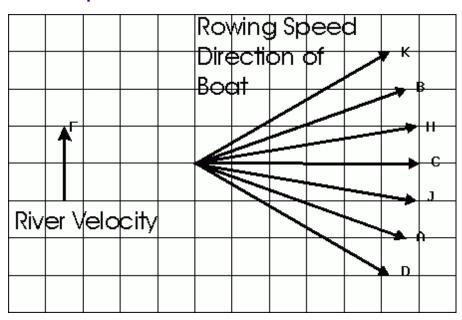
- LON-CAPA #4 and Mastering Physics Chapter 7 due next Tuesday
 - help room hours (Strosacker Help Room, 1248 BPS):

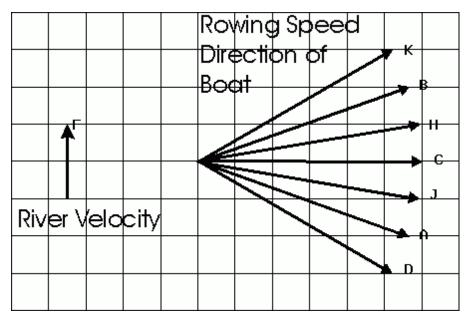
M: 5-8 PM

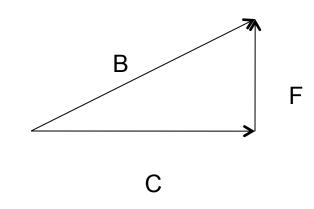

W: 5-8 PM

F: 2-6 PM

- Register for Mastering Physics
 - → >95% of you have
- Register your iclicker on LON-CAPA
 - >98% of you have
 - I'll post the scores up to last Thursday's lecture on the web
- First exam: Feb 6 in Life Sciences A133

LON-CAPA problem


- A river is to be crossed by a boy using a row boat
- He has the choice of rowing in directions A,B, C, D,...; in any direction, he rows at a constant speed with respect to the water
- So this is a vector addition problem


 If he rows with velocity in the direction of C, where does he end up?

LON-CAPA problem

- A river is to be crossed by a boy using a row boat
- He has the choice of rowing in directions A,B, C, D,...; in any direction, he rows at a constant speed with respect to the water
- So this is a vector addition problem

- If he rows with velocity in the direction of C, where does he end up?
- Add two vectors

Universal law of gravitation

 Newton's law of gravity describes gravitational forces on the surface of the Earth, and off the surface of the Earth

$$F = G \frac{m_1 m_2}{d^2}$$

- A tremendous advance; the law of gravity, along with the 3 laws of motion, meant that the motion of planets, and motions on Earth, could be completely described within a mathematical framework
- Some philosophers started to talk about a 'clockwork universe'

But how is Newton's law of gravity incomplete?

Universal law of gravitation

 Newton's law of gravity describes gravitational forces on the surface of the Earth, and off the surface of the Earth

$$F = G \frac{m_1 m_2}{d^2}$$

 A tremendous advance; the law of gravity, along with the 3 laws of motion, meant that the motion of planets, and motions on Earth, could be completely described within a mathematical framework

- But how is Newton's law of gravity incomplete?
- Newton assumed (because he had no evidence one way or the other) that the force of gravity was transmitted instantaneously in a manner which could not be described
 - 'action-at-a-distance'
- It was left to Einstein (over 200 years later) to describe gravity as being due to the curvature of space
 - and that gravitational disturbances travelled at the speed of light

iclicker question

 The gravitational constant G in Newton's law of gravity

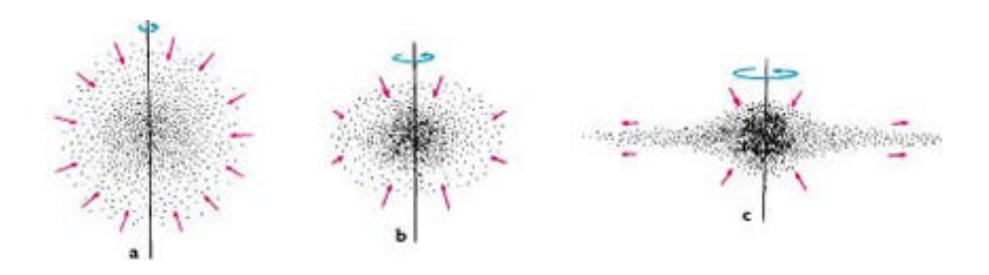
- a) Produces the correct units of force in Newton's equation
- b) Indicates the strength of gravity
- c) Changes the proportion form of the law of gravity to an exact equation
- d) All of these
- e) None of these

iclicker question

 The gravitational constant G in Newton's law of gravity

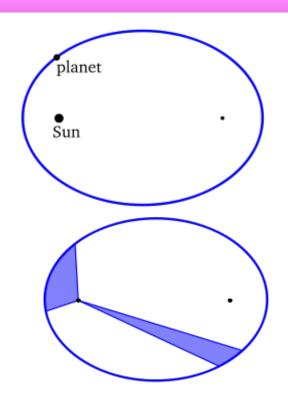
- a) Produces the correct units of force in Newton's equation
- b) Indicates the strength of gravity
- c) Changes the proportion form of the law of gravity to an exact equation
- d) All of these
- e) None of these

Gravity


- What's responsible for keeping the solar system together?
 - gravity
- What would happen if the sun were replaced by a black hole of the same mass?
 - nothing, except that it would get dark
 - the gravitational force of the sun already acts as if its originating from a point in the center of the sun
- What's responsible for keeping the Milky Way together?
 - gravity, except there's not enough visible matter
 - most of the universe appears to be composed of dark matter

Origin of the solar system

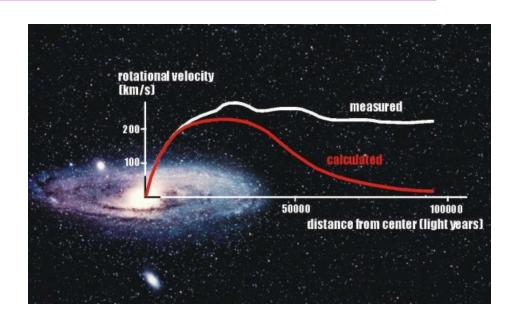
- Remember our sun was created after the universe was about 10 billion years old
- A slightly rotating ball of interstellar gas (enriched in heavy elements due to earlier supernovae) contracts due to gravitational attraction and speeds up to conserve angular momentum
- The increased momentum causes them to sweep in wider paths around the rotational access, producing an overall disk shape
- The planets condense out of eddies in the cooling disk


Johannes Kepler

- 1571-1630
- He took the detailed observations of Tycho Brahe on the motions of the planets and was able to formulate 3 laws that describe the motions of the planets

Kepler's 3 laws

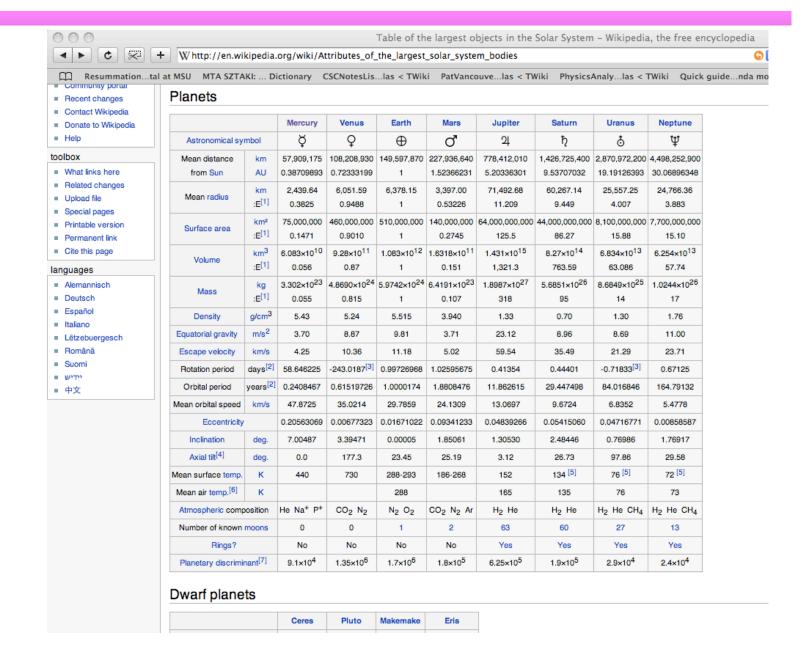
- Every planet has an elliptical orbit with the Sun at one focus of the ellipse
- A line joining the planet and the Sun sweeps out equal areas in equal times
 - so the planet must move fastest when it's closest to the Sun
- The square of the period of the orbit of a planet is proportional to the cube of the radius (semi-major axis)



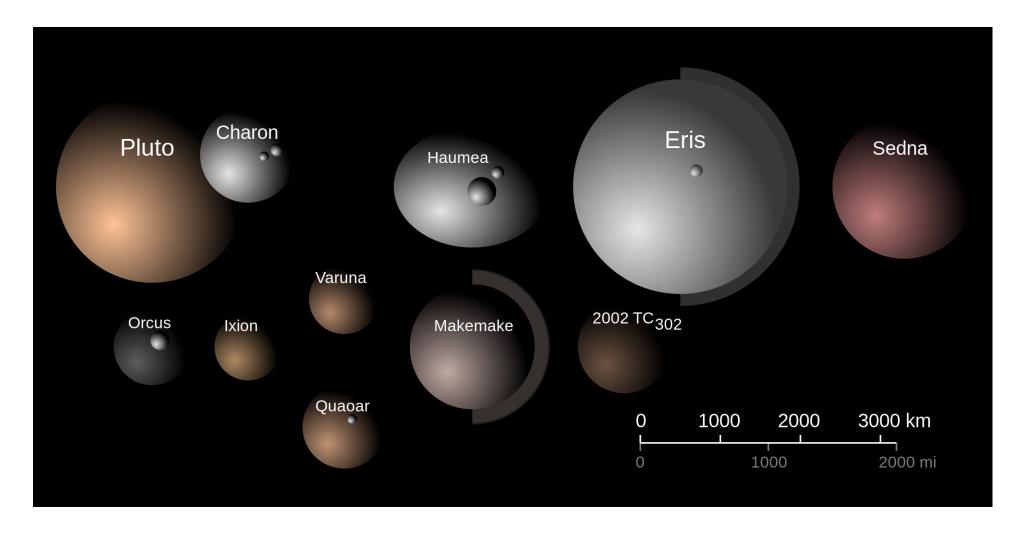
$$\left(\frac{P}{2\pi}\right)^2 = \frac{a^3}{GM_{sun}}$$

Empirical observations from Kepler; can be derived using Newton's law of gravitation

Rotation of the galaxy and dark matter


- Remember earlier I said that you would expect stars further from the center of the galaxy to rotate more slowly than ones at the center
- The fact that this does not happen is evidence of the presence of dark matter around our galaxy (10X as much dark matter as regular matter)

$$\left(\frac{P}{2\pi}\right)^2 = \frac{a^3}{GM_{sun}}$$


Empirical observations from Kepler; can be derived using Newton's law of gravitation

Planets

Dwarf planets

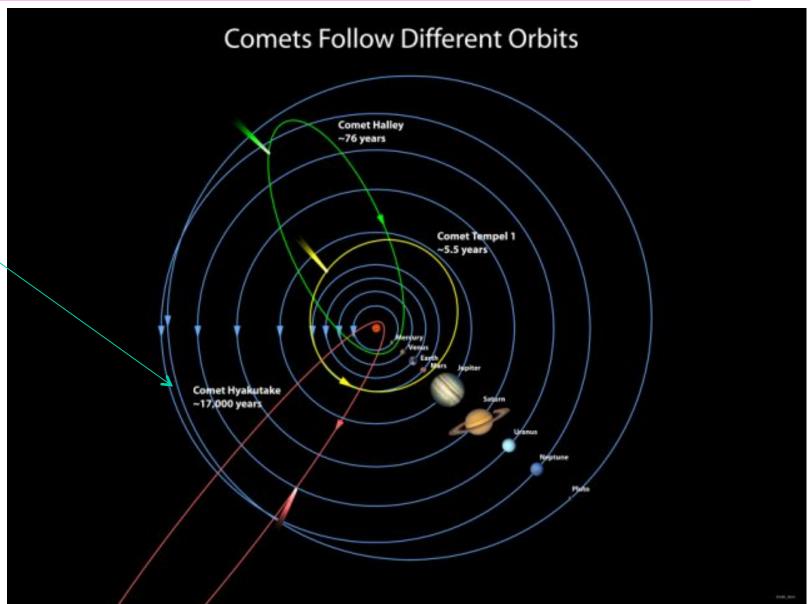
...from the outer reaches of the solar system; they take 100's of years (or more) to orbit the sun

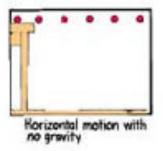
Uranus

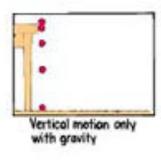
- First planet discovered in modern times
 - not visible to naked eye
- The largest gravitational force in the solar system is due to the Sun (most of the mass)
- But the other planets in the Solar System tug on each other and cause the planets to wobble in their orbits
- If you calculate the effects of all of the other planets on Uranus' wobble, it's not enough
- Either the universal law of gravitation doesn't work at these large distances or there's an 8th planet
- There is an 8th planet (Neptune) and it was where they calculated it should be

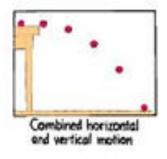


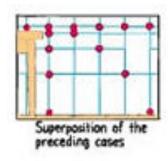
Mercury


- Closest planet to the sun
- Tugs on Mercury perturb orbit
- Not covered by Newtonian physics
- Another planet closer to the sun?
 - Vulcan, Spock's planet
- ...or effects of general relativity
 - hint: it's not Vulcan

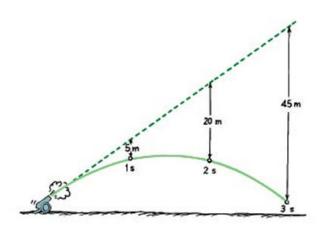

Orbits

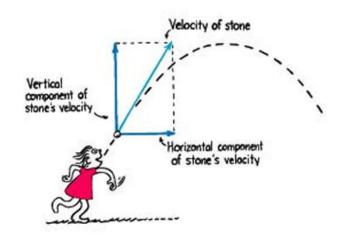

From 1979 to 1999 Pluto was closer to the Sun than Neptune




Vertical and horizontal motions

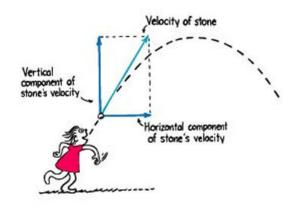
- When both vertical and horizontal motions are present, they can be treated completely independently
- For example, below is shown a ball rolling off of a table with a constant horizontal velocity
- The constant horizontal velocity continues (ignoring any air resistance) while there is a vertical acceleration due to gravity





- With no gravity, the cannon ball would follow a straight line
- Because of the acceleration due to gravity, it follows a parabolic path

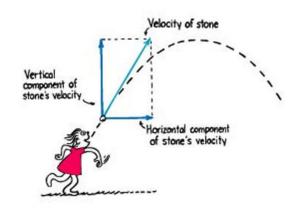
 If I throw a stone, it will also follow a parabolic path


simulation

- So we have motion in both the x and y directions
- And the two motions are independent so we can write down two separate equations for the x and y motions

$$x = x_0 + v_0^x t + \frac{1}{2} a_x t^2$$

$$y = y_0 + v_0^y t + \frac{1}{2} a_y t^2$$


 I can simplify somewhat since there is no acceleration in the x direction and I can write the acceleration in the y direction as -g

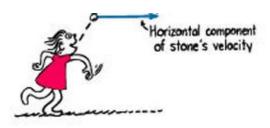
$$x = x_0 + v_0^x t$$

$$y = y_0 + v_0^y t - \frac{1}{2}gt^2$$

- Let's start simple
- I throw the ball horizontally with a speed of 20 m/s
- How long before it hits the ground?
- How far has it travelled?

$$x = x_0 + v_0^x t$$
$$y = y_0 + v_0^y t - \frac{1}{2}gt^2$$

- Assume that I release it 2 m from the ground
- $y_0 = 2m$, $v_0^y = 0$ m/s


$$y = y_o - \frac{1}{2}gt^2$$

$$0 = 2m - \frac{1}{2}(9.83m/s^2)t^2$$

$$t^2 = \frac{4m}{9.83m/s^2} = 0.407s^2$$

$$t = 0.64s$$

$$x = x_o + 20m/s(0.64s) = x_o + 12.8m$$

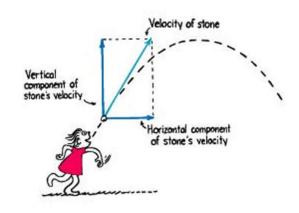
$$x = x_0 + v_0^x t$$

$$y = y_0 + v_0^y t - \frac{1}{2}gt^2$$

- Suppose I throw it at 20 m/s at an angle of 45°
- Let's again start with the vertical motion
 - how long before it hits the ground?

$$0 = 2m + (20m/s)\sin 45^{\circ}t - \frac{1}{2}(9.83m/s^{2})t^{2}$$

$$0 = 2m + (20m/s)(0.707)t - (4.915m/s^{2})t^{2}$$

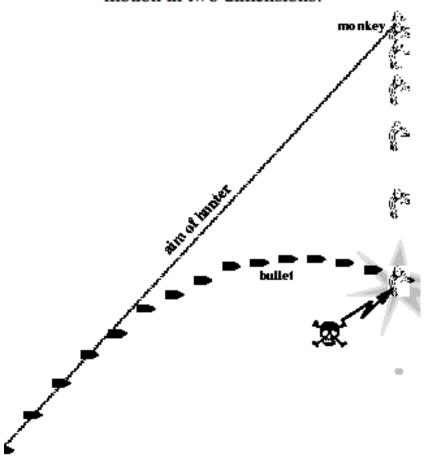

$$4.915t^{2} - 14.14t - 2 = 0$$

$$t = 3.01s$$

Now the horizontal motion

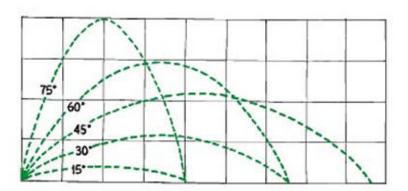
$$x = x_0 + (20m/s)\cos 45^{\circ} t$$

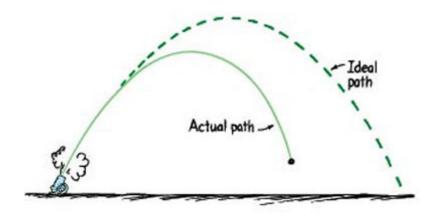
$$x = x_0 + (20m/s)(0.707)(3.01s) = x_0 + 42.6m$$


$$x = x_0 + v_0^x t$$
$$y = y_0 + v_0^y t - \frac{1}{2}gt^2$$

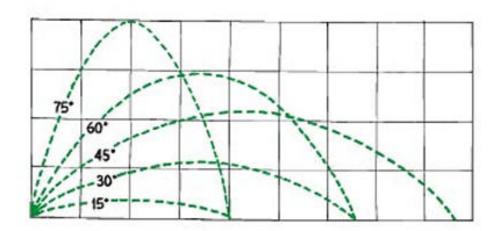
Projectile motion Shoot the monkey

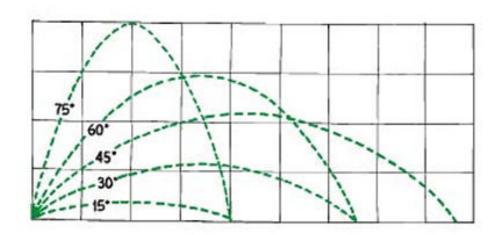
'Shoot the monkey'


- We said that the vertical and horizontal motions for projectiles were independent
- Neglecting air resistance, there is an acceleration only in the vertical direction (due to gravity) and it is the same regardless of whether there is horizontal motion or not
- Suppose a hunter is aiming at a monkey hanging in a tree
- The monkey lets go at the same instant that the hunter pulls the trigger
- Does the monkey get hit?
- Yes, if the initial aim is correct, because the monkey and the bullet have the same acceleration

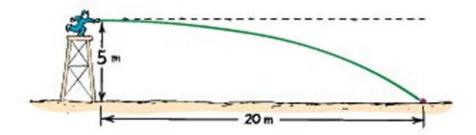

Figure 4.5: Shoot the ``monkey": an illustration of motion in two dimensions.

...no actual monkeys will be harmed in this demonstration

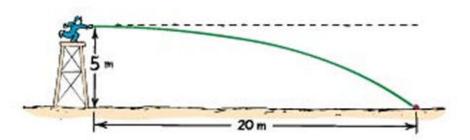

- What angle should you throw a ball in order for it to go the maximum distance, given that the initial release velocity is the same?
 - somewhere between0 and 90 degrees
 - to be more precise 45 degrees
- What is the impact of air resistance?

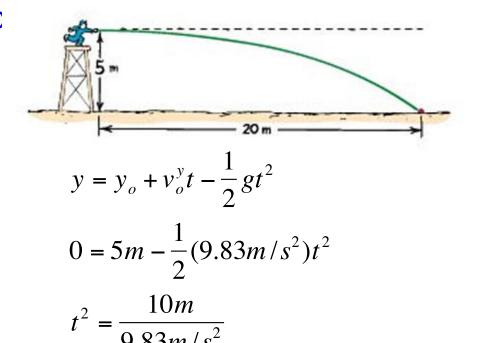

Clicker question

- For the possible paths for the projectile below, which has the largest vertical acceleration?
- A) 75°
- B) 60°
- C) 45°
- D) 30°
- E) they're all the same

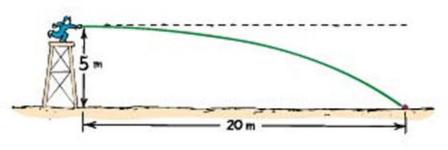


Clicker question


- For the possible paths for the projectile below, which has the largest vertical acceleration?
- A) 75°
- B) 60°
- C) 45°
- **D)** 30°
- E) they're all the same


- How fast is the ball thrown?
- How would you approach the problem?

- How fast is the ball thrown?
- How would you approac the problem?
- Separate into horizontal and vertical motions
- How long does it take for the ball to drop 5 m?
- During that time it has travelled 20 m horizontally



- How fast is the ball thrown?
- How would you approac the problem?
- Separate into horizontal and vertical motions
- How long does it take for the ball to drop 5 m?
- During that time it has travelled 20 m horizontally

t = 1.01s

- How fast is the ball thrown?
- How would you approac the problem?
- Separate into horizontal and vertical motions
- How long does it take for the ball to drop 5 m?
- During that time it has travelled 20 m horizontally

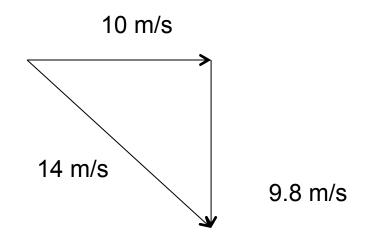
$$t = 1.01s$$

$$x = x_o + v_o^x t$$

$$20m = v_o^x(1.01s)$$

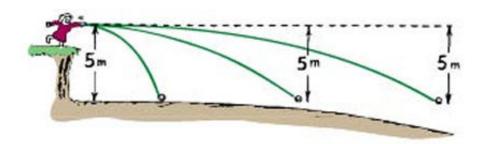
$$v_o^x = 19.8 m/s$$

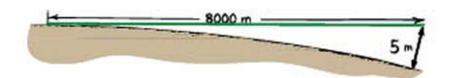
iclicker question

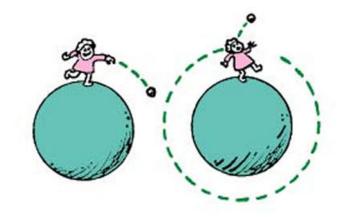

A cannonball is fired horizontally with a speed of 10 m/s from the edge of a cliff. What is its speed 1 second after being fired? Ignore air resistance.

- a) 10 m/s
- b) 14 m/s
- c) 16 m/s
- d) 20 m/s
- e) 30 m/s

iclicker question


A cannonball is fired horizontally with a speed of 10 m/s from the edge of a cliff. What is its speed 1 second after being fired?


- a) 10 m/s
- b) 14 m/s
- c) 16 m/s
- d) 20 m/s
- e) 30 m/s



Satellites

- What happens as you throw the ball harder and harder?
- It goes farther before it hits the Earth's surface
- The Earth's surface falls off about 5 m every 8000 m
- If you can throw a ball hard enough so that it travels 8000 m in the 1 second it takes to fall 5 m, then it will keep on falling around the surface of the Earth
 - 8 km/s
 - or 29,000 km/hour

