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The search for physics beyond the Standard Model is being greatly enhanced by improved theo-
retical tools and ideas at the same time that vast amounts of new high energy data are becoming
availiable. To make the most of this situation it is essential that we simultaneously improve our
phenomenological tools, such as jet algorithms, to more reliably bridge the gap between theory and
experiment. We present recent results on the development of better cone jet algorithms.

I. INTRODUCTION

A common facet of essentially all physics studies at current and future accelerators is the important role
of hadronic jets in the characterization of the …nal states. These jets are intended to serve as surrogates
for the underlying partons (quarks and gluons) in terms of which, along with leptons, high energy scattering
events are most easily analyzed. The explicit connection between the sprays of …nal state particles observed
in the detectors and the underlying partons is typically supplied by a jet algorithm. These algorithms are
employed to map …nal states, both in QCD perturbation theory (i.e., in terms of a relatively small number of
energetic partons) and in the data (i.e., in terms of the observed hadrons and/or calorimeter towers), onto jets.
Thus, in principle, we can connect the observed …nal states, in all of their complexity, with the short-distance
perturbative …nal states, which are easier to interpret and to analyze theoretically. For example, one would
like to be able to use jets to identify and reconstruct the presence of W’s, top quarks and Higgs bosons from
their hadronic decays into quarks (and gluons). Given the large challenge inherent in such a procedure, it is
no surprise that an important component of the preparations[1] for Run II at the Tevatron, and for future data
taking at the LHC, has been the study of ways in which to improve jet algorithms. It is this topic that we will
address in the following discussion.

In order to understand how jet algorithms work it is useful to have in mind a simple (essentially classical) space-
time picture of how hard-scattering events evolve. Think of time zero as ‡agged by the basic hard-scattering
process that, via the exchange of large transverse momentum, transforms 2 energetic but longitudinally moving
(initial state) partons into 2, or more, energetic (…nal state) partons with substantial transverse momentum.
This picture serves to characterize the short distance (¿ 1 fermi) con…guration accurately described by pertur-
bative QCD. At next-to-leading order (NLO) in perturbative QCD there are at most 3 such large transverse
momentum …nal state partons, with at most 2 in a single jet. As the …nal state evolves in time and space
there is further (softer and largely collinear) radiation or showering. At distance scales of order a fermi or
larger (non-perturbative) con…nement physics or hadronization is relevant. The partons with nonzero QCD
charge organize themselves into color-singlet hadrons. To accurately perform the task of connecting …xed order
perturbative …nal states to the experimentally observed …nal states the jet algorithms must be robust under
the impact of both higher order perturbative and non-perturbative physics. In the context of a theoretical
calculation the jet algorithm must be insensitive to the corners of phase space where the perturbation theory
is potentially divergent, e.g., insensitive to emission of soft and/or collinear gluons. Likewise the resulting
jets should not depend on the details of the long distance process by which the partons associate themselves
into color singlet hadrons. This includes both the inherently nonperturbative “hadronization”process and the
essentially perturbative, but all orders showering process. All of these processes tend to smear out the local
structure of the low order perturbative description. On the experimental side we desire insensitivity to the
e¤ects introduced by the detectors themselves. We also need to limit the size of the required numerical analysis
in order to ensure timely analysis with …nite computer resources. The past implementation of jet algorithms
has invariably involved compromises on at least some of these issues, as we will discuss. The (optimistic)
quantitative goal is a precision of order 1% in the comparison between theory and experiment. In this note
we will ignore the uncertainties due to higher order perturbative corrections and uncertainties in the parton
distributions functions and focus on the issues that arise from the algorithms themselves.
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II. CONE JET HISTORY

We begin by reviewing cone jet algorithms, which have formed the basis of jet studies at hadron colliders.
First employed at the at CERN[2], the idea of the cone jet was explicitly spelled out in the Snowmass
Algorithm[3], which was developed by a collaboration of theorists and experimentalists. The Snowmass Algo-
rithm led to the jet algorithms used by the CDF and DØ collaborations during Run I at the Tevatron, although
neither Collaboration followed the Snowmass prescription precisely. The intuitive picture is that jets should
be composed of hadrons or partons that are, in some sense, nearby each other. The fundamental cone jet
idea is that nearness be de…ned in a simple geometric fashion: jets are composed of hadrons or partons whose
3-momenta lie within a cone de…ned by a circle in the angular variables (), where = ln (cot 2) is the
pseudorapidity and is the azimuthal angle. This idea of being nearby in angle can be contrasted with an
algorithm based on being nearby in transverse momentum as illustrated by the so-called  Algorithm[4] that
has been widely used at +¡ and colliders, and is now being studied at the Tevatron[5]. Intuitively we
also expect the jets to be aligned with the most energetic particles in the …nal state and correspondingly we
expect to be able to identify a unique set of jets on an event-by-event basis. This uniqueness expectation is
realized in the Snowmass Algorithm by identifying jets with “stable”cones. A stable cone has the property
that the geometric center of the cone coincides with the  weighted centroid of the particles in the cone. We
imagine de…ning a …nal state in terms of a list of …nal state partons (theory) or hadrons and/or calorimeter
towers (experiment) each labeled by an index , a direction () and a scalar “transverse energy”(assuming
that we start with massless 4-vectors), = sin= j¡!j. According to the Snowmass Algorithm the
constituents of a jet () of cone radius  and the corresponding jet properties are de…ned by the following set
of equations

2 : (¡)2 + (¡)2 · 2

=
X
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 =
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2



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X

2
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The …rst line speci…es that the jet consists of all partons, hadrons or towers that lie within the distance of the
jet cone center, (), while the second line speci…es that the  weighted centroid of this list of particles
coincides with the geometric jet cone center (i.e., the second line is the stability condition). The third line
de…nes the Snowmass total scalar  for the jet. Typically the value = 07 has been employed as it leads to
fairly stable results both theoretically and experimentally.

It is important to recognize that jet algorithms involve two distinct steps. The …rst step is to identify the
“constituents”of the jet, i.e., the list of calorimeter towers or hadrons or partons that comprise the stable cone
that is the jet. The second step involves constructing the kinematic properties that will characterize the jet,
i.e., determine into which bin the jet will be placed. In the Snowmass Algorithm the  weighted variables
de…ned in Eq. 1 are used both to identify and bin the jet, i.e., in terms of  and . The simplicity and
intuitive appeal of the cone algorithm justify its wide spread usage at hadron colliders and it has proved to be a
very useful tool. However, its practical implementation has involved several compromises that now constitute
limits to its precision, as we will attempt to explain.

In a theoretical calculation[6] the Snowmass Algorithm can be applied quite literally by integrating only
over the portions of multi-parton phase space corresponding to parton con…gurations that satisfy the stability
conditions in Eq. 1. In the experimental case it was imagined that the Snowmass Algorithm would be applied
to each event via an iterative process to search the entire …nal state, i.e., the entire particle/tower list mentioned
above, for sets of …nal state particles/towers that satisfy the stability constraint. In practice[1] the experimental
implementation of the cone algorithm has been more complicated, involving at least 3 detailed steps without
direct analogues in the theoretical implementation. First, experimentalists have employed various short cuts
to minimize the (computer) search time. In particular, Run I algorithms made use of both “seeds”and
“pre-clustering”. The iterative search for stable cones was initiated only at locations provided by preclusters
assembled from contiguous seed towers, i.e., calorimeter towers with deposited energy exceeding a prede…ned
limit (typically ~1 GeV). Preclusters are constrained to extend no more than 2 in either or . Starting
only at such a seeded location in (), a list is constructed of the particles (towers) within a distance  of
the seed. Then the  weighted centroid for the particles in the list is found (calculated as in Eq. 1). If
the calculated centroid is consistent with the initial cone center, a stable cone has been identi…ed. If not, the
calculated centroid is used as the center of a new cone with a new list of particles inside and the calculation of
the centroid is repeated. This process is iterated (as envisioned in the Snowmass Algorithm), with the cone
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center migrating with each repetition, until a stable cone is identi…ed or until the cone centroid has migrated
out of the …ducial volume of the detector. Note, however, that since the search starts only at the seeds, this
process may not identify all possible stable cones and thus may not …nd all jets. Of particular concern are the
…nal states that arise from two energetic partons of nearly equal energy that are separated in angle by nearly
2. This con…guration will be identi…ed as a single jet in the theoretical perturbative analysis with the center
of the jet approximately mid-way between the partons. The smeared version of this con…guration in the actual
(or simulated) …nal state, on the other hand, will likely exhibit a local minimum of energy (a saddlepoint) at
the midpoint between the partons (assuming the angular smearing due to showering and hadronization is not
large compared to ), with seeds only at the location of the partons. As discussed in more detail below, the
experimental iterative search initiated (i.e., seeded) only at the location of the two partons will likely …nd two
jets centered on the partons, rather than the higher energy solution containing the remnants of both partons
found by the theoretical analysis.

When all of the stable cones in an event have been identi…ed, there will typically be some overlap between
cones. This situation raises the next issue that has no obvious, nontrivial analogue in the perturbative calcu-
lation (at least at low order) and that was not envisioned in the Snowmass Algorithm. It is addressed with a
splitting/merging routine in the experimental jet algorithms. In practice the splitting/merging routine involves
the de…nition of a parameter , typically with values in the range 05 · · 075such that, if the
overlapping transverse energy fraction (the transverse energy in the overlap region divided by the smaller of the
total energies in the two overlapping cones) is greater than , the two cones are merged to make a single
jet. If this constraint is not met, the calorimeter towers/hadrons in the overlap region are individually assigned
to the cone whose center is closer. This situation yields 2 …nal jets. As the initial seeding/preclustering
process and the …nal merging/splitting process were not foreseen in the Snowmass Algorithm, it is perhaps
not surprising that the detailed speci…cation of these steps were somewhat di¤erent for CDF and DØ in Run I
(e.g., CDF used = 075, while DØ used = 05). Note that the trivial application of the merging
routine to the NLO perturbative analysis explains why the theoretical algorithm is de…ned to always keep the
jet containing two partons out to a separation of 2, whenever such a solution exists. In such a con…guration
the 2 possible jets that are composed 1 parton each exhibit 100% overlap with the 2-parton jet. Thus by the
usual merging routines, the single parton jets should always be merged with the 2-parton jet.

The …nal point that distinguishes the theoretical algorithm from the experimental algorithms is speci…c to the
JetClu algorithm employed by the CDF Collaboration. The JetClu algorithm exhibits a not widely documented
and troubling feature called “ratcheting”. All seed towers initially included in a “seed cone”(the …rst cone
around a seed) remain associated with that cone (i.e., on its list) even as the center of the cone migrates during
the search for a stable solution to Eq. 1. This remains true, by construction, even if the center moves further
than R away. This ratcheting feature leads to several results not mimicked in the theoretical algorithm, or in
other experiments. It leads to …nal “stable cones”that are often not cone-shaped (although this issue already
arises from splitting/merging). Ratcheting also implies that all of the initial seed towers are included in (at
least one of) the …nal jets. More importantly it means that cones tend to become stable after only a short
migration, but in a fashion dependent on the details of the showering/hadronization process (and the initial
pre-clustering process). This property argues against using JetClu for precision comparisons with theory.

The essential challenge in the use of jet algorithms is to understand the quantitative implications of the
di¤erences between the algorithms as applied by di¤erent experiments and as applied in theoretical calculations.
This is the only way to control the uncertainties. It is this goal that is the primary concern of this paper.
Clearly di¤erences that lead to substantial uncertainties (1%) should be eliminated, or well enough understood
that they can be corrected for. Consider …rst the better known issues raised above. As suggested earlier the use
of seeds in the experimental algorithms means that certain con…gurations kept by the theoretical algorithm are
likely to be missed by the experimental one. In particular the symmetric con…guration of two energetic partons
nearly 2 apart can satisfy the strict application of Eq. 1 to form a single jet in a perturbative calculation,
with no energy at the center of the jet. Yet the same con…guration, including the e¤ects of showering and
hadronization, will likely lead to two well separated seeds (with only limited  in between) and thus two
jets in the experimental algorithm, which may not be subsequently merged. When this point was recognized,
the theoretical parameter [7] was introduced in the perturbative calculation to mimic this feature of the
experimental analysis. With this parameter included two partons with angular separation

¢­ =
q

(¡)2 + (¡)2 ¢ · 2 (2)

are not allowed to comprise a single jet, even if they satisfy Eq. 1. Comparison of the theory to data[7]
suggested that the value = 13 provided the best description of the data at NLO. In completely independent
analyses[8] the CDF and DØ Collaborations also found that two initially independent jets (selected, for example,
from di¤erent events) had to placed within ¢­' 13 of each other in a simulated event in order to be
identi…ed as a single jet by the experimental algorithms. Thus the theoretical parameter  is presumably
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also providing some level of simulation of the splitting/merging procedure. One could also imagine explicitly
including seeds in the perturbative calculations at higher orders, e.g., requiring the presence of a soft gluon
between the two partons just mentioned. However, this explicit seed de…nition introduces a highly undesirable
(logarithmic) dependence on the seed  cut (the minimum  required to be treated as a seed cell)[9]. The
kinematic con…gurations corresponding to this scenario are suggested in Fig. 1, where the two energetic partons

FIG. 1: Two partons in two cones or in one cone with a (soft) seed present.

could be in either 2 cones (LHS) or a single cone seeded by a soft gluon (RHS). Of course, the most desirable
approach is rede…ne the experimental algorithms in order to remove the need for the parameter as will be
described in more detail below.

Concerning the issue of ratcheting in the JetClu algorithm, we note that there is no reasonable way to simulate
the role of ratcheting in the theoretical calculations, since its role depends in detail on the level of secondary
(soft) radiation present in the event. As suggested above, this point should be interpreted as a strong argument
against the continued use of JetClu. For reliable comparisons of theory and experiment it is essential that we
eliminate such di¤erences between the theoretical and experimental algorithms.

III. RUN II IMPROVEMENTS

With the advent of a new, higher energy and higher luminosity, Run II at the Tevatron, theorists and exper-
imentalists have been o¤ered another opportunity to construct algorithms whose application to perturbation
theory and to data analysis will be more in parallel. This will in turn allow greater precision in comparing
theory and experiment. In particular the Run II Workshop Proceedings[1] recommend that the CDF and DØ
Collaborations employ, as much as possible, identical jet algorithms, including the use of 4-vector kinematics
(4-vector instead of scalar summation and = 05 ¤ ln [(+)(¡)] instead of = ln (cot 2)) and a
common splitting/merging procedure. The Workshop Proceedings also provide algorithms developed speci…-
cally to address the issue of seeds, in particular the Midpoint Algorithm and the Seedless Algorithm. With
the Midpoint Algorithm one proceeds initially as in the original algorithms, i.e., starting with seeds. Using
the stable cones thus identi…ed, one explicitly tests for the possibility of a new stable cone centered ( in or
) between two stable cones already found by placing a new seed midway between all pairs of stable cones
separated by less than 2. The Midpoint algorithm is included in the analysis discussed below.

The central innovation of the Seedless Algorithm is to place an initial trial cone at every point on a randomly
located but regular lattice in (). For maximum coverage the lattice should be approximately as …ne-grained
as the detector. It is not so much that this algorithm lacks seeds, but rather that the algorithm puts seed
cones “everywhere”of interest. The Seedless Algorithm can be streamlined by imposing the constraint that a
given trial cone is removed from the analysis if the center of the cone migrates outside of its original lattice cell
during the iteration process. The streamlined version still samples every lattice cell for stable cone locations,
but is less computationally intensive. Our experience with the streamlined version of this algorithm suggests
that there can be problems …nding stable cones with centers located very close to the cell boundaries of the
lattice. This technical di¢culty is easily addressed by enlarging the distance that a trial cone must migrate
before being discarded. For example, if this distance is 60% of the lattice cell width instead of the default
value of 50%, the problem essentially disappears with only a tiny impact on the required time for analysis.
While this algorithm is less familiar than the Run I algorithms and apparently is more computer intensive than
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the Midpoint Algorithm, we still advocate its use. It is inherently more similar in structure to the theoretical
algorithm.

IV. NEW ISSUES

The rest of this paper is devoted primarily to an analysis of the Midpoint algorithm, especially as compared
to the JetClu algorithm of CDF and the theoretical algorithm, with an eye towards identifying issues that could
limit the precision of the comparison with theory. In particular, we have found that there exist previously
unrecognized …nal state con…gurations that are likely to be missed in the data, compared to the theoretical
result. We describe the application of representative jet algorithms to data sets that were generated with the
HERWIG 6.1 Monte Carlo[10] and then processed through a CDF detector simulation. We include results
from the JetClu algorithm both with and without the ratcheting feature described above. Following the
recommendation of the Run II Workshop, we use 4-vector kinematics for the Midpoint Algorithm and place the
cone at the midpoint in (), where is the true rapidity. In the JetClu Algorithm the value = 075
was used (as in the Run I analyses), while for the Midpoint and Seedless Algorithms the value = 05 was
used, as suggested in the Workshop Proceedings[1]. Finally, for completeness, we also include in our analysis
a sample  Algorithm.

Starting with a sample of 250,000 events, which were generated with HERWIG 6.1 and processed through
a CDF detector simulation and which were required to have at least 1 initial parton with  200 GeV, we
applied the various algorithms to …nd jets with = 07 in the central region (jj  1). We then identi…ed
the corresponding jets from each algorithm by …nding jet centers di¤ering by ¢01. The plots in Fig. 2
indicate the average di¤erence in  for these jets as a function of the jet . From these results we can draw
several conclusions. First, the  Algorithm identi…es jets with  values similar to those found by JetClu,
…nding slightly more energetic jets at small  and somewhat less energetic jets at large . We will not
discuss this algorithm further here except to note that DØ has applied it in a study of Run I data[12] and in
that analysis the Algorithm jets seems to exhibit somewhat larger  than expected from NLO perturbation
theory. The cone algorithms, including the JetClu Algorithm without ratcheting, which is labeled JetCluNR,
identify jets with systematically smaller  values (by approximately 0.5% to 1 %) than those identi…ed by
the JetClu Algorithm (with ratcheting). Due to the rapid fallo¤ of the jet cross section with the variable
, this systematic displacement in  results in a corresponding systematic reduction of approximately 5%
in the jet cross section at a given  value. This sort of systematic variation falls well within our de…nition
of an important e¤ect. We believe that this systematic shortfall can be understood as resulting from the
smearing e¤ects of perturbative showering and non-perturbative hadronization, which have not previously been
considered.

V. A SIMPLE MODEL

To provide insight into the issues raised by Fig. 2 we now discuss a simple, but informative analytic picture.
It will serve to illustrate the impact of showering and hadronization on the operation of jet algorithms. We
consider the scalar potential (¡!) de…ned as a function of the 2-dimensional variable ¡!= () by the integral
over the transverse energy distribution of either the partons or the hadrons/calorimeter towers in the …nal state
with the indicated weight function,

(¡!) = ¡1
2
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The second expression arises from replacing the continuous energy distribution (¡!) with a discrete set, = 1
to of delta functions, representing the contributions of either a discrete con…guration of partons or a set of
calorimeter towers (and hadrons). Each parton direction or the location of the center of each calorimeter tower
is de…ned in , by the 2-D vector ¡!= (), while the parton/calorimeter cell has a transverse energy (or
) content given by . This function is clearly related to the energy in a cone of size  containing the
towers whose centers lie within a circle of radius around the point ¡!as de…ned by the £ function. More
importantly it carries information about the locations of “stable”cones. The points of equality between the
 weighted centroid and the geometric center of the cone (i.e., the stable cones) correspond precisely to the
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FIG. 2: Comparison of  in matched jets identi…ed by various jet algorithms.

minima of , as in familiar mechanics problems. The corresponding force or gradient of this function has the
form (note that the delta function arising from the derivative of the theta function cannot contribute as it is
multiplied by a factor equal to its argument)

¡!
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This expression vanishes at points where the weighted centroid coincides with the geometric center, i.e., at
points of stability (and at maxima of , points of extreme instability). One can think of this “force”as driving
the ‡ow of cone centers during the iteration process described earlier. The corresponding expression for the
energy in the cone centered at ¡!is

 (¡!) =
X


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³
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Since the primary underlying issue is under what conditions two energetic partons are associated with the
same …nal jet , we can develop our understanding of the above equations by considering a scenario (containing
all of the interesting e¤ects) involving 2 partons separated by j¡!2 ¡ ¡!1j = . It is su¢cient to specify the
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FIG. 3: 2-Parton distribution: a) transverse energy distribution; b) distributions () and () in the perturbative
limit of no smearing.

energies of the 2 partons simply by their ratio, = 21 · 1. Now we can study what sorts of 2 parton
con…gurations yield stable cones in the 2-D phase space speci…ed by 0 · · 1, 0 · · 2 (beyond 2
the 2 partons are surely in di¤erent cones). As a speci…c example consider the case 1 = 0, 2 = = 10
and = 06 with = 07 (a typical experimental value). The underlying (partonic) energy distribution is
illustrated in Fig. 3a, representing a delta function at = 0 (with scaled weight 1) and another at = 10
(with scaled weight 0.7). This simple distribution leads to the functions () and () indicated in Fig. 3b,
where the 1-D variable is the distance along the direction between the partons, = ¡!¢ (¡!2 ¡ ¡!1). In
going from the true energy distribution to the cone distribution () the energy is e¤ectively smeared over
a range given by , each region having sharp boundaries. In the potential () the distribution is further
shaped by the quadratic factor 2 ¡ (¡)2. We see that () exhibits 3 local minima corresponding to
the expected stable cones around the two original partons (1 = 0 and 2 = 1), plus a third stable cone in
the middle (3 = (1 +) = 0375 in the current case). This middle cone includes the contributions from
both partons as indicated by the magnitude (1.6) of the middle peak in the function (). Note further that
the middle cone is found at a location where there is initially no energy in Fig. 3a, and thus no seeds. One
naively expects that such a con…guration is not identi…ed as a stable cone by the experimental implementations
of the cone algorithm that use seeds simply because they do not look for it. Note also that, since both partons
are entirely within the center cone(j1 ¡3j j2 ¡3j ), the overlap fractions are unity and the usual
merging/splitting routine will lead to a single jet containing all of the initial energy (1 + ). This is precisely
how this con…guration was treated in the NLO perturbative analysis of the Snowmass Algorithm[6] (i.e., only
the leading jet, the middle cone, was kept).
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FIG. 4: Perturbation theory cone/jet structure: a) = 2; b) = 13. The subscripts, LCR, refer to whether
the cone/jet is found at the position of the Left parton, Right parton or at a intermediate Central position. The cross
indicates the con…guration explored in subsequent …gures.

Similar reasoning leads to Fig. 4a, which indicates the various 2 parton con…gurations found by the pertur-
bative stable cone algorithm. In the 2-D domain of () there are three distinct regions. For  and
all values of the potential () has just a single minimum in the central region, as indicated by the “C”
subscript ( = (1 +) ). Thus this region yields a single stable cone and a single jet containing
both partons. In the triangular region (1 + )the potential function has three minima (as above)
and one …nds 3 stable cones at the locations of the two partons (“L”and “R”,  = 1 = 0,  = 2 = )
and at an intermediate central location indicated by the “C”subscript ( = (1 +)  ). As in
the speci…c example described above, both partons lie within this central cone (j¡j =  ,
j¡j = (1 ¡)(1 +) (1 ¡)) and by the usual merging rules (the overlap is 100%) all three
cones are merged to a single central jet (at ), again with all of the energy. For  (1 + ) the
potential exhibits two well separated minima at = 0 and  = with no overlap. Thus in this region
we …nd 2 stable cones and 2 jets, each containing one parton, of scaled energies 1 and . Thus, except in the
far right region of the graph, the 2 partons are (in perturbation theory) always merged to form a single jet. In
particular, the parton con…guration of Fig. 3a, which is indicated by the cross symbol in Fig. 4a, yields 3 stable
cones and a single …nal jet encompassing both partons.

As suggested above we expect that the use of seeds in experimental algorithms will play a role in the middle,
3LCR , region, but not elsewhere. While the potential () in perturbation theory has three minima in this
region, we may not …nd all three of the corresponding stable cones if we only look for stable cones near the
seeds. Looking back at Fig. 3a we expect to have “seeds”near 1 and 2 but presumably not in the central
region between the two partons where there is no energy. Trial cones near 1 will migrate to the L stable



9

position under iteration while a similar ‡ow will occur for seeds near 2 to the R stable cone. With no seeds in
between there may be no trial cones ‡owing to the C stable cone. The ad hoc parameter was introduced
to provide a (crude) simulation of this situation (see further discussion below) in the NLO calculations[7]. The
parameter  is de…ned such that stable cones containing 2 partons are not allowed for partons separated
by £ . As a result cones are no longer merged in this kinematic region. Thus we are modeling
the e¤ect of seeds by the replacement 3LCR cones ¡! 2LR cones in this region. In the present language this
situation is illustrated in Fig. 4b corresponding to = 13, £ = 091. This speci…c value for 
was chosen[7] to yield reasonable agreement with the Run I data. The conversion of much the 3 cones ! 1
jet region ( 091,  (¡)) to 2 cones ! 2 jets has the impact of lowering the average  of the
leading jet and hence the jet cross section at a …xed . Parton con…gurations that naively produced jets
with energy characterized by 1 +now correspond to jets of maximum energy 1. However, the large , large 
part of phase space is far from the collinear and soft singularities of the perturbation theory and does not make
a major contribution to the cross section. Thus the resulting reduction in the jet cross section in going from
= 20 to = 13 is only approximately 5.2% at  = 100 GeV and 3.7% at = 400 GeV. This level
of precision was not essential for Run I, but is relevant to the present discussion. This magnitude of change
in the jet cross section corresponds approximately to a 1% decrease in the average jet  consistent with the
level of mismatch exhibited in Fig. 2. Note that with this value of  the speci…c parton con…guration in
Fig. 3a, which is indicated by the cross symbol in Fig. 4b, will now yield 2 jets (and not 1 merged jet) in the
theoretical calculation.

As mentioned earlier, it has been recommended that this issue with seeds in the 3LCR region be addressed in
Run II via the Midpoint and Seedless Algorithms. The expectation was that both would succeed in identifying
the missing stable cone at . However, as indicated in Fig. 2, neither of these two algorithms reproduces
the results of JetClu. Further, they both identify jets that are similar to JetClu without ratcheting. Thus we
expect that there is more to this story.

As suggested earlier, a major di¤erence between the perturbative level, with a small number of partons, and
the experimental level of multiple hadrons is the smearing that results from perturbative showering and nonper-
turbative hadronization. For the present discussion the primary impact is that the starting energy distribution
will be smeared out in the variable ¡!. We can simulate this e¤ect in our simple model using Gaussian smearing,

i.e., we replace the delta functions in Eq. 3 with 2-D Gaussians of width (/ ¡
³
(¡!¡¡!)22

´
). (Since this

corresponds to smearing in an angular variable, we would expect to be a decreasing function of , i.e., more
energetic jets are narrower. We also note that this naive picture does not include the expected color coherence
in the products of the showering/hadronization process, nor its stochastic nature.) The …rst impact of the
simulated smearing is that some of the energy initially associated with the partons now lies outside of the cones
centered on the partons. This e¤ect, typically referred to as “splashout”in the literature, is (exponentially)
small in this model for . Here we will focus on less well known but phenomenologically more relevant
e¤ects of the smearing. The distributions corresponding to Fig. 3b with = 10 and = 06, but now with
= 010 (instead of = 0), are exhibited in Fig. 5a. With the initial energy distribution smeared by , the
potential () is now even more smeared and, in fact, we see that the middle stable cone (the minimum in the
middle of Fig. 3b) has been washed out by the increased smearing. Thus the cone algorithm applied to data
(where such smearing is present) may not …nd the middle cone that is present in perturbation theory, not only
due to the use of seeds but also due to this new variety of smearing correction, which renders this cone unstable.
Note that this conclusion obtains even though there is a clear maximum in  () at the location where the
middle stable cone used to be. Since, as a result of this smearing correction, the middle cone is not stable, this
problem is not addressed by either the Midpoint Algorithm or the Seedless Algorithm. Both algorithms look in
the correct place, but they look for stable cones, which may not present in real data. This point is presumably
part of the explanation for why both of these algorithms disagree with the JetClu results in Fig. 2.

Our studies also suggest a further impact of the smearing of showering/hadronization that was previously
unappreciated. This new e¤ect is illustrated in Fig. 5b, which shows (), still for = 06 and = 10but
now for = 025. With the increased smearing the second stable cone, corresponding to the second parton,
has now also been washed out, i.e., the right hand local minimum has also disappeared. While the e¤ect of
the smearing is intuitively reasonable, i.e., the distributions become increasingly smoother, the resulting loss
of stable cones was previously unappreciated. To help make this scenario more visual Figs. 6 to 8 exhibit the
2-D structure inherent in Eq. 3 in terms of contour plots of the potential (¡!). The darker shades indicate
lower values of potential, while the white dots indicate the location of the initial partons. In each …gure the
white circle(s) indicates the location of the …nal jet(s). The smooth evolution of the potential as the smearing
increases is clear. With no smearing symmetrical minima around each parton are apparent along with the
deeper minimum in the center. This …gure also makes the point that, even when the central minimum is
present, it may serve as an attractor for only a small area in the () plane. With some smearing as in Fig.
10 the central minimum has evolved into just a lobe on the left-hand minimum and we …nd just two …nal jets.
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FIG. 5: The distributions () and  () with = 10 and = 06 for smearing width = a) 0.1; b) 0.25.

FIG. 6: Contour plot of the potential () in 2-D for = 06 and = 1 in the perturbative limit (= 0).

With further smearing as in Fig. 11 the lobe extends to the right-hand parton and only one minimum and one
jet remain.

This same, large smearing, situation is exhibited in the case of Monte Carlo “data”by the lego plot in Fig. 9
indicating the jets found by the Midpoint Algorithm in a speci…c Monte Carlo event. The Midpoint Algorithm
does not identify the energetic towers (shaded in black) to the right of the (more lightly shaded) energetic
identi…ed central jet as either part of that jet or as a separate jet, i.e., these obviously relevant towers are not
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FIG. 7: Contour plot of the potential () in 2-D with = 06 and = 1 for = 01.

FIG. 8: Contour plot of the potential () in 2-D with = 06 and = 1 for = 025.

found to be in a stable cone. The iteration of any cone containing these towers invariably migrates to the
nearby higher  towers.

We can further describe the impact of these smearing e¤ects by looking again at the stable cone content in
the () plane as we did in Fig. 4. The resulting structure is indicated in Figs. 10 and 11. The special case
(= 10, = 06) that we have already discussed is again marked in the …gures by the cross. Comparing to
the perturbative result in Fig. 4b (the three regions of the previous graph with = 13 are indicated by
the dashed-dotted line as a reference) we note several features. The small separation region, , remains
unchanged. There is still a single stable cone intermediate in position between the 2 partons, which will yield
a single central jet with both partons in the jet. The bulk of the region for ¤ has changed
from yielding 3 stable cones to yielding just a single central stable cone. This will yield a single central jet
with both partons included, This conclusion is presumably independent of the seed issue as trial cones seeded
near 1 and 2 will now ‡ow to the central stable cone and not be stopped by the now absent LR stable cones
as was expected in the previous discussion without smearing. Thus the jet structure in this region is largely
unchanged from the unsmeared case perturbative including the parameter. On the …ne details, e.g., the
speci…c location of the boundary, depends on the value of . Note that this e¤ect of smearing in this region
is consistent with our use of the parameter (i.e., we assumed that the central jet was identi…ed in this
region even if seeds were used). The bulk of the region of larger separation, ¤ , now yields two
stable cones, each one containing a single parton and located essentially at that parton, as indicated by the
“LR”subscript. The example, = 1, = 06, studied above falls in this region for the smaller smearing.
For the smaller smearing case of Fig. 10 there is still a discernible region where 3 stable cones are identi…ed.
Depending on the role of seeds this may or may not yield a central jet. Based on the discussion above, we
expect the use of seeds in the experimental algorithms to mean that in most of this region only two jets, “L”
and “R”for each parton, are found and there is no central combined jet (as suggested by the boundary).
There is also a small region where only the left-hand and central cones are still stable, yielding essentially the
original central jet with both partons. Even with seeds invoked, a trial cone seeded by the right-hand parton



12



-3

-2

-1

0

1

2

3


0

100

200

300

T
E

0

5

10

FIG. 9: Result of applying the Midpoint Algorithm to a speci…c Monte Carlo event in the CDF detector.

should ‡ow to this central stable cone. Both of these regions (2LC and 3LCR) have essentially disappeared with
the larger smearing case of Fig. 11. The other new con…guration is a single stable cone near the location of
the left-hand parton, with both the central and right-hand cones washed out by the smearing. The dashed
boundary between the 1C and 1L regions is meant to indicate that this is a “soft”transition with the location
of the single stable cone moving smoothly leftward as increases. As discussed earlier, our special case (the
cross) falls into this region for the larger smearing (recall that there is only the L stable cone in Fig. 8). We
expect that an e¤ective smearing intermediate between = 01 and = 025 is the most “realistic”value for
this parameter in the sense of most closely matching the e¤ects of “real”showering and hadronization for the
purposes of the present discussion. Thus Figs. 10 and 11 suggest that the ad hoc parameter = 13 a¤ords
a reasonable description of how the cone algorithm works in practice and o¤ering at least a partial explanation
of why it produced perturbative results similar to the data. Based on the current analysis, however, its role
is more to simulate the e¤ects of smearing and less the e¤ect of seeds. The e¢cacy of the parameter 
is perhaps best highlighted by reinterpreting the stable cones of Figs. 10 and 11 in terms of identi…ed jets,
assuming seeds act as described above (3LCR ¡!2LR , 2LC ¡!1C), as illustrated in Fig. 12. The point is to
notice the similarity between Fig. 12 and the perturbative result, with , in Fig. 4. This similarity is made
even stronger when we note that, in terms of the leading jet, 1L is essentially equivalent to 2LR at least for small
values where the R jet has much lower energy. It is worthwhile mentioning that “merging”plays essentially
no role here. In the 2LR region the two cones are too well separated to be merged, even if = 05. This
will not be the case in the next section.

VI. RATCHETING

Since our goal is to understand the detailed di¤erences between theoretical and experimental applications
of cone jet algorithms, we must say something about the role of the previously mentioned ratcheting e¤ect in
the CDF JETCLU jet algorithm. This feature of the algorithm ensures that as the trial cone migrates away
from the initial seed position, any calorimeter tower included in the initial trial cone stays with trial “cone”
(“once in a cone, always in a cone”), which is therefore no longer cone shaped in the () plane. Thus
with ratcheting turned on the “history”of a migrating trial cone matters, an e¤ect with no analogue in the
perturbative calculations. Ratcheting means that the lists of towers to be summed over in Eqs. 1 and 3 grow
with migration and a tower no longer needs to be within of the cone center to be included. In the current
analysis we can de…ne the integral (the potential) over the smeared  pro…les to take this ratcheting into
account, with two distinct potentials depending on whether we are “seeded”(by assumption) by the left-most
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FIG. 10: Stable cone structure found by the cone jet algorithm with underlying partons including gaussian smearing
with width = 01. The dashed-dotted lines indicated the unsmeared, perturbative result with = 13.
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FIG. 11: Stable cone structure found by the cone jet algorithm with underlying partons including gaussian smearing
with width = 025. The dashed-dotted lines indicated the unsmeared, perturbative result with = 13.
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FIG. 12: Identi…ed jets structure in () plane including smearing and seeds: a) = 01, b) = 025.

or right-most parton. The stable cones are then the sum of the stable cones found from both potentials. In
general, the central stable cones identi…ed by the two potentials (if present) are nearly coincident. On the
other hand, the right-hand potential will never exhibit a left-hand stable cone. Due to ratcheting, the trial
cone cannot migrate that far. Likewise the left-hand potential will never exhibit a right-hand stable cone.
With enough smearing present the left-hand potential (based on the larger energy left-hand parton) will tend
to have only a left-hand stable cone with its central stable cone washed out by the smearing. In contrast the
right-hand potential (based on the lower energy right-hand parton) will still exhibit a central stable cone even
when the right-hand stable cone is lost due to smearing. The analogues of the stable cone structures above,
but now with ratcheting simulated as just described, are exhibited in Figs. 13 and 14. We see from these
…gures that the impact of ratcheting is to greatly expand the 2LC and 3LCR regions at the expense of the 1L and
2LR regions. As suggested above, the e¤ect of ratcheting is to keep the central stable cone even when smearing
is present. Of particular importance is the appearance of a large region below the line = (¡)that is
now of type 2LC , instead of 1L (or even 2LR as it was in the perturbative calculation), where the central stable
cone arises from the ratcheted cone seeded by the right-hand parton. Thus this central stable cone, due to
ratcheting, will include the energy from the right-hand parton. Further these two stable cones are close enough
to be merged into a single jet, 2LC(stable cones)¡!1C (jet). This implies that in this region, where the cross
section is large, we will identify a merged jet (encompassing both partons) using the experimental algorithm
with seeds and ratcheting on (realistic) data with smearing. Note that this is just the region corresponding
to Fig. 9 where the di¤erence between 2LC with ratcheting and 1L without ratcheting explains why the dark
towers in the LEGO were not assigned to any jet. This point is further illustrated in Fig. 15, which shows the
identi…ed jet structure and is the analogue of Fig. 12. As before we have assumed that the impact of seeds is
to ensure that we miss the central cone in the con…guration 3LCR , i.e., 3LCR ¡!2LR . These …gures are to be
compared to each other and the perturbative result in Fig. 4. Again we see that the parameter provides
a reasonable simulation of seed and smearing e¤ects. However, in the region below the line = (¡)
mentioned above, the result with ratcheting is di¤erent in that this region now has a leading C type jet (with
both partons) while the perturbative result and the non-ratcheted result has leading L type jets (with just the
left-hand parton). Since this merging of the two partons has the e¤ect of increasing the  of the primary
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FIG. 13: Stable cone structure found by the cone jet algorithm with underlying partons including gaussian smearing with
width = 01 and ratcheting. The dashed-dotted lines indicated the unsmeared, perturbative result with = 13.

jet in the event, we expect the MidPoint Algorithm (without ratcheting) to yield a smaller  on average than
JETCLU, just as we saw in Fig. 2. The current analysis also suggests a similar di¤erence from the NLO result
with , i.e., the e¤ects described here suggest that the inclusive jet cross section de…ned by JETCLU should
be larger by 3-5% than that de…ned by NLO perturbation theory with = 13.

VII. POSSIBLE IMPROVEMENT

In summary, we have found that the impact of smearing due to showering and hadronization is expected to
be much more important than simply the leaking of energy out of the cone (splashout). Certain stable cone
con…gurations, present at the perturbative level, can disappear from the analysis of real data due to the e¤ects
of showering and hadronization. This situation leads to corrections to the …nal jet yields that are relevant
to our goal of 1% precision in the mapping between perturbation theory and experiment. Compared to the
perturbative analysis of the 2-parton con…guration, both the central stable cone and the stable cone centered on
the lower energy parton can be washed out by smearing. Further, this situation is not addressed by either the
Midpoint Algorithm or the Seedless Algorithm, both of which assume that the central stable cone is present.
One possibility for addressing the missing middle cone would be to eliminate the stability requirement for the
added midpoint cone in the Midpoint Algorithm. However, if there is enough smearing to eliminate also the
second (lower energy) cone, even this scenario will not help, as we do not …nd two cones to put a third cone
between. Another approach, which we will explore here, is to attempt to reduce the impact of smearing. Recall
that nothing precludes us from employing two di¤erent cone sizes. We can use one during the search for the
stable cones and the second during the calculation of the jet properties. Since the e¤ective smearing in the
potential (¡!) that describes the location of the stable cones is a combination of that due to the physical
e¤ects of showering and hadronization and that due to the size of the cone, using a smaller value of cone radius,
e.g., 0 = 2, during the search for stable cones will reduce the smearing e¤ects. We can still use = 07 in
the jet construction phase. With this choice of 0 we …nd the stable cone structure illustrated in Fig. 16. We
can understand this …gure by noting that in …rst approximation the boundaries in these graphs are function of
. This when we decrease by a factor of 2, the boundaries move to the left by a corresponding amount.
The major change with this “…xed”algorithm is that the boundary between 1 stable cone and 2 stable cones
occurs at much smaller . There is also a new region labeled 2‘LR’separated from the usual 2LR region by a
“soft”boundary indicated by the dashed line (similar in spirit to the 1C ¡!1L boundary), that is intended to
indicate that in this region the 2 stable cones are actually both rather central, i.e., not at the parton locations.
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FIG. 14: Stable cone structure found by the cone jet algorithm with underlying partons including gaussian smearing with
width = 025 and ratcheting. The dashed-dotted lines indicated the unsmeared, perturbative result with = 13.
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FIG. 15: Identi…ed jets structure in () plane including smearing, seeds and ratcheting : a) = 01, b) = 025.
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FIG. 16: Stable cone structure found using 0 = 2 for the two values of the smearing parameter: a) = 01, b)
= 025.

This changes smoothly as increases.
To convert these stable cones into jets we use their locations for cones of size = 07 to determine what

energy is in the jet. Unlike the situations discussed above, the merging of the cones to make a single jet is
important for this analysis. Two stable cones of radius 0 can be considerably closer together than those
of size . Including the splitting/merging algorithm with = 05 we …nd the jet structure exhibited
in Fig. 17. To interpret this …gure it is important to note for , a jet of the type 1L is essentially
identical to one labeled 1C in the sense that, once we have switched to the larger cone radius, essentially all
of the energy from both partons is included in that jet. For practical purposes all of the single jet region
corresponds to jets with both partons. The essential change from the un…xed case of Fig. 12 occurs in the
region ¤,  (¡). Here the change from 1L jets to 1C jets is essential. The 1L jets
in the un…xed case contain only the left-hand parton, while the 1C jets in the …xed case include both partons.
This leads to both higher energy jets, similar to those identi…ed by JETCLU, and ensures that there are few
instances of the situation illustrated in Fig. 9 where some energetic calorimeter towers are not assigned to any
jet. The improved agreement between the JetClu results and those of the Midpoint Algorithm with the last
“…x”(using the smaller 0 value during discovering but still requiring cones to be stable) is indicated in Fig.
18. Clearly most of the di¤erences between the jets found by the JetClu and Midpoint Algorithms are removed
in the …xed version of the latter. The small “…x”suggested for the Midpoint Algorithm can also be employed
for the Seedless Algorithm but, like the Midpoint Algorithm, it will still miss the middle (now unstable) cone.

To further illustrate the improvement o¤ered by this …x and to con…rm that the di¤erence between JETCLU
with ratcheting and the MidPoint algorithm arises primarily from the ¤, (¡)region
of the () plane we have performed the following exercise. Using the set of Monte Carlo events noted earlier,
we have identi…ed the jets found with JETCLU and the various versions of the MidPoint algorithm. Then we
removed the calorimeter towers and particles contained in those jets from event and performed a second pass
search for jets with the same algorithms. The point is that clusters of towers that are potential jets but not
identi…ed as such in the …rst pass, e.g., the cluster of towers in Fig. 9, may still be found as jets in this second
pass when the stability of the corresponding cone is not compromised by the nearby identi…ed jet. Then we can
ask how the second pass jets are related to the nearest …rst pass jets in terms of their location (as pairs) in the
() plane. A scatter plot of this result is shown in Fig. (I want to put Matthias’s plot z_vs_d_plt_NEW_6
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FIG. 17: Jet structure, for jets of size  = 07, found for stable cones de…ned by cone radius 0 = 035, including
smearing e¤ects: a) = 01, b) = 025. Splitting/merging uses = 05.

from his webpage here but my Tex program won’t accept the postscript and I have not succeeded in turning it
into an acceptable EPS …le - can you give me a native encapsulated version?). It is clear from these scatter plots
that the di¤erence between the JETCLU and MidPoint algorithms arise from just the con…gurations we have
been discussing. Further, when the …x described above is applied, the second pass jets in this region largely
vanish. The corresponding calorimeter towers are now included in the …rst pass jets just as in the JETCLU
analysis.

VIII. CONCLUSION

In this paper we have discussed various reasons that cone jet algorithms can yield di¤ering results when
applied in the context of perturbation theory and to real experimental data. The underlying goal is to identify
the techniques necessary to provide precision (~1%) comparisons between theory and experiment. We have
analyzed the results of applying a range of jet algorithms, especially the JETCLU algorithm used by CDF in
Run I and the MidPoint algorithm proposed for use in Run II, to a large set of Monte Carlo events. We have
typically used the JETCLU result as the reference result. We have also used a simple analytic model to simulate
how the algorithms work when applied to 2-parton perturbative con…gurations, allowing a direct connection to
perturbation theory. We have focussed on the impact of including smearing in this simple model to simulate the
e¤ect of showering and hadronization in the real world. This model allows us to characterize the more complex
correlations in real data to the behavior in a simple 2-D plane representing the relative energy of the partons 
and the angular separation . In this () plane the di¤erences of interest arise in two regions as identi…ed in
Fig. In the triangular region at large and (Region I), the use of seeds and the e¤ects of smearing render
experimental cone jet algorithms unable to identify the 2-partons in a jet con…guration characteristic of the
NLO perturbative calculation. The issues with seeds has been, in fact, long appreciated and this issue was the
reason for the introduction of the parameter in the perturbative calculations. The current studies help to
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FIG. 18: Comparison of  in matched jets with and without the …x described in the text.
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verify the e¢cacy of this parameter in simulating the real e¤ects of both seeds and smearing. In any case the
QCD amplitude is not large in this corner of phase space. The other region of interest corresponds to small 
but larger () (Region II). In this region the perturbative calculation predicts 2 identi…ed jets. On the
experimental side, seeds play little role but smearing is quite important, often leading to the remnants of the
lower energy parton not being identi…ed as part of any jet by the MidPoint Algorithm. While this has little
impact on the leading jet, it is troubling that this information is lost from our analysis of the event. It also
turns out that JETCLU includes a feature called ratcheting that ensures that in the region of the () plane
JETCLU does not …nd just a single jet with 1 parton (like the MidPoint algorithm), nor two distinct jets, each
with a single parton (like perturbation theory) but rather both partons included in a single. Thus in this region
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JETCLU jets have large energies than either the jets fond by the MidPoint algorithm or perturbation theory.
By using a …ner cone size to search for stable cones, the MidPoint algorithm can be brought into reasonable
agreement with JETCLU. On the other hand, this is a mixed blessing. The recommendation of the current
work is rather that JETCLU, with its dependence on the history of the search for stable cones, not be employed
in future jet physics studies where comparison to theoretical predictions is desired. The MidPoint algorithm
without the …x outlined above provides a better match to the theoretical studies. Even in this case the role of
smearing in removing central stable cones remains an issue for precision comparisons of theory and experiment,
and seems to require the continued use of the parameter
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