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Abstract

We illustrate a duality relation between one—loop integeald single-cut phase—
space integrals. This duality relation is realized by a htweovariant modifi-
cation of the customary-i0 prescription of the Feynman propagators and can
be extended to generic one—loop quantities, such as Gregwwsons, in any
relativistic, local and unitary field theories. Additiolyalwe comment on first
steps towards a two—loop duality relation.

1. INTRODUCTION

The duality method provides a method to humerically computdti—leg one—loop cross sections in
perturbative field theories by defining a relation betwees+twop integrals and single phase—space inte-
grals [1-3]. This is done by properly regularizing propagsiy a complex Lorentz—covariant prescrip-
tion, which is different from the customaryi0O prescription of the Feynman propagators. The duality
method is valid for massless as well as for real and virtualsiva propagators and can straightforwardly
be applied not only for the evaluation of basic one—loopgrdks but also for complete one—loop quan-
tities such as Green’s functions and scattering amplit{@lesAn extension to two—loop order is more
involved and needs the treatment of occurring dependencer@of the two integration momenta in the
modified+:0 description, which would lead to branch cuts in the complsergy plane. This extension

is currently under investigation.

One motivation for deriving the duality relation is given the fact that the computation of cross
sections at next-to-leading order (NLO) requires the sepavaluation of real and virtual radiative cor-
rections. Real (virtual) radiative corrections are givgmulti-leg tree—level (one—loop) matrix elements
to be integrated over the multi—particle phase space of lilgsipal process. The loop—tree duality dis-
cussed here, as well as other methods that relate one—ldgghase—space integrals, have the attractive
feature that they recast the virtual radiative correctiaresform that closely parallels the contribution of
the real radiative corrections [1,4—7]. This close coroesfence can help to directly combine real and
virtual contributions to NLO cross sections. In particulaging the duality relation, one can apply mixed
analytical and numerical techniques to the evaluation efaime—loop virtual contributions [1]. The in-
frared or ultraviolet divergent part of the correspondin@ldntegrals can be analytically evaluated in
dimensional regularization. The finite part of the dual gngés can be computed numerically, together
with the finite part of the real emission contribution. Palrtiesults along these lines are presented in
Refs. [1, 2] and further work is in progress.

2. THE DUALITY RELATION AT ONE-LOOP ORDER

Consider a generic one—loop integral over Feynman propegyaivhereq; = ¢ + i _, pi are the
momenta of the internal lineg,being the loop momentum, anpd (Zf\il p; = 0) the external (outgoing
and clockwise ordered) momenta. The Feynman propagateesth@ poles in the complex plane of
the loop energyyy, the pole with positive (negative) energy being slightlgpdaced below (above) the
real axis encoded by the additioral0 term in the propagator. Using the Cauchy residue theorehmein t
complexgo—plane, with the integration contour closedain the lower half—plane, we obtain a sum over
terms given by the integral evaluated at the poles with wes@nergy only. Hence a one—loop integral
with NV internal propagators leads fé contributions, one for each propagator for which the resiidu



taken. It can be shown that this residue is equivalent tanguthat line by including the corresponding
on-shell propagatof, (¢7) = 6(¢?)d(¢?). The remaining propagators of the expression are shifted to
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wheren is a future-like vector, i.e. d-dimensional vector that can be either light-lik¢ = 0) or time-

like (n? > 0) with positive definite energyng > 0). The calculation of the residue at the pole of tHe
internal line modifies theé0 prescription of the propagators of the other internal lioethe loop. This
modified regularization is named ‘duab prescription, and the corresponding propagators are named
‘dual’ propagators. The dual prescription arises, bectheseriginal Feynman propagatb)‘(q]? +1i0) is
evaluated at theomplex value of the loop momentum which is determined by the location of the pole
atq? +i0 = 0. The presence of is a consequence of the fact that the residue at each of the jsahot

a Lorentz—invariant quantity, since a given system of coatés has to be specified to apply the residue
theorem. Different choices of the future-like vectaare equivalent to different choices of the coordinate
system. The Lorentz—invariance of the loop integral is, én®v, recovered after summing over all the
residues. For a one—loop integral, the terfn; — ¢;) is always solely proportional to external momenta
and hence defines a fixed pole in theplane.

Note that an extension to real and virtual massive propagatad full scattering amplitudes is
straightforward and described in detail in Ref. [3].

3. FIRST STEPS TOWARDS TWO-LOOP ORDER

The fact that the term(q; —qg;) is proportional to external momenta only, is not valid anyenance going

to the next loop order and considering a generic two—loopmédiagram. Taking the residues loop by
loop for the two integration momenta introduces in some £asdependence on one of the integration
momenta in the difference of(¢; — ¢;). Hence we encounter not poles but rather branch cuts in the
complex energy plane. To avoid this and more generally t@amy dependence on integration momenta
in then(g; — ¢;)-terms demands a reformulation of the propagators intchendiasis, which fulfills the
required properties. First steps towards a two—loop exmrbtained by such a transformation have
been undertaken, while the full general two—loop expressistill under investigation.
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