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Recap / Up Next
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Last time:   
Multicomponent Detectors 

Comprehensive strategies 
Particle Identification 
Triggering 

This time:   
Quantum Electrodynamics 

The Dirac Equation 
QED Feynman Rules 
Cross Sections 
Renormalization



Upcoming Plans
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Chapter 7:    Everything 

Chapter 8:    Secs. 8.1-8.4 

Chapter 9:    Everything but Sec 9.4 

Chapter 10:  Useful, but only if you’re interested 

Chapter 11:  Everything 

Chapter 12:  Only if you’re interested 



The Schrodinger Equation
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(� ~2
2m

r2 + V ) = i~ @
@t
 H = � ~2

2m
r2 + V

Hopefully this is a review for everyone!! 
Schrodinger’s equation is based on the Hamiltonian, a description of the 
total energy of a system.
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Hopefully this is a review for everyone!! 
Schrodinger’s equation is based on the Hamiltonian, a description of the 
total energy of a system.

(� ~2
2m

r2 + V ) = E 

H = E 

 (~r, t) =  (~r)e�iEt/~

Time-independent solutions 
Assume (or know!) that the potential V doesn’t depend on time



Deriving Wave Equations
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What actually transpired to get us to the Schrodinger Equation?

1)  Start with the classical expression for energy conservation

p2

2m
+ V = E
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What actually transpired to get us to the Schrodinger Equation?

1)  Start with the classical expression for energy conservation

p2
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2)  Substitute QM operators
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The Schrodinger Equation
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1) 1st order in the time domain 
2) 2nd order in the spatial domain (� ~2

2m
r2 + V ) = i~ @

@t
 

Why are these important?   
They imply that solutions to the Schrodinger Eqn satisfy the continuity equation.   

IE, probability is conserved!
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Why are these important?   
They imply that solutions to the Schrodinger Eqn satisfy the continuity equation.   

IE, probability is conserved!

1) Multiply SE by 
conjugate WF:
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3) Subtract & the 
result is the continuity 
equation:



The Klein-Gordon Equation
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The Schrodinger Equation is a non-relativistic description of the 
evolution of wave functions  

Why can’t we just do the same for relativistic particles? 
Using the relativistic energy-momentum relationship?

� 1

c2
@2 

@t2
+r2 =

⇣mc

~

⌘2
 

E2 � p2c2 = m2c4

p̂ = �i~r

Ê = i~ @

@t

Via substitution, we have the 
Klein-Gordon Equation
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The Schrodinger Equation is a non-relativistic description of the 
evolution of wave functions  

Why can’t we just do the same for relativistic particles? 
Using the relativistic energy-momentum relationship?

� 1

c2
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@t2
+r2 =

⇣mc

~

⌘2
 

E2 � p2c2 = m2c4

p̂ = �i~r

Ê = i~ @

@t

Via substitution, we have the 
Klein-Gordon Equation

pµp
µ �m2c2 = 0

pµ = i~@µ

@µ =
@

@x

µ �@µ@µ �m2 = 0

� @ 

@t2
+r2 = m2 

(⇤+m2) = 0

The covariant form of the KG Eqn



Brief Definitions & Reminders
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x

µ = (ct, x, y, z)

xµ = gµ⌫x
⌫ = (ct, �x, �y, �z)
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d’Alembertian = Minkowski Laplace operator



The Klein-Gordon Equation
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�@µ@µ �m2 = 0

� @ 

@t2
+r2 = m2 

(⇤+m2) = 0

1) 2nd order in the time domain 
2) 2nd order in the spatial domain

Schrodinger also discovered this equation, but discarded it because it didn’t obviously 
satisfy the continuity equation.   

Later on Pauli & Weisskopf reformulated a relativistic, quantum continuity 
equation, so it turns out to be just fine.  Oops! 
In Schrodinger’s defense, the KG Eqn fails to reproduce the Hydrogen spectra.  
That’s because KG only works for spin-0 particles…not spin 1/2 electrons!



The Klein-Gordon Equation
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The Klein Gordon Equation accepts plane wave solutions 
We now use our 4-vectors to describe the solutions

 (x, t) = eipµx
µ

= eiEt+ip·x

pµx
µ = ~(k · x� !t)
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The Klein Gordon Equation accepts plane wave solutions 
We now use our 4-vectors to describe the solutions

 (x, t) = eipµx
µ

= eiEt+ip·x

pµx
µ = ~(k · x� !t)

(⇤+m2) = 0

�E2 + p2 +m2 = 0 E = ±
p

p2 +m2

What do we do with the negative energy solutions? 
Cannot just throw them away!

⇒



More Problems
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@

@t
⇢+r · j = 0

⇢ = | |2 =  ⇤  

As we discussed, the KG Eqn does indeed satisfy the continuity equation 
We now use our 4-vectors to describe the solutions

⇢ = i
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�

This probability term is not constant! 
Nor is it even necessarily positive.  Hmmm.

Continuity Equation:

Probability density from 
Schrodinger Equation:

Probability density from 
KG Equation:



Solutions?
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The second-order time derivative in the ⎕ of the KG equation is responsible for both 
the negative-energy plane wave solutions and the misbehaving probability density. 

Dirac tried to fix this problem by looking for a relativistic equation that, like the 
Schrodinger equation, only contained first-order time derivatives

⇢ = i


 ⇤ @ 
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E = ±
p

p2 +m2



Towards a Solution
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Dirac noticed that if you make the simplifying assumption that there is zero 
momentum, then the energy-momentum relation factorizes! 

Even better, the factored equations are linear with energy.

Either linear equation leads to a time-space equation that is first-order in time and 
satisfies the relativistic energy-momentum relation.

E2 � p2 = m2

(p0)2 �m2 = 0

(p0 �m)(p0 +m) = 0

) p0 = ±m

Set 3-momentum to zero:



Getting closer….
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But what about the general case with non-zero momentum: moving particles! 
Not so trivial.  Need to solve for a linear energy/momentum relationship.

(~↵ · ~p+ �m) = i
@ 

@t
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But what about the general case with non-zero momentum: moving particles! 
Not so trivial.  Need to solve for a linear energy/momentum relationship.

(~↵ · ~p+ �m) = i
@ 

@t

i

✓
�0

@

@t
+ ~� ·r

◆
 = m 

�0 = �, �1 = �↵1, �2 = �↵2, �2 = �↵2….

This gets us to a general 
solution, now we just need 
to understand these 
gamma factors.



First Look at Gamma Matrices
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Multiplying the Dirac equation by its complex conjugate must give KG: 

�@µ@µ �m2 = 0

� @ 

@t2
+r2 = m2 

(⇤+m2) = 0

Klein-Gordon Equation:
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✓
�i�0 @
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i�0 @

@t
+ i~� ·r�m

◆
= 0

Multiplying the Dirac equation by its complex conjugate must give KG: 

(�0)2 = 1 (�1,2,3)2 = �1

This leads to a set of conditions on the four coefficients

The γμ are unitary and anti-commute. 
How about γ0=1and γ1,2,3=i??  Not so simple! 

Our anti-commutator equation cannot be solved by any set of complex 
numbers!  More on this later.

For μ≠ν{�µ, �⌫} = �µ�⌫ + �⌫�µ = 0

(1) (2)

(3)



The Dirac Equation
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Having successfully factored the relativistic energy-momentum relation, we can set 
either factor to zero. 

Remember, we’re technically still working with the KG equation!

(pµpµ �m2) = (�kpk +m)(��p� �m) = 0



The Dirac Equation
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Slash Notation
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When we contract γμ with a four-vector qμ, we can abbreviate this 
using the Feynman slash notation

�µqµ = 6 q
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When we contract γμ with a four-vector qμ, we can abbreviate this 
using the Feynman slash notation

�µqµ = 6 q

With the slash notation, the Dirac equation becomes

6 p�m = 0

(i 6 @ �m) = 0

i�µ@µ = m 

(i�µ@µ �m) = 0



Back to Gamma Matrices
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(�0)2 = 1 (�1,2,3)2 = �1 For μ≠ν{�µ, �⌫} = �µ�⌫ + �⌫�µ = 0

We had 3 conditions, including an anti-commutation relation. 
Can’t do this with numbers since they commute (AB=BA always) but we can 
do it with matrices (which do not, in general, commute). 
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We had 3 conditions, including an anti-commutation relation. 
Can’t do this with numbers since they commute (AB=BA always) but we can 
do it with matrices (which do not, in general, commute). 

Dirac’s clever idea was to let γ represent a set of 4x4 matrices
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Dirac’s clever idea was to let γ represent a set of 4x4 matrices



Back to Gamma Matrices
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1 =

✓
1 0
0 1

◆

0 =

✓
0 0
0 0

◆

�1 =

✓
0 1
1 0

◆

�2 =

✓
0 �i
i 0

◆

�3 =

✓
1 0
0 �1

◆

The “Bjorken & Drell” convention is often used to reduce the notation.  
Clearly the physics is independent of the representation.
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{�µ, �⌫} = 2gµ⌫

The “Bjorken & Drell” convention is often used to reduce the notation.  
Clearly the physics is independent of the representation.

We’ll use the anti-commutation relation later, so it’s worthwhile noting a 
feature of it:

For μ≠ν{�µ, �⌫} = �µ�⌫ + �⌫�µ = 0



Spin-½ Representations
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Now that we’re using a vector wavefunction, we must have a different 
form for spin observable operators 

The operator must transform a vector into a vector 
The obvious (only?) choice is a matrix

� =
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0
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◆We’re now using vectors as spin-½ representations
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~
2
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0 1
1 0

◆
Ŝy =

~
2

✓
0 �i
i 0

◆
Ŝz =

~
2

✓
1 0
0 �1

◆
Spin vectors transform via the 2-D representation of the SU(2) group 

The Lie algebra is spanned by 3, 2×2 Hermitian, unitary, complex matrices.

FLASHBACK!! 
CHAPTER 4
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the Pauli spin matrices:
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CHAPTER 4



Dirac Spinors
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We have 4x4 matrices operating on our 4-momentum vectors. 
Thus our wave functions must be 4-component column vectors! 
Bi-spinors, Dirac spinors, or just “spinors”

(i 6 @ �m) = 0

(i�µ@µ �m) = 0

 =

0

BB@

 1

 2

 3

 4

1

CCA
It is important to note that while the Dirac spinor ψ 
is a four component object, is it NOT a four-vector. 
It’s transformation properties are important 
however, and we will discuss these later on. 
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We’ll frequently want to deal with our spinors as two components 
These “look like”…but aren’t truly…spin-up and spin-down states

 =
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BB@

 1

 2

 3

 4

1

CCA  =

✓
 A

 B

◆
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 1

 2

◆
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✓
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Don’t let all this shorthand fool you! 
We’ve made our lives simpler by contracting the terms we must 
write, but at the cost of potential obfuscation.

(i 6 @ �m) = 0
i�µ@µ = m 

(i�µ@µ �m) = 0
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Don’t let all this shorthand fool you! 
We’ve made our lives simpler by contracting the terms we must 
write, but at the cost of potential obfuscation.

The Dirac equation in it’s full glory
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i�µ@µ = m 

(i�µ@µ �m) = 0
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Solutions to the Dirac equation have two parts:

1)  A phase term that describes the characteristic time evolution of the 
quantum state of energy E and momentum p:

 / e�ipµx
µ

2)  A Dirac spinor term, which will also be a function of the particle’s 4-
momentum:

 / u(pµ)

 = u(pµ) e�ipµx
µ
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Let’s make a simplifying assumption as a first approach to the solutions: 
Assume the particle is at rest: p=0

(i�µ@µ �m) = 0 ) (i�0@0 �m) = 0
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This leads to the pair of equations, with their associated solutions.

Recall that for the Schrodinger equation, the characteristic time 
dependence of the solutions goes like exp(-iEt). 

Evidently, ψA is a solution with energy E=+m, as we should expect, 
but ψB seems to have a negative energy E=-m. 

Dirac had hoped that an equation that is first order in time would 
avoid these negative energy solutions.



Back to the Negative Energy Problem
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- Seeing as we seem to be stuck with the negative energy solutions, Dirac’s next suggestion 
was that all possible negative energy states were already filled by a Dirac sea of particles. 
The Pauli Exclusion Principle would then leave only the positive energy states available.  

- The excitation of a sea electron would leave a hole which would behave like a positive 
energy particle with a positive charge. Eventually, Dirac worked up the courage to predict 
the existence of the positron. 

- Experimentalists had secretly been observing evidence for antimatter for years, but had 
always discarded these unphysical particles.  The positron was quickly “discovered”.
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- We can’t escape negative energy solutions. How should we interpret them? 

- Modern Feynman-Stückelberg Interpretation: 
A negative energy solution is a negative energy particle which propagates 
backwards in time or equivalently a positive energy anti-particle which 
propagates forwards in time.

This is why in Feynman diagrams the backwards pointing lines represent  
anti-particles.

e�i(�E)(�t) ! e�i(Et)



Discovery of the Positron
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C.D. Anderson, Phys Rev 43 (1933) 491

Left: Carl Anderson & his magnet-surrounded bubble chamber 
Right: Positron track in bubble chamber, curving due to magnetic field



Discovery of the Positron
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C.D. Anderson, Phys Rev 43 (1933) 491

- Positron slows as it traverses the lead plate.  Why?? 
- Track curvature in B-field shows it’s a positive particle. 
- Cannot be a proton, as a proton would have stopped in the lead.

23 MeV

63 MeV

Lead plate
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With the interpretation of negative energy states as positive energy antiparticles, we 
can see how the Dirac equation has four independent solutions for a particle at rest:

We can think of these as spin up/down states of electrons (ψA) and positrons (ψB)

(e+ ")(e+ #)



Solutions of the Dirac Equation
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Next we will look for full, plane-wave solutions to the Dirac equation

 = N u(pµ) e�ipµx
µ
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Next we will look for full, plane-wave solutions to the Dirac equation

 = N u(pµ) e�ipµx
µ

          doesn’t depend on time and it must satisfy the momentum-space Dirac equation:

( 6 @
µ

�m)ue�ip·x = 0

( 6 p
µ

ue�ip·x �mue�ip·x) = 0

(�µp
µ

�m)u = 0

This is purely algebraic (it contains no derivatives) and represents a set of four 
coupled equations.

u(pµ)

i
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The Dirac equation then gives us a pair of coupled equations for UA and UB:

These equations can easily be solved by substituting one into the other and noting that
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Substituting the second equation into the first, we have

This requires (E2 - m2 = p2), just as we should expect. The same thing 
happens with UB. Either way, we have two solutions for E:
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By picking specific forms for UA or UB (remember, one is fixed by the other), we can 
construct a set of four solutions to the Dirac equation for a moving particle.
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Splitting UA and UB each into their 2-part pieces, we have two particle 
solutions (keep calling these U) and two anti-particle solutions (call these V):

E = +
p

p2 +m2

E = �
p

p2 +m2

( 6 p�m)u = 0

( 6 p+m)v = 0
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The normalization constant N is easily calculated once the total wave function is 
normalized.  The standard convention is 2E:

u†u = 2E

N =
p
E +m

This convention comes about by converting from the “classical” unit probability 
calculation to the Lorentz-Invariant formulationZ

 

†
 dV = 1 )

Z
 

†
 d

4
x = 2E

With this convention, we trivially find N (with some algebra):
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We have to be VERY careful when we interpret the spin states of our general, 
plane-wave. 

Our zero momentum solutions were spin-up and spin-down for positrons 
and electrons. 
But with non-zero momentum, things are not so simple anymore! 

But we can generalize the Pauli spin matrices to the 4x4 matrices required for 
Dirac spinors:

If (and only if) the particles are traveling along the z-axis, the plane-wave 
solutions U and V will be eigenstates of Sz. 

U1 and V1 are spin up, while U2 and V2 are spin down. 
See the homework!
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Spinors are not four-vectors, therefore they do not transform via Λ. How do 
they transform?

For motion along the x-axis:

Not the same S 
as last slide!!! 

0(x0) = S  (x)

S�1�µS = ⇤µ
⌫ �

⌫

@µ

@x

µ
= ⇤⌫

µ
@µ

@x

⌫

The transformation is defined as:
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Consider

Under a Lorentz transformation,

Since                (check for yourself using the explicit representation of S on the 
previous page),         is not a Lorentz scalar.
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16 Lorentz invariant quantities can be defined from spinors. 
Each describes a different kind of fermion currents (fermion lines of 
Feynman diagrams)

Just as four-vector contractions need a few well-placed minus signs (i.e.,       ) 
in order to make a scalar, we can add a couple of minus signs to a spinor by 
defining the adjoint spinor:

Since                        (again, check this yourself), 

is a Lorentz scalar

gµ⌫
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Define an additional γ-matrix by

In the Bjorken and Drell representation:

Note: 
(γ5)2=1and anti-commutes with every other γ:
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We have already seen how       is a Lorentz scalar

Since                                           (check this too), 

is also a Lorentz scalar.

This gives us two Lorentz scalars.  What’s the difference??
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Under a parity transformation we have:

Thus, since:

True scalar: Pseudo-scalar:
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Note that:

There are 16 possible products of the form ψ*iψj. These 16 products can be 
grouped together into bilinear covariants:
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We now have a simple basis set { 1, γμ, γ5, γμγ5, σμν } for any 4x4 matrix, 
therefore we can always simplify more complicated combinations of γ matrices.

The tensorial and parity character of each bilinear is evident.  This makes it   
easy to see why the QED interaction Lagrangian 

leads to a parity-conserving electromagnetic force mediated by                        
a vector (spin-1) boson.

To describe the parity-violating weak interaction, we could (and will!) mix vector 
and axial interactions. 

±
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Warning:  The next few slides make comparisons between the 
classical EM formulation and the QM formulation.  Do not get 
confused by trying to connect directly between them.  We’ll discuss 
more in class, but always remember that the classical formulation is 
merely our observation when the QM effects are small.
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We start discussing the photon in the context of Maxwell’s equations.

“inhomogeneous” 
equations

“homogeneous” 
equations
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The relativistic formulation of Maxwell’s equations takes advantage of our 4-
vector and tensor notation:

Fµ⌫ =

0

BB@
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y
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E
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B
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1

CCA

Jµ = (c⇢, ~J)

Field Strength Tensor

Density 4-Vector 
or EM 4-Current
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The relativistic formulation of Maxwell’s equations takes advantage of our 4-
vector and tensor notation:
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@µF
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Inhomogeneous Equations
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The homogenous equations can also be put in the relativistic format, but we have 
to make some observations first. 

The result is that we see the E and B fields arise from a scalar and a vector 
potential.

(1)

(2)
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The homogenous equations can also be put in the relativistic format, but we have 
to make some observations first. 

The result is that we see the E and B fields arise from a scalar and a vector 
potential.

(1)

r ·B = 0 ) B = r⇥A(1)

(2)
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The homogenous equations can also be put in the relativistic format, but we have 
to make some observations first. 

The result is that we see the E and B fields arise from a scalar and a vector 
potential.
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(2)
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◆
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The homogenous equations can also be put in the relativistic format, but we have 
to make some observations first. 

The result is that we see the E and B fields arise from a scalar and a vector 
potential.

(1)

r ·B = 0 ) B = r⇥A(1)

(2)

r⇥
✓
E +
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◆
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E = �rV � 1
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By defining a 4-vector potential, we can reformulate the classical EM theory in 
terms of the evolution of fields that satisfy a wave equation.

Fµ⌫ = @µA⌫ � @⌫Aµ

Aµ = (V, ~A)
4-Vector Potential

Re-write the Field Strength Tensor

⟹

@µF
µ⌫ = @µ@

µA⌫ � @⌫(@µA
µ) =

4⇡

c
J⌫

= ⇤A⌫ � @⌫(@µA
µ)

The inhomogeneous 
equations take on an 
interesting form.  Note the 
return of the d’Alembertian 
from the KG equation.
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The only problem with this formulation is that the 4-vector potential is not unique 
for a given set of E and B fields. 

If we want to use the potentials to describe something physical, we’ll have to 
confront this uniqueness issue.

A0
µ = Aµ + @µ�

@µA⌫0 � @⌫Aµ0 = @µA⌫ � @⌫Aµ

Consider a gauge transformation 
of the 4-vector potential:

The field strength tensor is 
unchanged by this transformation, 
leaving Maxwell’s equations 
unchanged.

A not completely arbitrary choice 
to reduce the ambiguity is the 
Lorentz condition:

⇤Aµ =
4⇡

c
Jµ@µA

µ = 0 ⟹



The free-space 4-vector potentials satisfy the KG equation for a massless particle 
We can thus find associated plane-wave solutions 

  

To solve this second issue, we impose one more constraint: 
In empty space (no charge or current!) there is zero scalar potential (V) 
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Even with the Lorentz condition, we can make further gauge 
transformations of the form 

without disturbing Maxwell’s equations provided that: ⇤� = 0

A0 = 0 r ·A = 0

⇤Aµ = 0
A

µ(x) = a e�ip

µ
xµ

✏

µ(pµ)

Aµ ! Aµ + @µ�

and thus:

⟹

polarization vector
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Plugging these 4-vector field solutions back into the massless-KG equation yield 
some natural constraints: 

pµp
µ = 0

pµ✏µ = 0

✏0 = 0

~✏ · ~p = 0

✏(1) = (1, 0, 0)

✏(2) = (0, 1, 0)

Zero mass 
constraint

Lorentz 
condition

Coulomb 
gauge

Lorentz + 
Coulomb

The combination of the Lorentz condition and 
Coulomb gauge leads us to understand that the 
polarization of the 4-potential is perpendicular 
to the momentum:  transverse! 

Example: motion along the z-axis allows:

Coulomb gauge ate one polarization DOF, but 
why aren’t there three?? 

Because these are massless solutions to the 
KG equation, we cannot polarize along the 
direction of motion!

A

µ(x) = a e�ip

µ
xµ

✏

µ(pµ)
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So where is the photon??
The free-space 4-vector potentials satisfy the KG equation for a massless particle 

We can thus find associated plane-wave solutions 

  ⇤Aµ = 0
A

µ(x) = a e�ip

µ
xµ

✏

µ(pµ)⟹
In Quantum Electrodynamics (QED), we recognize that the plane-wave solution for 
a massless particle (from the KG equation) matches exactly with the solutions of 
Maxwell’s equations for the 4-vector potential. 

We have a duality between particle and wave descriptions of EM. 
All that remains is to demonstrate that we can build a consistent QM 
description of the photon-fermion interactions!
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Electrons

Spinors satisfy the 
Dirac Equation:

Positrons

(�µpµ �m)u = 0 (�µpµ +m)v = 0

v̄(�µpµ +m) = 0Adjoints satisfy 
the Dirac Eqn:

ū(�µpµ �m) = 0

Adjoint spinors 
satisfy: ū = u†�0 v̄ = v†�0

Orthogonality: ū(1)u(2) = 0 v̄(1)v(2) = 0

Normalization: ūu = 2m v̄v = �2m

X

s=1,2

u(s)ū(s) = (�µpµ +m)Completeness:
X

s=1,2

v(s)v̄(s) = (�µpµ �m)
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Photons

Lorentz condition:

Normalization:

Orthogonality:

Coulomb gauge:

Completeness:

pµ✏µ = 0

✏µ⇤(1)✏µ(2) = 0

✏µ⇤✏µ = �1

✏0 = 0, ~✏ · ~p = 0

X

s=1,2

✏(s)i ✏(s)⇤j = �ij � p̂ip̂j
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Recall:  The Feynman rules provide the recipe for constructing an amplitude ℳ from a 
Feynman diagram. 

Step 1:  For a particular process of interest, draw a Feynman diagram with the 
minimum number of vertices. There may be more than one.

e+

e-

e+

e-
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Step 2:   
For each Feynman diagram, label the four-momentum of each line, enforcing 
four-momentum conservation at every vertex.  
Note that arrows are only present on fermion lines and they represent particle 
flow, not momentum.

e+

e-

e+

e-

p1

p2

p3

p4

q
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Step 3:   For each external line, include a factor for the particle wave function: 

e+

e-

e+

e-

p1

p2

p3

p4

q

u(p)

v(p)v̄(p)

ū(p)
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Step 4:   
Every QED vertex contributes a factor of  

where ge is a dimensionless coupling constant and is related  
to the fine-structure constant by

e+

e-

e+

e-

p1

p2

p3

p4

q

ige�
µ

↵ =
g2e
4⇡

ige�
µ ige�

⌫

u(p)

v(p)v̄(p)

ū(p)
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Step 5:   
Each internal line contributes a factor as follows:                

Photons:      Fermions: 

e+

e-

e+

e-

p1

p2

p3

p4

q

ige�
µ ige�

⌫

�igµ⌫
q2

i(�µqµ +m)

q2 �m2

�igµ⌫
q2u(p)

v(p)v̄(p)

ū(p)
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Step 6:   
Each vertex gets a delta function over the 4-momenta into/out of the vertex.  Take  care to 
get the 4-momentum signs right!! 

Step 7:   
Each internal momentum gets a phase space integral factor. 

Step 8:   
After integrating, the result will include a delta function reflecting total energy/momentum 
conservation.  Cancel this factor and multiply by i.  The result is the matrix element. 

Step 9:   
Include a minus sign between diagrams that differ only in the interchange of two incoming 
(or outgoing) electrons (or positrons), or of an incoming electron with an outgoing positron 
(or vice versa).

(2⇡)4 �4(k1 + k2 + k3)

d4q

(2⇡)4
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Step 6:   
Each vertex gets a delta function over the 4-momenta into/out of the vertex.  Take  care to 
get the 4-momentum signs right!! 

Step 7:   
Each internal momentum gets a phase space integral factor. 

Step 8:   
After integrating, the result will include a delta function reflecting total energy/momentum 
conservation.  Cancel this factor and multiply by i.  The result is the matrix element. 

Step 9:   
Include a minus sign between diagrams that differ only in the interchange of two incoming 
(or outgoing) electrons (or positrons), or of an incoming electron with an outgoing positron 
(or vice versa).

(2⇡)4 �4(k1 + k2 + k3)

d4q

(2⇡)4
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The anti-symmetrization issue is hiding a more important aspect of QFT. 
What we’re really doing on some level is tracing the “current” in question.  
This can be electric charge, probability, weak hypercharge, etc.

p1

p2

p3

p4

J1

J2
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What matters is the “current” 
  Black = electron Red=positron 

This case: electron-electron scattering

The exchange of the final state electrons interchanges momentum definitions. 
J1 goes from (p3-p1) to (p4-p1) 
J2 goes from (p4-p2) to (p3-p2)

J1

J2

p1

p2

p3

p4

p1

p2

p3

p4

J1

J2
Gets a negative sign in 
the matrix element sum!
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What matters is the “current” 
  Black = electron Red=positron 

This case: electron-electron scattering

p1

p2

p3

p4

The exchange of the final state electrons interchanges momentum definitions. 
J1 goes from (p3-p1) to (p4-p1) 
J2 goes from (p4-p2) to (p3-p2)

J1

J2

??? 
We don’t do both 

diagrams because 
they arrive at the 

same current 
definitions!  The 
convention is the 
one on the right.

p1

p2

p3

p4

J1

J2
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What matters is the “current” 
  Black = electron Red=positron 

This case: electron-positron scattering

The exchange of the initial state electron with final state positron interchanges: 
J1 goes from (p3-p1) to (p2-p1) 
J2 goes from (p4-p2) to (p4-p3)

p1

p2

p3

p4

J1

J2

p1

p2

p3

p4

J1

J2

Gets a negative sign in 
the matrix element sum!
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What matters is the “current” 
  Black = electron Red=positron 

This case: electron-positron scattering

The exchange of the initial state electron with final state positron interchanges: 
J1 goes from (p3-p1) to (p2-p1) 
J2 goes from (p4-p2) to (p4-p3)

p1

p2

p3

p4

J1

J2

p1

p2

J1

p3

p4

J2

Rearranging gets you here!

Gets a negative sign in 
the matrix element sum!
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A
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A

A

A

A

A

A

A

A

B

B

B BC C

C

C

A

A

A

A

A

A

A

A

B

B

B BC C

C

C

A

A

A

A

A

A

A

A

B

B
B BC C

C

C

Why not this one??

Because it’s the same currents as this one!
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When building QED matrix elements, it’s easiest to think of following currents and 
building current “sandwiches”. 

Follow the particle current, sandwich the vertex factor in the middle! 
Adjoint spinors on the left, spinors on the right.

e+

e-

e+

e-

p1

p2

p3

p4

q

ige�
µ ige�

⌫

�igµ⌫
q2u(p)

v(p)v̄(p)

ū(p)

J1 J2

J1: v̄(p1)(ige�
µ)u(p2) J2: ū(p4)(ige�

µ)v(p3)
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e+

e-

e+

e-

p1

p2

p3

p4

q

ige�
µ ige�

⌫

�igµ⌫
q2u(p)

v(p)v̄(p)

ū(p)

J1 J2

J1: v̄(p1)(ige�
µ)u(p2) J2: ū(p4)(ige�

µ)v(p3)

M = (2⇡)8
Z

(J1)

✓
�igµ⌫
q2

◆
(J2) �

4(p1 + p2 � q) �4(q � p3 � p4)
d4q

(2⇡)4
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M = (2⇡)8
Z

(J1)

✓
�igµ⌫
q2

◆
(J2) �

4(p1 + p2 � q) �4(q � p3 � p4)
d4q

(2⇡)4

= i(2⇡)4 g2e

Z
[v̄(p1)�

µu(p2)]

✓
gµ⌫
q2

◆
[ū(p4)�

µv(p3)] �
4(p1 + p2 � q) �4(q � p3 � p4) d

4q

= � g2e
(p1 + p2)2

[v̄(p1)�
µu(p2)] [ū(p4)�µv(p3)]

1)  Substitute the forms of the currents:

2)  Do the integration over the propagator momentum:  q→p1+p2

3)  Cancel the remaining delta function (and its 2π factor!), multiply by i

=
i(2⇡)4 g2e
(p1 + p2)2

[v̄(p1)�
µu(p2)] [ū(p4)�µv(p3)] �

4(p1 + p2 � p3 � p4)
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Examples worked in class: 
1. Electron-muon scattering 
2. Compton scattering 
3. Pair Annihilation
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A typical QED amplitude might look something like 

The Feynman rules won’t take us any further, but to get a number for ℳ we will 
need to substitute explicit forms for the wavefunctions of the external particles 

If all external particles have a known polarization, this might be a 
reasonable way to calculate things. More often, though, we are interested in 
unpolarized particles.

= � g2e
(p1 + p2)2

[v̄(p1)�
µu(p2)] [ū(p4)�µv(p3)]

If we do not care about the polarizations of the particles then we need to 
1. Average over the polarizations of the initial-state particles 
2. Sum over the polarizations of the final-state particles in the squared 
amplitude |ℳ |2. 

We call this the spin-averaged amplitude and we denote it by 
    

D
|M|2

E

Note that the averaging over initial state polarizations involves summing over all 
polarizations and then dividing by the number of independent polarizations, so  
the spin-averaging involves a sum over the polarizations of all external particles.
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The procedure of calculating spin-averaged amplitudes in 
terms of traces is known as Casimir’s Trick.

If antiparticle spinors (v) are present in the spin sum, we use 
the corresponding completeness relation
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Let’s simplify things even further and suppose that we have:  

Then we have:

ū = u†�0

(�0)2 = 1

�0�†�0 = �̄
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|M|2 ⇠ [ū1�u2] [ū2�u1]

We have worked up to:

We can simplify by applying the completeness relation to the 2nd particle (u2):

Then we get:
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We have worked up to:

The RHS is just a number, but we can rewrite the matrix multiplication 
with summations over indices and simplify:



A slight of hand!
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uū = uu†�0 =

0

BB@

u1

u2

u3

u4

1

CCA
�
u⇤
1 u⇤

2 u⇤
3 u⇤

4

�

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

ūiuj = (u†�0)iuj =

8
>><

>>:

�
u⇤
1 u⇤

2 u⇤
3 u⇤

4

�

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

9
>>=

>>;
i

uj

ūiuj =
u⇤
i uj (i = 1, 2)

�u⇤
i uj (i = 3, 4)

(uū)ij =
uiu⇤

j (j = 1, 2)
�uiu⇤

j (j = 3, 4)
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We have worked up to:

Next, we apply the completeness relation once again, so that we get

D
|M|2

E
⇠ F · Tr

⇥
�( 6p2 +m2)�̄( 6p1 +m1)

⇤

Thus in total we have:

 1/4 (2 initial state fermions) 
F= 1/2 (1 initial state fermion) 
 1 (2 initial state photons)
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The procedure of calculating spin-averaged amplitudes in 
terms of traces is known as Casimir’s Trick.

If antiparticle spinors (v) are present in the spin sum, we use 
the corresponding completeness relation



Trace Theorems
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Because of Casimir’s Trick, we’re going to find ourselves calculating a lot of traces 
involving γ-matrices.  Some general identities about traces:
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Consider Bhabha scattering.  We’ll get the following trace:

We can expand this out to create 4 terms, but 2 of these terms (the ones linear in m) 
will involve 3 γ-matrices, and are therefore zero. Thus, we have:



Calculations
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Examples worked in class: 
1. Electron-muon scattering 
2. Compton Scattering



Higher-Order QED Diagrams
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The most famous higher-order process in QED is the anomalous magnetic 
moment of the electron (or muon), arising from the diagram

In 1948, Schwinger showed that this modifies the electron g-factor 
from 2 to (2+α/π). It is currently known to α4, corresponding to an 
uncertainty in ge of about10-12.
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Recall from Chapter 5, that the Lamb Shift arises from vacuum polarization 
effects in QED:

e- e-

e- e-

e- e+

Intuitively, we expect the electromagnetic force to 
strengthen at high energies (short distances), as two 
particles will see each other’s unscreened charges 
more than at low energies.  
Quantitatively, the leading-order effect due to virtual 
e+e- pairs leads to an change in the effective coupling 
strength: 

Other types of virtual pairs modify this expression as 
various energy thresholds are passed.
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A

A

A

A

B

B

C C

“Box” diagrams also contribute to the total matrix element

Two extra vertices ⇒ the contribution is suppressed by a factor of α = 1/137 

• The four momentum must be conserved at each vertex. 
• However, four momentum q flowing round the loop can be anything! 

• In calculating M integrate over all possible allowed momentum 
configurations: ∫ f(k) d4k ~ ln(k) leads to a divergent integral! 

• This is solved by renormalisation in which the infinities are “miraculously 
swept up into redefinitions of mass and charge” 

k
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Impose a “cutoff” mass M, do not allow the loop four momentum to be larger 
than M. Use M2≫q2, the momentum transferred between initial and final state. 

• This can be interpreted as a limit on the shortest range of the interaction 
• Or interpreted as possible substructure in point-like fermions 

• Physical amplitudes should not depend on choice of M 
- Find that ln(M2) terms appear in the M 
- Absorb ln(M2) into redefining fermion masses and vertex couplings 

• Masses m(q2) and couplings α(q2) are now functions of q2 
- e.g. Renormalisation of electric charge (considering only effects from 

one type of fermion): 

Can be interpreted as a “screening” correction due to the production of 
electron/positron pairs in a region round the primary vertex 

• The new α(q2) represents the effective charge we actually measure!
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Recall, from Ch 5, while the QED 
coupling constant increases for higher 
energies, the QCD coupling constant 
gets smaller!



Recap / Up Next
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This time:   
Quantum Electrodynamics 

The Dirac Equation 
QED Feynman Rules 
Cross Sections 
Renormalization 

Next time:   
Quark Dynamics 

QED for quarks 
Quantum Chromodynamics 
Color 
Asymptotic Freedom


