Dijet Azimuthal Decorrelations vs NLO pQCD, Herwig and Pythia

Marek Zieliński
University of Rochester

Special thanks to:
Michael Begel, Pavel Demine, Alexander Kupčo, Christophe Royon, Markus Wobisch
Outline

● Motivation
 ➔ Theoretical
 ➔ Experimental

● Analysis overview
 ➔ Data sample
 ➔ Corrections, unsmearing
 ➔ Systematics

● Results
 ➔ Comparisons to LO and NLO pQCD
 ➔ Comparisons to Monte Carlo generators
 ➔ Herwig and Pythia
 ➔ Impact of ISR, Tune A

● Summary and outlook

All results presented here are PRELIMINARY!
Theoretical Motivation

- In $2 \rightarrow 2$ scattering, partons emerge back-to-back \rightarrow additional radiation introduces decorrelation in $\Delta \Phi$ between the two leading partons/jets
 - Soft radiation: $\Delta \Phi \sim \pi$
 - Hard radiation: $\Delta \Phi < \pi$

- $\Delta \Phi$ distribution is directly sensitive to higher-order QCD radiation

- Testing fixed-order pQCD and parton-shower models across $\Delta \Phi$:
 - $\Delta \Phi \sim \pi$:
 - FO calculations unstable
 - PS Monte Carlo’s applicable
 - $2\pi/3 < \Delta \Phi < \pi$:
 - First non-trivial description by $2 \rightarrow 3$ tree-level ME
 - $2 \rightarrow 3$ NLO ME calculations became available recently (NLOJET++)
 - $\Delta \Phi < 2\pi/3$ (3-jet “Mercedes”)
 - $2 \rightarrow 4$ processes and higher

Marek Zieliński, Rochester
Experimental Motivation

- Observable: $\Delta \Phi$ distribution between the two leading jets normalized by the integrated dijet cross section

$$\frac{1}{\sigma_{\text{dijet}}} \cdot \frac{d\sigma_{\text{dijet}}}{d\Delta \Phi}$$

- Advantages:
 - $\Delta \Phi$ is a simple variable, uses only the two leading jets
 - No need to reconstruct any other jets!
 - Jet direction is well measured
 - Reduced sensitivity to jet energy scale

$M_{jj} = 1206$ GeV
Analysis Overview

● Data sample:
 ➔ \(\sim 150 \text{ pb}^{-1} \) used in analysis
 ➔ At least two jets reconstructed with cone \(R=0.7 \)
 ➔ Require that two leading jets are central: \(|y_{\text{jet1,2}}|<0.5 \)
 ➔ Jet \(p_T \)’s in the region of full trigger efficiency
 ➔ Running conditions, jets, vertex, missing \(E_T \) satisfy quality requirements

● Corrections for:
 ➔ Cut efficiencies
 ➔ Jet energy scale
 ➔ Resolution smearing (unfolding)

● \(\Delta \Phi \) distribution measured only for \(\Delta \Phi>\pi/2 \) to avoid jet overlaps
• Good agreement between data and MC with full detector simulation (MC slightly low)
• Average $<n_{\text{jet}}>$ increases towards low $\Delta \Phi$, as expected
Resolution Unfolding

- Unfolding procedure:
 - Start with the $\Delta \Phi$ spectrum obtained for jets reconstructed at hadron level in events from Pythia
 - Smear this spectrum according to measured resolutions in $\Delta \Phi$ (from MC) and p_T (from data)
 - Reweight the resulting spectrum to fit the data

- Correction = unsmeared spectrum / smeared spectrum
 (bin-by-bin, after reweighting)
 - Includes effects of jet reordering due to smearing in p_T
 - Shapes similar in all p_T ranges
 - Unfolding corrections not huge
 - Work in progress
- Jet energy scale still results in a substantial uncertainty
 - But, fractionally, much smaller than in the case of the absolute cross sections
 - A new jet energy scale determination, with significantly smaller uncertainties, is propagating through the analyses
- Other sources:
 - Vertex efficiency
 - Unfolding (under study)
- Estimated uncertainties:
 - ~5% ($\Delta \Phi \sim \pi$) to ~25% ($\Delta \Phi \sim \pi/2$)
Results: Dijet Azimuthal Decorrelations

- Recap:
 - Central jets $|y| < 0.5$
 - Second-leading $p_T > 40$ GeV
 - Leading jet p_T bin thresholds:
 - $75, 100, 130, 180$ GeV

- Towards larger p_T, $\Delta \Phi$ spectra more strongly peaked at $\sim \pi$
 - Increased correlation in $\Delta \Phi$

- Distributions extend into the “4 final-state parton regime”, $\Delta \Phi < 2\pi/3$

Marek Zieliński, Rochester

MC4RUN2 Workshop, 11 May 2004
Comparison to Fixed-Order pQCD

- **Leading order (dashed blue curve)**
 - clear limitations
 - Divergence at $\Delta \Phi = \pi$
 - need soft processes
 - No phase-space at $\Delta \Phi < 2\pi/3$
 - only three partons

- **Next-to-leading order (red curve)**
 - Good description over the whole range, except in extreme $\Delta \Phi$ regions

D0 data
- $p_{T_{\text{max}}} > 180$ GeV ($\times 10^3$)
- $130 < p_{T_{\text{max}}} < 180$ GeV ($\times 10^2$)
- $100 < p_{T_{\text{max}}} < 130$ GeV ($\times 10$)
- $75 < p_{T_{\text{max}}} < 100$ GeV

- $\Delta \phi_{\text{dijet}} / \text{rad}$

- $1/\sigma_{\text{dijet}} \cdot d\sigma_{\text{dijet}} / d\Delta \phi_{\text{dijet}}$

- $p_{T_{\text{max}}} > 180$ GeV ($\times 10^3$)
- $130 < p_{T_{\text{max}}} < 180$ GeV ($\times 10^2$)
- $100 < p_{T_{\text{max}}} < 130$ GeV ($\times 10$)
- $75 < p_{T_{\text{max}}} < 100$ GeV

- $\mu_r = \mu_f = 0.5 \cdot p_{T_{\text{max}}}$
Testing the radiation process:
- 3rd and 4th jets generated by parton showers
 - Soft and collinear approx.

HERWIG 6.505 (default)
- Good overall description!
- Slightly too high in mid-range

PYTHIA 6.223 (default)
- Very different shape
- Too steep dependence
- Underestimates low $\Delta \Phi$

Graph:
- σ_{dijet} vs $\Delta \phi_{dijet}$
- DØ preliminary
- $p_{T_{\text{max}}} > 180$ GeV ($\times 100$)
- $75 < p_{T_{\text{max}}} < 100$ GeV

Legend:
- HERWIG 6.505
- PYTHIA 2.223
- CTEQ6L (PDFs)

Marek Zieliński, Rochester
Impact of ISR in Pythia

- $\Delta\Phi$ distributions are sensitive to the amount of initial-state radiation
 - Plot shows variation of PARP(67) from 1.0 (current default) to 4.0 (previous default, Tune A)
 - PARP(67) controls the scale of parton showers
 - Intermediate value suggested

- More PYTHIA tuning possible!

Marek Zieliński, Rochester
Most of variation from PARP(67)

- Sensitivity to soft underlying event small

HERWIG prediction with CTEQ5L (parameterized) not as good as with CTEQ6L

- $|y_{jet,2}| < 0.5$, $p_{T\text{ jet}_2} > 40$ GeV
- 100 GeV < $p_{T\text{ jet}_1} < 130$ GeV
- 130 GeV < $p_{T\text{ jet}_1} < 180$ GeV
Summary and Outlook

- The $\Delta \Phi$ distribution has been measured for central jets in four p_T regions using 150 pb$^{-1}$ of DØ Run II data
 - Sensitive to higher-order QCD processes
 - Test of 3-jet NLO pQCD at Tevatron
 - good agreement for most of $\Delta \Phi$ range
 - Prospects for tuning parton-shower Monte Carlo’s
 - Herwig doing well, sensitivity to ISR in Pythia

- Plans, hopes, dreams:
 - Extend the measurement to lower p_T values
 - More sensitivity to initial-state gluons
 - A handle on quark vs gluon induced showers
 - Extend to forward rapidities for one of the jets
 - Probe even smaller values of $\Delta \Phi$
 - More sensitivity to initial-state gluons
 - Extend to b-tagged jets
 - Probe gluon\rightarrowbbar splitting
 - Interesting overlap with top, Higgs physics…

Frixione, Nason, Webber