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Abstract
We report on a determination of the strong coupling constantfrom a fit of QCD
predictions for six event-shape variables, calculated at next-to-next-to-leading
order (NNLO) and matched to resummation in the next-to-leading-logarithmic
approximation (NLLA). We use data collected by ALEPH at centre-of-mass
energies between 91 and 206 GeV. We also investigate the roleof hadronisation
corrections, using both Monte Carlo generator predictionsand analytic models
to parametrise non-perturbative power corrections.

1. INTRODUCTION

Event-shape observables describe topological propertiesof hadronic final states without the need to de-
fine jets, quantifying the structure of an event by a single measure. This class of observables is also
interesting because it shows a rather strong sensitivity tohadronisation effects, at least in phase-space
regions characterised by soft and collinear gluon radiation, which correspond to certain limits for each
event-shape variable.

Event-shape distributions ine+e− annihilation have been measured with high accuracy by a num-
ber of experiments, most of them at LEP at centre-of-mass energies between 91 and 206 GeV [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Mean values and higher moments also have been measured by
several experiments, most extensively byJADE [16, 17] andOPAL [7].

For a long time, the theoretical state-of-the-art description of event-shape distributions over the full
kinematic range was based on the matching of the next-to-leading-logarithmic approximation (NLLA)
[18] onto the fixed next-to-leading order (NLO) calculation[19, 20, 21]. Recently, NNLO results for
event-shape distributions became available [22, 23, 24] and lead to the first determination of the strong
coupling constant using NNLO predictions for hadronic event shapes ine+e− annihilations [25]. Soon
after, the matching of the resummed result in the next-to-leading-logarithmic approximation onto the
NNLO calculation has been performed [26] in the so-calledln R-matching scheme [18]. Based on these
results, a determination of the strong coupling constant using matched NNLO+NLLA predictions for
hadronic event shapes has been carried out [27], together with a detailed investigation of hadronisation
corrections. Next-to-leading order electroweak corrections to event-shape distributions ine+e− annihi-
lation were also computed very recently [28].

A similar NNLO+NLLA study based onJADEdata was done in [29], while other NNLO determi-
nations ofαs(MZ) based on only the thrust distribution were presented in [30,31].

Apart from distributions of event-shape observables, one can also study mean values and higher
moments, which are now available at NNLO accuracy [32, 33]. Moments are particularly attractive in
view of studying non-perturbative hadronisation corrections to event shapes. In ref. [34], NNLO per-
turbative QCD predictions have been combined with non-perturbative power corrections in a dispersive
model [35, 36, 37, 38]. The resulting theoretical expressions have been compared to experimental data



from JADE and OPAL, and new values for bothαs(MZ) and α0, the effective coupling in the non-
perturbative regime, have been determined.

The two approaches – estimating the hadronisation corrections by general purpose Monte Carlo
programs or modelling power corrections analytically – shed light on the subject of hadronisation cor-
rections from two different sides and lead to some interesting insights which will be summarised in the
following.

2. THEORETICAL FRAMEWORK

We have studied the six event-shape observables thrustT [39] (respectivelyτ = 1 − T ), heavy jet mass
MH [40], wide and total jet broadeningBW andBT [41], C-parameter [42, 43] and the two-to-three-jet
transition parameter in the Durham algorithm,Y3 [44, 45]. The definitions of these variables, which we
will denote collectively asy in the following, are summarised e.g. in [23].

2.1 event-shape distributions

The fixed-order QCD description of event-shape distributions starts from the perturbative expansion
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s(µ)
dC

dy
(y, xµ) + O(ᾱ4
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and whereA, B andC are the perturbatively calculated coefficients [23] at LO, NLO and NNLO.

All coefficients are normalised to the tree-level cross section σ0 for e+e− → qq̄. For massless
quarks, this normalisation cancels all electroweak coupling factors, and the dependence of (1) on the
collision energy is only throughαs andxµ. Predictions for the experimentally measured event-shape
distributions are then obtained by normalising toσhad as
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In all expressions, the scale dependence ofαs is determined according to the three-loop running:
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whereL = 2 ln(µ/Λ
(NF )

MS
) andβi are theMS-scheme coefficients listed e.g. in [23].

We take into account bottom mass effects by retaining the masslessNF = 5 expressions and
adding the difference between the massless and massive LO and NLO coefficientsA andB [46, 47, 48,
49], where a pole b-quark mass ofmb = 4.5 GeV was used.

In the limit y → 0 one observes that the perturbative contribution of orderαn
s to the cross section

diverges likeαn
s L2n, with L = − ln y (L = − ln (y/6) for y = C). This leading logarithmic (LL)

behaviour is due to multiple soft gluon emission at higher orders, and the LL coefficients exponentiate,
such that they can be resummed to all orders. For the event-shape observables considered here, and
assuming massless quarks, the next-to-leading logarithmic (NLL) corrections can also be resummed to
all orders in the coupling constant.

In order to obtain a reliable description of the event-shapedistributions over a wide range iny, it
is mandatory to combine fixed order and resummed predictions. However, in order to avoid the double
counting of terms common to both, the two predictions have tobe matched onto each other. A number
of different matching procedures have been proposed in the literature, see e.g. Ref. [50] for a review.



The most commonly used procedure is the so-calledln R-matching [18], which we used in two different
variants for our study onαs [27]. For more details about the NLLA+NNLO matching we referthe reader
to Ref. [26].

2.2 Moments of event-shape observables

Thenth moment of an event-shape observabley is defined by

〈yn〉 =
1

σhad

∫ ymax

0
yn dσ

dy
dy , (4)

whereymax is the kinematically allowed upper limit of the observable.For moments of event shapes,
one expects the hadronisation corrections to be additive, such that they can be divided into a perturbative
and a non-perturbative contribution,

〈yn〉 = 〈yn〉pt + 〈yn〉np , (5)

where the non-perturbative contribution accounts for hadronisation effects.

In ref. [34], the dispersive model derived in Refs. [35, 36, 37, 38] has been used to estimate hadro-
nisation corrections to event-shape moments by calculating analytical predictions for power corrections.
It introduces only a single new parameterα0, which can be interpreted as the average strong coupling in
the non-perturbative region:

1

µI

∫ µI

0
dQαeff (Q2) = α0(µI) , (6)

where below the IR cutoffµI the strong coupling is replaced by an effective coupling. This dispersive
model for the strong coupling leads to a shift in the distributions
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where the numerical factoray depends on the event shape, whileP is believed to be universal and scales
with the centre-of-mass energy likeµI/Q. Insertion of eq. (7) into the definition of the moments leads
to
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From this expression one can extract the non-perturbative predictions for the moments ofy. To combine
the dispersive model with the perturbative prediction at NNLO QCD, the analytical expressions have
been extended [34] to compensate for all scale-dependent terms at this order.

3. DETERMINATION OF αs AND α0

3.1 αs from distributions of hadronic event shapes

We have used the six event-shape observables listed in section 2. for our fits. The measurements we use
have been carried out by theALEPH collaboration [1] at eight different centre-of-mass energies between
91.2 and 206 GeV. The event-shape distributions were obtained from the reconstructed momenta and
energies of charged and neutral particles. The measurements have been corrected for detector effects,
i.e. the final distributions correspond to the so-called particle (or hadron) level. In addition, at LEP2
energies above the Z peak they were corrected for initial-state radiation effects. At energies above 133
GeV, backgrounds from 4-fermion processes, mainly from W-pair production and also ZZ and Zγ∗,
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Fig. 1: The measurements of the strong coupling constantαs for the six event shapes, at
√

s = MZ , when using
QCD predictions at different approximations in perturbation theory. The shaded area corresponds to the total
uncertainty.

were subtracted following the procedure given in [1]. The experimental uncertainties were estimated by
varying event and particle selection cuts. They are below 1%at LEP1 and slightly larger at LEP2.

The perturbative QCD prediction is corrected for hadronisation and resonance decays by means
of a transition matrix, which is computed with the Monte Carlo generatorsPYTHIA [51], HERWIG [52]
andARIADNE [53], all tuned to global hadronic observables atMZ [54]. The parton level is defined
by the quarks and gluons present at the end of the parton shower in PYTHIA and HERWIG and the
partons resulting from the colour dipole radiation inARIADNE. Corrected measurements of event-shape
distributions are compared to the theoretical calculationat particle level. For a detailed description of the
determination and treatment of experimental systematic uncertainties we refer to Refs. [1, 25].

We also made studies using the NLO+LL event generatorHERWIG++ [55], which will be de-
scribed in more detail below.

The value ofαs is determined at each energy using a binned least-squares fit. The fit programs of
Ref. [25] have been extended to incorporate the NNLO+NLLA calculations. Combining the results for
six event-shape variables and eight LEP1/LEP2 centre-of-mass energies, we obtain

αs(MZ) = 0.1224 ± 0.0009 (stat) ± 0.0009 (exp) ± 0.0012 (had) ± 0.0035 (theo) .

The fitted values of the coupling constant as found from event-shape variables calculated at various orders
are shown in Fig. 1. Comparing our results to both the fit usingpurely fixed-order NNLO predictions [25]
and the fits based on earlier NLLA+NLO calculations [1], we make the following observations:

• The central value is slightly lower than the central value of0.1228 obtained from fixed-order
NNLO only, and slightly larger than the NLO+NLLA results. The fact that the central value is
almost identical to the purely fixed-order NNLO result couldbe anticipated from the findings in
Ref. [26]. There it is shown that in the three-jet region, which provides the bulk of the fit range,
the matched NLLA+NNLO prediction is very close to the fixed-order NNLO calculation.

• The dominant theoretical uncertainty onαs(MZ), as estimated from scale variations, is reduced by
20% compared to NLO+NLLA. However, compared to the fit based on purely fixed-order NNLO
predictions, the perturbative uncertainty isincreasedin the NNLO+NLLA fit. The reason is that in



the two-jet region the NLLA+NLO and NLLA+NNLO predictions agree by construction, because
the matching suppresses any fixed order terms. Therefore, the renormalisation scale uncertainty
is dominated by the next-to-leading-logarithmic approximation in this region, which results in a
larger overall scale uncertainty in theαs fit.

• As already observed for the fixed-order NNLO results, the scatter among the values ofαs(MZ)
extracted from the six different event-shape variables is substantially reduced compared to the
NLO+NLLA case.

• The matching of NLLA+NNLO introduces a mismatch in the cancellation of renormalisation scale
logarithms, since the NNLO expansion fully compensates therenormalisation scale dependence
up to two loops, while NLLA only compensates it up to one loop.In order to assess the impact
of this mismatch, we have introduced theln R(µ) matching scheme [27], which retains the two-
loop renormalisation terms in the resummed expressions andthe matching coefficients. In this
scheme, a substantial reduction of the perturbative uncertainty from ±0.0035 (obtained in the
default ln R-scheme) to±0.0022 is observed, which might indicate the size of the ultimately
reachable precision for a complete NNLO+NNLLA calculation. Although both schemes are in
principle on the same theoretical footing, it is the more conservative error estimate obtained in the
ln R-scheme which should be taken as the nominal value, since it measures the potential impact of
the yet uncalculated finite NNLLA-terms.

• Bottom quark mass effects, which are numerically significant mainly at the LEP1 energy, were
included through to NLO. Compared to a purely massless evaluation of the distributions, the in-
clusion of these mass effects enhancesαs(MZ) by 0.8%.

Hadronisation corrections from LL+NLO event generators

In recent years large efforts went into the development of modern Monte Carlo event generators which
include in part NLO corrections matched to parton showers atleading logarithmic accuracy (LL) for
various processes. Here we useHERWIG++[55, 56] version 2.3 for our investigations. Several schemes
for the implementation of NLO corrections are available [57, 58, 59]. We studied theMCNLO [57] and
POWHEG[58] schemes1.

We compared the prediction for the event-shape distributions ofHERWIG++ to both the high pre-
cision data at LEP1 fromALEPH and the predictions from the legacy generatorsPYTHIA, HERWIG and
ARIADNE. We recall that the latter have all been tuned to the same global QCD observables measured
by ALEPH [54] at LEP1, which included event-shape variables similarto the ones analysed here. To
investigate the origin of the observed differences betweenthe generators, we decided to consider the
parton-level predictions and the hadronisation corrections separately. Discussing the full details of our
study is beyond the scope of this note; here we only mention some of our observations.HERWIG++
with POWHEGyields a similar shape as the legacy programs, but differs inthe normalisation. The other
HERWIG++predictions differ most notably in shape from the former. The fit quality ofHERWIG++with
POWHEGis similar to the outcome of the legacy generators. Given thesimilar shape but different nor-
malisation ofHERWIG++ with POWHEG, the resulting values ofαs are significantly lower, overall by
3%. For further details we refer to Ref. [27].

From the study of hadronisation corrections we make the following important observation. It
appears that there are two “classes” of variables. The first class contains thrust, C-parameter and total
jet broadening, while the second class consists of the heavyjet mass, wide jet broadening and the two-
to-three-jet transition parameterY3. For the first class, using the standard hadronisation corrections from
PYTHIA, we obtainαs(MZ) values around0.125 − 0.127, some5% higher than those found from the
second class of variables. In a study of higher moments of event shapes [32], indications were found
that variables from the first class still suffer from sizablemissing higher order corrections, whereas the

1We use the notationMCNLO for themethod, while MC@NLO denotes theprogram.



second class of observables have a better perturbative stability. In Ref. [27], we observed that this first
class of variables gives a parton level prediction withPYTHIA, which is about10% higher than the
NNLO+NLLA prediction. ThePYTHIA result is obtained with tuned parameters, where the tuning to
data had been performed at the hadron level. This tuning results in a rather large effective coupling
in the parton shower, which might partly explain the larger parton level prediction ofPYTHIA. As the
tuning has been performed at hadron level, this implies thatthe hadronisation corrections come out to
be smaller than what would have been found by tuning a hypothetical Monte Carlo prediction with a
parton level corresponding to the NNLO+NLLA prediction. This means that thePYTHIA hadronisation
corrections, applied in theαs fit, might be too small, resulting in a largerαs(MZ) value. Since up to now
the hadronisation uncertainties have been estimated from the differences of parton shower based models,
tuned to the data, it is likely that for these event shapes theuncertainties were underestimated, missing a
possible systematic shift. Such problems do not appear to exist for the second class of variables.

We would like to mention that a determination ofαs based on 3-jet rates calculated at NNLO
accuracy also has been performed recently [60], with the result αs(MZ) = 0.1175 ± 0.0020 (exp) ±
0.0015 (theo), which is also lower than the one obtained from fits to distributions of event shapes.

3.2 αs and α0 from moments of hadronic event shapes

Now we turn to analytical models to estimate hadronisation corrections. The expressions derived in [34]
match the dispersive model with the perturbative prediction at NNLO QCD. Comparing these expressions
with experimental data on event-shape moments, a combined determination of the perturbative strong
coupling constantαs and the non-perturbative parameterα0 has been performed [34], based on data
from the JADE and OPAL experiments [17]. The data consist of 18 points at centre-of-mass energies
between 14.0 and 206.6 GeV for the first five moments ofT , C, Y3, MH , BW andBT , and have been
taken from [61]. For each moment the NLO as well as the NNLO prediction was fitted withαs(MZ)
andα0 as fit parameters, except for the moments ofY3, which have no power correction and thus are
independent ofα0.

Compared to previous results at NLO, inclusion of NNLO effects results in a considerably im-
proved consistency in the parameters determined from different shape variables, and in a substantial
reduction of the error onαs.

We further observe that the theoretical error on the extraction of αS(MZ) from ρ, Y3 andBW is
considerably smaller than fromτ , C andBT . As mentioned above and discussed in detail in [32], the
moments of the former three shape variables receive moderate NNLO corrections for alln, while the
NNLO corrections for the latter three are large already forn = 1 and increase withn. Consequently, the
theoretical description of the moments ofρ, Y3 andBW displays a higher perturbative stability, which is
reflected in the smaller theoretical uncertainty onαS(MZ) derived from those variables.

In a second step, we combine theαs(MZ) andα0 measurements obtained from different event-
shape variables. Taking the weighted mean over all values exceptBW andBT , we obtain at NNLO:

αs(MZ) = 0.1153 ± 0.0017(exp) ± 0.0023(th),

α0 = 0.5132 ± 0.0115(exp) ± 0.0381(th) , (9)

The moments ofBW andBT have been excluded here since their theoretical description requires an ad-
ditional contribution to the non-perturbative coefficientP (see eq. (7)) which is not available consistently
to NNLO.

To illustrate the improvement due to the inclusion of the NNLO corrections, we also quote the
corresponding NLO results. Based onτ , C, ρ andY3, we obtain:

αNLO
s (MZ) = 0.1200 ± 0.0021(exp) ± 0.0062(th),

αNLO
0 = 0.4957 ± 0.0118(exp) ± 0.0393(th) ,



(Mz)sα
0.1 0.11 0.12 0.13 0.14 0.15

n

1

2

3

4

NLO

T

C

ρ

3Y

(Mz)sα
0.1 0.11 0.12 0.13 0.14 0.15

n

1

2

3

4

NNLO

T

C

ρ

3Y

0α
0.3 0.4 0.5 0.6 0.7

n

1

2

3

NLO

T

C

ρ

0α
0.3 0.4 0.5 0.6 0.7

n

1

2

3

NNLO

T

C

ρ

Fig. 2: Error bands at NLO and NNLO for combinations of valuesfor αs andα0 obtained from fits to moments of different

event shapes. The error onαs is dominated by scale uncertainties, while the largest contribution to the error onα0 comes from

the uncertainty on the Milan factor.

We compare the NLO and NNLO combinations in Figure 2. It can beseen very clearly that the mea-
surements obtained from the different variables are consistent with each other within errors. The average
of αs(MZ) is dominated by the measurements based onρ andY3, which have the smallest theoretical
uncertainties. From NLO to NNLO, the error onαs(MZ) is reduced by a factor of two. Analysing the
different sources of the systematical errors, we observe that the error onαs(MZ) is clearly dominated by
thexµ variation, while the largest contribution to the error onα0 comes from the uncertainty on the Mi-
lan factorM [37]. Since this uncertainty has not been improved in the current study, it is understandable
that the systematic error onα0 remains unchanged.

To quantify the difference of the dispersive model to hadronisation corrections from the legacy
generators, we analysed the moments of (1-T) with hadronisation corrections fromPYTHIA. As a result,
we obtained fit results forαs(MZ) which are typically 4% higher than by using the dispersive model,
with a slightly worse quality of the fit. Comparing perturbative and non-perturbative contributions at√

s = MZ, we observed thatPYTHIA hadronisation corrections amount to less than half the power
corrections obtained in the dispersive model, thereby explaining the tendency towards a larger value of
αs(MZ), since the missing numerical magnitude of the power corrections must be compensated by a
larger perturbative contribution.

CONCLUSIONS

We have compared determinations of the strong coupling constant based on hadronic event shapes mea-
sured at LEP using two different approaches:

1. a fit of perturbative QCD results at next-to-next-to-leading order (NNLO), matched to resummation



in the next-to-leading-logarithmic approximation (NLLA), toALEPH data where the hadronisation
corrections have been estimated using Monte Carlo event generators

2. a fit of perturbative QCD results at NNLO matched to non-perturbative power corrections in the
dispersive model, providing analytical parametrisationsof hadronisation corrections, toJADE and
OPAL data.

We find that the second approach results in a considerably lower value ofαs(MZ) than the first one.

We conclude that apparently there are two “classes” of event-shape variables, the first class con-
taining thrust, C-parameter and total jet broadening, the second class containing heavy jet mass, wide jet
broadening and the two-to-three-jet transition parameterY3. Comparing parton level and hadron level
predictions fromPYTHIA, this first class of variables gives a parton level prediction which is about10%
higher than the NNLO+NLLA prediction, where thePYTHIA curve has been obtained with tuned pa-
rameters, the tuning to data being performed at the hadron level. This tuning results in a rather large
effective coupling in the parton shower, such that the parton level prediction ofPYTHIA turns out large.
This may imply that the hadronisation corrections come out to be too small for these variables, resulting
in a largerαs(MZ) value. This hypothesis is corroborated by the fact that the theoretical description of
the moments of the variables thrust, C-parameter and total jet broadening displays a lower perturbative
stability.

For the moments of (1-T), we found that the legacy generatorspredict power corrections which
are less than half of what is obtained in the dispersive model. The large numerical discrepancy between
analytical power corrections and the estimate of hadronisation effects from the legacy generators suggests
to revisit the impact of hadronisation corrections on precision QCD observables.
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