CC O pion: ArgoNeuT results & future prospects in LAr detectors

*on leave of absence from INFN, Laboratori Nazionali del Gran Sasso, Italy

Outline

• ArgoNeuT v_{μ} CC pion-less events (0 pion events)

- Topological analysis
- Inclusive and Exclusive cross sections

 Future prospects in LAr detectors (LARIAT, MicroBooNE and SBND experiments)

Fermilab – NuMI Neutrino beam

Minos-ND Hall

NuMI

Fermilab's **high-energy** neutrino beam: $\langle E_v \rangle \approx 4-7$ GeV (tunable)

Main Injector - 120 GeV protons

Fermilab – NuMI Neutrino beam

NuMI Fermilab's **high-energy** neutrino beam: <E_v> ≈ 4-7 GeV (tunable)

Main Injector - 120 GeV protons

ArgoNeuT experiment in the NUMI Beam

First LAr TPC in a neutrino beam in the US

First LArTPC in a low (1-10 GeV) energy neutrino beam Acquired 1.35 × 10²⁰ POT, mainly in $\overline{\nu}_{\mu}$ mode

240 Kg active volume

LAr TPC 47×40×90 cm³, 2 readout planes, 480 wires, 4 mm spacing, no light detection system

C. Anderson et al., JINST 7 (2012) P10019

MINOS ND as muon spectrometer for ArgoNeuT events*

*ArgoNeuT Coll. is grateful to MINOS Coll. for providing the muon reconstruction

ArgoNeuT experiment in the NUMI Beam

Designed as test experiment

~7000 CC events but obtaining physics results! collected Largest data sample of [low energy] neutrino interactions in LArTPC

Publications so far: ν -Ar cross sections measurements, LAr TPC calibration techniques and studies of nuclear effects in ν -Ar interactions

LAr TPC and Exclusive topologies

LAr TPC detectors

- provide full 3D imaging, precise calorimetric energy reconstruction and efficient particle identification and
- allow for Exclusive Topology recognition/ reconstruction and Nuclear Effects exploration from detailed studies of the hadronic part of the final states.

LAr TPC is an Ideal detector for Few-GeV v scattering measurements

etc.

I pion (μ +Np+I π) events,

0 PION EVENT TOPOLOGY:

leading muon accompanied by any number (N=0, 1, 2, 3, 4) of protons final state

Looking for pion-less final states

- Proton/pion separation through energy deposition vs range measurement
- Measurements of proton multiplicity at the neutrino interaction vertex and reconstruction of proton(s) kinematics

LAr TPC is an Ideal detector for Few-GeV v scattering measurements

Low proton energy threshold (<u>21 MeV Kinetic</u> energy - ArgoNeuT)

Looking for pion-less final states

- Proton/pion separation through energy deposition vs range measurement
- Measurements of proton multiplicity at the neutrino interaction vertex and reconstruction of proton(s) kinematics

LAr TPC is an Ideal detector for Few-GeV v scattering measurements

Low proton energy threshold (<u>21 MeV Kinetic</u> <u>energy</u> - ArgoNeuT)

Looking for pion-less final states

- Proton/pion separation through energy deposition vs range measurement
- Measurements of proton multiplicity at the neutrino interaction vertex and reconstruction of proton(s) kinematics

LAr TPC is an Ideal detector for Few-GeV v scattering measurements

Low proton energy threshold (<u>21 MeV Kinetic</u> <u>energy</u> - ArgoNeuT)

$\nu_{\mu}/\overline{\nu_{\mu}}CC$ O pion event Isolation cuts and reconstruction

Select events with:

- 1 muon with the correct sign,
- no pion (10 MeV Kinetic energy threshold) and
- any # of nucleons [proton(s), fully contained in the Fiducial Volume (for PID) and above the energy threshold and any # of neutrons (undetected)]
- Selection cuts (fully automated reconstruction)
- Automated reconstruction of the muon (geometrical and calorimetry)
- Semi-automated reconstruction of the proton(s) at the interaction vertex: Visual Scanning (hit selection) and automated reconstruction (geometrical, calorimetry and PiD).
 - Efficiency of the automated reconstruction, detector acceptance, proton containment and backgrounds estimated from $v_{\mu}CC$ 0 pion GENIE MC events.
 - Overall efficiency/acceptance for the (μ+Np) sample is estimated to be ~ 50% (neutrinos) and ~70% (antineutrinos), dominated by the requirement of proton containment in the FV.

ν_{μ} CC O pion events

- Measure model-independent exclusive final states.
- Measure muon and proton kinematics in events with different proton multiplicity.
- Precisely reconstruct the incoming neutrino energy from lepton AND proton reconstructed kinematics.
- Measure features of neutrino interactions and associated Nuclear Effects from identification/reconstruction of specific classes of neutrino events (e.g. muon + 2 protons).
- Measure inclusive and exclusive CC 0 pion cross sections.

Inclusive and Exclusive ν_{μ} CC O pion cross sections

Systematic Uncertainties

	Uncertainty		
FLUX (PRD 89, 112003)	11%		
NC background	<1%		
WS background	<1%		
bckd from π^{0} both γ not converting in LAr	2%		
Muon momentum	5-10%		
Proton Idenfication	97% efficiency		
Proton angular resolution	1-1.5 ⁰ (depending on track length)		
Proton Energy resolution	6-10% (depending on proton energy)		
Neutrino Energy reconstruction	dominated by muon mom. resolution		

Exclusive Antineutrino cross sections

Exclusive Antineutrino Cross Sections

ArgoNeuT

<Ev>=3.6±1.5 GeV

$$\sigma_{CC0\pi}^{\bar{\nu}} = 0.58 \pm 0.03(stat.) \pm 0.06(syst.)10^{-38} cm^2/nucleon$$

$$\begin{split} \sigma^{\bar{\nu}}_{CC0\pi,0p} &= 0.39 \pm 0.02(stat.) \pm 0.008(syst.)10^{-38} cm^2/nucleon \\ \sigma^{\bar{\nu}}_{CC0\pi,1p} &= 0.14 \pm 0.02(stat.) \pm 0.02(syst.)10^{-38} cm^2/nucleon \\ \sigma^{\bar{\nu}}_{CC0\pi,2p} &= 0.035 \pm 0.007(stat.) \pm 0.002(syst.)10^{-38} cm^2/nucleon \\ \sigma^{\bar{\nu}}_{CC0\pi,3p} &= 0.008 \pm 0.004(stat.) \pm 0.002(syst.)10^{-38} cm^2/nucleon \\ \sigma^{\bar{\nu}}_{CC0\pi,4p} &= 0.005 \pm 0.004(stat.) \pm 0.001(syst.)10^{-38} cm^2/nucleon \end{split}$$

ArgoNeuT anti-neutrino data

Exclusive Antineutrino Cross Sections Comparison with GENIE and GiBUU

Antineutrino Comparison with different MC generators

# of protons	ArgoNeuT data (%)	GENIE (%)	GiBUU (%)	NUWRO (%)
0	67	61	61	65
1	24	18	24	23
2	6.0	7.3	9.5	8.0
3	1.3	4.9	3.5	2.8
≥4	0.8	12	1.8	1.6

The MC generators predict varying amounts of proton emission

J. Sobczyk

INT, Seattle

(2013)

Exclusive Neutrino Cross Sections

Exclusive Neutrino Cross Sections

<Ev>=9.6±6.5 GeV

Exclusive neutrino cross sections Comparison with GENIE

GENIE: 64% higher than data, large difference at 1p and at high multiplicity

Neutrino Energy Reconstruction

Estimate of E_{ν} from the final state particle (muon AND protons) measured kinematics: Phys. Rev. D 90, 012008 (2014)

$$E_{\nu} = E_{\mu} + \sum T_{p_i} + T_X + E_{miss}$$

 T_X =recoil energy of the residual nuclear system X [undetectable]. A lower bound is estimated from the measured missing transverse momentum:

$$T_X \approx \frac{(p_{miss}^T)^2}{2M_X}$$

 E_{miss} =missing energy [nucleon separation energy from Ar nucleus + excitation energy of residual nucleus (estimated by fixed average value, e.g. E_{miss} =30 MeV for 2p events)

(see J. Zennamo talk for a discussion about neutrino energy reconstruction)

Neutrino Energy Reconstruction

Muon Momentum

reconstruction (GENIE - underestimation of E_{ν} , ~10% for $\overline{\nu}$ and ~4% for ν)

Neutrino/Antineutrino cross sections comparison with GENIE

Neutrino/Antineutrino cross sections comparison with GENIE

Nuclear Effects in LAr

- Nuclear effects significantly alter σ_{ν} 's and final state particle topology/kinematics.
- Main reason for disagreement between ArgoNeuT data and MC predictions is the treatment of nuclear effects in the MC generators.
 - LAr data can provide an important discriminator among models.
 - Pion absorption in the nucleus is a dominant effect for CC 0 pion events.

 LArIAT (Liquid Argon TPC In A Testbeam) experiment is measuring charged pion interaction cross section in LAr.

MicroBooNE and SBND experiments Exclusive channels & Nuclear Effects

Short Baseline Neutrino program detectors will provide huge data sets of ν -Ar interactions from the **Booster Neutrino Beam (** <E_v>=800 MeV)

- Large samples in MicroBooNE (82 t AV) are coming! MicroBooNE will record ~ 50,000 ν_{μ} CC per year (see A. Schukraft talk)
- SBND (112 t AV) will record ~1.5 million ν_{μ} CC and ~12,000 ν_{e} CC interactions per year (see C. Adams talk)

At the BNB CC 0 pion is the dominant channel

• High statistics measurement of ν_{μ} and ν_{e} CC 0 pion events will allow to quantify nuclear effects in neutrino-Ar scattering*

 *only existing ν_μ CC 0 pion Ar scattering data are ~900 events from ArgoNeuT (NuMI beam, 3 GeV peak energy) **CC 0** π events

Comparison with theory models with nucleon-nucleon correlation: • ArgoNeuT data-NUWRO (K. Niewczas and J. Sobczyk arXiv:1511.02502v1) (see J. Sobczyk talk)

Conclusions CC 0 pion events

• First topological analysis developed by the ArgoNeuT experiment.

- Exclusive channels cross sections.
- First direct experimental investigations on <u>nuclear effects</u> and their impact on the predicted rates, final states, and kinematics of neutrino interactions.
- Tension with current MC generators.
- The statistics from ArgoNeuT events is very limited.
- Future larger mass and high statistics LAr-TPC detectors will allow to quantify nuclear effects in neutrino-Ar scattering.
- Models including all nuclear effects as well as their implementation in v MC generators are deemed necessary for comparisons with LAr data.

Overflow

Stopping tracks - Calorimetric reconstruction and PID

The energy loss as a function of distance from the end of the track is used as a powerful method for particle identification.

Kinetic Energy vs. track length

Low energy proton reconstruction

ArgoNeuT proton threshold: 21 MeV Kinetic Energy

20

10

0.5

4 4.5 5 total range (cm)

Muon Reconstruction

"Analysis of a Large Sample of Neutrino-Induced Muons with the ArgoNeuT Detector" *JINST 7 P10020 (2012)*

Muon kinematic reconstruction:

ArgoNeuT +MINOS ND measurement (momentum and sign)

Muon momentum resolution: 5-10%

Generated

	Proton	Kaon	Pion	Muon
Proton	0.97	0.15	0.05	0
Kaon	0.03	0.60	0.09	0.01
Pion	0	0.06	0.25	0.28
Muon	0	0.20	0.61	0.71

Selection efficiency μ +Np events

