OFF

Step 2 Disable outputs 1 - 4, leave them in the ON state.
OUTEN1111 ; Disable outputs 1-4, leave them in ON state
OUTFNC ; Displays the state of the outputs

The response will be:
*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
.
.
*OUTFNC26-A PROGRAMMABLE OUTPUT - STATUS OFF

Step 3 Change the output state using the OUT command. The status of all outputs, including auxiliary
outputs, is displayed. The output bit pattern varies by product. To determine the bit pattern for
your product, see the OUTEN command description.
OUT1010 ; Activates outputs 1 and 3, deactivates outputs 2 and 4

Display the state of the outputs with the OUTFNC command.
OUTFNC ; Displays the state of the outputs

The response will be:
*OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC2-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
*OUTFNC3-A PROGRAMMABLE OUTPUT - STATUS DISABLED ON
.
.
*OUTFNC28-A PROGRAMMABLE OUTPUT - STATUS OFF

Notice that output 2 and output 4 have not changed state because the output (OUT) command
has no effect on disabled outputs.

Step 4 To re-enable the outputs, use the OUTEN command.
OUTENEEEE ; Re-enables outputs 1-4

240 6K Series Programmer’s Guide

Inputs The steps below describe the use and function of the INEN command. You can use it to cause
an input state to occur. The inputs will not actually be in this state but the 6K controller treats
them as if they are in the given state and will use this state to execute its program.

Step 1 This program will wait for an input state to occur and will then make a preset move:
INFNC1-A ; Onboard input 1 is has no function
INFNC2-A ; Onboard input 2 is has no function
INLVL00 ; Set input 1 and 2 active level to low
DEF prog8 ; Begin definition of program prog8
A100 ; Acceleration is set to 100
AD100 ; Deceleration is 100
V5 ; Velocity is 5
D25000 ; Distance is 25,000
WAIT(IN=b11) ; Waits for the input state to be 11
GO1 ; Initiate motion
END ; End definition of program prog8

Step 2 Enable the Trace mode so that you can view the program as it is executed:
TRACE1 ; Enables the trace mode

Step 3 Execute the program:
RUN prog8 ; Runs program prog8

Step 4 The program will execute until the WAIT(IN=b11) command is encountered. The program
will then pause, waiting for the input condition to be satisfied. Simulate the input state using
the INEN command. Inputs with an E value are not affected. NOTE that the input bit pattern
varies by product. To determine the bit pattern for your product, see the INEN command
description.
!INEN11 ; Disables inputs 1 and 2, leaving them in the ON state

The motor will now move for 25000 steps.

Step 5 Deactivate the input simulation:
INENEE ; Re-enables inputs 1 and 2

Simulating Analog Input Channel Voltages
Without actually applying any voltage, you can test any command or function that references
the voltage on an analog input (located on an expansion I/O brick). For example,
2ANIEN.1=1.2,1.6,1.8 overrides I/O brick 2’s hardware analog input 1 through 3 as
follows: 1.2V on input 1, 1.6V on input 2, and 1.8V on input 3.

Another application for the ANIEN command can be to use it in an ERRORP program to
override the analog input voltage in response to a fault.

Motion Planner’s Panel Gallery
Motion Planner’s Panel Gallery provides diagnostic panels for testing your programs and
monitor the following:

• I/O (programmable I/O, analog I/O, limits)
• Motion (motor and feedback device position, velocity)
• Status (axis, system, interrupt, user-defined, Following)
• Terminal (direct communication with the product, to check for error messages, etc.)

 Chapter 8. Troubleshooting 241

Technical Support
For solutions to your questions about implementing 6K product software features, first look in
this manual. Other aspects of the product (command descriptions, hardware specs, I/O
connections, graphical user interfaces, etc.) are discussed in the respective manuals listed in
Reference Documentation on page ii.

If you cannot find the answer in this documentation, contact your local Automation
Technology Center (ATC) or distributor for assistance.

If you need to talk to our in-house application engineers, please contact us at the numbers
listed on the inside cover of this manual. (The phone numbers are also provided when you
issue the HELP command to the 6K controller.) NOTE

Operating System Upgrades
You can obtain an upgraded 6K operating system from our web site at
www.compumotor.com. Instructions for downloading and upgrading the operating system are
provided on the website.

Product Return Procedure
If you must return your 6K Series product to affect repairs or upgrades, use this procedure:

Step 1 Get the serial number and the model number of the defective unit, and a purchase order number
to cover repair costs in the event the unit is determined by the manufacturers to be out of
warranty.

Step 2 Before you return the unit, have someone from your organization with a technical
understanding of the 6K Series product and its application include answers to the following
questions:

 • What is the extent of the failure/reason for return?
 • How long did it operate?
 • Did any other items fail at the same time?
 • What was happening when the unit failed (e.g., installing the unit, cycling power,

starting other equipment, etc.)?
 • How was the product configured (in detail)?
 • What, if any, cables were modified and how?
 • With what equipment is the unit interfaced?
 • What was the application?
 • What was the system environment (temperature, enclosure, spacing, unit orientation,

contaminants, etc.)?
 • What upgrades, if any, are required (hardware, software, user guide)?

Step 3 Call for a return authorization. Refer to the Technical Support phone numbers provided on the
inside cover of this manual. The support personnel will also provide shipping guidelines.

Index

absolute position
absolute positioning mode 55
absolute zero position 55
establishing 55
status 55

acceleration
change on the fly............ 54, 151
contouring............................ 126
maximum (Following) 192
scaling.................................... 50
s-curve profiling 120
units of measure............... 53, 54

access to RP240 functions 113
accuracy

Following, factors affecting. 192
position capture.............. 85, 155

address
daisy chain (RS-232) 38
Ethernet

conflict 224
multi-drop (RS-485) 41

advance, geared (Following) ... 178
alarm events

trigger with an input 86
analog inputs

interface 117
override voltage 242

analog output (servos)
offset 72
setting limits 72

application examples
cam profiling (using compiled

Following) 145, 148
continuous cut-to-length 187
continuous phase shift 177
contouring............................ 134
electronic gearbox................ 180
multi-tasking........................ 220
packaging (using on-the-fly

motion) 153
PLC...................................... 101
PLC scan mode.................... 101
preset phase shift 178
registration........... 157, 158, 159
scaling setup 52
servo setup 72
spindle (using compiled motion)

... 143
stamping (using compiled

Following) 147

teaching data points............... 96
trackball............................... 181
using a joystick.................... 101
using an RP240 101
using analog inputs.............. 101
using programmable I/O...... 101

arc segments 124, 129
assignment & comparison

operators.................................. 7
used in conditional expressions

... 25
assignment of master and

following 168
assumptions, skills required to

implement features ii
axis moving status 228
axis scaling................................ 48
axis status 228

extended 229
relative to Following 198
RP240 display 112

BCD program select input......... 82
before you start programming iii
binary value identifier (b)............ 6
binary variables (VARB) 18, 22
bit patterns, programmable I/O . 76
bit select operator (.)................ 6, 8
bitwise operations (and, or, not,

etc.).. 22
Boolean operations.................... 21
branching................................... 23

conditional............................. 25
unconditional......................... 23

buffers
buffered commands

control execution of........... 15
executed during motion.... 56,

151
stored in a program.............. 9

command............................... 56
C (tangent) axis, contouring ... 124,

125, 131
cam profiling example..... 145, 148
capture positions........................ 84
carriage return, command

delimiter 6
case sensitivity 6
center specified arcs 130
change summary........................... i
characters

command delimiters.................6
comment delimiter6
field separators.........................6
limit per line.............................6
neutral (spaces)6

circles.......................................131
closed-loop operation, steppers..64
COM ports, controlling..............37
commanded direction polarity

servos71
steppers66

commanded position
absolute position reference55
follower, tracking error191
status232

commands
buffer......................................56

after pause83
after stop83

command buffer execution
after end-of-travel limit

(COMEXL)....................15
after pause/continue input

(COMEXR)....................16
after stop (COMEXS)16
continuous (COMEXC)15

command value substitutions...7
delimiters6
errors in programming237
executed during motion........151
Following (list of)200
immediate3, 56
restricted execution during

motion17
setup command list44
status228
syntax.......................................3

comment delimiter6
communication...........................35

controlling multiple serial ports
...37

lock port during multi-tasking
...214

Motion Planner iii
options....................................36
problems224
RS-232C daisy-chaining38
RS-485 multi-drop41
via RP240 terminal107

compiled motion136

compare with on-the-fly motion
changes142

Following profiles................139
related commands142
sample applications.....143, 145,

147, 148
compiling a contouring path133
conditional branching25, 28
conditional expression examples25
conditional go159
conditional GO

pending trigger input......85, 162
conditional looping25, 28
conditional path execution127
conditional statement using PMAS

...185
configuration

DAC output limits..................72
disable drive on kill48
drive fault level46
drive resolution47
drive type (AXSDEF)46
encoder-based stepper setup ..64
end-of-travel limits57
feedback device polarity70
Following setup168
joystick.................................114
memory allocation11
position modes53
programmable inputs79
programmable outputs90
scaling....................................48
servo control signal offset......72
servo setup67
setup commands, list..............44
setup program13
step pulse (steppers)...............47

continous command execution
mode (COMEXC)
effect in continuous positioning

mode56
continue

effect on Following motion..198
continue (!C)........................16, 83
continue execution on

pause/continue (COMEXR)..16,
83

continue execution on stop
(COMEXS)......................16, 83

continue input83
continue key on RP240............107
continuous cut-to-length

application187
continuous positioning mode53, 56

Following.....................174, 194
distance calculations195

contouring................................124
acceleration..........................126
acceleration scaling................51
arc segments.........................129

C (tangent) axis ... 124, 125, 131
circles 131
compiling a path 133
deceleration 126
deceleration scaling 51
defining a path..................... 124
distance scaling...................... 51
end points 128
executing a path................... 133

conditionally.................... 127
helical interpolation..... 126, 132
line segments 129
local coordinates.................. 128
memory allocation................. 11
outputs along path 132
P (proportional) axis... 124, 125,

132
participating axes (PAXES) 125
programming errors............. 133
scaling 48
segment boundary................ 131
stall condition (stepper axes)131
velocity 126
velocity scaling...................... 51
work coordinates 128

controlling multiple serial ports. 37
count source (internally generated)

... 170
creating programs 9
DAC output, limiting................. 72
daisy-chaining 38, 40

with RP240s 41
data

fields, in command syntax....... 5
read from serial or Ethernet port

... 26
read from the RP240.............. 26
teach to variable arrays.......... 94

deadband for stall detection....... 64
debounce time

position capture 84
program select input 82
programmable inputs 81

debugging tools 227
analog input voltages,

simulating 242
error messages 234
I/O activation....................... 240
identify bad commands 237
problem/cause/solution table224
RP240 menus....................... 111
single-step mode.................. 239
status commands.................. 228
trace mode 238

deceleration
change on the fly 54, 151
contouring............................ 126
scaling 50
s-curve profiling 120
units of measure............... 53, 54

delimiters
command..................................6
comment...................................6

detecting a stall64
stall indicator output...............92

device addressSee address
direction

"positive" vs "negative"53
direction, changes in compiled

motion141
distance

calculations, Following195
compiled motion140

change on the fly54, 151
registration155
units of measure53, 54

drive
fault input

active level (DRFLVL)46
as safety feature................100
enable46
status229

resolution47, 225
effect on Following197

selection (AXSDEF)46
shutdown

LED status........................226
on kill48, 83

stall detection47
status on RP240....................113

dwells & direction changes,
compiled motion141

electrical noise See installation
guide

electronic gearbox application .180
electronic I/O devices...............103
electronics concepts ii
enable input

as safety feature....................100
status230

enable or disable Following173
status167
while moving198

encoder
capture/counter enable

(steppers)............................65
failure detection66

status229
feedback for steppers64
polarity reversal

servos70
steppers65

position
RP240 display112

resolution64, 225
setup example

servos72
steppers65

Z-channel59
end point

244 6K Series Programmer’s Guide

contouring............................ 128
linear interpolation............... 123

end-of-move settling.................. 74
end-of-travel limitsSee limits, end-

of-travel
error

clearing 31
error handling 30

error level for daisy chains 38
related to safety................ 101

error message
Following specific 199

error messages 234
Following............................. 191
on-the-fly motion errors....... 152
program, assignment.............. 30
status 231

example programs........................ii
executing programs....see program,

execution options
expansion I/O............................. 78
fault output................................. 92
field separator 6
filtering, master position.......... See

master, master position filtering
final velocity of a path 126
follower

commanded position............ 176
Following error 191

conditional go 159
definition of 168
distance

scaling.............................. 172
motor/drive accuracy 193
move profiles 173
ratio to master 172

status 167
resolution 193
scaling.................................. 172
shift See shift

following
distance

move calculations 195
Following................................. 165

cam profiling example . 145, 148
commands, list of................. 200
compiled Following profiles 139
conditions used in conditional

expressions 27
distance

scaling................................ 51
enable or disable 173

status 167
while moving 198

error 191
geared advance 178
master cycle concept............ 183
maximum acceleration

(steppers) 192
maximum velocity (steppers)

... 192
performance considerations. 189
prerequisites to Following

motion 168
ratio Following introduction 166
set-up parameters 168
status............................ 167, 230
technical considerations 189
virtual master....................... 170

geared advance (Following) 178
general purpose input function .. 81
general purpose output function 91
global command identifier (@) ... 6
GOSUB 23
GOTO.. 23
GOWHEN............................... 159

cleared by stop or kill 197
error condition..................... 231
using PMAS 185
usng PMAS 198
via trigger input 85, 162

hard limit .See limits, end-of-travel
helical interpolation......... 126, 132
help (tech support services) iv, 243
hexadecimal value identifier (h). 6,

22
homing

home................See limits, home
status.................................... 228
zeroing the absolute position. 59

host computer operation 118
I/O activation (simulation) 240
I/O device interface 102
IF 25

using PMAS 185
usng PMAS 198

immediate commands............ 3, 56
not stored in programs............. 9

immediate data read from RP240
... 27

immediate stop 16, 56
in position, output function 92
incremental positioning mode ... 55
inputs

analog 117
application example......... 101

drive fault 100
active level (DRFLVL) 46
status................................ 229

enable 100
status................................ 230

encoder See encoder
end-of-travel limits.. 56, 57, 100
home limits............................ 59
joystick 114
PLC 103
programmable 75, 102

alarm event 86
bit pattern 76
debounce time 81

end-of-travel limits.............89
function assignments....79, 90
functions (INFNC), effect on

system performance34
functions (LIMFNC), effect

on system performance ..34
general purpose function....81
home limits89
jogging86
joystick...............................87
kill56, 83
one-to-one program select..88
operand (IN).......................25
pause/continue83

effect on command buffer
...................................16

polarity81
program security14, 89
program select....................82
simulating activation........240
status80
status on RP240112
stop.........................16, 56, 83
update rate..........................75
user fault84, 100

stop...16
thumbwheel..........................103
triggers

debounce time81
position capture..................84
programmed functions

(TRGFN)........................85
update rate..............................75
virtual inputs79

interface options.......................101
interpolation

circular/contouring............... See
contouring

linearSee linear interpolation
interrupts

program (ON conditions).......29
jerk (acceleration), reducing120
jogging

input functions86
RP240 jog mode...................111
setup.......................................86
status on RP240111

joystick
application example96, 101
axis select input......................87
interface114
problems226
release input87
velocity select input87
voltage override242

JUMP ...23
kill

assigned input function83
effect on drive48, 83
effect on Following..............197

effect on multi-tasking212
kill on stall64

labels ($)23
last motion segment, compiled

motion..................................138
LEDs..226
LEDs on RP240107
left-to-right math..........................6
length, master cycle183
limit to DAC output72
limits

end-of-travel57
as safety feature100
effect on command buffer and

program execution15
programmed functions89
status228
used as basis to activate

output92
home59

programmed functions89
status on RP240112

line feed, command delimiter6
line segments124, 129
linear interpolation...................123

acceleration scaling................51
distance scaling......................51
velocity scaling51

local coordinate system............128
lockout distance for registration

...156
logical operators.........................25
loops

conditional27
unconditional23

master
definition of168

status167
direction, status of................167
distance

move calculations195
programming (FOLMD) ..173

master cycle
counting183

restart184
status183

length183
number185
position183

assignment/comparison 185
initial184
rollover.................183, 198
status185
synchronizing...............186

status167
master cycle concept............183
master input (A.K.A.)166
master position filtering189, 190

effect on accuracy194
effect on position accuracy

..................................... 193
status................................ 167

master position prediction .. 189,
190
effect on accuracy............ 193
status................................ 167

move profiles....................... 173
moving, status of 167
ratio to follower 172

status................................ 167
resolution............................. 193
scaling 51, 172
velocity 189
virtual 170

master/slave daisy-chain............ 38
mathematical operations............ 19
maximum position error

output to indicate exceeded ... 92
mechanical cam replacement.. 145,

148
memory

allocation 11
compiled motion.............. 136
contouring........................ 124

locking............................. 14, 89
non-volatile............................ 33
status...................................... 12

menus, RP240.......................... 110
messages, error 234
motion

Following motion status 168
motion control concepts ii
parameters used in conditional

expressions 25
pre-compiled profiles See

compiled motion
restrictions while in Following

... 198
rough 199
synchronize

conditional GOs............... 159
registration....................... 155
triggered conditional GOs 159
triggered start of master cycle

..................................... 159
with PMAS...................... 186

Motion Planner 2
communication features......... 36
programming wizards............ 10
setup program tool................. 13

move completion criteria........... 74
moving/not moving status . 92, 228
multi-drop, RS-485.................... 41
multiple serial ports, controlling 37
multi-tasking............................ 203

affected by kill..................... 212
application example............. 220
conditions used in conditional

expressions 27
performance considerations. 218

programmed I/O functions ...217
sharing system resources......213
task identifier (%).....6, 208, 215
task-specific resources215

negative-direction end-of-travel
limitsSee limit, end-of-travel

neutral characters6
noise, electrical See installation

guide
numeric variables18

in conditional expression25
NWHILE....................................28
on conditions (program interrupts)

...29
effect on system performance 34

one-to-one program select input.88
on-line help for Windows2
on-line manuals ii
on-the-fly motion changes .54, 151

compare with compiled motion
...142

operating system upgrades243
operator interface

host computer operation.......118
RP240 remote panel107

operators
assignment & comparison........7

correlated to status
commands232

used in conditional
expressions.....................25

bit select8
bitwise......................................9
logic ...9
math ...9
relational9

outputs
activate on position93
contouring path132
output on position93
programmable75, 102

bit pattern76
fault output92
function assignments..........90
functions (OUTFNC), effect

on system performance ..34
general purpose function91
limit encountered................92
max position error exceeded

.......................................92
moving/not moving92
operand (OUT)...................25
output on position...............93
polarity91
program in progress92
simulating activation240
stall indicator......................92
status90
status on RP240................112
update rate..........................75

246 6K Series Programmer’s Guide

shutdown.............................. 100
update rate 75

P (proportional) axis, contouring
............................. 124, 125, 132

participating axes in contouring
... 125

partitioning memory 11
password, RP240 113
paths....................... See contouring
pause active, status 230
pause key on RP240 107
pause, effect on Following motion

... 198
pause/continue input 83

effect on motion & program
execution............................ 16

performance, effects on 34
performance, Following........... 189
performance, multi-tasking...... 218
phase, shift............................... 176
PLC interface........................... 103

application example 101
PLC scan mode........................ 104
point-to-point move 55
polarity

commanded direction
causes reversed direction . 225
servos................................. 71
steppers 66

encoder
servos................................. 70
steppers 65

feedback device, servos 70
programmable inputs 81
programmable outputs 91

position
absolute.................................. 55

establish 55
accuracy, Following............. 193
analog inputs........................ 117
capture 84

commanded........................ 65
encoder 65
registration....................... 155

commanded
capture 84
RP240 display.................. 112

commanded position
calculation, Following 191

encoder 26
capture 84
RP240 display.................. 112

error 225
exceeded max. limit

status 228
max. allowable................. 100
RP240 display.................. 112

follower axis 176
incremental 55
masterSee master

positioning modes 53
change on the fly 54, 151

sampling period................... 189
effect on Following accuracy

..................................... 193
status

RP240 display 112
used to active an output......... 93
zeroed after homing............... 59

positive-direction end-of-travel
limits..... See limit, end-of-travel

power-up start program (STARTP)
... 13
clear RP240 menus.............. 109
Following setup commands. 170
will not execute 226

prediction of master position.. 190.
See master, master position
prediction

pre-emptive GOsSee on-the-fly
motion changes

preset positioning mode 55
Following 175, 194

distance calculations........ 196
profiling, custom 119
program

branch
conditionally...................... 25
unconditionally.................. 23

comments 6
creating.................................... 9
debug tools 227
editing in Motion Planner........ 2
error handling 30
error responses 234
examples, using ii
execution

controlling 15
from RP240 menu 111
options 13

execution status 230
flow control 23
interrupts 29
labels ($)................................ 23
loop

conditionally...................... 25
unconditionally.................. 23

memory allocation................. 11
multi-tasking 204
power-up program................. 13
program example................... 10
programming guidelines.......... 1
scan programs in PLC mode 104
security 14
setup (configuration) program13
storage 11

program in progress................... 92
programmable inputs....See inputs,

programmable
programmable outputs See outputs,

programmable
programming

contouring errors..................133
contouring examples134
creating programs9
debug tools...........................227
debugging via RP240...........111
error messages......................234
error programs................32, 101
examples, using........................ii
executing programs

options................................13
preparing to program iii
program example10
program security89
program selection

BCD82
one-to-one88

sample programs provided.......ii
scan programs in PLC mode 104
set-up program13, 45
skills required...........................ii
storing programs11

proportional axis, contouring ..124,
125, 132

pulse width.................................47
radius specified arcs.................130
radius tolerance specifications .129
ratio of follower to master........172

status167
reading thumbwheel data103
reference documentation..............ii
registration155

effect on Following..............197
lockout distance156
sample application157, 158, 159
status156

related documentation..................ii
relational operators25
REPEAT25
repeatability, Following

position sampling rate193
sensors..................................194
trigger inputs194

resetting the controller45
via the RP240 menu.............114

resolution
drive47, 225

effect on Following197
encoder...........................64, 225
follower axis193
master axis193

resources used by multi-tasking
...213

responses, error234
restart master cycle counting85,

162, 184
restricted commands during

motion17
return procedure.......................243

revision levels from RP240 display
...114

revision of this manual..................i
rollover of master cycle position

............................. 183, 185, 198
rough Following motion199
RP240107

access security113
application example101
COM port setup37, 107
connectoin verified230
data read.................................26
front panel description107
in daisy chain41
menu structure110
send text via the connector...107

RS-232C communication
daisy-chaining........................38
RP240 connector..................107

RS-485 multi-drop41
runaway motor (servos)227
safety features100
sample programs..........................ii
scaling..................................48, 54

acceleration & deceleration ...50
distance51
effect on system performance 34
follower................................172
master.............................51, 172
velocity50

scan programs (PLC scan mode)
...104

security, program14, 89
segment boundary....................131
segment, definition of11
serial ports, controlling37
servo

setup.......................................67
code examples....................72

settling time, actual74
set-up commands44
set-up program.....................13, 45
shift

advance178
continuous............................176

application example177
preset....................................176

application example178
status167, 176

shift left to right (>>)22
shift right to left (<<)22
shutdown..................................100

LED status226
on kill...............................48, 83

SIM modules..............................78
simulating analog input voltages

...242
sine wave (internally generated)

...170
single-shot registration.....156, 158

single-step mode...................... 239
RP240 menu 111
status.................................... 230

soft limit ..See limits, end-of-travel
space (neutral character).............. 6
stall deadband............................ 64
stall detect

drive....................................... 47
stall detection............................. 64

stall indicator output.............. 92
stand-alone operation 101
start-up program (STARTP)...... 13

examples for servos 72
include setup parameters 45
will not execute 226

statistics, controller config. &
status.................................... 229

status
absolute position.................... 55
assigned to binary variable 18
axis

extended 229
relative to Following 198
RP240 display.................. 112

command error 237
commands

diagnostics related 228
list of................................ 232

compiled motion.................. 137
error conditions 231
Following 167, 230
GOWHEN 160
inputs

enable 230
RP240 display.................. 112

LEDs 226
limits.................................... 228

RP240 display.................. 112
master cycle number............ 185
master cycle position 185
motion 25, 228
OTF profiling conditions..... 152
outputs

RP240 display.................. 112
pause.................................... 230
position................................ 232

captured 84
RP240 display.................. 112

program execution............... 230
programmable inputs 80
programmable outputs 90
registration........................... 156
RP240 displays 112
setup parameters 44
statistics 229
system.................................. 230

RP240 display.................. 112
wait 230

step output pulse width.............. 47
stop

assigned input function56
effect on Following motion..197
effect on program execution..16,

83
input (INFNCi-D)16
stop key on RP240107

storing programs in controller
memory11

storing variable data to arrays94
string variables18
subroutine, definition of...............9
substitutions, command values.....7
supervisor for multi-tasking204
support, technical iv
swapping tasks218
synchronizing motion

conditional GOs (GOWHEN)
...159

Following (follower-to-master)
...186

registration155
trigger functions

conditional GO.................162
start new master cycle162

syntax ...5
guidelines6

system performance34
system status230

RP240 display112
system update period................189
tangent axis, contouring ..124, 125,

131
target zone..................................74

affects moving/not moving
output92

status (within zone)228
timeout error...........................74

status228
task zero (supervisor)204
tasksSee multi-tasking
teach mode94
technical considerations for

Following189
technical supportiv, 243
terminal emulation2
testing

program debug tools.............227
test panels in Motion Planner

...242
test programs, Motion Planner .2

thumbwheels103
timeout, target zone....................74

status228
trace mode................................238

RP240 menu.........................111
status230

trackball application.................181
trigger inputs

I/O bit pattern.........................76
position capture84

248 6K Series Programmer’s Guide

programmed
conditional GO (GOWHEN)

............................... 85, 162
restart master cycle counting

....................... 85, 162, 184
status 167

repeatability 194
trigonometric operations............ 20
troubleshooting 223

command problems & solutions
... 224

debug tools........................... 227
enable input status 230
error messages 234
Following............................. 199
general product condition report

... 229
identify bad commands........ 237
methods................................ 224
status commands.................. 228
test panels in Motion Planner

... 242
truncation

acceleration/deceleration 50
velocity 50

tuning
effect on Following accuracy

... 194

unconditional branching............ 23
unconditional looping................ 23
units of measurement 48
UNTIL....................................... 25

using PMAS 185
usng PMAS 198

update rate, programmable I/O.. 75
upgrade the 6K operating system

... 243
user fault input..................... 84, 92

as safety feature................... 100
user interface options 101
user programs, memory allocation

... 11
value substitution, command fields

... 7
variables

binary 18, 22
in conditional expression... 25

conversion between binary &
numeric.............................. 18

numeric.................................. 18
in conditional expression... 25
teach data........................... 94

string...................................... 18
variable arrays 94

velocity
change on the fly 54, 151

compiled motion138
contouring126
maximum (Following)192
range due to PULSE (steppers)

...47
scaling50
TVEL & TVELA responses

relative to Following198
units of measure53, 54

virtual inputs79
virtual master170
WAIT...25

compared to GOWHEN.......161
status230
using PMAS.........................185
usng PMAS..........................198

watchdog timer100
web site (www.compumotor.com)

...ii
WHILE25, 28

using PMAS.........................185
usng PMAS..........................198

work coordinate system128
XON/XOFF, controlling............37
Z-channel59, 63

status229
zero position after homing59

