Gudrun's (NLO) list

• 2->3

- ♦ pp->WW jet
- ◆ pp->VVV
- pp->H + 2 jets
- 2->4
 - pp->4 jets
 - pp->tT + 2jets
 - ♦ p->tT bB
 - ♦ pp->V+ 3 jets
 - pp->VV + 2 jets
 - ♦ pp->VVV + jet
 - ♦ pp->WW bB

can be given to good student (at least one of Thomas' students)

- From technology point-of-view
 - start with massless cases such as

▲ γγ + 2 jets

- then add progressively more difficult calculations (additional scales and/or subprocesses)
 - ▲ W + 3 jets
 - ▲ pp->4 jets
 - ▲ WW + 2 jets
 - ▲ tT + 2 jets
 - ▲ tT bB
 - ▲ WWbB

Experimental priority list

- Gudrun's list
- 2->3
 - ♦ pp->WW + jet
 - ♦ pp->VVV
 - pp->H + 2 jets
- 2->4
 - pp->4 jets
 - pp->tT + 2jets
 - ♦ p->tT bB
 - pp->V+ 3 jets
 - pp->VV + 2 jets
 - ♦ pp->VVV + jet
 - ♦ pp->WW bB

- 1. pp->WW jet
- 2. pp->H + 2 jets
 - 1. Background to VBF Higgs productiong
- 3. pp->tT bB
 - 1 background to tTH
- 4. pp->tT + 2 jets
 - 1. background to tTH
- 5. pp->WWbB
- 6. pp->V V + 2 jets
 - background to WW->H >WW
- 7. pp->V + 3 jets
 - 1. general background to new physics
- 8. pp->V V V
 - 1. background to SUSY trilepton

Experimental priority list

- Note have to specify how inclusive final state is
 - what cuts will be made?
 - how important is b mass for the observables?
- How uncertain is the final state?
 - what does scale uncertainty look like at tree level?
 - new processes coming in at NLO?
- Some information may be available from current processes
 - pp->tT j may tell us something about pp->tTbB?

▲ j=g->bB

 CKKW may tell us something about higher multiplicity final states

- 1. pp->WW jet
- 2. pp->H + 2 jets
 - 1. background to VBF production of Higgs
- 3. pp->tT bB
 - background to tTH
- 4. pp->tT + 2 jets
 1. background to tTH
- 5. pp->WWbB
- 6. pp->V V + 2 jets
 - background to WW->H >WW
- 7. pp->V + 3 jets
 - 1. beneral background to new physics

8. pp->V V V

1. background to SUSY trilepton