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Abstract
We illustrate a duality relation between one–loop integrals and single-cut phase–
space integrals. This duality relation is realized by a Lorentz covariant modifi-
cation of the customary+i0 prescription of the Feynman propagators and can
be extended to generic one–loop quantities, such as Green’sfunctions, in any
relativistic, local and unitary field theories. Additionally, we comment on first
steps towards a two–loop duality relation.

1. INTRODUCTION

The duality method provides a method to numerically computemulti–leg one–loop cross sections in
perturbative field theories by defining a relation between one–loop integrals and single phase–space inte-
grals [1–3]. This is done by properly regularizing propagators by a complex Lorentz–covariant prescrip-
tion, which is different from the customary+i0 prescription of the Feynman propagators. The duality
method is valid for massless as well as for real and virtual massive propagators and can straightforwardly
be applied not only for the evaluation of basic one–loop integrals but also for complete one–loop quan-
tities such as Green’s functions and scattering amplitudes[3]. An extension to two–loop order is more
involved and needs the treatment of occurring dependences on one of the two integration momenta in the
modified+i0 description, which would lead to branch cuts in the complex energy plane. This extension
is currently under investigation.

One motivation for deriving the duality relation is given bythe fact that the computation of cross
sections at next-to-leading order (NLO) requires the separate evaluation of real and virtual radiative cor-
rections. Real (virtual) radiative corrections are given by multi–leg tree–level (one–loop) matrix elements
to be integrated over the multi–particle phase space of the physical process. The loop–tree duality dis-
cussed here, as well as other methods that relate one–loop and phase–space integrals, have the attractive
feature that they recast the virtual radiative correctionsin a form that closely parallels the contribution of
the real radiative corrections [1, 4–7]. This close correspondence can help to directly combine real and
virtual contributions to NLO cross sections. In particular, using the duality relation, one can apply mixed
analytical and numerical techniques to the evaluation of the one–loop virtual contributions [1]. The in-
frared or ultraviolet divergent part of the corresponding dual integrals can be analytically evaluated in
dimensional regularization. The finite part of the dual integrals can be computed numerically, together
with the finite part of the real emission contribution. Partial results along these lines are presented in
Refs. [1,2] and further work is in progress.

2. THE DUALITY RELATION AT ONE–LOOP ORDER

Consider a generic one–loop integral over Feynman propagators, whereqi = q +
∑i

k=1 pk are the
momenta of the internal lines,q being the loop momentum, andpi (

∑N
i=1 pi = 0) the external (outgoing

and clockwise ordered) momenta. The Feynman propagators have two poles in the complex plane of
the loop energyq0, the pole with positive (negative) energy being slightly displaced below (above) the
real axis encoded by the additional+i0 term in the propagator. Using the Cauchy residue theorem in the
complexq0–plane, with the integration contour closed at∞ in the lower half–plane, we obtain a sum over
terms given by the integral evaluated at the poles with positive energy only. Hence a one–loop integral
with N internal propagators leads toN contributions, one for each propagator for which the residue is



taken. It can be shown that this residue is equivalent to cutting that line by including the corresponding
on–shell propagatorδ+(q2

i ) = θ(q0
i )δ(q

2
i ). The remaining propagators of the expression are shifted to
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whereη is a future-like vector, i.e. ad-dimensional vector that can be either light-like(η2 = 0) or time-
like (η2 > 0) with positive definite energy (η0 ≥ 0). The calculation of the residue at the pole of theith

internal line modifies thei0 prescription of the propagators of the other internal linesof the loop. This
modified regularization is named ‘dual’i0 prescription, and the corresponding propagators are named
‘dual’ propagators. The dual prescription arises, becausethe original Feynman propagator1/(q2

j + i0) is
evaluated at thecomplex value of the loop momentumq, which is determined by the location of the pole
at q2

i + i0 = 0. The presence ofη is a consequence of the fact that the residue at each of the poles is not
a Lorentz–invariant quantity, since a given system of coordinates has to be specified to apply the residue
theorem. Different choices of the future-like vectorη are equivalent to different choices of the coordinate
system. The Lorentz–invariance of the loop integral is, however, recovered after summing over all the
residues. For a one–loop integral, the termη(qj − qi) is always solely proportional to external momenta
and hence defines a fixed pole in theq0–plane.

Note that an extension to real and virtual massive propagators and full scattering amplitudes is
straightforward and described in detail in Ref. [3].

3. FIRST STEPS TOWARDS TWO–LOOP ORDER

The fact that the termη(qj−qi) is proportional to external momenta only, is not valid anymore once going
to the next loop order and considering a generic two–loop n–leg diagram. Taking the residues loop by
loop for the two integration momenta introduces in some cases a dependence on one of the integration
momenta in the difference ofη(qj − qi). Hence we encounter not poles but rather branch cuts in the
complex energy plane. To avoid this and more generally to avoid any dependence on integration momenta
in theη(qj − qi)–terms demands a reformulation of the propagators into another basis, which fulfills the
required properties. First steps towards a two–loop expression obtained by such a transformation have
been undertaken, while the full general two–loop expression is still under investigation.
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