Announcements

- CAPA homework 2 due on Tuesday Sept 18 at 10 AM
- CAPA homework 3 due on Thursday Sept 20 at 10 AM
- Please register your iclicker through LON-CAPA
- if you want to receive credit
- only a few of you have not
- first iclicker question today: note: if I see anyone with two iclickers, I will take both of them
- Help room hours (1248 BPS)
- Ian La Valley(TA)
- Mon 4-6 PM (except not Monday Sept 17)
- Tues 12-3 PM
- Wed 6-9 PM
- Fri 10 AM-noon

Universal law of gravitation

- Incredibly simple and beautiful relation

Force $\propto \frac{\operatorname{mass}_{1} X \text { mass }_{2}}{\text { distance }^{2}}$
Force $\propto \frac{m_{1} m_{2}}{d^{2}}$

- The gravitational force between two masses is proportional to the product of the two masses and is inversely proportional to the square of the distance between them
- Before we dealt with mass in the equation below, technically known as the inertial mass

$$
F=m a
$$

- Here we are dealing with the gravitational mass
- It is experimentally established that the two are equal and in fact the equivalence of the two is an integral part of the general theory of relativity

Universal law of gravitation

- We need a real equation, which means we need a constant of proportionality

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

- Newton didn't know the value of G by itself, only the product of G times the mass of the Earth
- The measurement of G was big news in 1798
- Knowing G meant that the mass of the Earth could be calculated
- 6X10 ${ }^{24} \mathrm{~kg}$

G was determined by measuring the attraction of two masses; a difficult measurement since the force is very small
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

How small of a force?

$F=G \frac{m_{1} m_{2}}{d^{2}}$
$F=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg} 2 \frac{(\mathrm{~kg})(5000 \mathrm{~kg})}{(1 \mathrm{~m})^{2}}$
$F=3.34 \times 10^{-7} N$

G was determined by measuring the attraction of two masses; a difficult measurement since the force is very small
The small value of G is an indication of how weak the gravitational force is.

Weight

- Let's consider another force, your weight, i.e. the force the Earth exerts on you
- Suppose you weigh 60 kg
- $m_{1}=m_{\text {Earth }}=6 \times 10^{24} \mathrm{~kg}$
- $m_{2}=m_{\text {you }}=60 \mathrm{~kg}$
- $\mathrm{d}=\mathrm{R}_{\text {earth }}=6.37 \times 10^{6} \mathrm{~m}$
$F=G \frac{m_{1} m_{2}}{d^{2}}$
$F=6.67 X 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \frac{\left(6 X 10^{24} \mathrm{~kg}\right)(60 \mathrm{~kg})}{\left(6.37 X 10^{6} \mathrm{~m}\right)^{2}}$
$F=591 N$

Clicker question

- What is the gravitational force that you exert on the Earth?
- A) 0 N
- B) 591 N
- C) $6.67 \times 10^{-11} \mathrm{~N}$
- D) $6 \times 10^{24} \mathrm{~N}$
- E) cannot be determined with the information given

$$
\begin{aligned}
& F_{\text {Earth }}=G \frac{m_{1} m_{2}}{d^{2}} \\
& F_{\text {Earth }}=6.67 X 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \frac{\left(6 X 10^{24} \mathrm{~kg}\right)(60 \mathrm{~kg})}{\left(6.37 X 10^{6} \mathrm{~m}\right)^{2}} \\
& F_{\text {Earth }}=591 \mathrm{~N}
\end{aligned}
$$

Acceleration

- What is your acceleration due to the gravitational force of the Earth?

$$
\begin{aligned}
& a=\frac{F}{m_{\text {you }}}=\frac{G \frac{m_{\text {Earth }} h_{\text {yeu }}}{d^{2}}}{m_{\text {you }}} \\
& a=G \frac{m_{\text {Earth }}}{d^{2}}=9.8 \mathrm{~N} / \mathrm{kg}=9.8 \mathrm{~m} / \mathrm{s}^{2}=g
\end{aligned}
$$

- That is, your acceleration is the same as your friend who has twice the mass that you do (and weighs twice as
 much)

Inverse square law

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

The gravitational force grows weaker as the square of the distance. Inverse square law.

Inverse square law

- The further away from the center of the Earth that you travel, the smaller your weight will be
- If you weigh 600 N at sea level, you'll weigh 598 N on top of Mt Everest
- The gravitational force falls off to zero as the distance from the center of the Earth goes to infinity

Weightlessness

- Suppose that you're in an elevator that's stationary (or moving with a constant velocity)
- you stand on a scale and it gives your normal weight
- Suppose the elevator accelerates upward
- the scale registers a larger weight; you feel heavier
- The elevator accelerates downward
- the scale registers a lower weight; you feel lighter
- The elevator cable snaps
- the scale registers zero weight; you feel weightless

Weightlessness

- If you have enough money, you book a flight on a 'vomit comet' that lets you experience weightlessness for a brief period of time
- Or you can spend some time on the International Space Station
- if you can get there

Space elevator

- One of the problems refers to a space elevator
- This would be a convenient way of transporting material into a geosynchronous orbit without the use of any rockets
- One end of the elevator is attached to the surface of the Earth, the other to a counterweight
- It's stable
- But we don't currently have the technology to build a strong enough tower
- Carbon nanotubes are close; they would work for an elevator on the Moon or on Mars

httn://www.nhs ora/wahh/nova/snace/snace-elevator.html

Central force

- Suppose I have a mass m_{1} and I want to calculate the gravitational force on this mass from the Earth
- What is the direction of the force on the mass?
- towards the center of the Earth
- What is the direction of the force on the Earth?
- along the line joining m_{1} and the center of the Earth, pointing towards m_{1}
- What is the magnitude of the force?

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

- The Earth has a radius of 6.37×10^{6} m , but from a gravitational point of view, it acts like all of the mass is concentrated in a point at the center of the Earth

How do we know that? Isaac Newton had to develop calculus to prove it.

Roundness

- Why is the Earth round?
- Because every part of the Earth attracts every other part and so the Earth is pulled together as tightly as possible
- a sphere
- The Moon is round for a similar reason
- The asteroids, except for the largest ones, are not round, because they don't have sufficient mass

Oblateness of the Earth

- We discussed that gravity is responsible for the planets being round
- But they're not exactly round due to the rotational motion of the Earth
- The Earth tends to be somewhat thicker at the equator than at the poles
- Not by much
- 12756 km at equator
- 12714 km at the poles
- So a round sphere is still a very good representation of the shape of the Earth

How different is the force of gravity at the North Pole and at the Equator? Take a mass of 50 kg .

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

Oblateness of the Earth

- The Earth tends to be somewhat thicker at the equator than at the poles
- Not by much
- 12756 km at equator
- 12714 km at the poles

$$
\begin{aligned}
& F_{\text {equator }}=W_{\text {equator }}=G \frac{m m_{\text {Earth }}}{d^{2}} \\
& F_{\text {equator }}=\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{(50 \mathrm{~kg})\left(6 \times 10^{24} \mathrm{~kg}\right)}{\left(6.378 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& F_{\text {equator }}=491.9 \mathrm{~N} \\
& F_{\text {pole }}=\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{(50 \mathrm{~kg})\left(6 \times 10^{24} \mathrm{~kg}\right)}{\left(6.357 X 10^{6} \mathrm{~m}\right)^{2}} \\
& F_{\text {pole }}=495.2 \mathrm{~N}
\end{aligned}
$$

How much did the mass change?

How different is the force of gravity at the North Pole and at the Equator? Take a mass of 50 kg .

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

Jupiter

- Jupiter is even more oblate since
- it's much larger than the Earth
- it rotates much faster (one day = 10 hours)
- it's composed mostly of fluid
- How much would this 50 kg
 person weigh on the equator of the surface of Jupiter?
- Jupiter is 300 times as massive as the Earth
- Why isn't the weight 300 times as much?
$F=W=G \frac{m m_{\text {Jupier }}}{d^{2}}$
$F=\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{(50 \mathrm{~kg})\left(1.90 \times 10^{27} \mathrm{~kg}\right)}{\left(7.13 \times 10^{7} \mathrm{~m}\right)^{2}}$
$F=1246 N$

Neutron star

- A neutron star has a mass of $4 \times 10^{30} \mathrm{~kg}$ (about twice the sun's mass) and a radius of 10 km (about $1 / 70000^{\text {th }}$ that of the sun)
- What would be the weight of a 50 kg person on the surface of this neutron star?

Gravity

- What's responsible for keeping the solar system together?
- gravity
- What would happen if the sun were replaced by a black hole of the same mass?
- nothing, except that it would get dark
- the gravitational force of the sun already acts as if its
 originating from a point in the center of the sun
- What's responsible for keeping the Milky Way together?
- gravity, except there's not enough visible matter
- most of the universe appears to be composed of dark matter

Origin of the solar system

- A slightly rotating ball of interstellar gas contracts due to gravitational attraction and speeds up to conserve angular momentum
- The increased momentum causes them to sweep in wider paths around the rotational access, producing an overall disk shape
- The planets condense out of eddies in the cooling disk

Johannes Kepler

- 1571-1630
- He took the detailed observations of
Tycho Brahe on the
motions of the
planets and was able
to formulate 3 laws

that describe the
motions of the
planets

Kepler's 3 laws

- Every planet has an elliptical orbit with the Sun at one focus of the ellipse
- A line joining the planet and the Sun sweeps out equal areas in equal times
- so the planet must move fastest when it's closest to the Sun

- The square of the period of the orbit of a planet is proportional to the cube of the radius (semi-major axis)

$$
\left(\frac{P}{2 \pi}\right)^{2}=\frac{a^{3}}{G M_{s u n}}
$$

Empirical observations from Kepler; can be derived using Newton's law of gravitation

Rotation of the galaxy and dark matter

- Remember earlier I said that you would expect stars further from the center of the galaxy to rotate more slowly than ones at the center
- The fact that this does not happen is evidence of the presence of dark matter around our galaxy (10X as much dark matter as regular matter)

$$
\left(\frac{P}{2 \pi}\right)^{2}=\frac{a^{3}}{G M_{\text {sun }}}
$$

Empirical observations from Kepler; can be derived using Newton's law of gravitation

Planets

D Resummation．．．tal at MSU MTA SZTAKI：．．．Dictionary CSCNotesLis．．．las＜TWiki PatVancouve．．．las＜TWiki PhysicsAnaly．．．las＜TWiki Quick guide．．．nda mo Community porta
－Recent changes
Contact Wikipedia
－Donate to Wikipedia
－Help

toolbox

－What links here
－Related changes
－Upload file
－Special pages
－Printable version
－Permanent link
－Cite this page

languages

－Alemannisch
－Deutsch
－Español
－Italiano
－Lểzebuergesch
－Română
Suomi
－ידישיש
－中文

Planets

		Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Astronomical symbol		¢̧	O	\oplus	\bigcirc	4	巿	¢	Ψ
Mean distance from Sun	$\begin{aligned} & \mathrm{km} \\ & \mathrm{AU} \end{aligned}$	$\begin{aligned} & 57,909,175 \\ & 0.38709893 \end{aligned}$	$\begin{aligned} & 108,208,930 \\ & 0.72333199 \end{aligned}$	$\begin{gathered} 149,597,870 \\ 1 \end{gathered}$	$\begin{gathered} 227,936,640 \\ 1.52366231 \end{gathered}$	$\begin{array}{r} 778,412,010 \\ 5.20336301 \end{array}$	$\begin{gathered} 1,426,725,400 \\ 9.53707032 \end{gathered}$	$\begin{array}{r} 2,870,972,200 \\ 19.19126393 \end{array}$	$\begin{gathered} 4,498,252,900 \\ 30.06896348 \end{gathered}$
Mean radius	$\begin{aligned} & \mathrm{km} \\ & ::^{[1]} \end{aligned}$	$\begin{gathered} 2,439.64 \\ 0.3825 \end{gathered}$	$\begin{gathered} 6,051.59 \\ 0.9488 \end{gathered}$	$\begin{gathered} 6,378.15 \\ 1 \end{gathered}$	$\begin{array}{r} 3,397.00 \\ 0.53226 \end{array}$	$\begin{gathered} 71,492.68 \\ 11.209 \end{gathered}$	$\begin{gathered} 60,267.14 \\ 9.449 \end{gathered}$	$\begin{gathered} 25,557.25 \\ 4.007 \end{gathered}$	$\begin{gathered} 24,766.36 \\ 3.883 \end{gathered}$
Surface area	$\begin{aligned} & \mathrm{km}^{2} \\ & : E^{[1]} \end{aligned}$	$\begin{gathered} 75,000,000 \\ 0.1471 \end{gathered}$	$\begin{gathered} 460,000,000 \\ 0.9010 \end{gathered}$	$\begin{gathered} 510,000,000 \\ 1 \end{gathered}$	$\begin{gathered} 140,000,000 \\ 0.2745 \end{gathered}$	$\begin{gathered} 64,000,000,000 \\ 125.5 \end{gathered}$	$\begin{gathered} 44,000,000,000 \\ 86.27 \end{gathered}$	$\begin{gathered} 8,100,000,000 \\ 15.88 \end{gathered}$	$\begin{gathered} 7,700,000,000 \\ 15.10 \end{gathered}$
Volume	$\begin{aligned} & \mathrm{km}^{3} \\ & : E^{[1]} \end{aligned}$	$\begin{gathered} 6.083 \times 10^{10} \\ 0.056 \end{gathered}$	$\begin{gathered} 9.28 \times 10^{11} \\ 0.87 \end{gathered}$	$\begin{gathered} 1.083 \times 10^{12} \\ 1 \end{gathered}$	$\begin{gathered} 1.6318 \times 10^{11} \\ 0.151 \end{gathered}$	$\begin{gathered} 1.431 \times 10^{15} \\ 1,321.3 \end{gathered}$	$\begin{gathered} 8.27 \times 10^{14} \\ 763.59 \end{gathered}$	$\begin{gathered} 6.834 \times 10^{13} \\ 63.086 \end{gathered}$	$\begin{gathered} 6.254 \times 10^{13} \\ 57.74 \end{gathered}$
Mass	$\begin{gathered} \mathrm{kg} \\ :^{[1]} \end{gathered}$	$\begin{gathered} 3.302 \times 10^{23} \\ 0.055 \end{gathered}$	$\begin{gathered} 4.8690 \times 10^{24} \\ 0.815 \end{gathered}$	$\begin{gathered} 5.9742 \times 10^{24} \\ 1 \end{gathered}$	$\begin{gathered} 6.4191 \times 10^{23} \\ 0.107 \end{gathered}$	$\begin{gathered} 1.8987 \times 10^{27} \\ 318 \end{gathered}$	$\begin{gathered} 5.6851 \times 10^{26} \\ 95 \end{gathered}$	$\begin{gathered} 8.6849 \times 10^{25} \\ 14 \end{gathered}$	$\begin{gathered} 1.0244 \times 10^{26} \\ 17 \end{gathered}$
Density	$\mathrm{g} / \mathrm{cm}^{3}$	5.43	5.24	5.515	3.940	1.33	0.70	1.30	1.76
Equatorial gravity Escape velocity	$\mathrm{m} / \mathrm{s}^{2}$	3.70	8.87	9.81	3.71	23.12	8.96	8.69	11.00
	km／s	4.25	10.36	11.18	5.02	59.54	35.49	21.29	23.71
Rotation period	days ${ }^{[2]}$	58.646225	$-243.0187^{[3]}$	0.99726968	1.02595675	0.41354	0.44401	$-0.71833^{[3]}$	0.67125
Orbital period	years ${ }^{[2]}$	0.2408467	0.61519726	1.0000174	1.8808476	11.862615	29.447498	84.016846	164.79132
Mean orbital speed	km／s	47.8725	35.0214	29.7859	24.1309	13.0697	9.6724	6.8352	5.4778
Eccentricity		0.20563069	0.00677323	0.01671022	0.09341233	0.04839266	0.05415060	0.04716771	0.00858587
Inclination	deg．	7.00487	3.39471	0.00005	1.85061	1.30530	2.48446	0.76986	1.76917
Axial titi［ ${ }^{4]}$	deg．	0.0	177.3	23.45	25.19	3.12	26.73	97.86	29.58
Mean surface temp．	K	440	730	288－293	186－268	152	$134{ }^{[5]}$	$76{ }^{[5]}$	$72{ }^{[5]}$
Mean air temp．${ }^{[6]}$	K			288		165	135	76	73
Atmospheric composition		$\mathrm{He} \mathrm{Na}^{+} \mathrm{P}^{+}$	$\mathrm{CO}_{2} \mathrm{~N}_{2}$	$\mathrm{N}_{2} \mathrm{O}_{2}$	$\mathrm{CO}_{2} \mathrm{~N}_{2} \mathrm{Ar}$	$\mathrm{H}_{2} \mathrm{He}$	$\mathrm{H}_{2} \mathrm{He}$	$\mathrm{H}_{2} \mathrm{He} \mathrm{CH}_{4}$	$\mathrm{H}_{2} \mathrm{He} \mathrm{CH}_{4}$
Number of known moons		0	0	1	2	63	60	27	13
Rings？		No	No	No	No	Yes	Yes	Yes	Yes
Planetary discriminant ${ }^{[7]}$		9.1×10^{4}	1.35×10^{6}	1.7×10^{6}	1.8×10^{5}	6.25×10^{5}	1.9×10^{5}	2.9×10^{4}	2.4×10^{4}

Dwarf planets

Ceres	Pluto	Makemake	Eris

Uranus

- First planet discovered in modern times
- not visible to naked eye
- The largest gravitational force in the solar system is due to the Sun (most of the mass)
- But the other planets in the Solar System tug on each other and cause the planets to wobble in their orbits
- If you calculate the effects of all of the other planets on Neptune's wobble, it's not enough
- Either the universal law of gravitation doesn't work at these large distances or there's an $8^{\text {th }}$ planet
- There is an $8^{\text {th }}$ planet (Neptune)
 and it was where they calculated it should be

Mercury

- Closest planet to the sun
- Tugs on Mercury perturb orbit
- Not covered by Newtonian physics

- Another planet closer to the sun?
- Vulcan, Spock's planet
- ...or effects of general relativity

Orbits

From 1979 to 199 Pluto was closer to the Sun than Neptune

Comets Follow Different Orbits

Vertical and horizontal motions

- When both vertical and horizontal motions are present, they can be treated completely independently
- For example, below is shown a ball rolling off of a table with a constant horizontal velocity
- The constant horizontal velocity continues (ignoring any air resistance) while there is a vertical acceleration due to gravity

Horizontal motion with no grovity

Projectile motion

- With no gravity, the cannon ball would follow a straight line
- Because of the acceleration due to gravity, it follows a parabolic path

- If I throw a stone, it will also follow a parabolic path

simulation

Projectile Motion

- So we have motion in both the x and y directions
- And the two motions are independent so we can write down two separate equations for the x and y motions
$x=x_{0}+v_{0}^{x} t+\frac{1}{2} a_{x} t^{2}$
$y=y_{0}+v_{0}^{y} t+\frac{1}{2} a_{y} t^{2}$
- I can simplify somewhat since there is no acceleration in the x direction and I can write the acceleration in the y direction

$$
\begin{aligned}
& x=x_{0}+v_{0}^{x} t \\
& y=y_{0}+v_{0}^{y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Projectile Motion

- Let's start simple
- I throw the ball horizontally with a speed of $20 \mathrm{~m} / \mathrm{s}$
- How long before it hits the ground?
- How far has it travelled?

$$
\begin{aligned}
& x=x_{0}+v_{0}^{x} t \\
& y=y_{0}+v_{0}^{y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Projectile Motion

- Assume that I release it 2 m from the ground
- $y_{o}=2 \mathrm{~m}, \mathrm{v}_{\mathrm{o}}{ }^{\mathrm{y}}=0 \mathrm{~m} / \mathrm{s}$
$y=y_{o}-\frac{1}{2} g t^{2}$
$0=2 m-\frac{1}{2}\left(9.83 m / s^{2}\right) t^{2}$
$t^{2}=\frac{4 m}{9.83 m / s^{2}}=0.407 \mathrm{~s}^{2}$
$t=0.64 \mathrm{~s}$
$x=x_{o}+20 m / s(0.64 s)=x_{o}+12.8 m$

$$
\begin{aligned}
& x=x_{0}+v_{0}^{x} t \\
& y=y_{0}+v_{0}^{y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Projectile Motion

- Suppose I throw it at 20 m / s at an angle of 45°
- Let's again start with the vertical motion
- how long before it hits the ground?
$0=2 m+(20 \mathrm{~m} / \mathrm{s}) \sin 45^{\circ} t-\frac{1}{2}\left(9.83 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}$
$0=2 m+(20 \mathrm{~m} / \mathrm{s})(0.707) t-\left(4.915 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}$
$4.915 t^{2}-14.14 t-2=0$
$t=3.01 \mathrm{~s}$
- Now the horizontal motion
$x=x_{0}+(20 \mathrm{~m} / \mathrm{s}) \cos 45^{\circ} t$
$x=x_{0}+(20 \mathrm{~m} / \mathrm{s})(0.707)(3.01 s)=x_{0}+42.6 m$
- What angle should you throw a ball in order for it to go the maximum distance, given that the initial release velocity is the same?
- somewhere between 0 and 90 degrees
- to be more precise 45 degrees

- What is the impact of air resistance?

Clicker question

- For the possible paths for the projectile below, which has the largest vertical acceleration?
- A) 75°
- B) 60°
- C) 45°
- D) 30°
- E) they're all the same

Clicker question

- For the possible paths for the projectile below, which has the largest vertical acceleration?
- A) 75°
- B) 60°
- C) 45°
- D) 30°
- E) they're all the same

